JPS6234847B2 - - Google Patents

Info

Publication number
JPS6234847B2
JPS6234847B2 JP10384380A JP10384380A JPS6234847B2 JP S6234847 B2 JPS6234847 B2 JP S6234847B2 JP 10384380 A JP10384380 A JP 10384380A JP 10384380 A JP10384380 A JP 10384380A JP S6234847 B2 JPS6234847 B2 JP S6234847B2
Authority
JP
Japan
Prior art keywords
polymer
fibers
cellulose acetate
ionic
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10384380A
Other languages
Japanese (ja)
Other versions
JPS5729607A (en
Inventor
Takeji Ootani
Kunihiro Aoki
Tadao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP10384380A priority Critical patent/JPS5729607A/en
Publication of JPS5729607A publication Critical patent/JPS5729607A/en
Publication of JPS6234847B2 publication Critical patent/JPS6234847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセルロースアセテート系繊維の製造法
に関するものであり、セルロースアセテートに特
定のアクリロニトリル系重合体を混合紡糸するこ
とにより主として染色性を改質する事を目的とす
る。 アセテート系繊維は分散染料で染色されその鮮
明性が比較的良好であり、しかもシルキーな風合
を有し衣料用繊維として広く実用されている。こ
の場合の繊維は通常アセトン又は塩化メチレンを
溶剤とする乾式紡糸法によつて製造されしかもフ
イラメントが主体である。 一方、アセテート系繊維の用途拡大上新規な素
材例えば繊維形態においてはトウないしステーブ
ルが、特性面に於ては機械的性質の向上、易染色
性の素材等の開発が要請されている。 染色性の観点からみると現在開発されているセ
ルロースアセテートはその化学構造に由来して分
散染料による染色法をとらざるを得ないが発色性
が良好で堅牢性の優れたイオン性染料、即ちカチ
オン染料あるいは酸性染料で染着可能となればそ
の染色操作の容易さと相俟つて有用な素材となる
ことが期待される。 本発明は従来のセルロースアセテートと異なる
染色性を付与することを目的に種々の検討を重
ね、アセテート系繊維の有する特長を失なうこと
なく、イオン性染料に可染性の繊維の設計とその
製造法を見出し本発明に到達した。 本発明の要旨とするところは、酸化度54%以上
のセルロースアセテート70〜95wt%と、酸性基
及び塩基性基の群から選ばれるイオン性基を染着
座席として有する単量体とアクリロニトリル
50wt%以上との共重合体でかつイオン性基を100
mmol/Kg以上含有するアクリロニトリル系重合
体30〜5wt%からなる重合体混合物をジメチルア
セトアミドに溶解した溶液を紡糸、脱溶剤した後
乾燥することを特徴とするセルロースアセテート
系繊維の製造法にある。 本発明の骨子は、まずイオン染料に可染性の物
質をセルロースアセテートをマトリツクスとして
混合紡糸することにある。該物質は十分な染着能
力を持ち、繊維形成後もアセテート糸条中より脱
落しないことが必須条件でありこのため高分子量
のものが好ましい。又一方セルロースアセテート
と均一に混合し染色斑の生じないことが肝要であ
る。これらの点から多くの重合体を検討した結
果、特定量のイオン性染着座席を有するアクリロ
ニトリル(AN)系重合体が好ましいことを見出
した。 次に繊維製造プロセスの点からみると、該両重
合体の糸条形成性及び形成された構造は必ずしも
近似するものでないため、そのバランスをとるこ
とは比較的難しい。特にセルロースアセテート側
に起因する結晶化の進行が繊維物性バランスをと
る上で重要であり、後述するように脱溶剤したの
ちの熱処理、例えば湿潤糸条の乾燥工程は十分に
留意する必要がある。 以上述べた趣旨を前提として以下本発明を実施
に則して説明する。 本発明の出発原料は、酢化度54%以上の通常の
繊維成形用セルロースジアセテートあるいはセル
ローストリアセテートであつて、重合度は一般に
150〜400程度のものが選ばれる。 又一方の混合用AN系重合体は100mmol/Kg以
上のイオン性基を染着座席として含有するもので
ある。 該イオン性基としては、スルフオン酸又はスル
ホン酸エステル、カルボキシル基等の酸性基とそ
れらの塩類もしくはアミノ基、アンモニウム塩等
の広義の塩基性基が挙げられる。イオン性基を
AN系重合体中に導入するには、普通主としてイ
オン性基を含有する単量体をANと共重合すれば
よく、かかる共重合性のイオン性基含有単量体と
しは、例えば(メタ)アリルスルホン酸、(メ
タ)アクリル酸又はイタコン酸、スチレンスルホ
ン酸又はそれらの塩類等の酸性基含有単量体やジ
アルキルアミノアルキル(メタ)アクリレート
類、ビニルピリジン類及びそれらの四級アンモニ
ウム塩誘導体等の塩基性基含有単量体が挙げられ
る。一方特定の重合触媒を用いて重合を行なうと
重合体末端に触媒断片としてスルホン酸もしくは
そのエステル基が導入されるので、このような重
合体は酸性基含有単量体の共重合量が少なくてす
み本発明の目的に有効に用いうる。 このような触媒として具体的には、過硫酸塩類
あるいはそれと還元性スルホキシ化合物との組合
わせによるレドツクス開始剤がある。これらの末
端酸性基の重合体単位重量当りの数は重合体の分
子数、いいかえれば分子量に影響されることは勿
論であるが、該開始剤系によつて製造された一般
の繊維製造用AN系重合体の場合に於て大体30〜
40mmol/Kgのスルホン酸基を有するので、これ
を利用する点でも、本発明においてはスルホン酸
基の効用は特に意義がある。なおAN系重合体の
AN含有量に特定限界はないがほぼ50wt%以上が
好ましい。 以上の2種の重合体の混合比率は、セルロース
アセテートが70〜95wt%、AN系重合体が30〜
5wt%とする。但しこの範囲に於て他の少量の第
3の重合体を添加しても差支えない。例えば両者
の相溶性を改善するためにグラフト又はブロツク
ポリマー等のいわゆる相溶化剤を共存させたり、
染色性以外の他の機能を有する物質の添加が可能
である。 上記混合比率のうち、AN重合体が30wt%を越
えると得られる繊維の失透性が大大になるととも
にアセテート独得の風合が損なわれる。又それが
5wt%より低いと目的とする染着性を付与するた
めに、イオン性基を極めて多量に含有するAN重
合体が必要となるが、一般にそのような重合体の
製造することが難しいので好ましくない。AN系
重合体の製造性からみた凡その限界はイオン性基
量が約1000mmol/Kg程度にある。 両重合体は望ましくは共通溶剤に溶解され混合
される。溶剤としては通常のAN系重合体の溶剤
が用いられるが、水中への拡散速度が遅いジメチ
ルアセトアミド(DMAc)が均質構造の繊維を生
成する上で好ましく適用される。溶液中の全重合
体濃度は紡糸に適する8〜35wt%、好ましくは
15〜25wt%の範囲とする。 本発明の目的から、両者はできるだけ均一に混
合されることが重要であるが、異種重合体である
ためミクロに相分離することは避けられず、混合
溶液の相状態を観察するといずれにおいても、セ
ルロースアセテートがマトリツクスを形成しその
中にAN系重合体が粒子状に分散した海島原液と
なる。第1図はその状態を示す溶液の光学顕微鏡
写真(倍率100)であり、セルロースアセテート
として酢化度61.5%のセルローストリアセテー
ト、AN系重合体として組成がAN―メタリルスル
ホン酸ソーダ(1〜5wt%)の重合体からなる混
合溶液を示す。島成分は粒径が1/10〜数μであ
り、この分散状態は繊維形成過程を通じてほぼそ
のまま繊維中における混合分散状態に反映され
る。染色の均一性、いいかえれば肉眼で観察され
る斑の発現性からいつて、該粒径は一般に細かい
程好ましく、その手法について検討した結果、
AN系重合体のポリマー組成が寄与し、該イオン
性基含有単量体以外に酢酸ビニル(VAc)もしく
は(メタ)アクリル酸メチルを含有する方向が良
いことが明らかになつた。AN重合体中のそれら
の含有量に特別の規定はないが、その効果及び
AN重合体の調製上の問題等から5〜15wt%が妥
当である。この理由については目確でないが、セ
ルロースアセテートのアセテート基がこれら単量
体側鎖と親和性が高いことによるものと考えられ
る。図面の第2図に、第1図と同様にセルロース
トリアセテートと、組成がAN/VAc/メタリル
スルホン酸ソーダ=90/7/3(wt%)なるAN
系重合体の混合溶液の相状態を示す。第1図のそ
れに比し更に均一な海島原液であることが分る。
なおこのような均一溶液を調製する前提として機
械的な高剪断を伴なつた撹拌混合が望ましい。 かくして得られる溶液は十分に過、脱泡され
紡糸工程に導びかれる。紡糸方式としては、通常
の乾式、乾―湿式及び湿式紡糸のいずれも可能で
あるが、湿式紡糸を行なう場合は、凝固剤として
上述した溶媒の水溶液が取扱い等の点において工
業的に有利である。なお両重合体の凝固性は異な
るのでその差を縮めできるだけ透明性の高い糸条
得るには凝固浴の温度をできるだけ低温にしてマ
イルドに凝固せしめることが肝要である。 紡糸された糸条はついで熱水中で脱溶剤され、
糸条の残留溶剤をほぼ1wt%以下とする。又この
洗浄と同時に糸条に若干の延伸を適用してもよい
が、過度の延伸あるいは過度の応力を作用せしめ
ると混合重合体の界面に剥離現象が生じ空隙の生
成とそれによる失透化を惹起し発色性の低下を招
き好ましくない。延伸倍率としては高々1〜2倍
とするのがよい。 洗浄された糸条に適当な油剤を付与したのちつ
いで乾燥する。この際マトリツクスのセルロース
アセテートは緊張熱処理により結晶化し易く、か
つその結晶化がほとんど強度向上に寄与せず一方
的に伸度低下を起すと共に、結節タクネスが低下
する。従つて乾燥は実質的に無緊張下で行なうこ
とが望ましく、温度100〜180℃、通常は110〜160
℃の条件で乾燥する。かかる乾燥プロセスは生産
性の点から洗浄工程と直結して連続的であること
が好ましく、そのための好ましい方法として無端
の処理コンベアー上に湿潤糸条をオーバーフイー
ドし、熱風等による加熱雰囲気中に導びき乾燥す
る。なお本乾燥過程で糸条は長さ方向に約5〜15
%収縮するので、オーバーフイード率は少なくと
もこの値を越える水準に設定することが望まし
い。。 乾燥後の繊維はこのまま、あるいはついで捲縮
を付与し、必要ならば熱処理を行なつて、フイラ
メント、トウ又は切断されてステープルとし、単
独あるいは他の合成繊維並びに天然繊維と混紡、
交編、交織して有用な製品を提供しうる。特に本
発明の繊維はカチオン染料又は酸性染料により比
較的低温で容易に染色されるのでそれら染料に染
色可能な他の繊維と混合し、一浴染めも可能とな
る。 以上本発明の基本的要件を説明したが、これ以
外に公知の技術を組み合わせて種々の改質が可能
である。 以下実施例を挙げて更に詳しく説明する。 実施例 1 酢化度61.5%のセルローストリアセテート
(CTAと略称する)及び過硫酸カリと酸性亜硫酸
ソーダ系レドツクス開始剤を用いて水系重合法に
より調製された第1表に示すAN系重合体を使用
して以下の実験を行なつた。
The present invention relates to a method for producing cellulose acetate fibers, and its main purpose is to improve dyeability by mixing and spinning cellulose acetate with a specific acrylonitrile polymer. Acetate fibers are dyed with disperse dyes, have relatively good clarity, and have a silky texture, and are widely used as clothing fibers. The fibers in this case are usually produced by a dry spinning method using acetone or methylene chloride as a solvent, and are mainly filaments. On the other hand, in order to expand the use of acetate fibers, there is a need to develop new materials such as tow or stable fibers, and materials with improved mechanical properties and easy dyeability. From the viewpoint of dyeability, cellulose acetate currently being developed has no choice but to dye with disperse dyes due to its chemical structure, but it is possible to use ionic dyes, i.e. cationic dyes, which have good color development and excellent fastness. If it can be dyed with dyes or acid dyes, it is expected that it will become a useful material because of the ease of dyeing operation. The present invention has been carried out with various studies aimed at imparting dyeability different from conventional cellulose acetate, and has developed a design for fibers that can be dyed with ionic dyes without losing the characteristics of acetate fibers. We found a manufacturing method and arrived at the present invention. The gist of the present invention is that 70 to 95 wt% of cellulose acetate with an oxidation degree of 54% or more, a monomer having an ionic group selected from the group of acidic groups and basic groups as a dyeing site, and acrylonitrile.
Copolymer with 50wt% or more and 100% ionic group
A method for producing cellulose acetate fibers, which comprises spinning a solution of a polymer mixture containing 30 to 5 wt% of an acrylonitrile polymer containing at least mmol/Kg in dimethylacetamide, removing the solvent, and then drying. The gist of the present invention is to first mix and spin a substance dyeable with ionic dyes using cellulose acetate as a matrix. It is essential that the substance has sufficient dyeing ability and does not fall off from the acetate thread even after fiber formation, and for this reason, a substance with a high molecular weight is preferred. On the other hand, it is important that it be mixed uniformly with cellulose acetate so that no staining spots occur. As a result of examining many polymers from these points, it has been found that an acrylonitrile (AN)-based polymer having a specific amount of ionic dye seat is preferable. Next, from the point of view of the fiber manufacturing process, it is relatively difficult to achieve a balance between the yarn-forming properties and the formed structures of the two polymers, since they are not necessarily similar. In particular, the progress of crystallization caused by the cellulose acetate side is important in balancing the fiber properties, and as described below, sufficient attention must be paid to the heat treatment after solvent removal, such as the drying process of wet yarn. Based on the above-mentioned gist, the present invention will be described below in accordance with its implementation. The starting material of the present invention is cellulose diacetate or cellulose triacetate for ordinary fiber forming with a degree of acetylation of 54% or more, and the degree of polymerization is generally
Approximately 150 to 400 will be selected. On the other hand, the AN polymer for mixing contains 100 mmol/Kg or more of ionic groups as a dyeing seat. Examples of the ionic group include sulfonic acids or sulfonic acid esters, acidic groups such as carboxyl groups, salts thereof, and basic groups in a broad sense such as amino groups and ammonium salts. ionic group
In order to introduce it into an AN-based polymer, it is usually sufficient to copolymerize a monomer mainly containing an ionic group with AN. Examples of such a copolymerizable monomer containing an ionic group include (meta) Acidic group-containing monomers such as allylsulfonic acid, (meth)acrylic acid or itaconic acid, styrenesulfonic acid or their salts, dialkylaminoalkyl (meth)acrylates, vinylpyridines and their quaternary ammonium salt derivatives, etc. Examples include basic group-containing monomers. On the other hand, when polymerization is carried out using a specific polymerization catalyst, a sulfonic acid or its ester group is introduced as a catalyst fragment at the end of the polymer, so such a polymer has a small amount of copolymerized monomer containing an acidic group. It can be effectively used for the purpose of the present invention. Specifically, such a catalyst includes a redox initiator made of persulfates or a combination thereof with a reducing sulfoxy compound. Of course, the number of these terminal acidic groups per unit weight of the polymer is influenced by the number of molecules of the polymer, in other words, the molecular weight. In the case of polymers, approximately 30~
Since it has a sulfonic acid group of 40 mmol/Kg, the effect of the sulfonic acid group is particularly significant in the present invention in terms of its utilization. In addition, the AN-based polymer
There is no specific limit to the AN content, but it is preferably approximately 50 wt% or more. The mixing ratio of the above two types of polymers is 70 to 95 wt% for cellulose acetate and 30 to 95 wt% for AN polymer.
It is assumed to be 5wt%. However, within this range, a small amount of other third polymer may also be added. For example, in order to improve the compatibility between the two, a so-called compatibilizer such as a graft or block polymer may be used together, or
It is possible to add substances that have functions other than staining. If the AN polymer exceeds 30 wt% of the above mixing ratio, the devitrification of the resulting fiber will be greatly increased and the unique feel of acetate will be lost. Also that is
If it is lower than 5wt%, an AN polymer containing an extremely large amount of ionic groups will be required in order to impart the desired dyeability, but it is generally difficult to produce such a polymer, so it is not preferable. . The general limit in terms of the productivity of AN-based polymers is the ionic group content of about 1000 mmol/Kg. Both polymers are preferably dissolved in a common solvent and mixed. As the solvent, a normal AN polymer solvent is used, but dimethylacetamide (DMAc), which has a slow diffusion rate in water, is preferably used to produce fibers with a homogeneous structure. The total polymer concentration in the solution is 8-35wt% suitable for spinning, preferably
The content should be in the range of 15-25wt%. For the purpose of the present invention, it is important to mix the two as uniformly as possible, but since they are different types of polymers, microscopic phase separation is inevitable, and when observing the phase state of the mixed solution, in both cases, Cellulose acetate forms a matrix, and the AN-based polymer is dispersed in particles to form a sea-island stock solution. Figure 1 is an optical micrograph (magnification: 100) of the solution showing the state.The cellulose acetate is cellulose triacetate with a degree of acetylation of 61.5%, and the AN polymer is AN-sodium methallylsulfonate (1-5wt). %) of the polymer. The particle size of the island component is 1/10 to several microns, and this state of dispersion is almost directly reflected in the state of mixing and dispersion in the fiber throughout the fiber formation process. In terms of the uniformity of staining, or in other words, the appearance of spots observed with the naked eye, the finer the particle size, the better.As a result of studying this method, we found that:
It has become clear that the polymer composition of the AN-based polymer contributes, and that it is better to include vinyl acetate (VAc) or methyl (meth)acrylate in addition to the ionic group-containing monomer. There is no special regulation on their content in AN polymer, but their effects and
5 to 15 wt% is appropriate due to problems in preparing the AN polymer. Although the reason for this is not certain, it is thought that it is because the acetate group of cellulose acetate has a high affinity with these monomer side chains. Figure 2 of the drawings shows cellulose triacetate and AN with the composition AN/VAc/sodium methallylsulfonate = 90/7/3 (wt%) as in Figure 1.
This figure shows the phase state of a mixed solution of polymers. It can be seen that the sea-island stock solution is more uniform than that shown in FIG.
Note that stirring and mixing accompanied by high mechanical shear is desirable as a premise for preparing such a homogeneous solution. The solution thus obtained is thoroughly filtered and degassed before being introduced into the spinning process. As for the spinning method, any of the usual dry, dry-wet, and wet spinning methods are possible, but when performing wet spinning, an aqueous solution of the above-mentioned solvent as a coagulant is industrially advantageous in terms of handling, etc. . Since the coagulation properties of the two polymers are different, it is important to reduce the temperature of the coagulation bath as low as possible to achieve mild coagulation in order to reduce the difference and obtain a yarn with as high transparency as possible. The spun yarn is then desolventized in hot water,
The residual solvent in the yarn should be approximately 1wt% or less. Although the yarn may be slightly stretched at the same time as this cleaning, excessive stretching or excessive stress may cause a peeling phenomenon at the interface of the mixed polymer, resulting in the formation of voids and devitrification. This is undesirable as it causes a decrease in color development. The stretching ratio is preferably 1 to 2 times at most. After applying a suitable oil to the washed yarn, it is then dried. At this time, the cellulose acetate of the matrix is easily crystallized by the tension heat treatment, and the crystallization hardly contributes to an improvement in strength, unilaterally causing a decrease in elongation and a decrease in knot toughness. Therefore, it is desirable to dry under virtually no tension, at a temperature of 100 to 180°C, usually 110 to 160°C.
Dry at ℃. From the viewpoint of productivity, it is preferable that this drying process be directly connected to the washing process and be continuous, and a preferred method for this is to overfeed the wet yarn onto an endless processing conveyor and introduce it into a heated atmosphere using hot air or the like. Strain to dry. In addition, during the main drying process, the threads are approximately 5 to 15 cm long in the length direction.
% shrinkage, it is desirable to set the overfeed rate to at least a level exceeding this value. . After drying, the fibers can be used as they are, or they can be crimped and, if necessary, heat treated to form filaments, tows, or cut into staples, either alone or blended with other synthetic fibers or natural fibers.
Useful products can be provided by inter-knitting and inter-weaving. In particular, since the fibers of the present invention can be easily dyed with cationic dyes or acidic dyes at relatively low temperatures, they can be mixed with other fibers that can be dyed with these dyes and can be dyed in one bath. Although the basic requirements of the present invention have been explained above, various modifications can be made by combining other known techniques. A more detailed explanation will be given below with reference to Examples. Example 1 An AN-based polymer shown in Table 1 prepared by an aqueous polymerization method using cellulose triacetate (abbreviated as CTA) with an acetylation degree of 61.5%, potassium persulfate, and an acidic sodium sulfite-based redox initiator was used. The following experiment was conducted.

【表】 CTA及びAN系重合体を80/20の割合で秤りと
り全重合体濃度15wt%になるようにニーダーを
用いて90℃でDMAcに撹拌溶解した。得られた混
合重合体の溶液を過、脱泡して紡糸原液とし
た。これら原液を直ちに顕微鏡下に室温で観察し
たところ、第1図(1―a,1―b,1―cは重
合体(),(),()にそれぞれ対応する)に
示す結果を得た。いずれも相分離を伴なうが、こ
こでNaMSの含有率が大な程AN重合体からなる
島成分は微細となることが分る。一方これらの原
液を24時間放置した後の状態を第2図(2―a,
2―b,2―c)に示すがいずれも比較的安定で
あつた。 それぞれの原液を使用して湿式紡糸法により以
下の如く繊維を製造した。孔径0.05mmφ、孔数
1000の紡糸ノズルより、10℃に保持された40%
DMAc水溶液中に紡糸し凝固せしめ、10m/分の
速度で引き取つた。ついで98℃の熱水中で洗浄し
たのち、油剤を付与してネツトコンベアー上にオ
ーバーフイードし、140℃の熱風中を走行させ乾
燥させて単繊維繊度3デニールの繊維を製造し
た。 いずれの場合も紡糸操作性は良好であつた。得
られた繊維の特性を第2表に示す。なお比較のた
めにAN系重合体を混合しないでCTA単独から同
様に得られた繊維についても示す。
[Table] CTA and AN-based polymers were weighed out at a ratio of 80/20 and dissolved in DMAc at 90°C using a kneader with stirring so that the total polymer concentration was 15 wt%. The obtained mixed polymer solution was filtered and defoamed to obtain a spinning stock solution. When these stock solutions were immediately observed under a microscope at room temperature, the results shown in Figure 1 (1-a, 1-b, and 1-c correspond to polymers (), (), and (), respectively) were obtained. . Although both cases involve phase separation, it can be seen that the higher the NaMS content, the finer the island component made of AN polymer becomes. On the other hand, the state of these stock solutions after being left for 24 hours is shown in Figure 2 (2-a,
As shown in 2-b and 2-c), both were relatively stable. Using each stock solution, fibers were produced by a wet spinning method as follows. Hole diameter 0.05mmφ, number of holes
40% kept at 10℃ from 1000 spinning nozzles
It was spun into an aqueous solution of DMAc, coagulated, and drawn off at a speed of 10 m/min. After washing in hot water at 98°C, the fibers were coated with an oil, overfed onto a net conveyor, and dried by running in hot air at 140°C to produce single fibers with a fineness of 3 denier. In all cases, the spinning operability was good. The properties of the obtained fibers are shown in Table 2. For comparison, fibers similarly obtained from CTA alone without mixing AN polymer are also shown.

【表】【table】

【表】 第2表にみられる如く本発明の繊維はCTA単
独繊維に比し、機械的性質、透明性を損なうこと
なく、カチオン染料に対する染着性が付与され
る。又染着性を十分満足するにはほぼ50%の染着
率が必要であり、そのためには出発原料として重
合体()は採用できない。 次に上記重合体()を用いてCTAとの混合
比率を変えて同様に繊維の製造を行なつて下記第
3表の結果を得た。
[Table] As shown in Table 2, the fibers of the present invention are endowed with dyeability for cationic dyes without impairing mechanical properties and transparency, compared to fibers made from CTA alone. Furthermore, in order to fully satisfy the dyeability, a dyeing rate of approximately 50% is required, and for this purpose, the polymer () cannot be used as a starting material. Next, fibers were produced in the same manner using the above polymer (2) and varying the mixing ratio with CTA, and the results shown in Table 3 below were obtained.

【表】 明らかな如くAN系重合体の混合率の増大によ
り染着性は向上するが、それが30%を越えると該
相分離状態の悪化を伴なう、透明性の顕著な低下
と糸質、とりわけ結節強伸度の劣化が大となる。 実施例 2 実施例1に用いたCTA80部と組成がAN/
VAc/NaMS=90/7/3(wt%)でその比粘度
0.170であるAN系重合体20部を混合しDMAcに90
℃で溶解し、ついで3000rpmで回転する高速ミキ
サーで撹拌して濃度15wt%の溶液を調製した。 該溶液の光学顕微鏡観察結果を第3図(3―a
(直後),3―b(24hr後)に示した。いずれも均
一微細な海島状を呈しその安定性も良好であつ
た。 ついで過、脱泡して紡糸原液とし、以下実施
例1と同様に湿式紡糸を行なつて洗浄、乾燥を行
なつた。又該洗浄を行なつたのち所定の表面温度
を有する熱ロールを走行させながら定長下に乾燥
する方法も実施した。それの結果を第4表に示
す。
[Table] As is clear, the dyeability improves as the mixing ratio of AN polymer increases, but when it exceeds 30%, the phase separation state worsens, resulting in a marked decrease in transparency and yarn damage. The quality, especially the knot strength and elongation, deteriorates significantly. Example 2 80 parts of CTA used in Example 1 and the composition are AN/
VAc/NaMS=90/7/3 (wt%) and its specific viscosity
Mix 20 parts of AN-based polymer that is 0.170 to 90% DMAc.
A solution with a concentration of 15 wt% was prepared by dissolving at ℃ and then stirring with a high speed mixer rotating at 3000 rpm. The results of optical microscopic observation of the solution are shown in Figure 3 (3-a
(immediately) and 3-b (after 24 hours). All of them had a uniform, fine sea-island shape and had good stability. The mixture was then filtered and defoamed to obtain a spinning dope, which was then subjected to wet spinning in the same manner as in Example 1, followed by washing and drying. After the washing, a method was also carried out in which the material was dried under a fixed length while running a hot roll having a predetermined surface temperature. The results are shown in Table 4.

【表】 第4表から、実験No.7の本発明の繊維は糸質バ
ランスが良好であるのに対し、緊張乾燥糸はその
乾燥温度に拘らず結節強伸度の低下が大きい。 実施例 3 酢化度55%のセルロースジアセテート(CA)
とAN系重合体として酸性染料に可染性のアミノ
基を500mmol/Kg含有する重合を用いて以下の
検討を行なつた。即ちCA90部と組成がAN/
VAc/ジメチルアミノエチルメタクリレート
(DM)=85/7/8(wt%)、その比粘度0.160の
AN系重合体10部から、常法によりDMFに溶解し
濃度17.5wt%の紡糸原液を調製した。これを孔径
0.06mmφ、孔数1000の紡糸ノズルから0℃に保持
された30%DMF水溶液に紡糸し、10m/分の速
度で引き取つた。 ついで80℃の熱水中で脱溶剤しながら1.2倍の
延伸を適用して油剤を付与し、実施例1と同様に
無緊張下に乾燥を行なつて単繊維繊度5デニール
の繊維を製造した。得られた繊維の物性を第5表
に示す。
[Table] From Table 4, the fiber of the present invention in Experiment No. 7 has a good yarn quality balance, whereas the tension-dried yarn has a large decrease in knot strength and elongation regardless of the drying temperature. Example 3 Cellulose diacetate (CA) with a degree of acetylation of 55%
The following study was conducted using an AN-based polymer containing 500 mmol/kg of amino groups dyeable with acid dyes. In other words, CA90 parts and the composition are AN/
VAc/dimethylaminoethyl methacrylate (DM) = 85/7/8 (wt%), its specific viscosity is 0.160.
A spinning stock solution having a concentration of 17.5 wt% was prepared from 10 parts of the AN-based polymer by dissolving it in DMF using a conventional method. This is the hole diameter
The fibers were spun into a 30% DMF aqueous solution maintained at 0° C. from a spinning nozzle with a diameter of 0.06 mm and 1000 holes, and drawn off at a speed of 10 m/min. Then, while removing the solvent in hot water at 80°C, a 1.2x stretching was applied to apply an oil agent, and the same as in Example 1 was dried under no tension to produce a single fiber with a fineness of 5 denier. . Table 5 shows the physical properties of the obtained fibers.

【表】 なお、上記したAN系重合体中のアミノ基含有
量は、重合体粉末を大過剰の染料浴中で染色して
飽和染着量を求めその値をそのまま用いた。 一方、AN系重合体を混合しないCA単独繊維は
上記酸性染料に対し汚染する程度であつた。
[Table] Note that the amino group content in the AN-based polymer described above was determined by dyeing the polymer powder in a large excess dye bath to determine the saturated dyeing amount, and the value was used as is. On the other hand, the CA fiber alone without the AN polymer was only stained by the acid dye.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はいずれもセルロース
アセテートとAN系重合体混合物の有機溶剤溶液
の相状態を示す光学顕微鏡拡大写真(倍率100)
である。
Figures 1, 2, and 3 are all enlarged optical microscope photographs (100 magnification) showing the phase state of an organic solvent solution of cellulose acetate and AN polymer mixture.
It is.

Claims (1)

【特許請求の範囲】 1 酢化度54%以上のセルロースアセテート70〜
95wt%と、酸性基及び塩基性基の群から選ばれ
るイオン性基を染着座席として有する単量体とア
クリロニトリル50wt%以上との共重合体でかつ
イオン性基を100mmol/Kg以上含有するアクリ
ロニトリル系重合体30〜5wt%からなる重合体混
合物をジメチルアセトアミドに溶解した溶液を紡
糸、脱溶剤した後乾燥することを特徴とするセル
ロースアセテート系繊維の製造法。 2 乾燥を実質的に無緊張下で行なう特許請求の
範囲第1項記載の方法。 3 アクリロニトリル系重合体としてイオン性基
含有単量体以外に酢酸ビニルもしくは(メタ)ア
クリル酸メチルを共重合成分として含む共重合体
を用いる特許請求の範囲第1項記載の方法。
[Claims] 1. Cellulose acetate with a degree of acetylation of 54% or more 70~
Acrylonitrile which is a copolymer of 50 wt% or more of acrylonitrile and a monomer having 95 wt% and an ionic group selected from the group of acidic groups and basic groups as a dyeing seat, and containing 100 mmol/Kg or more of ionic groups. 1. A method for producing cellulose acetate fibers, which comprises spinning a solution of a polymer mixture consisting of 30 to 5 wt% of the polymer in dimethylacetamide, removing the solvent, and then drying. 2. The method according to claim 1, wherein the drying is carried out under substantially no tension. 3. The method according to claim 1, wherein a copolymer containing vinyl acetate or methyl (meth)acrylate as a copolymerization component in addition to the ionic group-containing monomer is used as the acrylonitrile polymer.
JP10384380A 1980-07-29 1980-07-29 Production of cellulose acetate fiber Granted JPS5729607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10384380A JPS5729607A (en) 1980-07-29 1980-07-29 Production of cellulose acetate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10384380A JPS5729607A (en) 1980-07-29 1980-07-29 Production of cellulose acetate fiber

Publications (2)

Publication Number Publication Date
JPS5729607A JPS5729607A (en) 1982-02-17
JPS6234847B2 true JPS6234847B2 (en) 1987-07-29

Family

ID=14364705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10384380A Granted JPS5729607A (en) 1980-07-29 1980-07-29 Production of cellulose acetate fiber

Country Status (1)

Country Link
JP (1) JPS5729607A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327048Y2 (en) * 1986-01-30 1991-06-12
JPH04121622U (en) * 1991-04-19 1992-10-30 市光工業株式会社 push switch

Also Published As

Publication number Publication date
JPS5729607A (en) 1982-02-17

Similar Documents

Publication Publication Date Title
JP4603486B2 (en) Acrylic shrinkable fiber and method for producing the same
US4562114A (en) Water-absorbing acrylic fibers
US4383086A (en) Filaments and fibers of acrylonitrile copolymer mixtures
US4442173A (en) Novel water-absorbing acrylic fibers
JPS6234847B2 (en)
US4999245A (en) Multi-layered conjugated acrylic fibers and the method for their production
JPH10273821A (en) Water absorbing acrylic fiber
JPH06158422A (en) Flame-retardant acrylic fiber having high shrinkage
US3624195A (en) Process for the preparation of acrylic manmade fiber
JP2003328222A (en) Fiber for artificial hair having improved delustering resistance and method for producing the same
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
US2697088A (en) Acrylonitrile polymer mixed with formylated polyvinyl alcohol
US3402235A (en) Manufacture of shaped articles from acrylonitrile polymers by wet spinning
JP3756886B2 (en) High shrinkable acrylic fiber
JP2601775B2 (en) Flame retardant acrylic composite fiber
JP2908046B2 (en) Anti-pilling acrylic fiber and method for producing the same
JPH02277810A (en) Flame-retardant high-shrinkage modacrylic fiber
JPH04272221A (en) Acrylic sheath-core fiber exhibiting directionally different color tone
US4186156A (en) Crystallizable vinylidene chloride polymer powders and acrylic fibers containing same
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JPS6343482B2 (en)
JP2004332179A (en) Acrylic synthetic fiber and method for producing the same
JPH0299609A (en) Production method for novel acrylic synthetic fiber
JPS61167013A (en) Acrylonitrile fiber
JPS59150112A (en) Acrylic synthetic fiber having high shrinkage