JPS6065109A - Porous acrylonitrile synthetic fiber - Google Patents

Porous acrylonitrile synthetic fiber

Info

Publication number
JPS6065109A
JPS6065109A JP16465184A JP16465184A JPS6065109A JP S6065109 A JPS6065109 A JP S6065109A JP 16465184 A JP16465184 A JP 16465184A JP 16465184 A JP16465184 A JP 16465184A JP S6065109 A JPS6065109 A JP S6065109A
Authority
JP
Japan
Prior art keywords
fiber
fibers
cellulose acetate
weight
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16465184A
Other languages
Japanese (ja)
Other versions
JPS6356323B2 (en
Inventor
Yoshikazu Kondo
義和 近藤
Toshihiro Yamamoto
俊博 山本
Ryuji Yamamoto
隆二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP16465184A priority Critical patent/JPS6065109A/en
Publication of JPS6065109A publication Critical patent/JPS6065109A/en
Publication of JPS6356323B2 publication Critical patent/JPS6356323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide the titled acrylic synthetic fiber composed of a specific acrylonitrile copolymer and cellulose acetate, containing macro-pores, and having excellent water-absorptivity and yarn quality. CONSTITUTION:The objective acrylic synthetic fiber is composed of (A) 70- 98(wt)% acrylonitrile copolymer containing >=80%, preferably 85-93% acrylonitrile unit and copolymerized with 0.3-1.2% monomer having sulfonic acid group or sulfonic acid base, such as styrenesulfonic acid, etc. and (B) 30-2% cellulose acetate. The fiber contains macropores having a pore surface area A of <=15m<2>/g, a void ratio V of 0.05-0.75cm<3>/g, V/A of >=1/30, and suppressed minute void content. The component B is preferably dispersed in a stripe-pattern along the fiber axis.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多孔性のアクリル系合成繊維に関するものであ
る。さらに詳しくは、微小ボイドの存在が抑えられ巨大
空孔を金石する多孔性アクリル系合成偵維に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to porous acrylic synthetic fibers. More specifically, it relates to a porous acrylic synthetic fiber that suppresses the presence of microvoids and eliminates large pores.

従来の技術 綿、羊毛、絹等の天然家維は20〜40%の吸水性があ
り、人間の体内から発する汗を十分吸収するため着用時
の快適さが得られるが、合成繊維は制電性及び吸湿性に
欠けると共に吸水性、吸汗性ケ有しない点で商品価値と
して天然繊維に劣っている。符に肌着、くつ下、毛布な
ど寝装具、及びスポーツウェア等において、吸水−吸汗
性がなければ、体外に発した汗は穣維衣面に凝縮付着し
、ベトッキ、冷感、体温調節機能の低下刃ど、着用時の
不快さは免れない。
Conventional technology Natural fibers such as cotton, wool, and silk have a water absorbency of 20 to 40%, and can sufficiently absorb sweat generated from the human body, making it comfortable to wear, but synthetic fibers have antistatic properties. In terms of commercial value, it is inferior to natural fibers in that it lacks elasticity and hygroscopicity, as well as lacks water and sweat absorption properties. If underwear, socks, blankets, bedding, sportswear, etc. do not have water- or sweat-absorbing properties, sweat emitted from outside the body will condense and adhere to the clothing surface, causing a sticky feeling, a cold feeling, and a decline in body temperature regulation. The blade is unavoidably uncomfortable when worn.

こうした合成繊維における吸水−吸汗性のなさを解決す
る為に従来よシ種々の改良がなされてきた。改良方法の
大部分は繊維中に微゛小な空孔を形成させたり、繊維表
面に凹凸を形成させたシするものである。例えば特開昭
47−25418号公報、特公昭47−15901号公
報、特公昭48−6649号公報および特公昭48−6
650号公報にはアクリル繊維の製造工程中での膨潤r
ルトウ中の微小なボイド又はミクロボイドを残存させる
よう温和力乾燥采件を選択することによシ多孔質のアク
リル繊維を製造する方法が記載されている。又、特開昭
47−25416号公報、特公昭48−8285号公報
、特公昭48−8286号公報にはアクリル繊維の製造
工程中での膨潤グルトウに水溶性化合物を充填し、乾燥
、後処理の後で充填物をm出させ、ボイドを再生するこ
とが記載されている。
Various improvements have been made in the past in order to solve the problem of the lack of water and sweat absorption in synthetic fibers. Most of the improvement methods involve forming minute pores in the fibers or forming irregularities on the fiber surface. For example, JP-A-47-25418, JP-A-47-15901, JP-A-48-6649, and JP-A-48-6.
Publication No. 650 describes swelling r during the manufacturing process of acrylic fibers.
A method is described for producing porous acrylic fibers by selecting mild drying conditions to leave minute voids or microvoids in the fiber. Furthermore, Japanese Patent Application Laid-open No. 47-25416, Japanese Patent Publication No. 48-8285, and Japanese Patent Publication No. 48-8286 disclose a method of filling swollen gluten with a water-soluble compound during the manufacturing process of acrylic fibers, drying, and post-treatment. It is described that the filling is ejected after the process and the void is regenerated.

上記の方法に共通する点は、アクリル繊維の製造工程中
での膨潤グルトウが本来含有するミクロがイドを、最終
製品に残存させた多孔性アクリル繊維を製造することを
目的とすることにある。
What the above methods have in common is that they aim to produce porous acrylic fibers in which the microorganisms originally contained in the swollen glucose during the production process of acrylic fibers remain in the final product.

この膨潤rルトウに含有されるミクロボイドは、熱的に
極めて不安定なものである。との為に繊維製造工程にお
いて特に乾燥、収縮、クリンプセット工程において高温
処理を行なうことが出来ず、最終製品の耐熱性、形態保
持性、クリンプ安定性に乏しく、製品の商品価値を著し
く低下させる。
The microvoids contained in this swollen pore are extremely unstable thermally. Because of this, it is not possible to perform high-temperature treatment in the fiber manufacturing process, especially during drying, shrinkage, and crimp-setting processes, resulting in poor heat resistance, shape retention, and crimp stability of the final product, which significantly reduces the commercial value of the product. .

得られた製品甲のボイドは、ボ′イド半径lO〜100
0Aと極めて微小である。こうした微小なボイドを無数
にかつ繊維中均−に含有するために、繊維は強伸度が小
さく、光沢に乏しく、かつ染色後の色もくすんでいる等
欠点を多く有している。
The voids in the obtained product A have a void radius lO~100
It is extremely small at 0A. Because these microvoids are contained in countless numbers evenly throughout the fiber, the fiber has many drawbacks such as low strength and elongation, poor gloss, and dull color after dyeing.

又、無数の微小なざイドが均一に存在する為に、繊維の
耐熱性が悪く高温染色、スチーミンダ処理、アイロン処
理等において、ボイドが消滅し吸水性の低下、色合いの
変化、形態保持性の低下刃ど重 5− 大な品質の低下がみられる。
In addition, because countless microscopic voids uniformly exist, the heat resistance of the fiber is poor, and during high-temperature dyeing, steaminder treatment, ironing, etc., the voids disappear, resulting in decreased water absorption, changes in color, and poor shape retention. Decrease in blade weight 5- Significant deterioration in quality is observed.

更にこうしたミクロボイドによシ、吸水性を発現させよ
うとすることは、ミクロボイド同士がお互いに独立して
存在しやすく、繊維中へ水を吸収する通路となりにくい
点で、効果的でない。即ち、ミクロボイドによシある程
度の吸水性を持たせる為にはかなりの1・のミクロボイ
ド含有率が必要となり、このことが更に涜維註能、商品
価値を低下させるという欠陥を有している。従来より酢
酸セルローズ−アクリル系重合体、或いは酢酸セルロー
ズ−モダクリル系共重合体の混合紡糸により風合改良、
染色性改良等の試みがなされている。例えば、特公昭3
1−968号公報および特公昭33−2317号公報に
はモダクリル系共重合体に酢酸セルローズを混合した紡
糸原液よυ、染色性、風合を改良した繊維を製造する方
法が記載されている。この方法によシ侍られた繊維は、
十分に緻 6− 密であって、繊維内部にキャピラリー状のマクロメイド
を持つ吸水性と有する繊維は得られていない。
Furthermore, attempts to make these microvoids exhibit water absorbing properties are not effective because the microvoids tend to exist independently of each other and are difficult to act as channels for absorbing water into the fibers. That is, in order for the microvoids to have a certain degree of water absorption, a considerable microvoid content of 1.0 mm is required, and this has the disadvantage of further deteriorating the fiber stability and lowering the commercial value. Conventionally, texture has been improved by spinning a mixture of cellulose acetate-acrylic polymer or cellulose acetate-modacrylic copolymer.
Attempts have been made to improve dyeability. For example, Tokuko Showa 3
Japanese Patent Publication No. 1-968 and Japanese Patent Publication No. 33-2317 describe a method for producing fibers with improved υ, dyeability, and texture from a spinning stock solution in which cellulose acetate is mixed with a modacrylic copolymer. The fibers prepared by this method are
No fibers have been obtained that are sufficiently dense and have water absorption properties with capillary-like macromaids inside the fibers.

甘た、特公昭39−14029号公報には、アクリロニ
トリル85七ルチ以上とスルホン酸基又はスルホン酸塩
基を有するエチレン系不飽和単量体0.2モルチ以上を
含むアクリロニトリル系共重合体と酢酸セルローズとを
ツメチルホルムアミド又はジメチルスルホキシドに溶解
した紡糸液を水系紡出浴中に紡出して、緻密な且つ染色
性を持つ繊維を製造する方法が開示されている。同特公
昭39−14029号公報には、比較例としてポリアク
リロニトリルすなわちアクリロニトリルのホモポリマー
と酢酸セルローズとからなる繊維が記載されており、こ
の繊維がミクロボイドと共にマクロがイドを持つのに対
し、上記スルホン酸基又はスルホン酸塩基を含むアクリ
ロニトリル系共重合体からの緻密な且つ染色性を持つ繊
維のマクロがイドについては何んら記載されていない。
Amata, Japanese Patent Publication No. 39-14029 discloses an acrylonitrile copolymer containing 857 moles or more of acrylonitrile, 0.2 mole or more of an ethylenically unsaturated monomer having a sulfonic acid group or a sulfonic acid group, and cellulose acetate. Disclosed is a method for producing dense and dyeable fibers by spinning a spinning solution prepared by dissolving the above in methylformamide or dimethyl sulfoxide into an aqueous spinning bath. Japanese Patent Publication No. 39-14029 describes a fiber made of polyacrylonitrile, that is, a homopolymer of acrylonitrile, and cellulose acetate as a comparative example, and while this fiber has both micro voids and macro voids, the sulfone There is no description of the macroscopic structure of dense and dyeable fibers made from acrylonitrile copolymers containing acid groups or sulfonic acid groups.

工業化学雑誌72巻5号1186〜1188頁(196
9)にも特公昭39−14029号公報に記載された上
記発明とほぼ同じ内容の研究報告がなされている。
Industrial Chemistry Magazine Vol. 72, No. 5, pp. 1186-1188 (196
9) also contains a research report with almost the same contents as the above-mentioned invention described in Japanese Patent Publication No. 39-14029.

また、特公昭39−14030号公報には、酢酸セルロ
ーズを混合する方法として、酢酸セルローズをアクリル
系重合体の重合時に碓加する手順が記載されているが、
酢酸セルローズをアクリル系重合体の重合時に添加した
ものを用いると、酢酸セルローズの変性の為に紡出糸条
の耐熱性が低下し線維製造工程中のトラブルの原因とな
シ又、製品の品質も十分のものは得られない。一方、特
公昭44−11969号公報及び特開昭50−1180
27号公報および特開昭50−118026号公報には
、アクリル系重合体或いはモダクリル系重合体中に、酢
酸セルローズを微分散或いは酢酸セルローズと酸化チタ
ン等を微分散させ、獣毛様の繊維を得ようとするものが
記載されているが、本発明にて得られるよう彦吸水性を
有する多孔性の繊維は得られていない。
Furthermore, Japanese Patent Publication No. 39-14030 describes a procedure for adding cellulose acetate during polymerization of an acrylic polymer as a method for mixing cellulose acetate.
If cellulose acetate is added during polymerization of an acrylic polymer, the heat resistance of the spun yarn will decrease due to cellulose acetate's denaturation, which may cause trouble during the fiber manufacturing process. I can't get enough of it either. On the other hand, Japanese Patent Publication No. 44-11969 and Japanese Patent Application Publication No. 1180-1980
No. 27 and JP-A No. 50-118026 disclose that cellulose acetate or cellulose acetate and titanium oxide are finely dispersed in an acrylic polymer or a modacrylic polymer to form animal hair-like fibers. Although what is intended to be obtained is described, porous fibers with high water absorption properties as obtained in the present invention have not been obtained.

さらに、本願のいわゆる先願に相当する特願昭53−4
47−3号(特開昭54−101920号)の明細書に
は、アクリロニトリル糸1合体90重量%以上と酢酸セ
ルローズの如き耐熱・ボイド安定化剤lO重ilチ以下
とからなる微多孔質構造を有し且つ改良された吸水性を
有する微多孔質アクリル系繊維が記載されている。
Furthermore, the patent application filed in 1983-4, which corresponds to the so-called earlier application of the present application,
The specification of No. 47-3 (Japanese Unexamined Patent Publication No. 54-101920) describes a microporous structure consisting of 90% by weight or more of acrylonitrile thread 1 and less than 10% by weight of a heat-resistant/void stabilizer such as cellulose acetate. Microporous acrylic fibers are described that have a 100% water absorption capacity and have improved water absorption properties.

しかし力から、特願昭53−4473号明細書には微小
ボイドを多数有する微多孔質アクリル系繊維が記載され
ているにすぎず、微小ボイドの存在が抑えられ巨大空孔
を含有する繊維は記載されていない。
However, for reasons of power, the specification of Japanese Patent Application No. 53-4473 only describes microporous acrylic fibers having many microvoids, and fibers with suppressed microvoids and containing giant pores are Not listed.

 9− 発明が解決しようとする問題点 上述のように、従来の方法では多数のミクロボイドを含
有する微多孔性アクリル系合成繊維しか得られず、良好
力吸水性を持ち、かつ良好な耐熱性、染色性、光沢を有
する多孔性のアクリル系合成繊維を製造することはでき
ない。本発明者等はかかる欠点を改良すべく鋭意研究の
結果本発明を完成した。
9- Problems to be solved by the invention As mentioned above, the conventional method can only yield microporous acrylic synthetic fibers containing a large number of microvoids, which have good force and water absorption properties, good heat resistance, It is not possible to produce porous acrylic synthetic fibers that are dyeable and glossy. The present inventors completed the present invention as a result of intensive research in order to improve these drawbacks.

問題点を解決するための手段および作用本発明の目的は
優れた吸水性を有し、且つ良好な糸質を有する多孔性の
アクリル系合成繊維を提供するにある。
Means and Action for Solving the Problems An object of the present invention is to provide a porous acrylic synthetic fiber that has excellent water absorbency and good thread quality.

すなわち、本発明は、 (α)少くとも8ON量チのアクリロニトリル単位を含
有し且つスルホン酸基又はスルホン酸塩基を有する共重
合可能なモノマーを0.3〜1.2重量%共重合したア
クリロニトリル系共重合体70〜− l 〇 − 98重量%と酢酸セルローズ30〜2重量%とよりなり
、 (b)空孔の表面積Aが15m”/f以下であり、空孔
率Vが0.05〜0.75crn” / tであシそし
てV/Aが1/30以上であυ、且つ (C) 微小ボイドの存在を抑えて巨大空孔を含有する ことを特徴とする多孔性アクリル系合成繊維である。
That is, the present invention provides (α) an acrylonitrile system containing at least 8 ON amount of acrylonitrile units and copolymerized with 0.3 to 1.2% by weight of a copolymerizable monomer having a sulfonic acid group or a sulfonic acid group; (b) The surface area A of the pores is 15 m"/f or less, and the porosity V is 0.05 to 0.05. A porous acrylic synthetic fiber characterized by having a diameter of 0.75 crn"/t, a V/A of 1/30 or more, and (C) suppressing the presence of microvoids and containing giant pores. It is.

本発明の上記多孔性アクリル系合成繊維は、本発明によ
れば、上記(ロ)に記載の酢酸セルローズ2〜30重量
部とアクリロニトリル系共重合体(以下、アクリル系共
重合体という)70〜98重量部とよりなる重合体を1
5〜35重量%含有する有機溶剤溶液を凝固浴中に紡出
し、2.5〜8倍に一次延伸して水膨潤状態にある繊維
を100〜180℃の温度で水分率が1.0重量係以下
になるまで乾燥し、次いで湿熱で3倍以下の二次延伸を
行なうことによって製造することができる。本発明のア
クリル系合成繊維は酢酸セルローズ2〜30重量%、好
ましくは3〜20重欄係とアクリル系共重合体70〜9
8重量部、好ましくは80〜97Tc量チとよりなる。
According to the present invention, the porous acrylic synthetic fiber of the present invention comprises 2 to 30 parts by weight of cellulose acetate described in (b) above and 70 to 70 parts by weight of an acrylonitrile copolymer (hereinafter referred to as an acrylic copolymer). 98 parts by weight of a polymer consisting of 1
An organic solvent solution containing 5 to 35% by weight is spun into a coagulation bath, and the fibers in a water-swollen state are first stretched 2.5 to 8 times to a water content of 1.0% by weight at a temperature of 100 to 180°C. It can be produced by drying the film until it becomes 3-fold or less, and then secondly stretching it by a factor of 3 times or less using wet heat. The acrylic synthetic fiber of the present invention contains 2 to 30% by weight of cellulose acetate, preferably 3 to 20% by weight, and 70 to 9% by weight of acrylic copolymer.
It consists of 8 parts by weight, preferably 80 to 97 parts by weight.

本発明に適用される酢酸セルローズは特に限定されない
が、通常酢化度48〜63%で平均重合度50〜300
のものである。
The cellulose acetate applied to the present invention is not particularly limited, but usually has a degree of acetylation of 48 to 63% and an average degree of polymerization of 50 to 300.
belongs to.

又、本発明で用いられるアクリル系重合体は少なくとも
80重量%、好ましくは85〜93重量%のアクリロニ
トリル単位を含有し且つ0.3〜1゜2重量%のスルホ
ン酸基又はスルホン酸塩基を有する共重合可能々モノマ
ーを共重合したものである。
Further, the acrylic polymer used in the present invention contains at least 80% by weight, preferably 85 to 93% by weight of acrylonitrile units, and has 0.3 to 1.2% by weight of sulfonic acid groups or sulfonic acid groups. It is a product obtained by copolymerizing monomers that can be copolymerized.

スルホン酸又はスルホン酸塩基を有する共重合可能なモ
ノマーは例えばスチレンスルホン酸、アリルスルホン酸
、メタリルスルホン酸及びそれらの塩類等であり、特に
アリルスルホン酸又はメタリルスルホン酸及びそれらの
塩が好ましい。これらを0.3 = 1.2重量%共重
合せしめることにより単に染色性を向上するに留まらず
無数な微小のボイドの発生を抑止することによυ耐熱性
の低下を抑え、更に、マク口々空孔を有し且つ吸水性に
優れた多孔性の繊維が得られる。スルホン酸又はスルホ
ン酸塩基含有モノマー以外の共重合可能なモノマーとし
ては例えばアクリル酸メチル、メタクリル酸メチル、ア
クリル酸エチル等のアクリル酸又はメタクリル酸のアル
キルエステル類、アクリルアミド及びメタクリルアミド
等のアミド類、及びそれらのN−モノ置換或いはNN−
ジ置換アミド類、酢酸ビニルがあげられる。
Copolymerizable monomers having sulfonic acid or sulfonic acid groups include, for example, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, and salts thereof, with allyl sulfonic acid or methallyl sulfonic acid and salts thereof being particularly preferred. . By copolymerizing these at 0.3 = 1.2% by weight, it not only improves the dyeability, but also suppresses the decrease in heat resistance by suppressing the generation of countless minute voids. Porous fibers having many pores and excellent water absorption properties can be obtained. Examples of copolymerizable monomers other than sulfonic acid or sulfonic acid group-containing monomers include alkyl esters of acrylic acid or methacrylic acid such as methyl acrylate, methyl methacrylate, and ethyl acrylate; amides such as acrylamide and methacrylamide; and their N-monosubstitution or NN-
Examples include disubstituted amides and vinyl acetate.

本発明のアクリル系合成繊維は酢酸セルローズ2〜30
重量部好ましくは3〜20重量部と、ア−13− クリル系重合体70〜98重量部好ましくは80〜97
重量部とよりなる重合体を15〜35重量%、好ましく
は17〜30爪量チ含有する有機溶剤溶液を例えば30
℃以下、好ましくは25℃以下、さらに好ましく・は2
0℃以下の凝固浴中に紡出して製造される。紡出糸は後
述するとおり、次いで一次延伸され、乾燥されそして二
次延伸される。
The acrylic synthetic fiber of the present invention has cellulose acetate 2 to 30%
Parts by weight preferably 3 to 20 parts by weight and 70 to 98 parts by weight of the ar-13-acrylic polymer preferably 80 to 97 parts by weight
For example, an organic solvent solution containing 15 to 35% by weight, preferably 17 to 30 parts by weight, of a polymer consisting of
℃ or less, preferably 25℃ or less, more preferably 25℃ or less
It is manufactured by spinning into a coagulation bath at 0°C or lower. The spun yarn is then first drawn, dried, and second drawn as described below.

酢酸セルローズ及びアクリル系重合体の量が上記範囲を
逸脱すると優れた吸水性及び糸質を有するアクリル系合
成繊維が得られない。又、重合体の濃度が15重量−未
満では生産コストが割高と力るばかりでなく、ボイドの
発生強伸度の低下等が起る。一方35重量%を超えると
粘度上昇による操業性及び可紡性の低下、更に糸質の低
下をきたすので避けねばならない。
If the amounts of cellulose acetate and acrylic polymer exceed the above ranges, acrylic synthetic fibers with excellent water absorbency and thread quality cannot be obtained. Furthermore, if the concentration of the polymer is less than 15% by weight, not only the production cost becomes relatively high, but also voids occur and strength and elongation decrease. On the other hand, if it exceeds 35% by weight, the workability and spinnability will decrease due to an increase in viscosity, and the yarn quality will also decrease, so it must be avoided.

重合体を溶解するための上記有機溶剤としては、−14
− 酢酸セルローズ及びアクリル系重合体の共通溶剤を使用
しつるが、通常はジメチルホルムアミド、ジメチルアセ
トアミド、ジメチルスルホキシド、エチレンカーボネー
ト等の有機溶剤が、溶剤の回収、精製の点で好貰しい。
The organic solvent for dissolving the polymer is -14
- Common solvents for cellulose acetate and acrylic polymers are used, but organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and ethylene carbonate are usually preferred in terms of solvent recovery and purification.

又、凝固浴としては、ジメチルホルムアミド、ジメチル
アセトアミド、ジメチルスルホキシド、及びエチレンカ
ーボネート等の有機溶剤の水溶液、及びプロピルアルコ
ール、ケロシン等の有機溶剤が使用し得るが特に重合体
の心剤に使用する有機溶剤の水溶液が好ましい。
As the coagulation bath, aqueous solutions of organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and ethylene carbonate, and organic solvents such as propyl alcohol and kerosene can be used, but especially organic solvents used as core agents for polymers can be used. Aqueous solutions of solvents are preferred.

紡糸原液中には紡糸原液がグル化し7ない範囲の水分を
添加してもよい。この水分添加は紡糸原液の粘度調整及
び紡糸された糸のミクロボイド(微小ボイド)発生を抑
制する点で効果的である。
Water may be added to the spinning dope in a range that does not cause gluing of the spinning dope. This addition of water is effective in adjusting the viscosity of the spinning dope and suppressing the generation of microvoids in the spun yarn.

又、極めて興味深い点は、紡糸原液中の水分率の多少に
よシ紡出された繊維中の酢酸セルローズの筋状の分散形
態が異方ることである。
Also, a very interesting point is that the striated dispersion form of cellulose acetate in the spun fibers is anisotropic depending on the moisture content of the spinning dope.

即ち、紡糸原液中の水分を増加すると、酢酸セルローズ
の筋状の分散形態はより細長くカリ、逆に減少すると、
球状に近い形態をとるように々る。
That is, when the water content in the spinning dope is increased, the streak-like dispersed form of cellulose acetate becomes more slender and potassium, and conversely, when the water content decreases,
It appears to have a nearly spherical shape.

紡糸原液の粘度の大小においても同様の結果となる。Similar results are obtained depending on the viscosity of the spinning dope.

紡糸は通常のアクリル系合成繊維と同様々条件で行々え
ばよく、数段の浴槽を通し、順次延伸、水洗を行なう。
Spinning may be carried out under the same conditions as for ordinary acrylic synthetic fibers, and the fibers are sequentially stretched and washed through several baths.

紡糸ドラフトは通常の条件で差支えないがミクロボイド
の発生を抑制するためには低い方が好ましい。又、凝固
浴温度も低い方が好ましく例えば上記のとおり30℃以
下が好ましい。
The spinning draft may be set under normal conditions, but a lower one is preferable in order to suppress the generation of microvoids. Further, the temperature of the coagulation bath is preferably lower, for example, 30° C. or lower as mentioned above.

30℃を越えると多数のミクロディトが発生する傾向が
大きくなり、得られた繊維の糸質及び品質を著しく低下
させるようになる。−次延伸倍率は2.5〜8倍、好ま
しくは3〜6倍である。延伸倍率が2.5倍未満では、
繊維の延伸、配向不足の為、強度が低く、又繊維にクラ
ックが入り、避けねばならない。一方、8倍を超えると
緻密化が進行し過ぎて充分な吸水性が得られず、操業性
の低下がある為避けなければならない。
When the temperature exceeds 30° C., there is a greater tendency for a large number of microdits to occur, and the yarn quality and quality of the obtained fibers are significantly reduced. - The subsequent stretching ratio is 2.5 to 8 times, preferably 3 to 6 times. If the stretching ratio is less than 2.5 times,
Due to insufficient stretching and orientation of the fibers, the strength is low and the fibers crack, which must be avoided. On the other hand, if it exceeds 8 times, densification progresses too much and sufficient water absorbency cannot be obtained, resulting in a decrease in operability and must be avoided.

一次延伸を行なった糸は、通常酢酸セルローズの筋状の
分散及びアクリル系重合体との相分離により発生した空
孔が、より明確になっている。又、この繊維中には、通
常の膨潤グルトウが本来含有繊維の耐熱性、染色性、光
沢など低下させる為に好ましくない。この為にミクロが
イドと大きなボイド(マクロボイド、巨大空孔)が混在
する繊維を乾燥し、ミクロがイドを消去するが、この場
合の乾燥条件としては100〜180℃の温度で水分率
1.0重量%以下になるまで乾燥することによシ、ミク
ロボイドのみを消去し、相分離による大−17− きながイドを残すととが出来る。
In yarns that have been subjected to primary stretching, the pores generated by the linear dispersion of cellulose acetate and the phase separation from the acrylic polymer are usually more clearly defined. Moreover, ordinary swollen gluten is not preferable in this fiber because it deteriorates the heat resistance, dyeability, gloss, etc. of the fiber originally contained therein. For this purpose, fibers containing a mixture of micro-id and large voids (macro voids, giant pores) are dried to eliminate the micro-id. In this case, the drying conditions are a temperature of 100 to 180°C and a moisture content of 1. By drying to a concentration of 0.0% by weight or less, only the microvoids can be eliminated, leaving large-sized voids due to phase separation.

乾燥温度が100℃未満では、アクリル系重合体側に多
数存在するミクロボイドの焼きつぶしが完全に行々われ
ず、糸の強伸度の低下や光沢染色性及び耐熱性の低下が
ある。又、180℃を超えると繊維の硬化、着色等を生
じめる為に避けなければならない。乾燥には繊維と高温
の金属面が接するような熱ローラー型乾燥機を使用する
のが好ましい。又、補助的に100〜150℃の温度を
もつ熱風の吹き付けによる乾燥も併用すれば、乾燥の均
一性向上という点でより好ましいものと力る。乾燥上シ
の繊維のもつ水分率は、1.0%以下に抑えかければ々
らない。水分率が1.0チを超えると繊維の乾燥むらが
生じ、部分的に多数のミクロがイドが存在することにな
シ、染色むら、光沢むら、強度むら等品質の均一性を低
下させる為に避けなければならない。この乾燥工程にお
いて駆−18− 動部にトルクモーターを使用し、乾燥と同時に5〜15
%の収縮を行なうことも可能である。
If the drying temperature is less than 100° C., the microvoids present in large numbers on the acrylic polymer side will not be completely burned out, resulting in a decrease in the strength and elongation of the yarn, and a decrease in gloss dyeability and heat resistance. In addition, temperatures exceeding 180°C should be avoided as this may cause hardening and coloring of the fibers. For drying, it is preferable to use a hot roller dryer in which the fibers come into contact with a hot metal surface. Additionally, it is more preferable to use supplementary drying by blowing hot air at a temperature of 100 to 150° C. in order to improve the uniformity of drying. The moisture content of the dried fibers must be kept to 1.0% or less. If the moisture content exceeds 1.0%, uneven drying of the fibers will occur, resulting in the presence of a large number of microorganisms in some areas, which will reduce the uniformity of quality such as uneven dyeing, uneven gloss, and uneven strength. must be avoided. In this drying process, a torque motor is used for the driving part, and at the same time as drying, the
% shrinkage is also possible.

乾燥後の繊維は、繊維中のアクリル系重合体と酢酸セル
ローズの相分離をよシ明確にし吸水性を向上させると共
に適度の繊維物性をもたせる為に、湿熱下によシ3倍以
下、好ましくは1.05〜2倍の二次延伸を行かう必要
がある。延伸倍率が3倍を超えると糸切れが起)、それ
を避ける為高温にすると繊維の膠着及び融着が起9、吸
水性が著しく低下する。2次延伸後、通常湿熱収縮、オ
イリング、クリング付与、クリンプセット等にょシ良い
紡績性、及び性能を付与する後処理工程を経て、最終製
品となる。
After drying, the fibers are heated under moist heat to 3 times or less, preferably in order to clearly phase separate the acrylic polymer and cellulose acetate in the fibers, improve water absorption, and provide appropriate fiber properties. It is necessary to perform secondary stretching of 1.05 to 2 times. If the stretching ratio exceeds 3 times, yarn breakage will occur), and to avoid this, if the temperature is raised to a high temperature, the fibers will stick and fuse together9, resulting in a significant drop in water absorption. After the second stretching, the final product is obtained through a post-processing process that imparts good spinnability and performance, such as wet heat shrinkage, oiling, clinging, and crimp setting.

かくして本発明によシ提供される多孔性アクリル系合成
繊維は、上記のとおシ、アクリル系共重合体70〜98
重量%と酢酸セルローズ30〜2重量%とよシなシ且つ
微小がイドの存在が抑えられ巨大空孔を含有する。
Thus, the porous acrylic synthetic fiber provided by the present invention is composed of the above-mentioned acrylic copolymer 70-98.
% by weight and cellulose acetate from 30 to 2% by weight, the presence of microscopic pores is suppressed and the cellulose acetate contains giant pores.

繊維中に分散させた酢酸セルローズの量が2重量%未満
ではアクリル系重合体との相分離の量が不充分で吸水性
の付与は十分でなく、一方、30重量%を超えると相分
離形態が大きくなシ、繊維の強伸度、染色性、光沢など
の低下を生じるため避けねばならない。
If the amount of cellulose acetate dispersed in the fiber is less than 2% by weight, the amount of phase separation from the acrylic polymer will be insufficient and the imparting of water absorption will not be sufficient, whereas if it exceeds 30% by weight, the phase separation will occur. It must be avoided because it causes large wrinkles and decreases in fiber strength and elongation, dyeability, gloss, etc.

本発明のアクリル系合成繊細は酢酸セルローズが繊維軸
方向に筋状に分散しておシ、通常筋の長さと直径の比は
10以上である。
In the acrylic synthetic fiber of the present invention, cellulose acetate is dispersed in the form of streaks in the fiber axis direction, and the ratio of the length to diameter of the streaks is usually 10 or more.

また、本発明のアクリル系合成繊維は上記のとおり微小
ボイドの存在が抑えられ巨大空孔を含有する。従って、
本発明のアクリル系合成繊維は主として巨大空孔を含有
し、繊維の空孔率(V)に占める微細空孔の比率(容積
比)を例にとると、例えば該比率が高々30俤、好まし
くは25チ以下、更に好ましくは20%以下、特に好ま
しくは15チ以下を示す。ここで微細空孔とは直径λ0
00.4以下の空孔を言う。
Further, as described above, the acrylic synthetic fiber of the present invention suppresses the presence of microvoids and contains giant pores. Therefore,
The acrylic synthetic fiber of the present invention mainly contains giant pores, and if we take the ratio (volume ratio) of micro pores to the porosity (V) of the fiber as an example, the ratio is preferably at most 30, for example. represents 25 inches or less, more preferably 20% or less, particularly preferably 15 inches or less. Here, micropores have a diameter of λ0
Refers to pores of 00.4 or less.

従って、本発明のアクリル系合成繊維の吸水性は実質的
に巨大空孔によシ得られる。換言すれば、本発明のアク
リル系合成4@、維が優れた吸水性能を示すのは表面に
開口した空孔が内部の巨大空孔と連通しているものと考
えられる。このことは本発明のアクリル系合成繊維を顕
微鏡で観察すると、酢酸セルローズは繊維横断面の内部
のみに分散しているのではなく、繊維壁にも分散してお
シ、その分散粒子の周囲に見られる巨大空孔が繊維表面
にも見られることから支持される。
Therefore, the water absorbency of the acrylic synthetic fiber of the present invention is substantially achieved by the giant pores. In other words, it is thought that the reason why the acrylic synthetic fiber of the present invention exhibits excellent water absorption performance is that the pores opened on the surface communicate with the giant pores inside. This means that when the acrylic synthetic fiber of the present invention is observed under a microscope, cellulose acetate is not only dispersed inside the cross section of the fiber, but is also dispersed on the fiber wall, and is found around the dispersed particles. This is supported by the fact that the giant pores seen are also seen on the fiber surface.

さらに、本発明のアクリル系合成繊維は空孔の表面積A
が15m”/f以下、好ましくは0.02〜10m” 
/fであシ、空孔率Vが0.05〜0.75 cm” 
/ IF 、好ましくは0.05〜0.60 cm” 
/ tであり、そしてV/Aがl/aO以上、好ましく
−21− はl/20以上である。
Furthermore, the acrylic synthetic fiber of the present invention has a pore surface area A
is 15 m”/f or less, preferably 0.02 to 10 m”
/f, porosity V is 0.05 to 0.75 cm"
/IF, preferably 0.05-0.60 cm”
/t, and V/A is 1/aO or more, preferably -21- is 1/20 or more.

繊維中の空孔の表面積A <m” /r)は、液体窒素
温度において、繊維に窒素ガスを吸着させBET式によ
り繊維の全表面績をめ、その値から繊維外皮の表面積を
差し引くことによってめた。
The surface area of the pores in the fiber (A <m''/r) can be calculated by adsorbing nitrogen gas onto the fiber at liquid nitrogen temperature, calculating the total surface area of the fiber using the BET equation, and subtracting the surface area of the fiber sheath from that value. I met.

ここで測定に供する繊維の量としては、測定される全表
面積の値が1m”以上になるよう調整した。又、空孔率
V (crn” /f)は、繊維と同一組成の十分に緻
密に作成したフィルムの密度ρ (f/倒8)を測定し
、かつ写真法によってめた繊維の空孔を含んだ平均断面
積を5(crn2)とし0式よ請求めfc織繊維空孔を
含まない部分の真の平均断面積をS O(m” )とし
て■式によりめられるものである。
The amount of fiber used for the measurement was adjusted so that the total surface area to be measured was 1 m'' or more.The porosity V (crn''/f) was determined using a sufficiently dense fiber with the same composition as the fiber. The density ρ (f/8) of the film prepared in The true average cross-sectional area of the portion not included is S O (m'') and can be determined by the formula (2).

900000Xρ 但しDeはデニールである。900000Xρ However, De is denier.

−22− 1 S−5゜ ρ S。-22- 1 S-5゜ ρ S.

又、空孔率に占める微細空孔の比率は水銀ポロシメータ
ーにより微細空孔含有率を測定し算出した。
Further, the ratio of micropores to the porosity was calculated by measuring the micropore content using a mercury porosimeter.

まず、繊維を解繊し秤量して水銀ポロシメーターのセル
に充填し、常温にて水銀を加圧しながら圧力と圧入され
た水銀の量を記録する。空孔の直径D(μ)とその空孔
に水銀を充填するに必要なし、Pと水銀圧入量を測るこ
とによシ空孔の直径D(μ)と容積(tYn” / t
 )がめられる。これよシ空孔分布曲線を画き、Dが0
.2μ以下の空孔の量をめ繊維lf中の微細空孔含有率
(33/f) とした。
First, the fibers are defibrated, weighed, and filled into a mercury porosimeter cell, and while pressurizing mercury at room temperature, the pressure and amount of mercury injected are recorded. By measuring the diameter D (μ) of the hole, the amount required to fill the hole with mercury, P, and the amount of mercury injected, the diameter D (μ) of the hole and the volume (tYn” / t) can be determined.
) be criticized. This is the vacancy distribution curve, and D is 0.
.. The amount of pores of 2μ or less was defined as the micropore content in fiber lf (33/f).

空孔率rが0.05 cm” / を未満では、繊維の
吸水性が十分で々く、一方0.75crn”/rを超え
ると繊維の強度、伸度が低下するばかシでなく、光沢、
染色性にも悪影響を及ぼすので避は力ければならない。
When the porosity r is less than 0.05 cm"/r, the water absorption of the fiber is sufficient, while when it exceeds 0.75 crn"/r, the strength and elongation of the fiber decrease, and the fiber becomes glossy. ,
It also has a negative effect on dyeability, so it must be avoided.

又、空孔の表面積Aが15m”/lを超えると繊維内に
微小な空孔が増加し、強度、伸度が低下するのみでなく
、染色性、耐熱性を低下させるので避けなければ彦らな
い。更にV/Aが1730未満では吸水性が不充分とな
るか又は強度、伸度のみならず耐熱性、染色性等が低下
する。
In addition, if the surface area A of the pores exceeds 15 m''/l, minute pores will increase in the fiber, which will not only reduce strength and elongation, but also reduce dyeability and heat resistance, so it must be avoided. Further, if V/A is less than 1730, water absorption becomes insufficient, or not only strength and elongation but also heat resistance, dyeability, etc. decrease.

本発明者等の実験結果を総合すると、V/Aがl/30
未満となると繊維中の空孔が小さくなり、その大きさは
例えば球に換算すると、半径1000A未満となって優
れた吸水性が得られず、又、強伸度も低下する。
Combining the experimental results of the present inventors, the V/A is l/30
When the diameter is less than 1, the pores in the fiber become small, and the size of the pores becomes, for example, a radius of less than 1000 A when converted into a sphere, making it impossible to obtain excellent water absorbency and also decreasing strength and elongation.

実施例 以下、実施例を示して、本発明の詳細な説明する。尚、
実施例中で用いる部及びチは、特に断わらない限り重量
部及び重量%を表わす。又、吸水率はDIN−5381
4によって測定した。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples. still,
Parts and parts used in the examples represent parts by weight and % by weight unless otherwise specified. Also, the water absorption rate is DIN-5381
4.

実施例1 アクリル系重合体と酢酸セルローズの比率を種種変化さ
せた重合体濃度21チのジメチルホルムアミド(以下D
MFと略称する)溶液を、紡糸原液とじDMF:水−6
5:35 (%)、20℃の凝固浴中に紡出する。アク
リル系重合体の組成は、アクリロニトリル(以下ANと
略称する) ニアクリル酸メチル(以下HAと略称する
) :メタリルスルホン酸ソーダ(以下SMASと略称
する)−90、5: 9.0 : O15(チ)である
。紡糸後−次延伸を5倍行ない、120℃の熱ローラー
型乾燥機に於いて水分率が0.5%になるまで乾燥し、
100℃の湿熱下で二次延伸をL1倍行カった。クリン
プ付与、クリンプセット後、3d#の繊維を得た。結果
を第1表に示す。
Example 1 Dimethylformamide (hereinafter referred to as D
(abbreviated as MF) solution was combined with the spinning stock solution DMF:Water-6
5:35 (%), spun into a coagulation bath at 20°C. The composition of the acrylic polymer is: acrylonitrile (hereinafter abbreviated as AN): methyl nyacrylate (hereinafter abbreviated as HA): sodium methallylsulfonate (hereinafter abbreviated as SMAS) -90,5: 9.0: O15 ( h). After spinning, the yarn was stretched 5 times and dried in a hot roller dryer at 120°C until the moisture content became 0.5%.
Secondary stretching was performed L1 times under moist heat at 100°C. After crimping and crimp setting, 3d# fibers were obtained. The results are shown in Table 1.

−25− 一 26− カお、空孔率(F)に占める巨大空孔(直径2゜000
A以上)の割合は、Ekp−164の繊維では8&7容
積チであり、Ezp−Asの繊維では85゜4容積チで
あった。
-25- 1 26- Kao, huge pores (diameter 2゜000) in porosity (F)
The ratio of A or higher) was 8 & 7 volume units for the Ekp-164 fibers, and 85°4 volume units for the Ezp-As fibers.

実施例2 種々製造条件を変え、第2表に示す3d−の繊維を得た
。アクリル系重合体としては、実施例1のものを用いた
Example 2 Various manufacturing conditions were changed to obtain 3d-fibers shown in Table 2. The acrylic polymer used in Example 1 was used.

27− 第2表 32− −28− 実施例3 AN : HA :アリルスルホン酸ソーダ(以下SA
sと略称する)−90,2:9.0:0.8の組成をも
つアクリル系重合体80部及び酢酸セルロース20部よ
シ々シ、表に示す条件の紡糸原液を用いて紡糸を行い、
実施例1の紡糸後処理条件にて、3daの繊維を得た。
27- Table 2 32- -28- Example 3 AN: HA: Sodium allylsulfonate (hereinafter referred to as SA
Spinning was carried out using 80 parts of an acrylic polymer having a composition of -90.2:9.0:0.8 and 20 parts of cellulose acetate, and a spinning stock solution under the conditions shown in the table. ,
A 3 da fiber was obtained under the post-spinning treatment conditions of Example 1.

但し、紡糸浴のみは、紡糸原液の溶剤と同一溶剤の水溶
液を用いた。
However, for the spinning bath only, an aqueous solution of the same solvent as that of the spinning dope was used.

結果を第3表に示す。表中の粘度は50℃における粘度
を、B型粘度計で測った時の粘度であり、安定性は50
℃での耐rル化安定性、及びドープ中のアクリル系重合
体、及び酢酸セルローズの分散安定性を評価しfcもの
である。
The results are shown in Table 3. The viscosity in the table is the viscosity measured at 50℃ using a B-type viscometer, and the stability is 50℃.
It is an FC test that evaluates the stability against oxidation at ℃ and the dispersion stability of the acrylic polymer and cellulose acetate in the dope.

29− 実施例4 AN’、MA:SMAS−90,5:9.0:0.5(
%)の組成をもつアクリル系重合体90部と酢酸セルロ
ーズ10部を、DMFに重合体濃度25チになるように
溶解した紡糸原液を、DMF:水=65:35(%)で
25℃の凝固浴中に紡出し種々の倍率にて一次延伸を行
なった。−次延伸以後は実施例10条件にて乾燥〜後処
理を打力い3daの繊維を得た。結果を第4表に示す。
29- Example 4 AN', MA:SMAS-90,5:9.0:0.5(
A spinning stock solution in which 90 parts of an acrylic polymer and 10 parts of cellulose acetate having a composition of It was spun into a coagulation bath and subjected to primary stretching at various magnifications. - After the next stretching, drying and post-treatment were carried out under the conditions of Example 10 to obtain a 3 da fiber. The results are shown in Table 4.

実施例5 AN :MA : SMAS−92,5: 7.0 :
 0.5(%)の組成をもつ重合体90部と、酢酸セル
ローズ10部の重合体を、DMFに重合体濃度25チに
なるよう溶解した紡糸原液をDMF :水=6o:40
(%)で30℃の凝固浴中に紡出し、4倍の一次延伸を
行ない、第5表に示す乾燥温度をもつ熱ローラー型乾燥
機にて水分率0.5%以下まで乾燥させ、その後二次延
伸を110℃の温熱下2倍行ない、クリンプ付与、クリ
ンプセット後3d−の繊維を得た。結果を第5表に示す
Example 5 AN: MA: SMAS-92,5: 7.0:
A spinning stock solution prepared by dissolving 90 parts of a polymer having a composition of 0.5 (%) and 10 parts of cellulose acetate in DMF to a polymer concentration of 25% was prepared using DMF:water = 6o:40.
(%) in a coagulation bath at 30°C, subjected to 4 times primary stretching, dried in a hot roller dryer with the drying temperature shown in Table 5 to a moisture content of 0.5% or less, and then Secondary stretching was carried out twice under heating at 110° C., and a 3D fiber was obtained after crimping and crimp setting. The results are shown in Table 5.

−33− 一 34− 実施例6 AN:MA:5AS=89:10.4:0.6 (%)
の組成をもつポリマー85部と、酢酸セルローズ15部
を、重合体濃度27%になるようDMFに溶解した紡糸
原液をDMF :水=70:30で30℃の凝固浴中に
紡出し、−次延伸を5倍行力う。
-33- 1 34- Example 6 AN:MA:5AS=89:10.4:0.6 (%)
A spinning stock solution in which 85 parts of a polymer having the composition and 15 parts of cellulose acetate were dissolved in DMF to give a polymer concentration of 27% was spun into a coagulation bath at 30°C at a DMF:water ratio of 70:30. Stretching is performed 5 times.

−次延伸後、125℃のローラー凰乾燥機にて種種の残
留水分率になるように乾燥させ、その後実施例2の後処
理条件によって2deの繊維を得た。
- After the second stretching, the fibers were dried in a roller dryer at 125° C. to various residual moisture contents, and then 2de fibers were obtained according to the post-treatment conditions of Example 2.

結果を第6表に示す。The results are shown in Table 6.

々お、空孔率(V)に占める巨大空孔の割合はEzp−
煮67の繊維では84.7容積チであり、Exp−扁6
9の繊維では85.8容積チであった。
The proportion of giant pores in the porosity (V) is Ezp-
The fiber of boiled 67 has a volume of 84.7, and the Exp-bread 6
In the case of No. 9 fiber, the volume was 85.8 cm.

実施例7 実施例6の紡糸原液をDMF:水−65:35で25℃
の凝固浴中に紡糸し、4倍の一次延伸を行なつ死後、1
25℃のローラー型乾燥機にて水分率0.7 %以下ま
で乾燥させる。乾燥後、実施例5に示す二次延伸条件に
て二次延伸を行ない、フリンジ付与、クリンプセット後
adzの繊維を得九。結果を第7表に示す。
Example 7 The spinning stock solution of Example 6 was mixed with DMF:water-65:35 at 25°C.
The fibers are spun in a coagulation bath and subjected to 4x primary stretching.
Dry in a roller dryer at 25°C to a moisture content of 0.7% or less. After drying, secondary stretching was performed under the secondary stretching conditions shown in Example 5 to obtain adz fibers after fringing and crimp setting. The results are shown in Table 7.

−37− 実施例8 AR:MA : SMAS=90.5 : 9.0 :
 0.5(係)の組成をもつアクリル系重合体80部と
酢酸セルローズ20部を、重合体濃度20優になるよう
DMFに溶解し、重合体とDMFの総量100部に対し
て、2部の水を添加した紡糸原液を、DMF:水−50
:50 (憾)で25℃の凝固浴中に紡出し、水洗後、
熱水中で4倍に延伸し、135℃のローラー型乾燥機に
より、水分率1.0チ以下まで乾燥後、115℃の湿熱
下で2倍の二次延伸を行ない、クリンプ付与、クリンプ
セット後3dIIの繊維を得た。
-37- Example 8 AR:MA: SMAS=90.5: 9.0:
80 parts of an acrylic polymer and 20 parts of cellulose acetate having a composition of 0.5 (relative) were dissolved in DMF to a polymer concentration of 20 or more, and 2 parts were added to 100 parts of the total amount of polymer and DMF. DMF:water-50
:50 (regret) in a coagulation bath at 25°C, after washing with water,
Stretched 4 times in hot water, dried in a roller dryer at 135°C to a moisture content of 1.0 inches or less, and then subjected to secondary stretching to 2x under moist heat at 115°C to impart crimp and crimp set. After that, 3dII fibers were obtained.

繊維はややダル調であシ、空孔率V O,3cm” /
11空孔の表面積AL03m”/fでV/A−1/3.
43のがイドを含有した多孔性アクリル繊維である。
The fibers are slightly dull and the porosity is VO, 3cm" /
11 pore surface area AL03m”/f and V/A-1/3.
No. 43 is a porous acrylic fiber containing ido.

糸質はテ= −/l/2 d e、乾強度2.9f/d
ti。
The yarn quality is TE=-/l/2d e, dry strength 2.9f/d
Ti.

−39− 乾伸度30.5%であった。又、湿強度2.81f/d
e、湿伸度a 1. a 9gで湿潤時も糸質に低下は
なかった。
-39- The dry elongation was 30.5%. Also, wet strength 2.81f/d
e, wet elongation a1. There was no decrease in thread quality even when wet with 9 g of a.

発明の効果 本発明により得られる多孔性アクリル系合成繊維の特長
は、大きな吸水率、吸水速度をもつこと、吸水時の湿潤
強伸度がすぐれること、良好な光沢をもつこと、染色時
の色が鮮明なこと等が挙げられる。天然繊維においては
、湿潤時のバルキー性、腰感がなく力るが、本発明によ
る多孔性アクリル系合成繊維においては、繊維中の空孔
に水を吸い込むという物理的な吸水機構である為に、繊
維のバルキー性、腰感の低下が々く、その上に吸水性、
透水性、透湿性にすぐれている。又、本発明による繊維
は、抗ビル的に極めてすぐれたものが出来る。通常、抗
ピル性付与の為には、アクリル系重合体中の回り成分量
の減少、重合体分子量の減少、−40− 或いは低分子量重合体の混合など、紡糸原液の改質と延
伸−収縮条件等、後処理条件の変化によっており、この
為に強伸度の低下、耐熱性の低下、紡績性の低下など繊
維性能の一部、及び操業性を犠牲にしているが、本発明
による多孔性アクリル系合成繊維は、それら繊維性能及
び操業性の低下もなく、抗ピル性にすぐれたものである
Effects of the Invention The features of the porous acrylic synthetic fiber obtained by the present invention are that it has a large water absorption rate and water absorption rate, has excellent wet strength and elongation when water is absorbed, has good gloss, and has a high water absorption rate when dyed. Examples include vivid colors. Natural fibers are bulky and stiff when wet, but the porous acrylic synthetic fibers of the present invention have a physical water absorption mechanism that sucks water into the pores in the fibers. , the bulkiness of the fibers, the lower back feeling is greatly reduced, and in addition, the water absorbency,
Excellent water permeability and moisture permeability. Furthermore, the fibers according to the present invention have extremely excellent anti-build properties. Normally, in order to impart anti-pilling properties, modification of the spinning dope and stretching/shrinkage are necessary, such as reducing the amount of peripheral components in the acrylic polymer, reducing the polymer molecular weight, and mixing -40- or low molecular weight polymers. This is due to changes in post-processing conditions such as conditions, and as a result, some of the fiber performance such as a decrease in strength and elongation, a decrease in heat resistance, and a decrease in spinnability, as well as workability, are sacrificed. The synthetic acrylic fibers have excellent anti-pilling properties without any deterioration in fiber performance or workability.

東に2F発明による多孔性アクリル系合成繊維は空孔率
が0.05cIn” /f〜0.75crn” /lで
あり、@蓄性、保温性が極めてすぐれている。
The porous acrylic synthetic fiber invented by Higashi 2F has a porosity of 0.05 cIn"/f to 0.75 crn"/l, and has extremely excellent storage and heat retention properties.

こうした従来にない多くのすぐれた性能を持つ本発明の
多孔性アクリル系合成繊維の用途としては、内外衣とし
ての一般衣料はもちろん、スポーツウェア、ふとん綿、
カーテン等の寝装、インテリアなどに最適である。又、
綿代替品として綿が使用されていた分野にも十分使用で
きる。
The porous acrylic synthetic fiber of the present invention, which has many excellent properties that have never existed before, can be used not only for general clothing as inner and outer clothing, but also for sportswear, futon cotton,
Ideal for bedding such as curtains, interior decoration, etc. or,
It can also be used in fields where cotton was used as a cotton substitute.

−41− −ζ7一-41- -ζ71

Claims (1)

【特許請求の範囲】 1、(α)少くとも80重量%のアクリロニトリル単位
を含有し且つスルホン酸基又はスルホン酸塩基を有する
共重合可能なモノマーを0.3〜1.2重量%共重合し
たアクリロニトリル系共重合体70〜98重量%と酢酸
セルローズ30〜2重量%とよシなり、 (6) 空孔の表面積Aが15m”/f’以下であり、
空孔率Vが0405〜0.75儒”/fであシそしてV
/Aが1/30以上であり、且つ (6) 微小ボイドの存在が抑えられ巨大空孔を含有す
る ことを特徴とする多孔性アクリル系合成繊維。 2 酢酸セルローズが繊維軸方向に筋状に分散した特許
請求の範囲第1項記載の繊維。 3、酢酸セルローズが3〜20重量%である特許請求の
範囲第1項記載の繊維。 4、酢酸セルローズの酢化度が48〜63%である特許
請求の範囲第1項記載の繊維。 5、 アクリロニ) IJル系共重合体の上記共重合可
能カモノマーがメタリルスルホン酸ソーダ又はアクリル
スルホン酸ソーダである特許請求の範囲第1項記載の繊
維。 a 空孔の表面積Aが0.02〜10’m”/rである
特許請求の範囲第1項記載の繊維。 7、を孔率Vが0.05〜0.6 cm” /りである
特許請求の範囲歯1項記載の繊維。 8、V/Aがl/20以上である特許請求の範囲第1項
記載の繊維。
[Claims] 1. (α) Copolymerized with 0.3 to 1.2% by weight of a copolymerizable monomer containing at least 80% by weight of acrylonitrile units and having a sulfonic acid group or a sulfonic acid group. 70 to 98% by weight of acrylonitrile copolymer and 30 to 2% by weight of cellulose acetate, (6) the surface area A of the pores is 15 m''/f' or less,
The porosity V is 0405~0.75"/f and V
/A is 1/30 or more, and (6) a porous acrylic synthetic fiber characterized by suppressing the presence of microvoids and containing giant pores. 2. The fiber according to claim 1, wherein cellulose acetate is dispersed in a streaky manner in the fiber axis direction. 3. The fiber according to claim 1, which contains 3 to 20% by weight of cellulose acetate. 4. The fiber according to claim 1, wherein the degree of acetylation of cellulose acetate is 48 to 63%. 5. The fiber according to claim 1, wherein the copolymerizable monomer of the acrylonitrile-based copolymer is sodium methallylsulfonate or sodium acrylsulfonate. a The fiber according to claim 1, wherein the surface area A of the pores is 0.02 to 10'm"/r. 7. The fiber has a porosity V of 0.05 to 0.6 cm"/r. The fiber according to claim 1. 8. The fiber according to claim 1, which has a V/A of 1/20 or more.
JP16465184A 1984-08-06 1984-08-06 Porous acrylonitrile synthetic fiber Granted JPS6065109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16465184A JPS6065109A (en) 1984-08-06 1984-08-06 Porous acrylonitrile synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16465184A JPS6065109A (en) 1984-08-06 1984-08-06 Porous acrylonitrile synthetic fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7704679A Division JPS6011124B2 (en) 1979-06-18 1979-06-18 Method for producing porous acrylic synthetic fiber

Publications (2)

Publication Number Publication Date
JPS6065109A true JPS6065109A (en) 1985-04-13
JPS6356323B2 JPS6356323B2 (en) 1988-11-08

Family

ID=15797225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16465184A Granted JPS6065109A (en) 1984-08-06 1984-08-06 Porous acrylonitrile synthetic fiber

Country Status (1)

Country Link
JP (1) JPS6065109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227809A (en) * 1987-03-16 1988-09-22 Mitsubishi Rayon Co Ltd Acrylic fiber of high moisture retention
JP2007182641A (en) * 2006-01-05 2007-07-19 Mitsubishi Rayon Co Ltd Acrylic conjugate fiber and nonwoven fabric containing the same, and method for producing the acrylic conjugate fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269132U (en) * 1988-11-14 1990-05-25
JPH0378141U (en) * 1989-12-01 1991-08-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227809A (en) * 1987-03-16 1988-09-22 Mitsubishi Rayon Co Ltd Acrylic fiber of high moisture retention
JP2007182641A (en) * 2006-01-05 2007-07-19 Mitsubishi Rayon Co Ltd Acrylic conjugate fiber and nonwoven fabric containing the same, and method for producing the acrylic conjugate fiber

Also Published As

Publication number Publication date
JPS6356323B2 (en) 1988-11-08

Similar Documents

Publication Publication Date Title
US6326451B1 (en) Acrylonitrile-based precursor fiber for the formation of carbon fiber, process for preparing same, and carbon formed from same
US4562114A (en) Water-absorbing acrylic fibers
JPS604284B2 (en) Method for producing hydrophilic filaments or fibers
CN110359114A (en) A kind of polyacrylonitrile fibre, polyacrylonitrile-based carbon fibre and preparation method thereof
JPS5971412A (en) Hydrophilic water-absorbable acrylonitrile polymer fiber
JPS6065109A (en) Porous acrylonitrile synthetic fiber
JPS6011124B2 (en) Method for producing porous acrylic synthetic fiber
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPS6253607B2 (en)
JPS6360129B2 (en)
JPS6360130B2 (en)
JPS6149406B2 (en)
JPS5843483B2 (en) Porous modacrylic synthetic fiber and method for producing the same
JPH10273821A (en) Water absorbing acrylic fiber
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP4895280B2 (en) Anti-pill acrylic fiber and production method thereof
JP4102582B2 (en) Acrylic modified cross-section fine fiber manufacturing method
JPS6018332B2 (en) Manufacturing method of acrylic hollow fiber
JPS602405B2 (en) Manufacturing method for acrylonitrile-based continuous filament yarn mixed with different fineness single yarns
JPH0491230A (en) Production of precursor
JPH0790722A (en) Water-absorbing conjugate yarn
JPS6211083B2 (en)
JPS6050883B2 (en) Novel acrylonitrile synthetic fiber and its manufacturing method
JPH07150470A (en) Porous acrylonitrile fiber
JPH05302213A (en) Water-absorbing acrylic conjugate fiber