JP2005113296A - Carbon yarn, acrylonitrile-based precursor yarn and method for producing the same - Google Patents
Carbon yarn, acrylonitrile-based precursor yarn and method for producing the same Download PDFInfo
- Publication number
- JP2005113296A JP2005113296A JP2003347230A JP2003347230A JP2005113296A JP 2005113296 A JP2005113296 A JP 2005113296A JP 2003347230 A JP2003347230 A JP 2003347230A JP 2003347230 A JP2003347230 A JP 2003347230A JP 2005113296 A JP2005113296 A JP 2005113296A
- Authority
- JP
- Japan
- Prior art keywords
- acrylonitrile
- yarn
- fiber
- based precursor
- precursor fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
本発明は、製造コストが低く、生産性に優れ、糸切れ、毛羽の発生の低い、高品位、高品質で、特に強度発現性に優れた太物炭素繊維と太物アクリロニトリル系前駆体繊維及びその製造方法に関する。 The present invention provides a thick carbon fiber and a thick acrylonitrile-based precursor fiber that are low in production cost, excellent in productivity, low in yarn breakage and fluff generation, high quality, high quality, and particularly excellent in strength development. It relates to the manufacturing method.
従来、炭素繊維用のアクリロニトリル系前駆体繊維としては、高強度、高弾性率の炭素繊維を得るために、糸切れや毛羽の発生の少ない、品質に優れた3,000〜20,000フィラメントの,いわゆるスモールトウが主に製造され、これから製造された炭素繊維が航空・宇宙、スポーツ分野等の多くの分野に用いられてきた。 Conventionally, as an acrylonitrile-based precursor fiber for carbon fiber, in order to obtain a carbon fiber having high strength and high elastic modulus, it has a quality of 3,000 to 20,000 filaments, which is less likely to cause yarn breakage and fluff and has excellent quality. , So-called small tows are mainly produced, and carbon fibers produced in the future have been used in many fields such as aerospace, sports, and sports.
一方、炭素繊維の利用は、自動車、土木、建築、エネルギー等の一般産業分野に拡大されつつある。そのため高強度、高弾性率で、より安価で生産性の優れた太物炭素繊維の供給が求められている。例えば、特許文献1〜3に太物炭素繊維またはアクリロニトリル系前駆体繊維の製造法が開示されているが、いずれに開示されている炭素繊維も強度発現性が十分ではなく、従来のフィラメント数が12,000本以下のスモールトウ並のストランド強度、弾性率には至っていないのが現状である。 On the other hand, the use of carbon fiber is being expanded to general industrial fields such as automobiles, civil engineering, architecture, and energy. For this reason, there is a demand for supply of thick carbon fibers with high strength, high elastic modulus, lower cost and excellent productivity. For example, Patent Documents 1 to 3 disclose a method for producing a thick carbon fiber or an acrylonitrile-based precursor fiber, but the carbon fiber disclosed in any of them is not sufficiently strong in strength, and the number of conventional filaments is The current situation is that the strand strength and elastic modulus of 12,000 or less small tows are not reached.
そこで、本発明は、製造コストが低く、生産性に優れ、糸切れ、毛羽の発生の低い、高品位、高品質で、特に強度発現性に優れた太物炭素繊維と太物アクリロニトリル系前駆体繊維及びその製造方法を提供することを課題とする。 Accordingly, the present invention provides a thick carbon fiber and a thick acrylonitrile-based precursor that are low in production cost, excellent in productivity, low in yarn breakage and fluff generation, high quality, high quality, and particularly excellent in strength development. It is an object to provide a fiber and a method for manufacturing the fiber.
本発明の第1の要旨は、単繊維繊度が0.7〜1.3dtex、フィラメント数が30,000本以上のアクリロニトリル系前駆体繊維を焼成して得られる、ストランド強度(JIS R7601−1986)が500kg/mm2以上の炭素繊維である。 The first gist of the present invention is a strand strength (JIS R7601-1986) obtained by firing an acrylonitrile-based precursor fiber having a single fiber fineness of 0.7 to 1.3 dtex and a filament number of 30,000 or more. Is a carbon fiber of 500 kg / mm 2 or more.
また、第2の要旨は、単繊維間の接着数が5ヶ/30,000本以下であり、繊維軸に垂直方向の結晶領域サイズが1.1×10−8m以上であるアクリロニトリル系前駆体繊維である。 The second gist is that the number of bonds between single fibers is 5 / 30,000 or less, and the crystal region size perpendicular to the fiber axis is 1.1 × 10 −8 m or more. It is a body fiber.
そして、第3の要旨は、アクリロニトリル系重合体の有機溶剤溶液を、ジメチルアセトアミド水溶液中にノズル口径が45〜75μm、孔数30,000ヶ以上の紡糸ノズルから凝固糸引き取り速度/吐出線速度が0.8以下で吐出した膨潤糸条を、洗浄/延伸した後、第一油浴槽に導き第一油剤を付与しガイドで一旦絞りを行った後、引き続き第二油浴槽で第二油剤を付与し、乾燥緻密化二次延伸によってトータル延伸倍率5〜10倍を行うことを特徴とするアクリロニトリル系前駆体繊維の製造方法である。 The third gist is that an organic solvent solution of an acrylonitrile-based polymer is mixed with a dimethylacetamide aqueous solution with a nozzle diameter of 45 to 75 μm, a spinning nozzle having a pore number of 30,000 or more and a solidified yarn take-off speed / discharge linear velocity. After washing / stretching the swollen yarn discharged at 0.8 or less, guide it to the first oil bath, apply the first oil agent, squeeze it once with the guide, and then apply the second oil agent in the second oil bath. And a total drawing ratio of 5 to 10 times by dry densification secondary drawing, which is a method for producing an acrylonitrile-based precursor fiber.
本発明によれば、製造コストが低く、生産性に優れ、糸切れ、毛羽の発生の低い、高品位、高品質で、特に強度発現性に優れた太物炭素繊維と太物アクリロニトリル系前駆体繊維及びその製造方法を供給することができる。 According to the present invention, a thick carbon fiber and a thick acrylonitrile-based precursor that are low in production cost, excellent in productivity, low in yarn breakage, fuzz generation, high quality, high quality, and particularly excellent in strength development. Fiber and its manufacturing method can be supplied.
以下、本発明を詳細に説明する。
『アクリロニトリル系前駆体繊維』
本発明のアクリロニトリル系前駆体繊維は、複数の、アクリロニトリル系重合体の単繊維を束ねたトウである。
Hereinafter, the present invention will be described in detail.
"Acrylonitrile precursor fiber"
The acrylonitrile-based precursor fiber of the present invention is a tow obtained by bundling a plurality of single fibers of an acrylonitrile-based polymer.
(アクリロニトリル系重合体)
アクリロニトリル系重合体としては、アクリロニトリル単位を95質量%以上含有する重合体であることが、アクリロニトリル系前駆体繊維を焼成して得られる炭素繊維の強度発現性の面で好ましい。
アクリロニトリル系重合体は、アクリロニトリルと、必要に応じてこれと共重合しうる単量体とを、水溶液中におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合などによって、重合して得ることができる。
アクリロニトリルと共重合しうる単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類;(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類;マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル;スチレンスルホン酸ソーダ、アリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体;2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられる。
(Acrylonitrile polymer)
The acrylonitrile-based polymer is preferably a polymer containing 95% by mass or more of acrylonitrile units in terms of strength development of carbon fibers obtained by firing acrylonitrile-based precursor fibers.
An acrylonitrile polymer is a polymer of acrylonitrile and a monomer that can be copolymerized with it by redox polymerization in an aqueous solution, suspension polymerization in a heterogeneous system, emulsion polymerization using a dispersing agent, or the like. Can be obtained.
Examples of monomers that can be copolymerized with acrylonitrile include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Esters; vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride; acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts; maleic imide, phenylmaleimide, (meth) acrylamide, Styrene, α-methylstyrene, vinyl acetate; polymerizable unsaturated monomer containing a sulfo group such as sodium styrene sulfonate, sodium allyl sulfonate, sodium β-styrene sulfonate, sodium methallyl sulfonate; 2-vinylpyridine , 2-methyl-5-vinylpyridine and the like Examples thereof include a polymerizable unsaturated monomer containing a lysine group.
(単繊繊度)
アクリロニトリル系前駆体繊維を構成する単繊維の繊度は0.7〜1.3dtexであることが必要である。単繊維の繊度が0.7dtex未満であるとアクリル繊維糸条を安定に紡糸することが難しくなり、逆に1.3dtexを越えると断面二重構造が顕著になり、高性能な炭素繊維が得られにくい。
(Single fineness)
The fineness of the single fiber constituting the acrylonitrile-based precursor fiber needs to be 0.7 to 1.3 dtex. If the fineness of the single fiber is less than 0.7 dtex, it will be difficult to stably spin the acrylic fiber yarn. Conversely, if the fineness exceeds 1.3 dtex, the cross-sectional double structure becomes remarkable, and a high-performance carbon fiber is obtained. It ’s hard to be.
(フィラメント数)
アクリロニトリル系前駆体繊維を構成するフィラメント数は30,000本以上であることが必要である。その範囲でアクリロニトリル系前駆体繊維や炭素繊維の製造条件から最も好ましいフィラメント数を選べばよい。アクリロニトリル系前駆体繊維のハンドリング、製造コスト、生産性、更には耐炎化工程、炭素化工程で均一な熱処理等を考えた場合、100,000本以下であることが好ましい。
(Number of filaments)
The number of filaments constituting the acrylonitrile-based precursor fiber needs to be 30,000 or more. Within this range, the most preferable number of filaments may be selected from the production conditions of acrylonitrile-based precursor fiber and carbon fiber. In consideration of handling of acrylonitrile-based precursor fiber, production cost, productivity, and further uniform heat treatment in the flameproofing process and the carbonization process, the number is preferably 100,000 or less.
(単繊維間の接着数)
アクリロニトリル系前駆体繊維を構成する単繊維間の接着数は、5ヶ/30,000本以下であり、繊維軸に垂直方向の結晶領域サイズが1.1×10−8m以上であることが好ましい。単繊維の接着は後の耐炎化工程及び炭素化工程で毛羽や束切れ等の発生原因となるだけでなく、ストランド強度も著しく低下するため、接着数は可能な限り少ない方が好ましい。
(Number of bonds between single fibers)
The number of bonds between single fibers constituting the acrylonitrile-based precursor fiber is 5 pieces / 30,000 or less, and the crystal region size perpendicular to the fiber axis is 1.1 × 10 −8 m or more. preferable. The adhesion of single fibers not only causes generation of fuzz and bundle breakage in the subsequent flameproofing process and carbonization process, but also significantly reduces the strand strength. Therefore, it is preferable that the number of adhesions be as small as possible.
ここで、単繊維の接着数は、以下のようにして測定される。
単糸間の接着の判定は、巻き取った前駆体繊維を約5mmにカットし100mLのアセトン中に分散させ、100rpm(回転/分)で1分間攪拌後、黒色濾紙にて濾過し、単糸繊維の接着個数を測定する。
Here, the number of bonded single fibers is measured as follows.
To determine the adhesion between single yarns, the wound precursor fiber is cut to about 5 mm, dispersed in 100 mL of acetone, stirred for 1 minute at 100 rpm (rotation / minute), filtered through black filter paper, and single yarn Measure the number of bonded fibers.
(繊維軸に垂直方向の結晶領域サイズ)
本発明では、繊維軸に垂直方向の結晶領域サイズが1.1×10−8m以上であることが好ましい。
(Crystal region size perpendicular to fiber axis)
In the present invention, the crystal region size perpendicular to the fiber axis is preferably 1.1 × 10 −8 m or more.
結晶領域サイズは、以下の方法で測定する。アクリロニトリル系前駆体繊維を50mm長に切断し、これを30mg精秤採取し、試料繊維軸が正確に平行になるようにして引き揃えた後、試料調整用治具を用いて巾1mmの厚さが均一な繊維試料束に整える。この繊維試料束に酢酸ビニル/メタノール溶液を含浸させて形態が崩れないように固定した後、これを広角X線回折試料台に固定する。X線源として、株式会社リガク製のCuKα線(Niフィルター使用)X線発生装置を用い、同じく株式会社リガク製のゴニオメーターにより、透過法によってグラファイトの面指数(100)に相当する2θ=17°近傍の回折ピークをシンチレーションカウンターにより検出する。このとき、出力は40kV−100mAとする。回折ピークにおける半値巾から下記の式を用いて、結晶領域サイズLaを求める。 The crystal region size is measured by the following method. The acrylonitrile-based precursor fiber is cut to a length of 50 mm, 30 mg of this is precisely collected, and aligned so that the sample fiber axes are exactly parallel, and then a thickness of 1 mm using a sample adjusting jig. Arranges into a uniform fiber sample bundle. The fiber sample bundle is impregnated with a vinyl acetate / methanol solution and fixed so as not to collapse, and then fixed to a wide-angle X-ray diffraction sample stage. As an X-ray source, a CuKα ray (using Ni filter) X-ray generator manufactured by Rigaku Corporation was used, and 2θ = 17 corresponding to the surface index (100) of graphite by a transmission method using a Goniometer manufactured by Rigaku Corporation. A diffraction peak near ° is detected by a scintillation counter. At this time, the output is 40 kV-100 mA. The crystal region size La is determined from the half width at the diffraction peak using the following formula.
La=Kλ/(β0cosθ)
〔式中、Kはシェラー定数0.9、λは用いたX線の波長(ここではCuKα線を用いているので、1.5418×10−2m)、θはBraggの回折角、β0は真の半値巾、β0=βE−β1(βEは見かけの半値巾、β1は装置定数であり、ここでは1.05×10−2rad)である。〕
La = Kλ / (β 0 cos θ)
[Wherein K is the Scherrer constant of 0.9, λ is the wavelength of the X-ray used (here, Cu418 radiation is used, 1.5418 × 10 −2 m), θ is the Bragg diffraction angle, β 0 Is the true half-value width, β 0 = β E −β 1 (β E is the apparent half-value width, β 1 is the device constant, here 1.05 × 10 −2 rad). ]
(アクリロニトリル系前駆体繊維の単繊維の強度)
アクリロニトリル系前駆体繊維の単繊維の強度は、好ましくは5cN/dtex以上であり、より好ましくは6.5cN/dtex以上であり、さらに好ましくは7cN/dtex以上である。単繊維の強度が5cN/dtex未満では、焼成工程での単糸切れによる毛羽の発生が多くなって焼成工程通過性が悪くなる。得られる炭素繊維の強度も著しく低下する。
(Strength of single fiber of acrylonitrile precursor fiber)
The strength of the single fiber of the acrylonitrile-based precursor fiber is preferably 5 cN / dtex or more, more preferably 6.5 cN / dtex or more, and further preferably 7 cN / dtex or more. If the strength of the single fiber is less than 5 cN / dtex, the occurrence of fluff due to the breakage of the single yarn in the firing process increases and the passing through the firing process becomes worse. The strength of the carbon fiber obtained is also significantly reduced.
ここで、アクリロニトリル系前駆体繊維の単繊維の強度は、単繊維自動引張強伸度測定機(株式会社オリエンテック製UTM II−20)を使用し、台紙に貼られた単繊維をロードセルのチャックに装着し、毎分20.0mmの速度で引っ張り試験を行い強伸度を測定することによって求められる。 Here, the strength of the single fiber of the acrylonitrile-based precursor fiber is determined by using a single fiber automatic tensile strength / elongation measuring instrument (UTM II-20 manufactured by Orientec Co., Ltd.), and using the single fiber stuck on the mount as a load cell chuck. It is calculated | required by carrying out a tension test at a speed | rate of 20.0 mm / min, and measuring a strong elongation.
(アクリロニトリル系前駆体繊維の単繊維の繊度斑)
更に、アクリロニトリル系前駆体繊維を構成する単繊維の繊度斑(CV値)が10%以下であり、好ましくは7%以下であり、更に好ましくは5%以下にすることが好ましい。10%を越えると紡糸工程及び焼成工程において糸切れ、巻き付きトラブルが発生しやすくなる。
(Fineness of single fiber of acrylonitrile precursor fiber)
Furthermore, the fineness unevenness (CV value) of the single fiber constituting the acrylonitrile-based precursor fiber is 10% or less, preferably 7% or less, more preferably 5% or less. If it exceeds 10%, yarn breakage and winding troubles are likely to occur in the spinning process and firing process.
ここで、単繊維の繊度斑は以下のようにして決定される。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用のアクリロニトリル系重合体の繊維を通した後、これをナイフで輪切りにして試料を準備する。ついで、該試料をアクリロニトリル系重合体の繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面積をランダムに300ヶ程度測定し、繊度を算出する。
Here, the fineness unevenness of the single fiber is determined as follows.
After passing an acrylonitrile polymer fiber for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm, the sample is prepared by cutting it with a knife. Next, the sample was adhered to the SEM sample stage so that the fiber cross section of the acrylonitrile polymer was facing upward, and Au was further sputtered to a thickness of about 10 nm, and then with a XL20 scanning electron microscope manufactured by PHILIPS, The fiber cross-section is observed under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, and the fiber cross-sectional area of a single fiber is measured at about 300 randomly to calculate the fineness.
(アクリロニトリル系前駆体繊維へ油剤の付着斑)
また、アクリロニトリル系前駆体繊維の長さ方向における油剤の付着斑(CV値)についても10%以下であり、好ましくは5%未満である。
アクリロニトリル系前駆体繊維の長さ方向での油剤の付着斑が大きいと紡糸工程において接着や融着が発生し、その結果単糸切れや束切れ等のトラブルの原因となる。
得られる炭素繊維としても品質、性能(特にストランド強度)の面であまり好ましくない。高品質、高性能なアクリロニトリル系前駆体糸条及び炭素繊維を得るためには、スモールトウ、ラージトウの総繊度に関係なく、如何に油剤を均一に付着させることができるかが製造上のポイントである。
(Oil agent adhesion spots on acrylonitrile-based precursor fiber)
Further, the adhesion spot (CV value) of the oil agent in the length direction of the acrylonitrile-based precursor fiber is also 10% or less, preferably less than 5%.
If the adhesion of the oil agent in the length direction of the acrylonitrile-based precursor fiber is large, adhesion or fusion occurs in the spinning process, resulting in trouble such as single yarn breakage or bundle breakage.
The obtained carbon fiber is not so preferable in terms of quality and performance (particularly strand strength). In order to obtain high-quality, high-performance acrylonitrile-based precursor yarns and carbon fibers, the point of production is how oil can be uniformly applied regardless of the total fineness of small tow and large tow. is there.
また、油剤の長さ方向による付着斑は、前駆体糸条の長さ方向に連続してN=10でサンプリングを行い、理学電機工業株式会社の波長分散型蛍光X線分析装置(卓上型蛍光X線分析装置 ZSXmini)を用いて測定を行い油剤付着斑を測定する。 In addition, the adhesion spots due to the length direction of the oil agent are sampled continuously at N = 10 in the length direction of the precursor yarn, and the wavelength dispersion type fluorescent X-ray analyzer (desktop fluorescence) of Rigaku Corporation. Measurement is performed using an X-ray analyzer ZSXmini) to measure oil adhesion spots.
『アクリロニトリル系前駆体繊維の製造方法』
本発明のアクリロニトリル系前駆体繊維の製造方法として、アクリロニトリル系重合体と有機溶剤からなる紡糸原液を、濃度50〜70質量%、温度30〜50℃の有機系水溶液からなる第1凝固浴中にノズル口径が45〜75μm、孔数30,000ヶ以上の紡糸ノズルから凝固糸引き取り速度/吐出線速度が0.8以下で吐出させ膨潤糸条を得、続いて、洗浄/延伸した後、エアーブローバーにより含水水分を可能な限り除去して第一油浴槽に導き第一油剤を付与し、2本以上のガイドで一旦絞りを行った後、引き続き第二油浴槽で第二油剤を付与し、乾燥緻密化二次延伸によってトータル延伸倍率5〜10倍を行うことでアクリロニトリル系前駆体繊維を得ることが可能となる。
"Method for producing acrylonitrile-based precursor fiber"
As a method for producing the acrylonitrile-based precursor fiber of the present invention, a spinning stock solution composed of an acrylonitrile-based polymer and an organic solvent is placed in a first coagulation bath composed of an organic aqueous solution having a concentration of 50 to 70% by mass and a temperature of 30 to 50 ° C. A swollen yarn is discharged from a spinning nozzle with a nozzle diameter of 45 to 75 μm and a hole number of 30,000 or more to obtain a swollen yarn at a solidified yarn take-off speed / discharge linear velocity of 0.8 or less. Remove the moisture content as much as possible with the blow bar and give it to the first oil bath, apply the first oil agent, and once squeeze with two or more guides, then apply the second oil agent in the second oil bath, Acrylonitrile-based precursor fibers can be obtained by performing a total draw ratio of 5 to 10 times by dry densification secondary drawing.
(紡糸原液)
紡糸原液に使用する有機溶剤としては、例えば、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。中でも、ジメチルアセトアミドは、溶剤の加水分解による性状の悪化が少なく、良好な紡糸性を与えるので、好適に用いられる。
(Spinning stock solution)
Examples of the organic solvent used for the spinning dope include dimethylacetamide, dimethylsulfoxide, dimethylformamide, and the like. Among them, dimethylacetamide is preferably used because it is less deteriorated due to hydrolysis of the solvent and gives good spinnability.
(紡糸口金)
紡糸原液を押し出すための紡糸口金には、アクリロニトリル系前駆体繊維の単繊維繊度として0.7〜1.3dtex程度の単繊維を製造する際の孔径、すなわち45〜75μmの孔径のノズル孔を有する紡糸口金を使用できる。
小孔径ノズルを用いることで、「凝固糸の引取り速度/ノズルからの紡糸原液の吐出線速度」が小さく(0.8倍以下)なることにより、良好な紡糸性を維持することができる。
(Spinneret)
The spinneret for extruding the spinning dope has nozzle holes with a hole diameter of about 0.7 to 1.3 dtex as the single fiber fineness of the acrylonitrile precursor fiber, that is, a hole diameter of 45 to 75 μm. A spinneret can be used.
By using a small-bore nozzle, the “spinning speed of the coagulated yarn / the discharge linear speed of the spinning solution from the nozzle” becomes small (0.8 times or less), so that good spinnability can be maintained.
(膨潤糸条に対する湿熱延伸)
凝固浴から引き取られた膨潤糸条は、その後の湿熱延伸によって繊維の配向をさらに高めるものである。この湿熱延伸は膨潤状態にある膨潤繊維を水洗に付しながらの延伸、あるいは熱水中での延伸によって行われる。中でも、高生産性の観点から、熱水中での延伸を行うのが好ましい。
(Wet heat stretching for swollen yarn)
The swollen yarn taken from the coagulation bath further enhances the fiber orientation by subsequent wet heat drawing. This wet heat stretching is performed by stretching the swollen fibers in a swollen state while being washed with water, or by stretching in hot water. Among them, it is preferable to perform stretching in hot water from the viewpoint of high productivity.
(膨潤繊維の膨潤度)
また、湿熱延伸を施した後の乾燥前の膨潤繊維の膨潤度は、100質量%以下にすることが好ましい。湿熱延伸を施した後の乾燥前の膨潤繊維の膨潤度が、100質量%以下にある繊維は、表層部と繊維内部とが均一に配向していることを意味するものである。凝固浴中での凝固糸製造の際の「凝固糸の引取り速度/ノズルからの紡糸原液の吐出線速度」を下げることによって、凝固浴中での凝固糸の凝固を均一なものにした後、これを湿熱延伸することにより、内部まで均一に配向することができる。これによって、乾燥前の膨潤繊維の膨潤度を100質量%以下とすることができる。
(Swelling degree of swollen fiber)
Moreover, it is preferable that the swelling degree of the swollen fiber before drying after the wet heat stretching is 100% by mass or less. A fiber in which the swelling degree of the swollen fiber after drying after wet heat stretching is 100% by mass or less means that the surface layer part and the fiber interior are uniformly oriented. After uniformizing the coagulation of the coagulated yarn in the coagulation bath by lowering the “coagulated yarn take-off speed / discharge line speed of the spinning dope from the nozzle” during the production of the coagulated yarn in the coagulation bath The film can be uniformly oriented up to the inside by being wet-heat-stretched. Thereby, the swelling degree of the swollen fiber before drying can be set to 100% by mass or less.
ここで、膨潤繊維の膨潤度は以下のようにして決定される。
膨潤状態にある繊維の付着液を遠心分離機[3,000rpm(回転/分)、15分]によって除去した後の質量wと、これを熱風乾燥機で乾燥(105℃×2時間)した後の質量w0とにより、
膨潤度(質量%)=(w−w0)×100/w0
によって求めることができる。
Here, the swelling degree of the swelling fiber is determined as follows.
After removing the adhering solution of the fiber in the swollen state with a centrifuge [3,000 rpm (rotation / min), 15 minutes], and drying this with a hot air dryer (105 ° C. × 2 hours) With the mass w 0 of
Swelling degree (mass%) = (w−w 0 ) × 100 / w 0
Can be obtained.
『炭素繊維』
本発明の炭素繊維は、単繊維繊度が0.7〜1.3dtex、フィラメント数が30,000本以上のアクリロニトリル系前駆体繊維を焼成して得られる炭素繊維であって、ストランド強度(JIS R7601−1986)が500kg/mm2以上である炭素繊維である。
"Carbon fiber"
The carbon fiber of the present invention is a carbon fiber obtained by firing an acrylonitrile-based precursor fiber having a single fiber fineness of 0.7 to 1.3 dtex and a filament number of 30,000 or more, and has a strand strength (JIS R7601). -1986) is a carbon fiber of 500 kg / mm 2 or more.
本発明の炭素繊維は、前述のアクリロニトリル系前駆体繊維を公知な方法で焼成することによって、得られるが、その中でも、アクリロニトリル系前駆体繊維を、低い温度から高い温度にゾーン毎に220〜250℃に調節した耐炎化炉で連続的に、収縮を制限しながら耐炎化処理を行い、密度1.36g/cm3程度の耐炎化繊維糸条を得、その後300〜700℃の温度分布を有する窒素雰囲気の炭素化炉中にて、収縮を制限しながら、1〜5分間の炭素化処理を行い、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、収縮を制限しながら、1〜5分間の炭素化処理する方法が好ましい。 The carbon fiber of the present invention can be obtained by firing the aforementioned acrylonitrile-based precursor fiber by a known method. Among them, the acrylonitrile-based precursor fiber is 220 to 250 for each zone from a low temperature to a high temperature. Flame-proofing is performed continuously in a flame-proofing furnace adjusted to 0 ° C. while restricting shrinkage to obtain a flame-resistant fiber yarn having a density of about 1.36 g / cm 3 , and then has a temperature distribution of 300 to 700 ° C. In a carbonization furnace comprising a nitrogen atmosphere having a temperature distribution of 1,000 to 1,300 ° C., followed by carbonization treatment for 1 to 5 minutes while restricting shrinkage in the carbonization furnace in a nitrogen atmosphere Then, a method of carbonizing for 1 to 5 minutes while limiting shrinkage is preferable.
以下に、実施例により本発明をより具体的に説明する。なお、以下に述べる実施例は、本発明における最良の実施形態の一例であるものの、本発明は、これら実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, although the Example described below is an example of the best embodiment in this invention, this invention is not limited by these Examples.
アクリロニトリル、アクリルアミド、メタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド/メタクリル酸単位=96/3/1(質量比)からなるアクリロニトリル系重合体を得た。このアクリロニトリル系重合体をジメチルアセトアミドに溶解し、21質量%の紡糸原液を調製した。
この紡糸原液を孔数50,000、孔径45μmの紡糸口金を通して、濃度60質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固浴中に吐出させて凝固糸にし、紡糸原液の吐出線速度の0.45倍の引取り速度で引き取った。
Acrylonitrile, acrylamide and methacrylic acid are copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and consist of acrylonitrile units / acrylamide / methacrylic acid units = 96/3/1 (mass ratio). Acrylonitrile polymer was obtained. This acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a 21% by mass spinning solution.
This spinning dope is passed through a spinneret having a pore size of 50,000 and a pore diameter of 45 μm and discharged into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 60% by mass and a temperature of 35 ° C. to obtain a coagulated yarn. It was taken up at a take-up speed of 45 times.
ついで、この繊維に対して水洗と同時に3倍の延伸を行い、1.5質量%に調製したアミノシリコン系油剤の第一油浴槽に導き第一油剤を付与し、数本のガイドで一旦絞りを行った後、引き続き1.5質量%に調製したアミノシリコン系油剤の第二油浴槽で第二油剤を付与した。この繊維を熱ロールを用いて乾燥し、熱ロール間による乾熱二次延伸を2.0倍行った。その後、タッチロールにて繊維の水分率を調整し、ワインダーで巻き取ることにより、単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。
得られたアクリロニトリル系前駆体繊維について、接着数、結晶領域サイズ、単繊維の強度、単繊維の繊度斑、油剤付着斑、および膨潤度を測定し表1に示した。
Next, this fiber was stretched 3 times simultaneously with water washing, led to the first oil bath of aminosilicone oil prepared to 1.5% by mass, and the first oil was applied, and once squeezed with several guides Then, the second oil was applied in the second oil bath of aminosilicone oil prepared to 1.5% by mass. This fiber was dried using a hot roll, and dry heat secondary stretching between hot rolls was performed 2.0 times. Thereafter, the moisture content of the fiber was adjusted with a touch roll and wound with a winder to obtain an acrylonitrile-based precursor fiber having a single fiber fineness of 1.2 dtex.
The obtained acrylonitrile-based precursor fibers were measured for adhesion number, crystal region size, single fiber strength, single fiber fineness spots, oil agent adhesion spots, and swelling degree and are shown in Table 1.
アクリロニトリル系前駆体繊維を耐炎化処理温度226、229、234、239および244℃で各々12分、計60分連続的に耐炎化処理を行い、密度1.36g/cm3の耐炎化繊維糸条を得た。この時の耐炎化処理時の工程張力を136×10−3cN/dTexにして繊維の収縮を制限しながら、続いて300〜700℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、68×10−3cN/dTexの張力を付し、繊維の収縮を制限しながら、1.5分間の炭素化処理を付し、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、68×10−3cN/dTexの張力を付し、繊維の収縮を制限しながら、1.5分間の炭素化処理を付すことにより、炭素繊維を製造した。 The acrylonitrile-based precursor fiber was subjected to flameproofing treatment continuously at a flameproofing treatment temperature of 226, 229, 234, 239, and 244 ° C. for 12 minutes each for a total of 60 minutes, and a flame resistant fiber yarn having a density of 1.36 g / cm 3. Got. The process tension at the time of the flameproofing treatment at this time was set to 136 × 10 −3 cN / dTex, and the shrinkage of the fiber was restricted. Subsequently, in a carbonization furnace composed of a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C. With a tension of 68 × 10 −3 cN / dTex and with a 1.5 minute carbonization treatment followed by a temperature distribution of 1,000 to 1,300 ° C. while limiting fiber shrinkage. Manufacture carbon fiber by applying a carbonization treatment for 1.5 minutes while applying a tension of 68 × 10 −3 cN / dTex in a carbonization furnace comprising a nitrogen atmosphere and restricting the shrinkage of the fiber. did.
単繊維繊度を0.78dtexに変更し、紡糸原液の吐出線速度の0.7倍の引取り速度で引き取った以外は、実施例1と同様にしてアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。 An acrylonitrile-based precursor fiber was obtained in the same manner as in Example 1 except that the single fiber fineness was changed to 0.78 dtex, and the single fiber fineness was taken up at a take-up speed of 0.7 times the discharge linear speed of the spinning dope. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
湿熱延伸倍率を4.5倍、乾燥緻密化後の二次延伸を2倍に変更し、紡糸原液の吐出線速度の0.3倍の引取り速度で引き取った以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。 Except that the wet heat draw ratio was changed to 4.5 times, the secondary drawing after drying and densification was changed to 2 times, and the take-up speed was 0.3 times the discharge linear speed of the spinning dope, and the same as in Example 1. Thus, an acrylonitrile-based precursor fiber having a single fiber fineness of 1.2 dtex was obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
紡糸口金のノズル孔径75μmに変更し、紡糸原液の吐出線速度の0.79倍の引取り速度で引き取った以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。 The acrylonitrile-based precursor fiber having a single fiber fineness of 1.2 dtex was used in the same manner as in Example 1 except that the nozzle diameter of the spinneret was changed to 75 μm and the take-up speed was 0.79 times the discharge linear speed of the spinning solution. Got. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
孔数30,000、ノズル孔径45μmの紡糸口金に変更した以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。 An acrylonitrile-based precursor fiber having a single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1 except that the spinneret was changed to a spinneret having a hole number of 30,000 and a nozzle hole diameter of 45 μm. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
孔数30,000、ノズル孔径45μmの紡糸口金でに変更し、凝固浴中に吐出させて凝固糸にし、紡糸原液の吐出線速度の0.44倍の引取り速度で引き取った。この繊維に対して水洗と同時に4.75倍の延伸と熱ロール間による乾熱二次延伸を2.0倍行った以外は、実施例1と同様にして単繊維繊度0.78dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。
[比較例1]
The spinneret was changed to a spinneret having a number of holes of 30,000 and a nozzle hole diameter of 45 μm, and was discharged into a coagulation bath to obtain a coagulated yarn, which was taken up at a take-up speed 0.44 times the discharge linear speed of the spinning dope. The acrylonitrile system having a single fiber fineness of 0.78 dtex was used in the same manner as in Example 1 except that the fiber was washed with water and simultaneously stretched 4.75 times and dry heat secondary stretched between hot rolls was 2.0 times. Precursor fibers were obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
[Comparative Example 1]
孔数50,000、ノズル孔径90μmの紡糸口金に変更し、紡糸原液の吐出線速度の1.79倍の引取り速度で引き取った以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。
紡糸原液の吐出線速度の1.79倍の引取り速度で引き取った凝固糸は、凝固浴中で延伸切れが発生し、安定した紡糸が困難であった。また、焼成して得られた炭素繊維のストランド強度も低かった。
[比較例2]
A single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1 except that the spinneret was changed to a spinneret having a hole number of 50,000 and a nozzle hole diameter of 90 μm, and the take-up speed was 1.79 times the discharge linear speed of the spinning solution. An acrylonitrile-based precursor fiber was obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
The coagulated yarn taken up at a take-up speed of 1.79 times the discharge linear speed of the spinning dope broke out of drawing in the coagulation bath, and stable spinning was difficult. Moreover, the strand strength of the carbon fiber obtained by baking was also low.
[Comparative Example 2]
湿熱延伸倍率を6.0倍、乾燥緻密化後の二次延伸を2.0倍に変更し、紡糸原液の吐出線速度の0.23倍の引取り速度で引き取った以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。
トータル延伸倍率が10倍を超えるアクリロニトリル系前駆体繊維は、単繊維の接着数が増加し、また単繊維の繊度斑が10%を越え、これから得られた炭素繊維はストランド強度が低かった。
[比較例3]
Example 1 except that the wet heat draw ratio was changed to 6.0 times, the secondary drawing after drying and densification was changed to 2.0 times, and the drawing speed was 0.23 times the discharge linear speed of the spinning dope. In the same manner as above, an acrylonitrile-based precursor fiber having a single fiber fineness of 1.2 dtex was obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
The acrylonitrile-based precursor fiber having a total draw ratio exceeding 10 times increased the number of single-fiber adhesion, and the fineness unevenness of the single fiber exceeded 10%, and the carbon fiber obtained therefrom had low strand strength.
[Comparative Example 3]
湿熱延伸倍率を2.0倍、乾燥緻密化後の二次延伸を2.0倍に変更し、紡糸原液の吐出線速度の0.67倍の引取り速度で引き取った以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。
トータル延伸倍率が5倍以下のアクリロニトリル系前駆体繊維は、乾燥前の膨潤糸の膨潤度が100%を越え、これから得られた炭素繊維はストランド強度が低かった。
[比較例4]
Example 1 except that the wet heat draw ratio was changed to 2.0 times, the secondary drawing after drying and densification was changed to 2.0 times, and the take-up speed was 0.67 times the discharge linear speed of the spinning dope. In the same manner as above, an acrylonitrile-based precursor fiber having a single fiber fineness of 1.2 dtex was obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
The acrylonitrile-based precursor fiber having a total draw ratio of 5 times or less had a swelling degree of the swollen yarn before drying exceeding 100%, and the carbon fiber obtained therefrom had low strand strength.
[Comparative Example 4]
孔数50,000、ノズル孔径30μmの紡糸口金に変更し、紡糸原液の吐出線速度の0.14倍の引取り速度で引き取った以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。
ノズル孔径30μmの紡糸口金で紡糸原液の吐出線速度の0.14倍で紡糸したアクリロニトリル系前駆体繊維は、単繊維接着数が増加し、さらに、乾熱二次延伸工程で糸切れ、束切れが発生し、安定した紡糸が困難であった。また、焼成して得られた炭素繊維のストランド強度も低かった。
[比較例5]
A single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1, except that the spinneret was changed to a spinneret having a hole number of 50,000 and a nozzle hole diameter of 30 μm, and the take-up speed was 0.14 times the discharge linear speed of the spinning dope. An acrylonitrile-based precursor fiber was obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
Acrylonitrile precursor fibers spun with a spinneret with a nozzle hole diameter of 30 μm at a rate of 0.14 times the discharge linear velocity of the spinning dope have an increased number of single fiber bonds, and further, yarn breakage and bundle breakage in the dry heat secondary stretching process And stable spinning was difficult. Moreover, the strand strength of the carbon fiber obtained by baking was also low.
[Comparative Example 5]
1.5質量%に調製したアミノシリコン系油剤の第一油浴槽に導き第一油剤のみ付与し、第二油浴槽をバイパスした以外は、実施例1と同様にして単繊維繊度1.2dtexのアクリロニトリル系前駆体繊維を得た。このアクリロニトリル系前駆体繊維を実施例1と同様にして焼成し、炭素繊維を得た。
油浴の付着処理を一段で紡糸したアクリロニトリル系前駆体繊維は、単繊維間の接着数が増加し、さらに、油剤の付着斑も増加した。また、焼成して得られた炭素繊維のストランド強度も低かった。
A single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1 except that only the first oil agent was given to the first oil bath of the aminosilicon-based oil agent prepared to 1.5% by mass and the second oil bath was bypassed. Acrylonitrile-based precursor fiber was obtained. This acrylonitrile-based precursor fiber was fired in the same manner as in Example 1 to obtain carbon fibers.
In the acrylonitrile-based precursor fiber spun in one stage of the oil bath adhesion treatment, the number of adhesions between single fibers increased, and the adhesion spots of the oil agent also increased. Moreover, the strand strength of the carbon fiber obtained by baking was also low.
本発明によれば、製造コストが低く、生産性に優れ、糸切れ、毛羽の発生の低い、高品位、高品質で、特に強度発現性に優れた太物炭素繊維と太物アクリロニトリル系前駆体繊維及びその製造方法を供給することができる。 According to the present invention, a thick carbon fiber and a thick acrylonitrile-based precursor that are low in production cost, excellent in productivity, low in yarn breakage, fuzz generation, high quality, high quality, and particularly excellent in strength development. Fiber and its manufacturing method can be supplied.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003347230A JP4775928B2 (en) | 2003-10-06 | 2003-10-06 | Method for producing carbon fiber and acrylonitrile-based precursor fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003347230A JP4775928B2 (en) | 2003-10-06 | 2003-10-06 | Method for producing carbon fiber and acrylonitrile-based precursor fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005113296A true JP2005113296A (en) | 2005-04-28 |
JP4775928B2 JP4775928B2 (en) | 2011-09-21 |
Family
ID=34539884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003347230A Expired - Fee Related JP4775928B2 (en) | 2003-10-06 | 2003-10-06 | Method for producing carbon fiber and acrylonitrile-based precursor fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4775928B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010285710A (en) * | 2009-06-10 | 2010-12-24 | Mitsubishi Rayon Co Ltd | Carbon fiber bundle and method for producing the same |
JP2012188767A (en) * | 2011-03-09 | 2012-10-04 | Mitsubishi Rayon Co Ltd | Carbon fiber precursor acrylic fiber bundle, method for manufacturing the same, and method for manufacturing carbon fiber bundle |
WO2017204026A1 (en) | 2016-05-24 | 2017-11-30 | 東レ株式会社 | Carbon fiber bundle and method for manufacturing same |
JP2018048437A (en) * | 2017-10-11 | 2018-03-29 | 三菱ケミカル株式会社 | Carbon fiber bundle |
WO2019087766A1 (en) | 2017-10-31 | 2019-05-09 | 東レ株式会社 | Carbon fiber bundle and method for producing same |
CN114645334A (en) * | 2021-06-23 | 2022-06-21 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 35K carbon fiber precursor, precursor and carbon fiber |
CN115506044A (en) * | 2021-06-23 | 2022-12-23 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 50K carbon fiber precursor, precursor and carbon fiber |
CN115506049A (en) * | 2021-06-23 | 2022-12-23 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 24-50k carbon fiber precursor, carbon fiber precursor and carbon fiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240223A (en) * | 1991-01-25 | 1992-08-27 | Mitsubishi Rayon Co Ltd | Method for monitoring mottle of oil pick up |
JPH1025627A (en) * | 1997-04-04 | 1998-01-27 | Mitsubishi Rayon Co Ltd | Acrylic carbon fiber |
JP2002220726A (en) * | 2001-01-24 | 2002-08-09 | Mitsubishi Rayon Co Ltd | Method for producing carbon fiber precursor |
JP2002294518A (en) * | 2001-03-30 | 2002-10-09 | Mitsubishi Rayon Co Ltd | Carbon fiber precursor acrylonitrile-based yarn and method for producing the same |
JP2002302828A (en) * | 2001-04-04 | 2002-10-18 | Mitsubishi Rayon Co Ltd | Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same |
-
2003
- 2003-10-06 JP JP2003347230A patent/JP4775928B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240223A (en) * | 1991-01-25 | 1992-08-27 | Mitsubishi Rayon Co Ltd | Method for monitoring mottle of oil pick up |
JPH1025627A (en) * | 1997-04-04 | 1998-01-27 | Mitsubishi Rayon Co Ltd | Acrylic carbon fiber |
JP2002220726A (en) * | 2001-01-24 | 2002-08-09 | Mitsubishi Rayon Co Ltd | Method for producing carbon fiber precursor |
JP2002294518A (en) * | 2001-03-30 | 2002-10-09 | Mitsubishi Rayon Co Ltd | Carbon fiber precursor acrylonitrile-based yarn and method for producing the same |
JP2002302828A (en) * | 2001-04-04 | 2002-10-18 | Mitsubishi Rayon Co Ltd | Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010285710A (en) * | 2009-06-10 | 2010-12-24 | Mitsubishi Rayon Co Ltd | Carbon fiber bundle and method for producing the same |
JP2012188767A (en) * | 2011-03-09 | 2012-10-04 | Mitsubishi Rayon Co Ltd | Carbon fiber precursor acrylic fiber bundle, method for manufacturing the same, and method for manufacturing carbon fiber bundle |
WO2017204026A1 (en) | 2016-05-24 | 2017-11-30 | 東レ株式会社 | Carbon fiber bundle and method for manufacturing same |
US11313054B2 (en) | 2016-05-24 | 2022-04-26 | Toray Industries, Inc. | Carbon fiber bundle |
JP2018048437A (en) * | 2017-10-11 | 2018-03-29 | 三菱ケミカル株式会社 | Carbon fiber bundle |
WO2019087766A1 (en) | 2017-10-31 | 2019-05-09 | 東レ株式会社 | Carbon fiber bundle and method for producing same |
CN114645334A (en) * | 2021-06-23 | 2022-06-21 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 35K carbon fiber precursor, precursor and carbon fiber |
CN114645334B (en) * | 2021-06-23 | 2022-11-25 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 35K carbon fiber precursor, precursor and carbon fiber |
CN115506044A (en) * | 2021-06-23 | 2022-12-23 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 50K carbon fiber precursor, precursor and carbon fiber |
CN115506049A (en) * | 2021-06-23 | 2022-12-23 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 24-50k carbon fiber precursor, carbon fiber precursor and carbon fiber |
CN115506044B (en) * | 2021-06-23 | 2024-02-27 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 50K carbon fiber precursor, precursor and carbon fiber |
CN115506049B (en) * | 2021-06-23 | 2024-03-01 | 吉林碳谷碳纤维股份有限公司 | Preparation method of 24-50k carbon fiber precursor, carbon fiber precursor and carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JP4775928B2 (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4630193B2 (en) | Method and apparatus for producing carbon fiber precursor fiber bundle | |
US8129017B2 (en) | Carbon fiber strand and process for producing the same | |
US8124228B2 (en) | Carbon fiber strand and process for producing the same | |
JP4910729B2 (en) | Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same | |
JP6020201B2 (en) | Carbon fiber bundle and method for producing the same | |
US20140212663A1 (en) | Polyacrylonitrile-based copolymer, polyacrylonitrile-based precursor fiber for carbon fiber, carbon fiber bundles, process for producing stabilized fiber bundles, and process for producing carbon fiber bundles | |
JP2006299439A (en) | Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same | |
JP4775928B2 (en) | Method for producing carbon fiber and acrylonitrile-based precursor fiber | |
JP2007162144A (en) | Method for producing carbon fiber bundle | |
JP5297644B2 (en) | Carbon fiber bundle and method for producing the same | |
JP2012188781A (en) | Carbon fiber and method for manufacturing the same | |
JP3892212B2 (en) | Carbon fiber precursor fiber bundle | |
JP2007046195A (en) | Precursor fiber for carbon fiber, method for producing the same and method for producing ultrafine carbon fiber | |
JP4624571B2 (en) | Method for producing carbon fiber precursor yarn | |
JP4979478B2 (en) | Acrylonitrile-based carbon fiber precursor fiber bundle, carbon fiber bundle using the same, and method for producing the same | |
JP4216873B2 (en) | Method for producing carbon fiber precursor fiber bundle | |
TW202033850A (en) | Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle | |
JPH1181053A (en) | High-strength acrylic fiber, its production and production of carbon fiber | |
JPH09255227A (en) | Carbon fiber precursor acrylic fiber package and winding method for carbon fiber precursor acrylic fiber | |
WO2023140212A1 (en) | Carbon fiber bundle | |
JP2007182645A (en) | Method for producing acrylic fiber | |
JP2024128260A (en) | Carbon fiber precursor fiber and its manufacturing method, and method for manufacturing carbon fiber bundle | |
JP2005248358A (en) | Precursor fiber for carbon fiber | |
JP2007284807A (en) | Fiber bundle of acrylonitrile-based carbon fiber precursor, method for producing the same and carbon fiber bundle | |
JP2011231412A (en) | Polyacrylonitrile-based fiber and carbon fiber made from the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091008 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110203 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110623 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110624 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4775928 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |