JP3728862B2 - Water-absorbing acrylic fiber - Google Patents
Water-absorbing acrylic fiber Download PDFInfo
- Publication number
- JP3728862B2 JP3728862B2 JP09484297A JP9484297A JP3728862B2 JP 3728862 B2 JP3728862 B2 JP 3728862B2 JP 09484297 A JP09484297 A JP 09484297A JP 9484297 A JP9484297 A JP 9484297A JP 3728862 B2 JP3728862 B2 JP 3728862B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- water
- acrylonitrile
- cellulose
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/08—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/02—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、衣料用途、インテリア用途、産業資材用途に用いられる吸水性アクリル繊維に関するものである。
【0002】
【従来の技術】
木綿、羊毛などの天然繊維は吸水率20〜40重量%という高い吸水性を示すが、一般の合成繊維は吸水性に乏しく、天然繊維と比べて商品価値が低い。合成繊維の吸水性能を改良するために従来より多くの検討がなされてきた。なかでも繊維を多孔質構造とすることによる、毛細管現象を利用した繊維が数多く提案されている。
【0003】
例えば、特開昭47−25418号公報、特公昭47−15901号公報、特公昭48−6649号公報および特公昭48−6650号公報にはアクリル繊維製造工程中での膨潤ゲルトウ中の微小なボイドまたはミクロボイドを残存させるような温和な乾燥条件を選択することにより多孔質のアクリル繊維を製造する方法が記載されている。また、特開昭47−25416号公報、特公昭48−8285号公報、特公昭48−8286号公報にはアクリル繊維の製造工程中での膨潤ゲルトウに水溶性化合物を充填し、乾燥、後処理の後で充填物を溶出させ、ボイドを再生することが記載されている。
【0004】
上記の方法に共通する点は、アクリル繊維の製造工程中での膨潤ゲルトウが本来含有するミクロボイドを、最終製品に残存させた多孔性アクリル繊維を製造する技術であることである。
【0005】
【発明が解決しようとする課題】
しかしながら、この膨潤ゲルトウに含有されるミクロボイドは、熱的に極めて不安定なものであるため、繊維製造工程において特に乾燥、クリンプセットにおいては高温処理を行うことが出来ず、最終製品の耐熱性、形態保持性、クリンプ安定性に乏しく、製品の商品価値を著しく低下させる原因となっている。しかし、かかる原因を排除した吸水性アクリル繊維は未だ達成されていないのが現実である。
【0006】
【課題を解決するための手段】
かかる実状において本発明者らは上記の問題点を解決するため鋭意検討した結果、アクリロニトリル系重合体とセルロースを共にチオシアン酸塩水溶液に溶解し紡糸原液としたのち、湿式紡糸を行い、その凝固性の差に基づいて発生するマクロボイドをアクリル繊維中に保持させることにより達成されることを見いだした。即ち本発明は、少なくとも85重量%のアクリロニトリル単位を含有したアクリロニトリル系重合体80〜95重量%および無定形セルロース20〜5重量%からなるポリマーの混合物を、チオシアン酸ナトリウム水溶液を溶剤として溶解した紡糸原液を湿式紡糸し、吸水率が20重量%以上である繊維とすることを特徴とする吸水性アクリル繊維の製造方法、に関するものである。以下、本発明を詳細に説明する。
【0007】
【発明の実施形態】
本発明に採用するアクリル繊維の原料であるアクリロニトリル系重合体としてはアクリロニトリル比率が85重量%以上であれば特に制限はなく単独重合体、公知のモノマーとの共重合体を用いることができる。アクリロニトリル(以下、ANともいう)比率が85重量%未満になるとアクリル繊維の熱安定性が著しく低下し、容易に着色するため最終商品の品位が低下することがある。
【0008】
共重合に用いられるコモノマーとしては他の重合性不飽和ビニル化合物など、アクリロニトリルと共重合するものであれば特に制限はなく、例えばアルキルアクリレート、アルキルメタクリレート、アクリル酸、メタクリル酸、メタクリロニトリル、アクリルアミド、酢酸ビニル、塩化ビニル、臭化ビニル、フッ化ビニル、ビニルアルキレート、塩化ビニリデン、臭化ビニリデン、スチレン、スチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸塩、アリルスルホン酸塩、メタリルスルホン酸塩、エチレン、プロピレン等を使用することができる。
【0009】
本発明に使用されるセルロースはチオシアン酸ナトリウム水溶液への溶解性から、予めセルロース中の結晶構造を乱すための前処理を施した無定形セルロースであり、平均重合度50〜500のものが好ましい。
【0010】
このようにして作製されたAN系重合体およびセルロースは、溶剤としてチオシアン酸ナトリウム水溶液に溶解して紡糸原液となし、公知のノズルで湿式紡糸される。
【0011】
セルロースの添加量はポリマー総量の5〜20重量%であり、好ましくは7〜15重量%である。セルロースの添加量が5重量%未満の場合は吸水率が低く、20重量%を越える場合は、吸水率は増加するが、紡糸時の糸切れ増加や糸の機械的物性の低下が起こる。
【0012】
本発明の吸水性アクリル繊維は上記のポリマーを、紡糸された繊維がその単繊維中にアクリロニトリル系重合体とセルロ−スの多層構造を有する状態にブレンドして、湿式紡糸することにより得られる。紡糸法としては通常の湿式紡糸および乾湿式紡糸のいずれも好適に採用できる。凝固液としてチオシアン酸塩/水系の溶液中に紡出し、段階的に脱溶剤および水洗を行い、次いで7〜12倍の延伸を行い、乾燥、緻密化を行った後、捲縮、クリンプセットを行う。
【0013】
クリンプセットは120〜150℃、10秒〜15分間の条件でおこなうが、更に好ましくは125〜140℃がよい。吸水率は125℃から急速に増加するが、処理温度が高くなり過ぎると繊維が膠着することがある。処理時間は高温ほど短くてよいが、収縮斑、染色斑を避けるために15秒以上が好ましい。尚、吸水率は次の方法で測定した。繊維10gを開繊したのちガーゼに包み界面活性剤(ノイゲンHC 1ml/1l)中で60℃、30分間洗浄したのち流水で洗浄し脱水した。引き続きイオン交換水中で30分間煮沸処理し流水で洗浄後脱水した。110℃で20分間乾燥したのち、30℃に調整したイオン交換水に浸漬し3時間静置した。遠心脱水機(国産遠心機(株)社製TYPE H−770A)の目盛りを3に合わせて3分間脱水し、繊維をガーゼから取り出し重量を測定した。次に90℃で30分間乾燥したのちに重量を測定した。吸水率は式1によって算出したものを言う。
【0014】
【式1】
【0015】
【作用】
本発明は、本質的に凝固性の異なるアクリロニトリル系重合体とセルロースという2種類のポリマーを共通の溶剤であるチオシアン酸塩水溶液に溶解したブレンドポリマー溶液を湿式紡糸することにより、繊維中にその凝固性の差によりマクロボイドを発生させ、アクリロニトリル系重合体単独では乾燥やクリンプセットにより消失するボイドを、セルロースの親水性によりボイド内に保持させた水とセルロースの有する耐熱性により、熱処理後にも残存させ、毛細管現象による吸水性を付与するものである。
【0016】
【実施例】
以下に本発明の理解を容易にするため実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。
なお、実施例中、部及び百分率は特に断りのない限り重量基準で示す。
【0017】
参考例1アクリロニトリル、アクリル酸メチルを90重量%対10重量%の割合で重合したアクリロニトリル系重合体と重合度200のセルロースとの比率を、96/4〜65/35の割合でブレンドし、これを60重量%チオシアン酸カルシウム水溶液に溶解しポリマー濃度15%の紡糸用原液を作製した。これを25℃、15重量%のチオシアン酸カルシウム水溶液を凝固液として湿式紡糸したのち水洗、10倍の熱延伸を行い緊張下ヒーターローラーにて130℃で乾燥、緻密化を行い、130℃、3分間の湿熱処理を施し、5種類のアクリル繊維試料を得た(試料No.1〜5)。吸水率、引っ張り強伸度を表1に示す。チオシアン酸カルシウム水溶液であれば無処理のセルロースが溶解できること及び後述するように、紡糸性,繊維の吸水性を充すのにセルロースは5〜20%が必要であることが理解される。
【0018】
【表1】
【0019】
セルロース含有率が4重量%以下の繊維は、乾燥およびクリンプセットに相当する熱処理を施すと吸水率が20重量%以下と吸水性繊維とは言いがたいものであるのに対し、5重量%以上含有するものでは同様の処理を施した後も強伸度のバランスが保たれ、しかも20重量%以上の高い吸水率を示した。また、実験No.2の繊維に乾燥、緻密化後クリンプ処理を施し130℃でクリンプセットを実施したところ、煮沸後にも消失しない耐熱的に安定なクリンプが付与できた。セルロース含有率20重量%以下であれば紡糸、延伸は安定に実施できたが、20重量%を越えると延伸での糸切れが頻発した。さらに35重量%では延伸が出来ないため引っ張り強度が0.9g/dに低下した。
【0020】
参考例2アクリロニトリル、アクリル酸メチルを95重量%対5重量%の割合で重合したアクリロニトリル系重合体と重合度200のセルロースとの比率を90/10の割合でブレンドし、これを60重量%チオシアン酸カルシウム水溶液に溶解しポリマー濃度15%の紡糸用原液を作製した。これを25℃、15重量%のチオシアン酸カルシウム水溶液を凝固液とし湿式紡糸したのち水洗、10倍の熱延伸を行い緊張下ヒーターローラーにて130℃で乾燥、緻密化を行い、120〜150℃で、3分間の湿熱処理を施し、5種類のアクリル繊維試料を得た(試料No.6〜10)。吸水率、膠着有無を表2に示す。
【0021】
【表2】
【0022】
湿熱処理温度が150℃以上では水が可塑剤となりアクリロニトリルの溶融が始まるため膠着が起こる。140℃以下では膠着のない繊維が得られた。
【0023】
実施例1アクリロニトリル、酢酸ビニルを84重量%対16重量%の割合および85重量%対15重量%の割合で有するアクリロニトリル系重合体と、20重量%水酸化ナトリウム水溶液中に5時間浸漬したのち希硫酸で中和、水洗、乾燥した重合度200のセルロースとの比率を90/10および80/20の割合でブレンドし、これを60重量%チオシアン酸ナトリウム水溶液に溶解しポリマー濃度15%の紡糸用原液を作製した。これを25℃、15重量%のチオシアン酸ナトリウム水溶液を凝固液とし湿式紡糸したのち水洗、10倍の熱延伸を行い緊張下ヒーターローラーにて130℃で乾燥、緻密化を行い、130℃、3分間の湿熱処理を施し、4種類のアクリル繊維試料を得た(試料No.11〜14)。これにより無定形化の処理を施したセルロースであれば、チオシアン酸ナトリウム水溶液で湿式紡糸にたえる紡糸原液が作製できることが判る。吸水率、ファイバー白度を表3に示す。
【0024】
【表3】
【0025】
アクリロニトリル系重合体のアクリロニトリル含有率が84重量%以下ではアクリロニトリル系重合体の耐熱性が低いため130℃の乾燥、緻密化および湿熱処理により着色が起こり、結果として得られた繊維の白度が低下した。一方、85重量%以上のアクリロニトリル系重合体では着色はほとんどなく良好な繊維が得られた。
【0026】
実施例2アクリロニトリル、酢酸ビニルを84重量%対16重量%の割合および85重量%対15重量%の割合で有するアクリロニトリル系重合体と、20重量%水酸化ナトリウム水溶液中に5時間浸漬したのち希硫酸で中和、水洗、乾燥した重合度200のセルロースをそれぞれ各種溶剤での溶解を試みた結果を表4に示す。
【0027】
【表4】
【0028】
硝酸、塩化亜鉛水溶液ではアクリロニトリル系重合体は溶解するもののセルロースは溶解せず、銅アンモニア溶液、NMMOではセルロースは溶解するもののアクリロニトリル系重合体は溶解しなかった。一方、チオシアン酸カルシウムおよびナトリウム水溶液ではアクリロニトリル系重合体、セルロースの両方を溶解することができた。
【0029】
【発明の効果】
以上述べたように、従来はアクリル繊維の製造工程中での膨潤ゲルトウが本来含有するミクロボイドを、最終製品に残存させて吸水性アクリル繊維を製造していたが、この膨潤ゲルトウに含有されるミクロボイドは、熱的に極めて不安定なものであり、繊維製造工程において特に乾燥、クリンプセットにおいては高温処理を行うことが出来ず、最終製品の耐熱性、形態保持性、クリンプ安定性に乏しく、製品の商品価値を著しく低下させるものであった。本発明は、本質的に凝固性の異なるアクリロニトリル系重合体とセルロースという2種類のポリマーを共通の溶剤であるチオシアン酸塩水溶液に溶解したブレンドポリマー溶液を湿式紡糸することにより、その凝固性の差によりマクロボイドを発生させ、これに基づく毛細管現象により吸水性を付与するものであり、耐熱性、形態保持性、クリンプ安定性がよく、従来のアクリル繊維と同様の後加工が可能な吸水性アクリル繊維を供するもので工業的意義の大なるものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-absorbing acrylic fiber used for apparel use, interior use, and industrial material use.
[0002]
[Prior art]
Natural fibers such as cotton and wool show a high water absorption of 20 to 40% by weight, but general synthetic fibers are poor in water absorption and have a lower commercial value than natural fibers. Many studies have been made in order to improve the water absorption performance of synthetic fibers. In particular, many fibers utilizing the capillary phenomenon by making the fibers have a porous structure have been proposed.
[0003]
For example, JP-A-47-25418, JP-B-47-15901, JP-B-48-6649, and JP-B-48-6650 disclose fine voids in swollen gel tow during an acrylic fiber manufacturing process. Alternatively, a method for producing porous acrylic fibers by selecting mild drying conditions that leave microvoids is described. JP-A-47-25416, JP-B-48-8285, and JP-B-48-8286 are filled with a water-soluble compound in a swollen gel tow during an acrylic fiber production process, dried and post-treated. Is described to elute the packing and regenerate the voids.
[0004]
The point common to the above method is a technique for producing porous acrylic fibers in which the microvoids originally contained in the swollen gel tow in the acrylic fiber production process are left in the final product.
[0005]
[Problems to be solved by the invention]
However, since the microvoids contained in this swollen gel tow are thermally extremely unstable, they cannot be dried particularly in the fiber production process, and high-temperature treatment in the crimp set, and the heat resistance of the final product, It has poor shape retention and crimp stability, and causes a significant reduction in the commercial value of the product. However, in reality, a water-absorbing acrylic fiber that eliminates such a cause has not yet been achieved.
[0006]
[Means for Solving the Problems]
In the actual situation, the present inventors have intensively studied to solve the above-mentioned problems. As a result, the acrylonitrile polymer and cellulose are both dissolved in a thiocyanate aqueous solution to form a spinning stock solution, and then wet spinning is performed to obtain the coagulation property. It has been found that this is achieved by retaining the macrovoids generated based on the difference in the acrylic fiber. That is, the present invention provides a spinning solution in which a polymer mixture comprising 80 to 95% by weight of an acrylonitrile polymer containing at least 85% by weight of acrylonitrile units and 20 to 5% by weight of amorphous cellulose is dissolved in an aqueous sodium thiocyanate solution. The present invention relates to a method for producing a water-absorbing acrylic fiber , characterized in that the stock solution is wet-spun into a fiber having a water absorption of 20% by weight or more. Hereinafter, the present invention will be described in detail.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The acrylonitrile-based polymer that is a raw material of the acrylic fiber employed in the present invention is not particularly limited as long as the acrylonitrile ratio is 85% by weight or more, and a homopolymer and a copolymer with a known monomer can be used. When the acrylonitrile (hereinafter also referred to as AN) ratio is less than 85% by weight, the thermal stability of the acrylic fiber is remarkably lowered and the product is easily colored, so that the quality of the final product may be lowered.
[0008]
The comonomer used for copolymerization is not particularly limited as long as it is copolymerizable with acrylonitrile, such as other polymerizable unsaturated vinyl compounds. For example, alkyl acrylate, alkyl methacrylate, acrylic acid, methacrylic acid, methacrylonitrile, acrylamide , Vinyl acetate, vinyl chloride, vinyl bromide, vinyl fluoride, vinyl alkylate, vinylidene chloride, vinylidene bromide, styrene, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonate, allyl sulfonate , Methallyl sulfonate, ethylene, propylene and the like can be used.
[0009]
The cellulose used in the present invention is an amorphous cellulose which has been pretreated for disturbing the crystal structure in the cellulose in advance because of its solubility in an aqueous sodium thiocyanate solution, and preferably has an average polymerization degree of 50 to 500.
[0010]
The AN polymer and cellulose thus prepared are dissolved in an aqueous sodium thiocyanate solution as a solvent to form a spinning stock solution, and are wet-spun with a known nozzle.
[0011]
The addition amount of cellulose is 5 to 20% by weight, preferably 7 to 15% by weight, based on the total amount of the polymer. When the amount of cellulose added is less than 5% by weight, the water absorption is low, and when it exceeds 20% by weight, the water absorption increases, but yarn breakage during spinning and mechanical properties of the yarn decrease.
[0012]
The water-absorbing acrylic fiber of the present invention is obtained by blending the above polymer into a state in which the spun fiber has a multilayer structure of acrylonitrile polymer and cellulose in the single fiber, and wet spinning. As the spinning method, both normal wet spinning and dry wet spinning can be suitably employed. Spinning into a thiocyanate / water solution as a coagulation solution, stepwise solvent removal and water washing, then stretching 7 to 12 times, drying and densification, then crimping and crimping set Do.
[0013]
The crimp setting is performed under the conditions of 120 to 150 ° C. and 10 seconds to 15 minutes, more preferably 125 to 140 ° C. The water absorption rate increases rapidly from 125 ° C., but if the treatment temperature becomes too high, the fibers may become stuck. The treatment time may be as short as possible, but is preferably 15 seconds or longer in order to avoid shrinkage spots and stained spots. The water absorption was measured by the following method. 10 g of the fiber was opened, wrapped in gauze, washed in a surfactant (Neugen HC 1 ml / 1 l) at 60 ° C. for 30 minutes, washed with running water and dehydrated. Subsequently, it was boiled in ion exchange water for 30 minutes, washed with running water and then dehydrated. After drying at 110 ° C. for 20 minutes, it was immersed in ion exchange water adjusted to 30 ° C. and allowed to stand for 3 hours. The scale of a centrifugal dehydrator (type H-770A manufactured by Kokusan Centrifuge Co., Ltd.) was adjusted to 3, and dehydrated for 3 minutes. The fiber was taken out from the gauze and the weight was measured. Next, after drying at 90 ° C. for 30 minutes, the weight was measured. The water absorption rate is calculated by Equation 1.
[0014]
[Formula 1]
[0015]
[Action]
In the present invention, by co-spinning a blend polymer solution obtained by dissolving two kinds of polymers, acrylonitrile-based polymer having essentially different coagulation properties and cellulose, in a thiocyanate aqueous solution that is a common solvent, Due to the difference in properties, macrovoids are generated, and the acrylonitrile polymer alone disappears due to drying or crimp setting.The water retained in the voids due to the hydrophilicity of the cellulose and the heat resistance of the cellulose remains after the heat treatment. The water absorption by capillary action is given.
[0016]
【Example】
Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto.
In the examples, parts and percentages are based on weight unless otherwise specified.
[0017]
Reference Example 1 A ratio of acrylonitrile polymer obtained by polymerizing acrylonitrile and methyl acrylate in a ratio of 90% by weight to 10% by weight and cellulose having a polymerization degree of 200 was blended in a ratio of 96/4 to 65/35. Was dissolved in a 60% by weight calcium thiocyanate aqueous solution to prepare a stock solution for spinning having a polymer concentration of 15%. This was wet-spun using a 15% by weight calcium thiocyanate aqueous solution as a coagulation liquid at 25 ° C., washed with water, heat-stretched 10 times, dried and densified with a heater roller under tension at 130 ° C. Wet heat treatment was performed for 5 minutes to obtain five types of acrylic fiber samples (Sample Nos. 1 to 5). Table 1 shows the water absorption and tensile strength and elongation. It is understood that untreated cellulose can be dissolved with an aqueous calcium thiocyanate solution, and as will be described later, 5 to 20% of cellulose is required to satisfy spinnability and water absorption of fibers.
[0018]
[Table 1]
[0019]
A fiber having a cellulose content of 4% by weight or less has a water absorption of 20% by weight or less when subjected to a heat treatment corresponding to drying and crimping, whereas a water-absorbing fiber is difficult to say. In the case of containing it, the balance of strength and elongation was maintained even after the same treatment, and a high water absorption of 20% by weight or more was exhibited. In addition, Experiment No. When the fiber of No. 2 was dried and densified, and then subjected to crimping treatment at 130 ° C., a heat-resistant and stable crimp that did not disappear even after boiling could be imparted. When the cellulose content was 20% by weight or less, spinning and stretching could be carried out stably. However, when the cellulose content exceeded 20% by weight, breakage of the yarn frequently occurred. Furthermore, at 35% by weight, stretching could not be performed, so the tensile strength decreased to 0.9 g / d.
[0020]
Reference Example 2 An acrylonitrile polymer obtained by polymerizing acrylonitrile and methyl acrylate in a ratio of 95% by weight to 5% by weight and a cellulose having a polymerization degree of 200 were blended in a ratio of 90/10, and this was mixed with 60% by weight of thiocyanate. A stock solution for spinning having a polymer concentration of 15% was prepared by dissolving in an aqueous calcium acid solution. This was wet-spun using a 15% by weight calcium thiocyanate aqueous solution as a coagulation liquid at 25 ° C., washed with water, heat-stretched 10 times, dried at 130 ° C. with a heater roller under tension, densified, and 120-150 ° C. Then, a wet heat treatment for 3 minutes was performed to obtain five types of acrylic fiber samples (Sample Nos. 6 to 10). Table 2 shows the water absorption rate and the presence or absence of sticking.
[0021]
[Table 2]
[0022]
When the wet heat treatment temperature is 150 ° C. or higher, water becomes a plasticizer and acrylonitrile begins to melt, causing sticking. Below 140 ° C., fibers without sticking were obtained.
[0023]
Example 1 Acrylonitrile, an acrylonitrile-based polymer having a vinyl acetate ratio of 84% by weight to 16% by weight and a ratio of 85% by weight to 15% by weight, and after being immersed in a 20% by weight aqueous sodium hydroxide solution for 5 hours, For blending at a ratio of 90/10 and 80/20 with cellulose having a degree of polymerization of 200 neutralized, washed with water and dried with sulfuric acid, dissolved in a 60% by weight aqueous sodium thiocyanate solution for spinning with a polymer concentration of 15% A stock solution was prepared. This was wet-spun using a 15% by weight sodium thiocyanate aqueous solution as a coagulation liquid at 25 ° C., washed with water, subjected to 10-fold thermal stretching, dried and densified with a heater roller under tension at 130 ° C. Wet heat treatment was performed for 4 minutes to obtain four types of acrylic fiber samples (Sample Nos. 11 to 14). Thus, it can be seen that if the cellulose is subjected to an amorphous treatment, a spinning stock solution that can be wet-spun with an aqueous sodium thiocyanate solution can be produced. Table 3 shows the water absorption and fiber whiteness.
[0024]
[Table 3]
[0025]
When the acrylonitrile content of the acrylonitrile polymer is 84% by weight or less, the heat resistance of the acrylonitrile polymer is low, so that coloring occurs due to drying, densification and wet heat treatment at 130 ° C., resulting in a decrease in whiteness of the resulting fiber. did. On the other hand, 85% by weight or more of acrylonitrile-based polymer was hardly colored and good fibers were obtained.
[0026]
Example 2 Acrylonitrile, an acrylonitrile-based polymer having a vinyl acetate ratio of 84% by weight to 16% by weight and a ratio of 85% by weight to 15% by weight, and after being immersed in a 20% by weight aqueous sodium hydroxide solution for 5 hours, Table 4 shows the results of attempts to dissolve each cellulose having a polymerization degree of 200 neutralized with sulfuric acid, washed with water, and dried with various solvents.
[0027]
[Table 4]
[0028]
In the aqueous solution of nitric acid and zinc chloride, the acrylonitrile polymer was dissolved, but the cellulose was not dissolved. In the copper ammonia solution and NMMO, the cellulose was dissolved, but the acrylonitrile polymer was not dissolved. On the other hand, both acrylonitrile polymer and cellulose could be dissolved in calcium thiocyanate and sodium aqueous solutions.
[0029]
【The invention's effect】
As described above, conventionally, the microvoids originally contained in the swollen gel tow in the acrylic fiber manufacturing process were produced by leaving the water-absorbing acrylic fibers in the final product. Is extremely unstable thermally, especially in the fiber manufacturing process, it cannot be dried, and high temperature treatment cannot be performed in the crimp set, and the final product has poor heat resistance, shape retention, and crimp stability. The product value of the product was significantly reduced. The present invention provides a difference in coagulation property by wet-spinning a blend polymer solution prepared by dissolving two types of polymers, ie, an acrylonitrile polymer having essentially different coagulation properties and cellulose, in a thiocyanate aqueous solution that is a common solvent. A water-absorbing acrylic that generates macrovoids and imparts water absorption by capillary action based on it, has good heat resistance, shape retention and crimp stability, and can be post-processed in the same way as conventional acrylic fibers There are those that provide fibers and have great industrial significance.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09484297A JP3728862B2 (en) | 1997-03-27 | 1997-03-27 | Water-absorbing acrylic fiber |
TW087103198A TW363091B (en) | 1997-03-27 | 1998-03-05 | Water-absorbing acrylic fiber |
KR10-1998-0008990A KR100475423B1 (en) | 1997-03-27 | 1998-03-17 | Absorbent acrylic fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09484297A JP3728862B2 (en) | 1997-03-27 | 1997-03-27 | Water-absorbing acrylic fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10273821A JPH10273821A (en) | 1998-10-13 |
JP3728862B2 true JP3728862B2 (en) | 2005-12-21 |
Family
ID=14121300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09484297A Expired - Fee Related JP3728862B2 (en) | 1997-03-27 | 1997-03-27 | Water-absorbing acrylic fiber |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3728862B2 (en) |
KR (1) | KR100475423B1 (en) |
TW (1) | TW363091B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1270774B1 (en) * | 1999-10-13 | 2007-01-10 | Kaneka Corporation | Use of a porous acrylic fiber and fabric comprising the same, and method of producing the same |
DE102006022009B3 (en) * | 2006-05-10 | 2007-12-06 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Process for producing cellulosic multicomponent fibers |
CN102220651B (en) * | 2011-04-19 | 2012-12-19 | 上海正家牛奶丝科技有限公司 | Hygroscopic heating fibers and preparation method thereof |
KR101410960B1 (en) * | 2012-12-05 | 2014-06-23 | 동일방직주식회사 | Fiber treatment agent, fiber with fiber treatment agent and the method of fiber treatment agent |
CN104294479B (en) * | 2014-09-05 | 2018-03-30 | 上海工程技术大学 | A kind of native cellulose/polyacrylonitrile nano anti-bacterial fibre film and preparation method thereof |
JP7177986B2 (en) * | 2018-02-15 | 2022-11-25 | 日本エクスラン工業株式会社 | Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber |
JP7177987B2 (en) * | 2018-02-26 | 2022-11-25 | 日本エクスラン工業株式会社 | Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0299609A (en) * | 1988-10-03 | 1990-04-11 | Mitsubishi Rayon Co Ltd | Production method for novel acrylic synthetic fiber |
TW218029B (en) * | 1991-01-21 | 1993-12-21 | Mitsubishi Rayon Co | |
JPH062215A (en) * | 1992-06-18 | 1994-01-11 | Kanebo Ltd | Production of porous acrylic fiber |
JP3359397B2 (en) * | 1993-10-27 | 2002-12-24 | 三菱レイヨン株式会社 | Core-sheath composite fiber |
GB2291926B (en) * | 1994-08-02 | 1999-01-13 | Tobias Michael Cardew | Vacuum securing arrangements |
WO1997003788A1 (en) * | 1995-07-20 | 1997-02-06 | Matsushita Electric Industrial Co., Ltd. | Cream solder |
-
1997
- 1997-03-27 JP JP09484297A patent/JP3728862B2/en not_active Expired - Fee Related
-
1998
- 1998-03-05 TW TW087103198A patent/TW363091B/en not_active IP Right Cessation
- 1998-03-17 KR KR10-1998-0008990A patent/KR100475423B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19980080358A (en) | 1998-11-25 |
TW363091B (en) | 1999-07-01 |
JPH10273821A (en) | 1998-10-13 |
KR100475423B1 (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4336214A (en) | Process for hygroscopic, fibres and filaments of synthetic polymers | |
US4143200A (en) | Synthetic filaments and fibres with high moisture absorption and water retention capacity | |
JP3728862B2 (en) | Water-absorbing acrylic fiber | |
US4810449A (en) | Process for the production of hydrophilic polyacrylonitrile filaments or fibers | |
JPS5818444B2 (en) | Microporous acrylic fiber with improved water absorption | |
US5436275A (en) | Porous acrylonitrile polymer fiber | |
JPH02451B2 (en) | ||
JPS6342910A (en) | Production of acrylonitrile yarn bundle for manufacturing carbon yarn | |
JP3364099B2 (en) | Dividable acrylic synthetic fiber and method for producing the same | |
JP4480858B2 (en) | Lightweight composite acrylic fiber and method for producing the same | |
JPH05148709A (en) | Acrylic modified cross section fiber and its production | |
JPS6130042B2 (en) | ||
JPS607047B2 (en) | Method for producing hydrophilic fibers and filaments from synthetic polymers | |
JPH0457911A (en) | Porous actylic yarn having excellent water retention and its production | |
JPH07150471A (en) | Porous acrylonitrile fiber | |
JPH07150470A (en) | Porous acrylonitrile fiber | |
JP3085486B2 (en) | Porous acrylonitrile fiber | |
JPH04272220A (en) | Acrylic hollow sheath-core fiber | |
JP2601774B2 (en) | Flame retardant acrylic composite fiber | |
JPH0299609A (en) | Production method for novel acrylic synthetic fiber | |
JPS6234847B2 (en) | ||
JPH07118928A (en) | Core-sheath conjugate fiber and its production | |
JPH08246230A (en) | Dope solution for producing acrylonitrile fiber good in thermal stability and acrylonitrile fiber obtained from the dope solution | |
JPS5818448B2 (en) | Acrylic Keifuku Gosen Ino Seizou Hohou | |
JPH09268426A (en) | Production of fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050926 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091014 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101014 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111014 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121014 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131014 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |