JP3223452B2 - Method for producing carbon fiber precursor fiber - Google Patents

Method for producing carbon fiber precursor fiber

Info

Publication number
JP3223452B2
JP3223452B2 JP03785891A JP3785891A JP3223452B2 JP 3223452 B2 JP3223452 B2 JP 3223452B2 JP 03785891 A JP03785891 A JP 03785891A JP 3785891 A JP3785891 A JP 3785891A JP 3223452 B2 JP3223452 B2 JP 3223452B2
Authority
JP
Japan
Prior art keywords
yarn
less
fiber
porosity
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03785891A
Other languages
Japanese (ja)
Other versions
JPH04257313A (en
Inventor
鹿 野 彰 初
本 隆 山
坊 行 生 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP03785891A priority Critical patent/JP3223452B2/en
Publication of JPH04257313A publication Critical patent/JPH04257313A/en
Application granted granted Critical
Publication of JP3223452B2 publication Critical patent/JP3223452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維前駆体(プレ
カ−サ−)の製造方法に関し、特に高強度及び高弾性を
有する炭素繊維の製造に好適な、緻密性の高い、炭素繊
維前駆体繊維を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber precursor (precursor), and more particularly to a highly dense carbon fiber precursor suitable for producing carbon fibers having high strength and high elasticity. The present invention relates to a method for producing body fiber.

【0002】[0002]

【従来の技術】炭素繊維の高強度、高弾性化について
は、焼成技術や後処理技術に関する技術が多数提案され
ているが、一方炭素繊維前駆体としてのアクリル系繊維
の改良に関する技術についても多数提案されている。そ
して、高強度、高弾性化の1つの手段として、炭素繊維
前駆体としてのアクリル系繊維の緻密性を高くすること
が提案されている。
2. Description of the Related Art With respect to high strength and high elasticity of carbon fibers, many techniques relating to firing techniques and post-treatment techniques have been proposed, while many techniques relating to improvement of acrylic fibers as carbon fiber precursors have been proposed. Proposed. As one means for increasing the strength and elasticity, it has been proposed to increase the density of acrylic fibers as a carbon fiber precursor.

【0003】ところで、従来、炭素繊維前駆体としての
アクリル系繊維の緻密性を表す尺度として、前駆体繊維
のヨウ素の吸着量及びヨウ素を吸着するスキン層の厚
さ、或は膨潤状態にある工程糸の膨潤度等が採用されて
いる。(特開昭58−214518号公報、特公昭63
−21916号公報)。
[0003] Conventionally, as a measure of the compactness of an acrylic fiber as a carbon fiber precursor, the amount of iodine adsorbed on the precursor fiber, the thickness of a skin layer for adsorbing iodine, or a process in a swollen state are considered. The degree of swelling of the yarn is adopted. (JP-A-58-214518, JP-B-63
No. 21916).

【0004】しかし、これらの技術では、例えばヨウ素
を利用する方法は、繊維の表層の緻密性しか測れないた
め繊維全体の緻密性がわからなく、またヨウ素の吸着量
が油剤の付着量や種類で異なり、繊維基質構造の緻密性
以外の要素による影響を受け易い点で問題がある。ま
た、凝固糸の膨潤度及び凝固糸の膨潤度と浴延伸糸の膨
潤度との比である膨潤度比で規定する方法は、あくまで
膨潤糸条の固体部分と液体部分の構成比を表しているに
すぎなく、ミクロな構造の微細性を加味した緻密性の尺
度としてはなはだ不十分である。このように、従来採用
している評価方法は、繊維の緻密性を正確に把握するに
は十分なものではなかった。そのため、従来の評価方法
を採用する前駆体繊維の製造方法によっては、十分に緻
密性の高い繊維を得ることができなかった。
However, in these techniques, for example, in the method using iodine, only the density of the surface layer of the fiber can be measured, so that the density of the entire fiber cannot be known. Further, the amount of adsorbed iodine depends on the amount and type of oil agent attached. Unlike the above, there is a problem in that the fiber matrix structure is easily affected by factors other than the denseness. In addition, the method of defining the swelling degree of the coagulated yarn and the swelling ratio which is the ratio of the swelling degree of the coagulated yarn to the swelling degree of the bath drawn yarn only represents the composition ratio of the solid portion and the liquid portion of the swollen yarn. However, it is not enough as a measure of compactness taking into account the fineness of microstructure. As described above, the evaluation method conventionally used is not sufficient for accurately grasping the denseness of the fiber. For this reason, a sufficiently high-density fiber could not be obtained depending on a method for producing a precursor fiber employing a conventional evaluation method.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高強
度、高弾性の炭素繊維を得るための、緻密性の高い炭素
繊維前駆体としてのアクリル繊維の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an acrylic fiber as a highly dense carbon fiber precursor for obtaining a carbon fiber having high strength and high elasticity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、高強度、
高弾性の炭素繊維を得るために、緻密性の高いアクリル
系繊維の製造方法を鋭意検討した結果、前駆体繊維の構
造の緻密性を評価する尺度として平均細孔半径、空孔率
を採用すると、該緻密性を正確に評価し得ることを知見
し、緻密性の高い前駆体繊維を製造する本発明を完成し
た。
Means for Solving the Problems The present inventors have developed a high strength,
In order to obtain a carbon fiber with high elasticity, as a result of intensive examination of a method for producing a highly dense acrylic fiber, the average pore radius and porosity are used as a scale for evaluating the denseness of the structure of the precursor fiber. The present inventors have found that the denseness can be accurately evaluated, and have completed the present invention for producing a highly dense precursor fiber.

【0007】すなわち本発明は、アクリロニトリル単位
95重量%以上、アクリルアミド単位0.5重量%以上
を構成成分とするアクリル系重合体の溶剤溶液を湿式紡
糸して、平均細孔半径が140Å以下、空孔率が55%
以下の凝固糸とした後、これを沸水中にて延伸しなが
ら洗浄して平均細孔半径が110Å以下、空孔率が40
%以下の水膨潤糸条となし、次いで該水膨潤糸条にシリ
コン系油剤処理、乾燥緻密化処理を施すことを特徴とす
る炭素繊維用前駆体繊維の製造方法である。
That is, according to the present invention, a solvent solution of an acrylic polymer containing 95% by weight or more of acrylonitrile unit and 0.5% by weight or more of acrylamide unit is wet-spun to obtain an average pore radius of 140 ° or less and an empty space. 55% porosity
After the following coagulated yarn, the average pore radius of 110Å or less which was washed with stretching in boiling water, porosity 40
% Of water-swelled yarn, and then subjecting the water-swelled yarn to a silicone oil treatment and a dry densification treatment.

【0008】本発明においてアクリル系繊維形成用重合
体は、アクリロニトリル単位95重量%以上、アクリル
アミド単位0.5重量%以上を構成成分とする必要があ
る。アクリロニトリル、アクリルアミド以外の共重合成
分としては、たとえばアクリル酸、メタクリル酸、イタ
コン酸等の酸類、アクリル酸メチル、メタクリル酸メチ
ル等のアクリル酸誘導体、メタクリルアミド、N−メチ
ロ−ルアクリルアミド、N,N−ジメチルアクリルアミ
ド等のアクリルアミド誘導体、メチルビニルケトン、エ
チルビニルケトン等のアルキルビニルケトン、アクロレ
イン、メタクロレイン等のアクロレイン誘導体、2−ビ
ニルピリジン、2−メチル−5−ビニルピリジン等のビ
ニルピリジン誘導体、メタクリルスルホン酸ソ−ダ等の
スルホン酸誘導体、酢酸ビニル、メタクリロニトリル等
があげられ、これらは単独でも組み合わせでも用いられ
る。
In the present invention, the acrylic fiber-forming polymer must contain acrylonitrile units in an amount of 95% by weight or more and acrylamide units in an amount of 0.5% by weight or more. Examples of copolymerization components other than acrylonitrile and acrylamide include acids such as acrylic acid, methacrylic acid and itaconic acid, acrylic acid derivatives such as methyl acrylate and methyl methacrylate, methacrylamide, N-methylolacrylamide, N, N Acrylamide derivatives such as dimethyl acrylamide, alkyl vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone, acrolein derivatives such as acrolein and methacrolein, vinyl pyridine derivatives such as 2-vinyl pyridine and 2-methyl-5-vinyl pyridine, methacryl Examples thereof include sulfonic acid derivatives such as sodium sulfonic acid, vinyl acetate, methacrylonitrile and the like, and these can be used alone or in combination.

【0009】紡糸原液を調製するに当ってのアクリル系
重合体の溶媒は、特に限定されないがジメチルホルムア
ミド、ジメチルスルホキシド、ジメチルアセトアミド、
硝酸、ロダンソ−ダ水溶液、及び塩化亜鉛水溶液等が使
用できる。本発明では紡糸原液の重合体の濃度は18重
量%以上である。また紡糸原液の温度は60℃以上であ
ることが好ましい。重合体の極限粘度と濃度及び温度に
より紡糸原液の溶液粘度が決まるが、製造条件として許
容される溶液粘度の範囲内において、重合体の濃度をで
きるだけ大きく設定することが好ましい。
The solvent for the acrylic polymer used for preparing the spinning solution is not particularly limited, but may be dimethylformamide, dimethylsulfoxide, dimethylacetamide, or the like.
Nitric acid, rodan soda aqueous solution, zinc chloride aqueous solution and the like can be used. In the present invention, the concentration of the polymer in the spinning dope is 18% by weight or more. The temperature of the spinning solution is preferably 60 ° C. or higher. The solution viscosity of the spinning dope is determined by the intrinsic viscosity, the concentration and the temperature of the polymer, but it is preferable to set the concentration of the polymer as high as possible within the range of the solution viscosity allowed as production conditions.

【0010】上記の紡糸原液を湿式紡糸して、平均細孔
半径は140Å以下、空孔率は55%以下の凝固糸
なす。このような平均細孔半径及び空孔率の小さい凝固
を得るには、紡糸原液のポリマ−濃度を前述したよ
うに18%以上にすると共に、紡糸原液の温度を60℃
以上にすること及び凝固浴の温度を50℃以下、好まし
くは40℃以下にすることにより達成できる。
[0010] In wet spinning the spinning solution described above, the average pore radius is 140Å or less and a porosity makes with the following coagulated yarn 55%. To obtain a small solidification yarn having such an average pore radius and porosity, polymer spinning dope - the concentration as well as 18% or more as described above, the temperature of the spinning dope 60 ° C.
The above can be achieved and the temperature of the coagulation bath can be reduced to 50 ° C. or lower, preferably 40 ° C. or lower.

【0011】本発明においては、上記の凝固糸を、先
ず1.0〜2.0倍に空中延伸するのが好ましい。次い
で、沸水中で凝固糸に含まれている溶媒を洗浄しなが
ら延伸する。この時1〜10倍延伸するのが好ましい。
また、この延伸の方法として、2段以上の多段延伸法を
用いることも可能である。この方法は糸の急激な変形に
よるボイドの発生を少なくするため有利である。
[0011] In the present invention, the coagulated yarn described above, first, is given to the air drawn into 1.0 to 2.0 times preferred. Then, stretching while washing the solvent contained in the coagulated yarn in boiling water. At this time, the film is preferably stretched 1 to 10 times.
As the stretching method, a multi-stage stretching method of two or more stages can be used. This method is advantageous because it reduces the occurrence of voids due to sudden deformation of the yarn.

【0012】さらに延伸浴温度は、単糸同志が融着しな
い範囲でできるだけ高く設定し、凝固浴温度よりもでき
るだけ高温にすることが効果的である。この観点から延
伸浴の温度は70℃以上の高温とすることが好ましい。
多段延伸法の場合には、最終浴を90℃以上の高温とす
ることが好ましい。
Further, it is effective to set the stretching bath temperature as high as possible within a range in which the single yarns do not fuse with each other, and to make the temperature as high as possible than the coagulation bath temperature. From this viewpoint, the temperature of the stretching bath is preferably set to a high temperature of 70 ° C. or higher.
In the case of the multi-stage stretching method, it is preferable that the temperature of the final bath is 90 ° C. or higher.

【0013】このような延伸条件を適正化することによ
り水膨潤糸の平均細孔半径が110Å以下、空孔率が
40%以下にすることができる。
[0013] The average water-swellable yarns pore radius 110Å or less by optimizing such stretching conditions, the porosity can be 40% or less.

【0014】本発明において、平均細孔半径、空孔率
は、次に示す水銀圧入法により測定した値である。凝固
浴及び延伸浴から出た糸条を採取し、水洗後、液体窒素
による凍結乾燥法を用いて構造の固定化を行なう。この
乾燥試料を約0.2g精秤しディラトメ−タ−に入れ
る。次に水銀注入装置を用いて容器内を真空(0.05
トル以下)にし、その後水銀を充填する。そして、ポロ
シメ−タ−を用いて測定を行なう。外圧により細孔半径
を求め、水銀圧入量より細孔体積を求める。圧力は最大
3000バ−ルまでかける。空孔率は以下の式を用いて
求めた。 空孔率=ρVp/(ρVp+1) [ここで、 ρ=比重、 Vp=測定値(g当りの空孔
体積)] また平均細孔半径は、以下のようにして求めた。
In the present invention, the average pore radius and the porosity are values measured by the following mercury intrusion method. The yarns from the coagulation bath and the drawing bath are collected, washed with water, and the structure is fixed using a freeze-drying method using liquid nitrogen. About 0.2 g of the dried sample is precisely weighed and placed in a dilatometer. Next, the inside of the container was vacuumed (0.05
Torr or less) and then filled with mercury. Then, the measurement is performed using a porosimeter. The pore radius is determined from the external pressure, and the pore volume is determined from the mercury intrusion amount. The pressure is applied up to 3000 bar. The porosity was determined using the following equation. Porosity = ρVp / (ρVp + 1) [where ρ = specific gravity, Vp = measured value (pore volume per g)] The average pore radius was determined as follows.

【0015】[0015]

【数1】 (Equation 1)

【0016】[ここで、 ni=細孔数、 N=全細孔
数、 ri=細孔半径(Å)] rを求める式は,次のとおりである。 πr2p=−2πrσcosθ [ここで、 σ:水銀の表面張力、 θ:接触角]
[Where ni = number of pores, N = number of total pores, ri = pore radius (Å)] The equation for obtaining r is as follows. πr 2 p = −2πrσcos θ [where, σ: surface tension of mercury, θ: contact angle]

【0017】前記の水膨潤糸条は、その後にシリコン系
あるいは変性シリコン系油剤処理を施す。この際の油剤
の付着量は繊維当り0.01〜5重量%で、単糸同志が
融着しなく、また集束性が良い状態になるように制御す
る。シリコン系油剤処理を施した後に、乾燥緻密化処理
を施し緻密性の高い繊維とする。また、乾燥後さらに加
熱ロ−ラ−にて乾熱延伸を行なうと更に緻密性を高める
ことができる。
The above-mentioned water-swelled yarn is thereafter subjected to a silicone-based or modified silicone-based oil treatment. At this time, the amount of the oil agent attached is 0.01 to 5% by weight per fiber, and control is performed so that the single yarns do not fuse with each other and the bunching property is good. After the silicon-based oil treatment, the fibers are dried and densified to obtain highly dense fibers. Further, after the drying, the drawing can be further enhanced by performing a dry heat drawing with a heating roller.

【0018】本発明の炭素繊維前駆体繊維束の製造方法
により得られるアクリル繊維は繊維全体としての緻密性
が高いため、これを焼成して得られる炭素繊維は高強
度、高弾性のものとなる。
Since the acrylic fiber obtained by the method for producing a carbon fiber precursor fiber bundle of the present invention has a high density as a whole fiber, the carbon fiber obtained by firing this fiber has high strength and high elasticity. .

【0019】[0019]

【実施例】以下実施例により本発明をさらに具体的に説
明する。なお、本文中及び実施例中に用いた物性値は、
以下の方法により測定したものである。 (1)炭素繊維の性能(強度、弾性率)は、JIS R
−7601に準じて測定した。エポキシ樹脂を含浸した
ストランドの物性値から求めた。 (2)平均細孔半径、空孔率は、前述の水銀圧入法に依
った。
The present invention will be described more specifically with reference to the following examples. The physical property values used in the text and the examples are as follows:
It was measured by the following method. (1) The performance (strength and elastic modulus) of carbon fiber is measured according to JIS R
It measured according to -7601. It was determined from the physical properties of the strand impregnated with the epoxy resin. (2) The average pore radius and porosity were based on the mercury porosimetry described above.

【0020】実施例1 アクリロニトリル(AN)とアクリルアミド(AAm)
と第3成分としてのメタクリル酸(MAA)とを表1の
重量割合で共重合したアクリル系共重合体を、ジメチル
アセトアミドに溶解して紡糸原液(重合体濃度21重量
%、原液温度70℃)を調製した。この紡糸原液を、直
径0.075mm、孔数3000の口金を用いて、濃度
72%、浴温35℃のジメチルアセトアミド水浴液中に
吐出し凝固糸となし、これに1.5倍の空中延伸を施
し、引き続いて70℃の延伸浴で4.3倍に延伸し、更
に沸水の延伸浴で1.3倍に延伸し、洗浄した。
Example 1 Acrylonitrile (AN) and acrylamide (AAm)
Acrylic copolymer obtained by copolymerizing methacrylic acid (MAA) with methacrylic acid (MAA) as a third component at a weight ratio shown in Table 1 is dissolved in dimethylacetamide, and a spinning stock solution (polymer concentration 21% by weight, stock solution temperature 70 ° C.) Was prepared. The spinning solution using a spinneret having a diameter of 0.075 mm, hole number 3000, concentration 72%, coagulated yarn ungated discharged in dimethylacetamide bath liquid bath temperature 35 ° C., which is 1.5 times of the air The film was stretched, then stretched 4.3 times in a stretching bath at 70 ° C., further stretched 1.3 times in a boiling water stretching bath, and washed.

【0021】次にこの水膨潤糸に、単糸同志の融着が
起こらず集束性が良い状態になるように濃度を制御した
シリコン系油剤を賦与した。その後130℃の加熱ロ−
ラ−で乾燥緻密化処理を行ない、本発明の炭素繊維前駆
体繊維を得た。凝固糸及び水膨潤糸の平均細孔半径
及び空孔率、並びに前駆体繊維から製造した炭素繊維の
物性を表1に示す。
[0021] was then confer silicon-based oil agent with a controlled concentration so this water-swollen yarn, convergence does not occur fusion of single yarn each other is in good condition. Then heat at 130 ° C
Drying and densification treatment were performed with a slurry to obtain a carbon fiber precursor fiber of the present invention. The average pore radius and porosity of coagulated yarn and water-swelling yarn and the physical properties of carbon fibers produced from the precursor fibers are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1より凝固糸及び水膨潤糸の平均細
孔半径が小さく、また空孔率が低い前駆体繊維ほど、強
度及び弾性率が高い炭素繊維を製造できることが判る。
なお、表1の第1欄はアクリロニトリル(AN)単位が
90重量%の共重合体を用いた例で、比較のために挙げ
た。
[0023] Table 1 from coagulated yarn and an average pore radius smaller water-swellable yarns, also as low precursor fiber porosity, it can be seen that the strength and modulus can be produced with high carbon fiber.
In the first column of Table 1, acrylonitrile (AN) units are used.
An example using a copolymer of 90% by weight.
Was.

【0024】比較例1 実施例1でアクリルアミドの代わりにアクリル酸メチル
(MA)を共重合成分として用いた。このときの共重合
重量比はアクリロニトリル/アクリル酸メチル/メタク
リル酸=95/4/1にした。このアクリル系共重合体
を用いて実施例1と同様にして炭素繊維前駆体繊維を製
造した。このときの結果を表2に示す。
Comparative Example 1 In Example 1, methyl acrylate (MA) was used as a copolymer component instead of acrylamide. The copolymerization weight ratio at this time was acrylonitrile / methyl acrylate / methacrylic acid = 95/4/1. A carbon fiber precursor fiber was produced in the same manner as in Example 1 using this acrylic copolymer. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例2 アクリロニトリルとアクリルアミドとメタクリル酸との
共重合重量比がアクリロニトリル/アクリルアミド/メ
タクリル酸=98/1/1であるアクリル系共重合体の
ジメチルアセトアミド溶液(重合体濃度21重量%、原
液温度70℃)を紡糸原液に用いた。
Example 2 A dimethylacetamide solution of an acrylic copolymer having a copolymerization weight ratio of acrylonitrile, acrylamide and methacrylic acid of acrylonitrile / acrylamide / methacrylic acid = 98/1/1 (polymer concentration 21% by weight, The stock solution temperature was 70 ° C.) was used for the spinning stock solution.

【0027】紡糸条件、延伸条件、油剤処理、乾燥緻密
化の各条件は実施例1と同じである。乾燥緻密化処理の
後に180℃の加熱ロ−ラ−で1.2倍の乾熱延伸を行
った炭素繊維前駆体繊維と、該乾熱延伸を行なわない炭
素繊維前駆体繊維とをつくり、それぞれから製造した炭
素繊維についてその物性を調べた。その結果を表3に示
す。
The spinning conditions, drawing conditions, oil treatment, and dry densification are the same as in Example 1. After the dry densification treatment, a carbon fiber precursor fiber subjected to dry heat drawing by 1.2 times with a heating roller at 180 ° C. and a carbon fiber precursor fiber not subjected to the dry heat drawing are produced, respectively. The physical properties of carbon fibers produced from Co., Ltd. were examined. Table 3 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】乾燥緻密化処理後に、乾熱延伸を行なうこ
とにより更に高強度、高弾性の炭素繊維を製造できる。
By performing dry heat drawing after the dry densification treatment, carbon fibers having higher strength and higher elasticity can be produced.

【0030】実施例3 実施例2と同様の重合体組成の重合体及び溶媒を用いて
紡糸原液を調整した。凝固浴の濃度は72%と一定に
し、温度を25〜55℃の範囲で変化させ実施例1と同
様の湿式紡糸を行った。そのときの結果を表4に示す。
Example 3 A spinning dope was prepared using a polymer having the same polymer composition as in Example 2 and a solvent. The concentration of the coagulation bath was kept constant at 72%, and the temperature was changed in the range of 25 to 55 ° C., and the same wet spinning as in Example 1 was performed. Table 4 shows the results.

【0031】[0031]

【表4】 [Table 4]

【0032】凝固浴の温度を低くするに従い凝固糸
び延伸後の水膨潤糸の平均細孔半径及び空孔率が小さ
くなり、各前駆体繊維より製造した炭素繊維の性能(強
度、弾性率)も著しく向上していることが判った。
The average pore radius and porosity of the water-swollen yarn after solidification yarn及<br/> beauty stretching according to lower the temperature of the coagulation bath is reduced, carbon fibers produced from each precursor fiber It was found that the performance (strength and elastic modulus) was also significantly improved.

【0033】[0033]

【発明の効果】本願発明によれば、高い緻密性を有する
炭素繊維前駆体アクリル系繊維を製造することができ
る。したがって、この前駆体繊維から、高強度、高弾性
の炭素繊維を製造することができる。
According to the present invention, it is possible to produce a carbon fiber precursor acrylic fiber having high density. Therefore, high strength, high elasticity carbon fibers can be produced from the precursor fibers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠 坊 行 生 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社大竹事業所内 (56)参考文献 特開 昭59−88925(JP,A) 特開 昭63−256713(JP,A) 特開 昭61−41326(JP,A) 特開 昭62−117814(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 1/00 - 6/96 D01F 9/00 - 9/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yukio Kasobo 20-1 Miyukicho, Otake City, Hiroshima Prefecture Inside of Mitsubishi Rayon Co., Ltd. Otake Office (56) References JP-A-59-88925 (JP, A) JP-A-63-256713 (JP, A) JP-A-61-41326 (JP, A) JP-A-62-117814 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D01F 1/00-6/96 D01F 9/00-9/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アクリロニトリル単位95重量%以上、ア
クリルアミド単位0.5重量%以上を構成成分とするア
クリル系重合体の溶剤溶液を湿式紡糸して、平均細孔半
径が140Å以下、空孔率が55%以下の凝固糸とし
た後、これを沸水中にて延伸しながら洗浄して平均細孔
半径が110Å以下、空孔率が40%以下の水膨潤糸条
となし、次いで該水膨潤糸条にシリコン系油剤処理、乾
燥緻密化処理を施すことを特徴とする炭素繊維用前駆体
繊維の製造方法。
1. A solvent solution of an acrylic polymer containing at least 95% by weight of acrylonitrile unit and at least 0.5% by weight of acrylamide unit is wet-spun to obtain an average pore radius of 140 ° or less and a porosity of at least 140%. After forming a coagulated yarn of 55% or less, the coagulated yarn is washed while being stretched in boiling water to form a water-swelled yarn having an average pore radius of 110 ° or less and a porosity of 40% or less. A method for producing a precursor fiber for carbon fiber, comprising subjecting a yarn to a silicone oil treatment and a dry densification treatment.
【請求項2】アクリロニトリル単位95重量%以上、ア2. An acrylonitrile unit of at least 95% by weight,
クリルアミド単位0.5重量%以上を構成成分とするアA composition containing 0.5% by weight or more of acrylamide units
クリル系重合体の溶剤溶液を湿式紡糸して、平均細孔半The solvent solution of the cryl polymer is wet-spun and the average pore half
径が140Å以下、空孔率が55%以下の凝固糸条としA coagulated yarn with a diameter of 140 ° or less and a porosity of 55% or less
た後、これを先ず空気中で1〜2倍延伸した後、沸水中After that, this is first stretched 1-2 times in air, then in boiling water
で1〜10倍延伸しながら洗浄して平均細孔半径が11Washing while stretching 1 to 10 times with an average pore radius of 11
0Å以下、空孔率が40%以下の水膨潤糸条となし、次0% or less, water-swelling yarn having a porosity of 40% or less
いで該水膨潤糸条にシリコン系油剤処理、乾燥緻密化処The water-swollen yarn is treated with a silicone oil agent, and then dried and densified.
理を施すことを特徴とする炭素繊維用前駆体繊維の製造Of precursor fiber for carbon fiber characterized by applying
方法。Method.
JP03785891A 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber Expired - Lifetime JP3223452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03785891A JP3223452B2 (en) 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03785891A JP3223452B2 (en) 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber

Publications (2)

Publication Number Publication Date
JPH04257313A JPH04257313A (en) 1992-09-11
JP3223452B2 true JP3223452B2 (en) 2001-10-29

Family

ID=12509248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03785891A Expired - Lifetime JP3223452B2 (en) 1991-02-08 1991-02-08 Method for producing carbon fiber precursor fiber

Country Status (1)

Country Link
JP (1) JP3223452B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1016740E (en) * 1997-08-27 2005-02-28 Mitsubishi Rayon Co CARBON FIBER BASED PRECURSARY FIBER, PROCESS FOR THEIR PRODUCTION, AND ITS USE IN THE FORMATION OF A CARBON FIBER
JP4875238B2 (en) * 2000-11-02 2012-02-15 三菱レイヨン株式会社 Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP6359860B2 (en) * 2014-04-14 2018-07-18 帝人株式会社 Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
US11479881B2 (en) 2015-03-12 2022-10-25 Cytec Industries Inc. Manufacture of intermediate modulus carbon fiber
CN106222801B (en) * 2016-07-22 2018-12-25 中国石油大学(北京) A kind of preparation method of carbon fibre precursor
CN106436276A (en) * 2016-08-19 2017-02-22 郑州大学 Reagent and method for enhancing mechanical performance of electrostatic spinning film
EP3511450A4 (en) * 2016-09-12 2020-05-06 Toray Industries, Inc. Coagulated yarn and manufacturing method thereof, carbon fiber precursor fiber, and method for manufacturing carbon fiber
CN115142148B (en) * 2022-06-10 2023-03-21 东华大学 High-performance binary polyacrylonitrile-based carbon fiber precursor and preparation method thereof

Also Published As

Publication number Publication date
JPH04257313A (en) 1992-09-11

Similar Documents

Publication Publication Date Title
KR101658298B1 (en) Carbon fiber bundle and method of producing carbon fibers
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP3223452B2 (en) Method for producing carbon fiber precursor fiber
KR20010072041A (en) Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
JPWO2018047344A1 (en) Modified acrylonitrile-based fiber, method for producing the fiber, and fiber structure containing the fiber
BR112017019080B1 (en) Process to produce carbon fibers
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPS5837407B2 (en) Synthetic filaments and fibers with high moisture absorption and water retention capacity
JPS5818444B2 (en) Microporous acrylic fiber with improved water absorption
JPH086210B2 (en) High-strength and high-modulus carbon fiber and method for producing the same
JP3728862B2 (en) Water-absorbing acrylic fiber
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
JP3969799B2 (en) High-strength acrylic fiber and method for producing carbon fiber using the same
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JPS5982421A (en) Production of carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH11107034A (en) Acrylic fiber excellent in moist heat characteristic and its production
JP2656245B2 (en) High speed shrink fiber and method for producing the same
JP2002004175A (en) Pan based precursor for carbon fiber and method of producing the same
JPH08325832A (en) Hygroscopic antistatic acrylonitrile fiber
JP2003020516A (en) Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same
JPH01321913A (en) Acrylic precursor fiber for carbon fiber
JPS6065109A (en) Porous acrylonitrile synthetic fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10