JPS6011124B2 - Method for producing porous acrylic synthetic fiber - Google Patents

Method for producing porous acrylic synthetic fiber

Info

Publication number
JPS6011124B2
JPS6011124B2 JP7704679A JP7704679A JPS6011124B2 JP S6011124 B2 JPS6011124 B2 JP S6011124B2 JP 7704679 A JP7704679 A JP 7704679A JP 7704679 A JP7704679 A JP 7704679A JP S6011124 B2 JPS6011124 B2 JP S6011124B2
Authority
JP
Japan
Prior art keywords
weight
fibers
fiber
less
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7704679A
Other languages
Japanese (ja)
Other versions
JPS56311A (en
Inventor
義和 近藤
俊博 山本
隆二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Ltd
Priority to JP7704679A priority Critical patent/JPS6011124B2/en
Priority to US06/156,993 priority patent/US4351879A/en
Priority to DE3050231A priority patent/DE3050231C2/de
Priority to DE3050897A priority patent/DE3050897C2/de
Priority to DE3022537A priority patent/DE3022537C2/en
Priority to GB8019925A priority patent/GB2053790B/en
Publication of JPS56311A publication Critical patent/JPS56311A/en
Priority to US06/397,282 priority patent/US4395377A/en
Priority to US06/397,280 priority patent/US4460648A/en
Priority to GB08228954A priority patent/GB2108040B/en
Publication of JPS6011124B2 publication Critical patent/JPS6011124B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多孔性のアクリル系合成繊維の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing porous acrylic synthetic fibers.

さらに詳しくは、微小ポィドの存在が抑えられ巨大空孔
を含有する多孔性アクリル系合成繊維の製造法に関する
ものである。線、羊毛、絹等の天然繊維は20〜40%
の吸水性があり、人間の体内から発する汗を十分吸収す
るため着用時の快適さが得られるが、合成繊維は制電性
及び吸湿性に欠けると共に吸水性、吸汗性を有しない点
で商品価値として天然繊維に劣っている。特に肌着、く
つ下、毛布など寝袋臭、及びスポーツウェア等において
、吸水−吸汗性がなければ、体外に発した汗は繊維表面
に凝縮付着し、ベトッキ、袷感、体温調節機能の低下な
ど、着用時の不快さは免れない。こうした合成繊維にお
ける吸水一吸汗性のなさを解決する為に従来より種々の
改良がなされてきた。
More specifically, the present invention relates to a method for producing porous acrylic synthetic fibers containing giant pores and suppressing the presence of micropods. Natural fibers such as wire, wool, and silk account for 20-40%
Synthetic fibers are comfortable to wear because they absorb enough sweat from the human body, but synthetic fibers lack antistatic and moisture absorption properties, and are not suitable for use as products. In terms of value, it is inferior to natural fibers. Especially when it comes to underwear, socks, blankets, and other sleeping bag odors, and sportswear, etc., if they do not have water- or sweat-absorbing properties, sweat emitted from outside the body will condense and adhere to the fiber surface, causing problems such as stickiness, a feeling of underclothing, and a decrease in body temperature regulation function. The discomfort of time cannot be avoided. Various improvements have been made in the past in order to solve the problem of the lack of water and sweat absorption in synthetic fibers.

改良方法の大部分は繊維中に微小な空孔を形成させたり
、繊維表面に凹凸を形成させたりするものである。例え
ば特関昭47−25418号公報、持公昭47一159
01号公報、特公昭48−6649号公報および特公昭
48一665ぴ号公報にはアクリル繊維の製造工程中で
の膨潤ゲルトウ中の微小なボィド又はミクロボィドを残
存させるよう温和な乾燥条件を選択することにより多孔
質のアクリル繊維を製造する方法が記載されている。又
、特関昭47−25416号公報、特公昭48−828
5号公報、侍公昭48−8286号公報にはアクリル繊
維の製造工程中での膨潤ゲルトゥに水溶性化合物を充填
し、乾燥、後処理の後で充填物を溶出させ、ボィドを再
生することが記載されている。上記の方法に共通する点
は、アクリル繊維の製造工程中での膨潤ゲルトゥが本来
含有するミクロボィドを、最終製品に残存させた多孔性
アクリル繊維を製造することを目的とすることにある。
Most of the improvement methods involve forming micropores in the fibers or forming irregularities on the fiber surface. For example, Tokukan Sho 47-25418 Publication, Mochiko Sho 47-159
01, Japanese Patent Publication No. 48-6649, and Japanese Patent Publication No. 48-665, mild drying conditions are selected so as to leave minute voids or microvoids in the swollen gel tow during the manufacturing process of acrylic fibers. A method for producing porous acrylic fibers is described. Also, Tokkoku Sho 47-25416 Publication, Tokkoku Sho 48-828
No. 5 Publication and Samurai Publication No. 48-8286 disclose that a water-soluble compound is filled into the swollen gel toe during the manufacturing process of acrylic fibers, and the filler is eluted after drying and post-treatment to regenerate voids. Are listed. What the above methods have in common is that they aim to produce porous acrylic fibers in which microvoids originally contained in the swollen gel toe during the production process of acrylic fibers remain in the final product.

この膨潤ゲルトウに含有されるミクロボィドは、熱的に
極めて不安定なものである。この為に繊維製造工程にお
いて特に乾燥、収縮、クリンプセット工程において高温
処理を行なうことが出来ず、最終製品の耐熱性、形態保
持性、クリンプ安定性に乏しく、製品の商品価値を著し
く低下させる。得られた製品中のボィドは、ボィド半径
10〜1000Aと極めて微小である。こうした微小な
ボィドを無数にかつ繊維中均一に含有するために、繊維
は強伸度が4・さく、光沢に乏しく、かつ染色後の色も
くすんでいる等欠点を多く有している。又、無数の微小
なボィドが均一に存在する為に、繊維の耐熱性が悪く高
温染色、スチーミング処理、アイロン処理等において、
ボィドが消滅し吸水性の低下、色合いの変化、形態保持
性の低下など重大な品質の低下がみられる。更にこうし
たミクロボィドにより、吸水性を発現させようとするこ
とは、ミクロボィド同士がお互いに独立して存在しやす
く、繊維中へ水を吸収する通路となりにくい点で、効果
的でない。
The microvoids contained in this swollen gel tow are extremely thermally unstable. For this reason, high-temperature treatment cannot be carried out in the fiber manufacturing process, especially in the drying, shrinking, and crimp-setting steps, resulting in poor heat resistance, shape retention, and crimp stability of the final product, which significantly reduces the commercial value of the product. The voids in the obtained product are extremely small, with a void radius of 10 to 1000 A. Because the fibers contain countless microscopic voids uniformly throughout the fibers, the fibers have many drawbacks, such as a strong elongation of 4.0, poor gloss, and a dull color after dyeing. In addition, due to the uniform presence of countless microscopic voids, the heat resistance of the fibers is poor, making them difficult to use during high-temperature dyeing, steaming, ironing, etc.
Voids disappear, and serious quality deterioration is observed, such as a decrease in water absorption, a change in color, and a decrease in shape retention. Furthermore, attempts to develop water absorbency using such microvoids are not effective because the microvoids tend to exist independently of each other and are difficult to act as channels for absorbing water into the fibers.

即ち、ミクロポィドによりある程度の吸水性を持たせる
為にはかなり量のミクロポイド含有率が必要となり、こ
のことが更に繊維性能、商品価値を低下させるという欠
陥を有している。従来より酢酸セルローズーアクリル系
重合体、或いは酢酸セルローズーモダクリル系共重合体
の浪合級糸により風合改良、染色性の改良等の試みがな
されている。例えば、特公昭31山9斑号公報および特
公昭33一2317号公報にはモダクリル系共重合体に
酢酸セルローズを混合した級糸原液より、染色性、風合
を改良した繊維を製造する方法が記載されている。この
方法により得られた繊維は、十分に繊密であって、繊維
内部にキャピラリー状のマクロボィドを持つ吸水性を有
する繊維は得られていない。また、特公昭39−140
2計号公報には、アクリロニトリル85モル%以上とス
ルホン酸基又はスルホン酸塩基を有するエチレン系不飽
和単量体0.2モル%以上を含むアクリロニトリル系共
重合体と酢酸セルローズとをジメチルホルムアミド又は
ジメチルスルホキシド‘こ落籍した紙糸液を水系紡出洛
中に紙出して、繊密な且つ染色性を持つ繊維を製造する
方法が開示されている。
That is, a considerable amount of micropoid content is required in order to have a certain degree of water absorption by micropoid, which has the disadvantage of further reducing fiber performance and commercial value. Attempts have been made to improve the texture and dyeability of yarns made of cellulose acetate-acrylic polymers or cellulose acetate-modacrylic copolymers. For example, Japanese Patent Publication No. 31-1989 and Japanese Patent Publication No. 33-12317 describe a method for producing fibers with improved dyeability and texture from a grade yarn stock solution in which cellulose acetate is mixed with a modacrylic copolymer. Are listed. The fibers obtained by this method are sufficiently dense, and no water-absorbing fibers having capillary-like macrovoids inside the fibers have been obtained. In addition, special public service 39-140
No. 2 Publication discloses that an acrylonitrile copolymer containing 85 mol% or more of acrylonitrile and 0.2 mol% or more of a sulfonic acid group or an ethylenically unsaturated monomer having a sulfonic acid group and cellulose acetate are mixed with dimethylformamide or A method is disclosed in which paper yarn liquid containing dimethyl sulfoxide is fed into an aqueous spinning process to produce fibers that are delicate and have dyeability.

同特公昭和39−1402ザ号公報には、比較例として
ポリアクリロニトリルすなわちアクリロニトリルのホモ
ポリマーと酢酸セルローズとからなる繊維が記載されて
おり、この繊維がミクロボィドと共にマクロボィドを持
つのに対し、上記スルホン酸基又はスルホン酸塩基を含
むアクリロニトリル系共重合体からの繊密な且つ染色性
を持つ繊維のアクロボィド‘こついては何んら記載され
ていない。工業化学雑誌72蓋5号1186〜11雛頁
(1969)にも特公昭39−1402y号公報に記載
された上記発明とほぼ同じ内容の研究報告がなされてい
る。
As a comparative example, Japanese Patent Publication No. 1402/1983 describes a fiber made of polyacrylonitrile, that is, a homopolymer of acrylonitrile, and cellulose acetate. There is no mention of acroboid formation of dense and dyeable fibers from acrylonitrile copolymers containing acid groups or sulfonic acid groups. A research report with almost the same contents as the above-mentioned invention described in Japanese Patent Publication No. 39-1402y was also published in Industrial Chemistry Magazine 72 Lid No. 5, pp. 1186-11 (1969).

また、特公昭39−1403び号公報には、酢酸セルロ
ーズを混合する方法として、酢酸セルローズをアクルレ
系重合体の重合時に添加する手順が記載されているが、
酢酸セルローズをアクリル系重合体の重合時に添加した
ものを用いると、酢酸セルローズの変性の為に織出糸条
の耐熱性が低下し繊維製造工程中のトラブルの原因とな
り又、製品の品質も十分のものは得られない。一方、袴
公昭44−1196y号公報及び侍関昭50−1180
27号公報および特関昭50−118026号公報には
、アクリル系重合体或いはモダクリル系重合体中に、酢
酸セルo−ズを微分散或いは酢酸セルローズと酸化チタ
ン等を微分散させ、獣毛様の繊維を得ようとするものが
記載されているが、本発明にて得られるような吸水性を
有する多孔性の繊維は得られていない。さらに、本願の
いわゆる先願に相当する鷲願昭53−4473号(特関
昭54−101920号)の明細書には、アクリロニト
リル系重合体9の重量%以上と酢酸セルローズの如き耐
熱・ボィド安定化剤1の重量%以下とからなる微多孔質
構造を有し且つ改良された吸水性を有する微多孔質アク
リル系繊維が記載されている。しかしながら、特豚昭5
3一4473号明細書には微小ポィドを多数有する微多
孔質アクリル系繊維が記載されているにすぎず。
Furthermore, Japanese Patent Publication No. 39-1403 describes a procedure for adding cellulose acetate during polymerization of an Acrylic polymer as a method for mixing cellulose acetate.
If cellulose acetate is added during the polymerization of acrylic polymers, the heat resistance of the woven yarn will decrease due to the denaturation of cellulose acetate, causing trouble during the fiber manufacturing process, and the quality of the product will be insufficient. I can't get anything like that. On the other hand, Hakama Publication No. 44-1196y and Samurai Seki No. 50-1180
No. 27 and Tokusekki No. 50-118026 disclose that cellulose acetate is finely dispersed or cellulose acetate and titanium oxide are finely dispersed in an acrylic polymer or a modacrylic polymer to create an animal hair-like material. However, porous fibers with water absorbing properties such as those obtained in the present invention have not been obtained. Furthermore, the specification of Washigan No. 53-4473 (Special Seki Sho 54-101920), which corresponds to the so-called earlier application of the present application, states that at least 9% by weight of an acrylonitrile-based polymer and a heat-resistant and void-stable material such as cellulose acetate are used. Microporous acrylic fibers are described that have a microporous structure consisting of less than 1% by weight of a curing agent and have improved water absorption. However, Tokubuta Showa 5
No. 3-14473 merely describes a microporous acrylic fiber having a large number of micropores.

微小ボィドの存在が抑えられ巨大空孔を含有する繊維お
よびその製造法は記載されていない。上述のように、従
来の方法では多数のミクロボィドを有する微多孔性アク
リル系合成繊維しか得られず、良好な吸水性を持ち、か
つ良好な耐熱性、染色性、光沢を有する多孔性のアクリ
ル系合成繊維を製造することはできない。本発明者等は
かかる欠点を改良すべく鋭意研究の結果本発明を完成し
た。本発明の目的は優れた吸水性を有し、且つ良好な糸
質を有する多孔性のアクリル系合成繊維の製造法を提供
するにある。
There is no description of a fiber that suppresses the presence of microvoids and contains large pores, and a method for producing the same. As mentioned above, conventional methods can only yield microporous acrylic synthetic fibers that have a large number of microvoids. Synthetic fibers cannot be manufactured. The present inventors completed the present invention as a result of intensive research in order to improve these drawbacks. An object of the present invention is to provide a method for producing porous acrylic synthetic fibers having excellent water absorbency and good thread quality.

すなわち本発明は、 1‘小aー 少くとも8低重量%のアクリロニトリル単
位を含有し且つスルホン酸基又はスルホン酸塩基を有す
る共重合可能なモノマーを 0.3〜1.2重量%共重合したアクリロニトリル系共
重合体70〜9楯重量%および‘b’酢酸セルローズ3
0〜2重量% かうなる重合体を15〜35重量%含有する有機溶剤溶
液を準備し、‘o’該有機溶剤溶液を高々30℃の凝固
裕中に紋出し、し一 生成する級出糸を2.5〜8倍に
一次延伸し、片 生成する水膨潤状態にある繊維を10
0〜180℃の温度で水分率1.0重量%以下に乾燥し
、次いで納 得られる乾燥繊維を緑熱を湿熱で3倍以下
に二次延伸し、かくしてM 下記性質 【11 空孔の表面積Aが15〆/タ以下であり、空孔
率Vが0.05〜0.75地/夕でありそしてV/Aが
1/30以上であり、且つ【21 微小ポィドの存在が
抑えられ巨大空孔を含有するを有する多孔性アクリル系
合成繊維を形成する、ことを特徴とする多孔性アクリル
系繊維の製造方法である。
That is, the present invention provides the following method: 1'small a - Copolymerized with 0.3 to 1.2% by weight of a copolymerizable monomer containing at least 8% by weight of acrylonitrile units and having a sulfonic acid group or a sulfonic acid group. Acrylonitrile copolymer 70-9% by weight and 'b' cellulose acetate 3
An organic solvent solution containing 15 to 35% by weight of such a polymer is prepared, and the organic solvent solution is embossed into a coagulation bath at a temperature of at most 30°C. The fibers in a water-swollen state are first stretched 2.5 to 8 times, and the resulting water-swollen fibers are
The fibers are dried to a moisture content of 1.0% by weight or less at a temperature of 0 to 180°C, and then the satisfactory dried fibers are secondarily stretched to 3 times or less using green heat and wet heat. A is 15〆/ta or less, porosity V is 0.05 to 0.75 〆/ta, and V/A is 1/30 or more, and [21. A method for producing porous acrylic fibers, which comprises forming porous acrylic synthetic fibers containing pores.

本発明によれば、上記Nに記載の性質を有する多孔性ア
クリル系合成繊維は、工程‘ィ}により酢酸セルローズ
2〜3の重量部とアクリロニトリル系共重合体(以下、
アクリル系共重合体という)70〜9母重量部とよりな
る重合体を15〜35重量%含有する有機溶剤溶液を準
備し、工程tローによりこれを凝固裕中に紙出し、工程
内により2.5〜8倍に一次延伸し、工程付により水膨
潤状態にある繊維を100〜18000の温度で水分率
が1.の重量%以下になるまで乾燥し、次いで工程的に
より湿熱で3倍以下の二次延伸を行なうことによって製
造することができる。
According to the present invention, porous acrylic synthetic fibers having the properties described in N above are prepared by combining 2 to 3 parts by weight of cellulose acetate and an acrylonitrile copolymer (hereinafter referred to as
An organic solvent solution containing 15 to 35% by weight of a polymer consisting of 70 to 9 parts by weight (referred to as an acrylic copolymer) is prepared, and in a step t-row, this is poured into a coagulation chamber, and in the process 2 The fibers, which are first stretched 5 to 8 times and are in a water-swollen state due to the process, are heated to a temperature of 100 to 18,000 to a moisture content of 1. It can be produced by drying the film to a weight percent of 100% or less, and then performing secondary stretching of 3 times or less using wet heat according to the process.

本発明によるアクリル系合成繊維は酢酸セルローズ2〜
3の重量%、好ましくは3〜2の重量%とアクリル系共
重合体70〜9母重量%、好ましくは80〜97重量%
とよりなる。本発明に適用される酢酸セルローズは特に
限定されないが、通常酢化度48〜63%で平均重合度
50〜300のものである。
The acrylic synthetic fiber according to the present invention is cellulose acetate 2~
3% by weight, preferably 3-2% by weight and 70-9% by weight of the acrylic copolymer, preferably 80-97% by weight.
It becomes more. Although the cellulose acetate used in the present invention is not particularly limited, it usually has an acetylation degree of 48 to 63% and an average polymerization degree of 50 to 300.

又、本発明で用いられるアクリル系重合体は少なくとも
8の重量%、好ましくは85〜93重量%のアクリロニ
トリル単位を含有し且つ0.3〜1.な重量%のスルホ
ン酸基又はスルホン酸塩基を有する共重可能なモノマー
を共重合したものである。
The acrylic polymer used in the present invention also contains at least 8% by weight, preferably 85 to 93% by weight, of acrylonitrile units, and 0.3 to 1. It is a product obtained by copolymerizing copolymerizable monomers having a sulfonic acid group or a sulfonic acid group in a weight percent of sulfonic acid groups.

スルホン酸又はスルホン酸塩基を有する共重合可能なモ
ノマーは例えばスチレンスルホン酸、アリルスルホン酸
、メタリルスルホン酸及びそれらの塩類等であり、特に
アリルスルホン酸又はメタリルスルホン酸及びそれらの
塩が好ましい。
Copolymerizable monomers having sulfonic acid or sulfonic acid groups include, for example, styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, and salts thereof, with allyl sulfonic acid or methallyl sulfonic acid and salts thereof being particularly preferred. .

これらを0.3〜1.2重量%共重合せしめることによ
り単に染色性を向上するに留まらず無数な微小のボイド
の発生を抑止することにより耐熱性の低下を抑え、更に
、マクロな空孔を有し且つ吸水性に優れた多孔性の繊維
が得られる。スルホン酸又はスルホン酸塩基含有モノマ
ー以外の共重合可能なモノマーとしては例えばアクリル
酸メチル、メタクリル酸メチル、アクリル酸エチル等の
アクリル酸又はメタクリル酸のアルキルェステル類、ア
クリルアミド及びメタクリルアミド等のアミド類、及び
それらのN−モノ置換或いはNN−ジ置換ァミド類、酢
酸ビニルがあげられる。本発明によれば、アクリル系合
成繊維は酢酸セルローズ2〜30重量部好ましくは3〜
20重量部と、アクリル系重合体70〜9笹重量部好ま
しくは80〜90重量部とよりなる重合体を15〜35
重量%、好ましくは17〜3の重量%含有する有機溶剤
溶液を例えば3000以下、好ましくは2500以下、
さらに好ましくは20oo以下の凝固浴中に紙出して製
造される。
By copolymerizing 0.3 to 1.2% by weight of these, it not only improves the dyeability but also suppresses the deterioration of heat resistance by suppressing the generation of countless microscopic voids, and also suppresses the decrease in heat resistance. Porous fibers with excellent water absorption properties can be obtained. Examples of copolymerizable monomers other than sulfonic acid or sulfonic acid group-containing monomers include alkyl esters of acrylic acid or methacrylic acid such as methyl acrylate, methyl methacrylate, and ethyl acrylate; amides such as acrylamide and methacrylamide; , their N-monosubstituted or NN-disubstituted amides, and vinyl acetate. According to the present invention, the acrylic synthetic fiber is preferably 2 to 30 parts by weight of cellulose acetate.
15 to 35 parts by weight of a polymer consisting of 20 parts by weight and 70 to 9 parts by weight of an acrylic polymer, preferably 80 to 90 parts by weight.
3000 or less, preferably 2500 or less, for example, an organic solvent solution containing 17 to 3% by weight, preferably 17 to 3% by weight,
More preferably, the paper is produced by putting it into a coagulation bath of 20 oo or less.

紡出糸は後述するとおり、次いで一次延伸され、乾燥さ
れそして二次延伸される。酢酸セルローズ及びアクリル
系重合体の量が上記範囲を逸脱すると優れた吸水性及び
糸賀を有するアクリル系合成繊維が得られない。
The spun yarn is then first drawn, dried, and second drawn as described below. If the amounts of cellulose acetate and acrylic polymer are out of the above range, acrylic synthetic fibers with excellent water absorbency and thread strength cannot be obtained.

又、重合体の濃度が15重量%未満では生産コストが割
高となるばかりでなく、ボィドの発生強伸度の低下等が
起る。一方35重量%を超えると粘度上昇による操業性
及び可紡性の低下、更に糸質の低下をきたすので避けね
ばならない。重合体を溶解するための上記有機溶剤とし
ては、酢酸セルローズ及びアクリル系重合体の共通溶剤
を使用しうるが、通常はジメルチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシド、エチレンカ
ーボネート等の有機溶剤が、溶剤の回収、精製の点で好
ましい。
Furthermore, if the concentration of the polymer is less than 15% by weight, not only the production cost becomes relatively high, but also voids occur and strength and elongation decrease. On the other hand, if it exceeds 35% by weight, the workability and spinnability will decrease due to an increase in viscosity, and the yarn quality will also decrease, so it must be avoided. As the organic solvent for dissolving the polymer, common solvents for cellulose acetate and acrylic polymers can be used, but organic solvents such as dimerthylformamide, dimethylacetamide, dimethyl sulfoxide, and ethylene carbonate are usually used as the solvent. preferred in terms of recovery and purification.

又、凝固浴としては、ジメルチルホルムアミド、ジメチ
ルアセトァミド、ジメチルスルホキシド、及びエチレン
力ーボネート等の有機溶剤の水溶液、及びブロピルアル
コール、ケロシン等の有機溶剤が使用し得るが特に重合
体の溶剤に使用する有機溶剤の水溶液が好ましい。紡糸
原液中には級糸原液がゲル化しない範囲の水分を添加し
てもよい。
In addition, as the coagulation bath, aqueous solutions of organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and ethylene carbonate, and organic solvents such as propyl alcohol and kerosene can be used, but in particular, polymer solvents can be used. An aqueous solution of an organic solvent used for is preferred. Water may be added to the spinning stock solution in an amount that does not cause the spinning stock solution to gel.

この水分添加は紙糸原液の粘度調整及び鮫糸された糸の
ミクロボィド(微小ボィド)発生を抑制する点で効果的
である。又、極めて興味深い点は、級糸原液中の水分率
の多少により級出された繊維中の酢酸セルローズの筋状
の分散形態が異なることである。即ち、紙糸原液中の水
分を増加すると、酢酸セルローズの筋状の分散形態はよ
り細長くなり、逆に減少すると、球状に近い形態をとる
ようになる。紙糸原液の粘度の大小においても同様の結
果となる。紡糸は通常のアクリル系合成繊維と同様な条
件で行なえばよく、数段の浴槽を通し、順次延伸水洗い
行なう。紡糸ドラフトは通常の条件で差支えないがミク
ロボイドの発生を抑制するためには低い方が好ましい。
又、凝固格温度も低い方が好ましく例えば上記のとおり
30午0以下が好ましい。30℃を越えると多数のミク
ロボィドが発生する傾向が大きくなり、得られた繊維の
糸質及び品質を著しく低下させるようになる。
This addition of water is effective in adjusting the viscosity of the paper yarn stock solution and suppressing the generation of microvoids in the threads that have been made into threads. Another very interesting point is that the striation-like dispersion form of cellulose acetate in the graded fibers differs depending on the moisture content of the graded yarn stock solution. That is, when the water content in the paper yarn stock solution is increased, the streak-like dispersed form of cellulose acetate becomes more elongated, and when the water content is decreased, it becomes more spherical. Similar results are obtained depending on the viscosity of the paper yarn stock solution. Spinning may be carried out under the same conditions as for ordinary acrylic synthetic fibers, and the fibers are sequentially stretched and washed through several baths. The spinning draft may be set under normal conditions, but a lower one is preferable in order to suppress the generation of microvoids.
Further, the coagulation temperature is preferably lower, for example, 30:00 or less as mentioned above. When the temperature exceeds 30° C., there is a greater tendency for a large number of microvoids to occur, and the yarn quality and quality of the obtained fibers are significantly reduced.

一次延伸倍率は2.5〜8倍、好ましくま3〜6倍であ
る。延伸倍率が2.針音未満では、繊維の延伸、配向不
足の為、強度が低く、又繊維にクラックが入り、避けね
ばならない。一方、8倍を超えると繊密化が進行し過ぎ
て充分な吸水性が得られず、操業性の低下がある為避け
なければならない。一次延伸を行なった糸は、通常酢酸
セルローズの筋状の分散及びアクリル系重合体との相分
離により発生した空孔が、より明確になっている。
The primary stretching ratio is 2.5 to 8 times, preferably 3 to 6 times. The stretching ratio is 2. If it is less than the needle sound, the strength will be low due to insufficient stretching and orientation of the fibers, and cracks will appear in the fibers, so this should be avoided. On the other hand, if it exceeds 8 times, densification progresses too much and sufficient water absorbency cannot be obtained, resulting in a decrease in operability and must be avoided. In yarns that have been subjected to primary stretching, the pores generated by the linear dispersion of cellulose acetate and the phase separation from the acrylic polymer are usually more clearly defined.

又、この繊維中には、通常の膨潤ゲルトゥが本来含有す
るミクロボィドも多数含まれている。このミクロポイド
は一般的に繊維の吸水性への寄与は小さく、繊維の耐熱
性、染色性、光沢など低下させる為に好ましくない。こ
の為にミクロボイドと大きなボイド(マクロポイド、巨
大空孔)が混在する繊維を乾燥し、ミクロポィドを消去
するが、この場合の乾燥条件としては100〜180q
oの温度で水分率1。■重量%以下になるまで乾燥する
ことにより、ミクロボィドのみを消去し、相分離による
大きなボィドを残すことが出来る。乾燥温度が100℃
未満では、アクリル系重合体側に多数存在するミクロボ
ィドの焼きつぶしが完全に行なわれず、糸の強伸度の低
下や光沢染色性及び耐熱性の低下がある。又、180℃
を超えると繊維の硬化、着色等を生じめる為に避けなけ
ればならない。乾燥には繊維と高温の金属面が接するよ
うな熱ローラー型乾燥機を使用するのが好ましい。又、
補助的に100〜150qoの温度をもつ熱風の吹き付
けによる乾燥も併用すれば、乾燥の均一性向上という点
でより好ましいものとなる。乾燥上りの繊維のもつ水分
率は、1.0%以下に抑えなければならない。水分率が
1.0%を超えると繊維の乾燥むらが生じ、部分的に多
数のミクロボィドが存在することになり、染色むら、光
沢むら、強度むら等品質の均一性を低下させる為に避け
なければならない。この乾燥工程において駆動部にトル
クモーターを使用し、乾燥と同時に5〜15%の収縮を
行なうことも可能である。乾燥後の繊維は、繊維中のア
クリル系重合体と酢酸セルローズの相分離をより明確に
し吸水性を向上させると共に適度の繊維物性をもたせる
為に、湿熱下により3倍以下、好ましくは1.05〜2
倍の二次延伸を行なう必要がある。
Furthermore, this fiber also contains a large number of microvoids that are originally contained in normal swollen gel toe. These micropoid generally have a small contribution to the water absorbency of the fibers, and are undesirable because they reduce the heat resistance, dyeability, gloss, etc. of the fibers. For this purpose, fibers with a mixture of microvoids and large voids (macropoid, giant pores) are dried to eliminate the micropoid, but the drying conditions in this case are 100 to 180q.
The moisture content is 1 at a temperature of o. (2) By drying to less than % by weight, it is possible to eliminate only microvoids and leave large voids due to phase separation. Drying temperature is 100℃
If it is less than that, the microvoids present in large numbers on the acrylic polymer side will not be completely burned out, resulting in a decrease in the strength and elongation of the yarn, and a decrease in gloss dyeability and heat resistance. Also, 180℃
Exceeding this should be avoided as it will cause hardening and coloring of the fibers. For drying, it is preferable to use a hot roller dryer in which the fibers come into contact with a hot metal surface. or,
If additional drying by blowing hot air at a temperature of 100 to 150 qo is also used, it will be more preferable from the point of view of improving the uniformity of drying. The moisture content of the dried fibers must be kept below 1.0%. If the moisture content exceeds 1.0%, uneven drying of the fibers will occur and a large number of microvoids will be present in some areas, which should be avoided as it will reduce the uniformity of quality such as uneven dyeing, uneven gloss, and uneven strength. Must be. In this drying process, it is also possible to use a torque motor as a drive unit to shrink the material by 5 to 15% at the same time as drying. After drying, the fibers are dried under moist heat to make the phase separation between the acrylic polymer and cellulose acetate more clear, improve water absorption, and provide appropriate fiber physical properties. ~2
It is necessary to perform secondary stretching twice as much.

延伸倍率が3倍を超えると糸切れが起り、それを避ける
為高温にすると繊維の豚着及び融着が起り、吸水性が著
しく低下する。2次延伸後、通常湿熱収縮、オィリング
、クリンプ付与、クリンプセット等により良い紡績性、
及び性能を付与する後処理工程を経て、最終製品となる
If the stretching ratio exceeds 3 times, thread breakage will occur, and if the temperature is raised to avoid this, the fibers will stick and fuse together, resulting in a significant drop in water absorption. After secondary stretching, good spinnability is achieved by wet heat shrinkage, oiling, crimp application, crimp setting, etc.
After passing through a post-processing process that imparts performance, it becomes the final product.

かくして本発明により製造される多孔性アクリル系合成
繊維(以下本発明のアクリル系合成繊維という)は、上
記のとおり、アクリル系共重合体70〜9母重量%と酢
酸セルローズ30〜2重量%とより且つ微小ボイドの存
在が抑えられ巨大空孔を含有する。
As described above, the porous acrylic synthetic fiber produced according to the present invention (hereinafter referred to as the acrylic synthetic fiber of the present invention) contains 70 to 9% by weight of the acrylic copolymer and 30 to 2% by weight of cellulose acetate. Furthermore, the presence of microvoids is suppressed and giant pores are contained.

繊維中に分散させた酢酸セルローズの量が2重量%未満
ではアクリル系重合体との相分離の量が不充分で吸水性
の付与は十分でなく、一方、3の重量%を超えると相分
離形態が大きくなに、繊維の強伸度、染色性、光沢など
の低下を生じるため避けなければならない。
If the amount of cellulose acetate dispersed in the fiber is less than 2% by weight, the amount of phase separation from the acrylic polymer will be insufficient and the imparting of water absorption will not be sufficient, whereas if it exceeds 3% by weight, phase separation will occur. If the shape is large, the strength and elongation of the fiber, dyeability, gloss, etc. will be reduced, so it must be avoided.

本発明のアクリル系合成繊維は酢酸セルローズが繊維軸
方向に筋状に分散しており、通常筋の長さと直径の比は
10以上である。
In the acrylic synthetic fiber of the present invention, cellulose acetate is dispersed in the form of streaks in the fiber axis direction, and the ratio of the length of the streaks to the diameter is usually 10 or more.

また、本発明のアクリル系合成繊維は上記のとおり微小
ボィドの存在が抑えられ巨大空孔を含有する。
Further, as described above, the acrylic synthetic fiber of the present invention suppresses the presence of microvoids and contains giant pores.

従って、本発明のアクリル系合成繊維は主として巨大空
孔を含有し、繊維の空孔率(V)に占める微細空孔の比
率(容積比)を例にとると、例えば該比率が高々30%
、好ましくは25%以下、更に好ましくは20%以下、
特に好ましくは15%以下を示す。ここで微細空孔とは
直径2000A以下の空孔を言う。従って、本発明のア
クリル系合成繊維の吸水性は実質的に巨大空孔により得
られる。
Therefore, the acrylic synthetic fiber of the present invention mainly contains giant pores, and if we take the ratio (volume ratio) of micro pores to the porosity (V) of the fiber as an example, for example, this ratio is at most 30%.
, preferably 25% or less, more preferably 20% or less,
Particularly preferably, it is 15% or less. Here, micropores refer to pores with a diameter of 2000A or less. Therefore, the water absorbency of the acrylic synthetic fiber of the present invention is substantially achieved by the giant pores.

換言すれば、本発明のアクリル系合成繊維が優れた吸水
性能を示すのは表面に開口した空孔が内部の巨大空孔と
蓬通しているものと考えられる。このことは本発明のア
クリル系合成繊維を顕微鏡で観察すると、酢酸セルロー
ズは繊維横断面の内部のみに分散しているのではなく、
繊維壁にも分散しており、その分散粒子の周囲に見られ
る巨大空孔が繊維表面にも見られることから支持される
。さらに、本発明のアクリル系合成繊維は空孔の表面積
Aが15従/タ以下、好ましくは0.02〜10力′夕
であり、空孔率Vが0.05〜0.75流/夕、好まし
くは0.05〜0.60が/夕であり、そしてV/Aが
1/30以上、好ましくは1/20以上である。
In other words, it is thought that the reason why the acrylic synthetic fiber of the present invention exhibits excellent water absorption performance is that the pores opened on the surface communicate with the giant pores inside. This means that when the acrylic synthetic fiber of the present invention is observed under a microscope, cellulose acetate is not only dispersed inside the cross section of the fiber;
This is supported by the fact that they are also dispersed in the fiber walls, and the giant pores seen around the dispersed particles are also seen on the fiber surfaces. Furthermore, the acrylic synthetic fiber of the present invention has a pore surface area A of 15 pores/unit or less, preferably 0.02 to 10 pores, and a porosity V of 0.05 to 0.75 pores/unit. , preferably 0.05 to 0.60/V/A, and V/A is 1/30 or more, preferably 1/20 or more.

繊維中の空孔の表面積Aくめ/夕)は、液体窒素温度に
おいて、繊維に窒素ガスを吸着させBET式により繊維
の全表面積を求め、その値から繊維外皮の表面積を差し
引く事によって求めた。ここで測定に供する繊維の量と
しては、測定される全表面積の値が1で以上になるよう
に調整した。
The surface area of the pores in the fibers was determined by adsorbing nitrogen gas onto the fibers at liquid nitrogen temperature, determining the total surface area of the fibers using the BET equation, and subtracting the surface area of the fiber sheath from that value. The amount of fibers used for measurement was adjusted so that the total surface area measured was 1 or more.

又、、空孔率V(地/夕)は、繊維と同一組成の十分に
繊密に作成したフィルムの密度p(多/地)を測定し、
かつ写真法によって求めた織総の空孔を含んだ平均断面
積をS(地)とし■式より求めた繊維の空孔を含まない
部分の頁の平均断面積をSo(地)として■式により求
められるものである。S。
In addition, the porosity V (ground/ground) is determined by measuring the density p (porosity/ground) of a sufficiently dense film having the same composition as the fiber.
And, let the average cross-sectional area including the pores of the entire weave determined by the photographic method be S (ground), and the average cross-sectional area of the page that does not include the fiber pores, determined from the formula ■, be So (ground). This is required by S.

=9。続Xp ■但しDeはデニールである
=9. Continued Xp ■However, De is denier.

V=貴X雫き ■ 又、空孔率に占める微細空孔の比率は水銀ポロシメータ
ーにより微細空孔含有率を測定し算出した。
V = Precious

まず、繊維を解織し秤量して水銀ポロシメーターのセル
に充填し、常温にて水銀を加圧しながら圧力と庄入され
た水銀の量を記録する。
First, the fibers are woven, weighed, and filled into the cell of a mercury porosimeter, and while pressurizing mercury at room temperature, the pressure and amount of mercury introduced are recorded.

空孔の直径D(仏)とその空孔に水銀を充填するに必要
な肋P(PSi)との間肌D=空5の榊腕し、Pと水銀
圧入量を測ることにより空孔の直径D(仏)と容積(地
/夕)が求められる。これにより空孔分布曲線を画き、
Dが0.2〆以下の空孔の量を求め繊維1タ中の微細空
孔含有率(塊′夕)とした。空孔率Vが0.05の/タ
未満では、繊維の吸水性が十分でなく、一方0.7&ボ
′夕を超えると繊維の強度、伸長が低下するばかりでな
く、光沢、染色性にも悪影響を及ぼすので避けなければ
ならない。
The gap between the hole diameter D (French) and the rib P (PSi) required to fill the hole with mercury is calculated by measuring the Sakaki arm of the hole D = hole 5 and the amount of mercury injected. The diameter D (Buddha) and volume (Earth/Yu) are determined. This draws a pore distribution curve,
The amount of pores with D of 0.2 or less was determined and defined as the fine pore content (clump) per fiber. If the porosity V is less than 0.05/ta, the water absorption of the fiber will not be sufficient, while if it exceeds 0.7/ta, the strength and elongation of the fiber will not only decrease, but also the gloss and dyeability will deteriorate. should be avoided as it also has a negative effect.

又、空孔の表面積Aが15〆/夕を超えると繊維内に微
小な空孔が増加し、強度、伸度が低下するのみでなく、
染色性、耐熱性を低下させるので避けなければならない
In addition, if the surface area A of the pores exceeds 15 mm/h, the number of micro pores increases within the fiber, which not only causes a decrease in strength and elongation.
It must be avoided as it reduces dyeability and heat resistance.

更にV/Aが1/30未満では吸水性が不充分となるか
又は強度、伸度のみな*らず耐熱性、染色性等が低下す
る。本発明者等の実験結果を総合すると、V/Aが1/
3氏未満となると繊維中の空孔が小さくなり、その大き
さは例えば球に換算すると、半径1000A未満となっ
て優れた吸水性が得られず、又、強伸度も低下する。
Furthermore, if V/A is less than 1/30, water absorption becomes insufficient, or not only strength and elongation* but also heat resistance, dyeability, etc. decrease. Combining the experimental results of the present inventors, it is found that V/A is 1/
If it is less than 3 degrees, the pores in the fiber become small, and the size of the pores becomes, for example, a radius of less than 1000 A when converted into a sphere, making it impossible to obtain excellent water absorbency and also decreasing strength and elongation.

実施例 以下、実施例を示して、本発明を詳細に説明する、尚、
実施例中で用いる部及び%は、特に断わらない限り重量
部及び重量%を表わす。
Examples Hereinafter, the present invention will be explained in detail by showing examples.
Parts and percentages used in the examples are by weight unless otherwise specified.

又、吸水率はDIN−53814によって測定した。The water absorption rate was also measured according to DIN-53814.

実施例 1アクリル系重合体と酢酸セルローズの比率を
種々変化させた重合体濃度21%のジメチルホルムアミ
ド(以下DMFと略称する)溶液を、紡糸原液としDM
F:水=65:35(%)、20午○の凝固浴中に紡出
する。
Example 1 A dimethylformamide (hereinafter abbreviated as DMF) solution with a polymer concentration of 21% in which the ratio of acrylic polymer and cellulose acetate was varied was used as a spinning stock solution and DM was used.
F: water = 65:35 (%), spun in a coagulation bath at 20 o'clock.

アクリル系重合体の組成は、アクリロニトリル(以下A
Nと略称する):アクリル酸メチル(以下MAと略称す
る):メタリルスルホン酸ソーダ(以下SMASと略称
する)=90.5:9.0:0.5(%)である。紙糸
後1次延伸を5倍行ない、120ooの熱ローラー型乾
燥機に於いて水分率が0.5%になるまで乾燥し、10
0℃の湿熱下で2次延伸を1.1倍行なった。クリンプ
付与、クリンプセット後、紅eの繊維を得た。結果を第
1表に示す。第1表 なお、空孔率(V)に占める巨大空孔(直径2000A
以上)の割合は、Exp−No.4の繊維では88.7
容積%であり、Exp−No.5の繊維では85.4容
積%であった。
The composition of the acrylic polymer is acrylonitrile (hereinafter referred to as A
The ratio is 90.5:9.0:0.5 (%). After the paper yarn, the paper yarn was first stretched 5 times, dried in a 120 oo hot roller dryer until the moisture content became 0.5%, and
Secondary stretching was performed by 1.1 times under moist heat at 0°C. After applying the crimp and setting the crimp, a red fiber was obtained. The results are shown in Table 1. Table 1 shows that huge pores (diameter 200A) account for porosity (V).
(above) is the ratio of Exp-No. 4 fiber is 88.7
Volume %, Exp-No. For fiber No. 5, it was 85.4% by volume.

実施例 2 種々製造条件を変え、第2表に示す幻eの繊維*を得た
、アクリル系重合体としては、実施例1のものを用いた
Example 2 The acrylic polymer used in Example 1 was used as the acrylic polymer to obtain the illusory e fibers* shown in Table 2 by changing various production conditions.

第2表 実施例 3 AN:MA:アリルスルホン酸ソーダ(以下SASと略
称する)=90.2:9.0:0.8の組成をもつアク
リル系重合体8礎邦及び酢酸セルロース2の部よりなり
、表に示す条件の級糸原液を用いて紡糸を行い、実施例
1の紙糸後処理条件にて、幻eの繊維を得た。
Table 2 Example 3 AN: MA: 8 parts of an acrylic polymer having the composition of sodium allylsulfonate (hereinafter abbreviated as SAS) = 90.2:9.0:0.8 and 2 parts of cellulose acetate Spinning was carried out using the grade yarn stock solution under the conditions shown in the table, and under the paper yarn post-treatment conditions of Example 1, a phantom e fiber was obtained.

但し、紡糸格のみは、紡糸原液の溶剤と同一溶剤の水溶
液を用いた。結果を第3表に示す。
However, only for the spinning thread, an aqueous solution of the same solvent as that of the spinning dope was used. The results are shown in Table 3.

表中の粘度は50午0における粘度を、B型粘度計で測
った時の粘度であり、安定性は50午0での耐ゲル化安
定性、及びドープ中のアクリル系重合体、及び酢酸セル
ローズの分散安定性を評価したものである。第3表 実施例 4 AN:MA:SMAS=90.5:9.0:0.5(%
)組成をもつアクリル系重合体9碇邦と酢酸セルローズ
10部を、DMNこ重合体濃度25%になるように溶解
した紙糸原液を、DMF:水=65:35(%)で25
℃の凝固裕中に紙出し種々の倍率にて1次延伸を行なっ
た。
The viscosity in the table is the viscosity at 50:00 when measured with a B-type viscometer, and the stability is the gelation resistance at 50:00, the acrylic polymer in the dope, and the acetic acid. This is an evaluation of the dispersion stability of cellulose. Table 3 Example 4 AN:MA:SMAS=90.5:9.0:0.5(%
) 9 parts of acrylic polymer with the composition and 10 parts of cellulose acetate were dissolved so that the DMN polymer concentration was 25%.
The paper was put out into a coagulation bath at 0.degree. C. and subjected to primary stretching at various magnifications.

1次延伸以後は実施例1の条件にて乾燥〜後処理を行な
い幻eの繊維を得た。
After the first stretching, drying and post-treatment were performed under the conditions of Example 1 to obtain a fiber of phantom e.

結果を第4表に示す。第4表 実施例 5 AN:MA:SMAS=92.5:7.0:0.5(%
)の組成をもつ重合体9碇郭と、酢酸セルローズ1碇部
の重合体を、DMFに重合体濃度25%になるよう溶解
した紙糸原液をDMF:水=60:40(%)で30℃
の 肌 に薮出し、4倍の1次延伸を行ない、*第5
表に示す乾燥温度をもつ熱ローラー型乾燥機にて水分率
0.5%以下まで乾燥させ、その後2次延伸を110℃
の湿熱下2倍行ない、クリンプ付与、クリンプセツト後
紅eの繊維を得た。
The results are shown in Table 4. Table 4 Example 5 AN:MA:SMAS=92.5:7.0:0.5(%
) A paper yarn stock solution prepared by dissolving 9 parts of a polymer having the composition and 1 part of cellulose acetate in DMF to give a polymer concentration of 25% was mixed with DMF: water = 60:40 (%) at 30%. ℃
A bush is exposed on the skin of
Dry to a moisture content of 0.5% or less using a hot roller dryer with the drying temperature shown in the table, and then perform secondary stretching at 110°C.
After applying the crimp and setting the crimp, red-colored fibers were obtained.

結果を第5表に示す。第5表 実施例 6 AN:MA:SAS=89:10.4:0.6(%)の
組成をもつポリマー85部と、酢酸セルローズ15部を
「重合体濃度27%になるようDMFに溶解した級糸原
液をDMF:水70:30で30℃の凝固浴中に紡出し
、1次延伸を5倍行なう。
The results are shown in Table 5. Table 5 Example 6 85 parts of a polymer with a composition of AN:MA:SAS=89:10.4:0.6 (%) and 15 parts of cellulose acetate were dissolved in DMF to a polymer concentration of 27%. The prepared yarn stock solution was spun into a coagulation bath at 30° C. with DMF:water 70:30, and the first stretching was performed 5 times.

1次延伸後、125℃のローラー型乾燥機にて種々の残
留水分率になるように乾燥させ、その後実施例2の後処
理条件によって2deの繊維を得た。
After the primary stretching, the fibers were dried in a roller dryer at 125° C. to various residual moisture contents, and then 2de fibers were obtained under the post-treatment conditions of Example 2.

結果を第6表に示す。6表 なお、空孔率(V)に占める巨大空孔の割合は、Exp
−No.67の繊維では84.7容積%であり、Exp
−No.69の繊維では85.群容積%であった。
The results are shown in Table 6. Table 6 In addition, the proportion of giant pores in the porosity (V) is Exp
-No. 67 fibers, it is 84.7% by volume, and Exp
-No. 85 for 69 fibers. group volume%.

実施例 7実施例6の級糸原液をDM『:水65:35
で2yCの凝固裕中に綾糸し、4倍の1次延伸を行なっ
た*後、125ooのローラー型乾燥機にて水分率0.
7%以下まで乾燥させる。
Example 7 The grade yarn stock solution of Example 6 was DM': water 65:35.
The twill yarn was woven into a 2yC coagulation chamber and subjected to 4 times the primary stretching.* After that, it was dried in a 125OO roller dryer with a moisture content of 0.
Dry to 7% or less.

乾燥後、実施例5に示す2次延伸条件にて2次延伸を行
ない、クリンプ付与、クリンプセット後紅eの繊維を得
た。結果を第7表に示す。7表 実施例 8 AN:MA:SAS=90.5:9.0:0.5(%)
の組成をもつアクリル系重合体8の部及び酢酸セルロー
ズ2碇部を、重合体濃度20%になるようDMFに熔解
し、重合体とDMFの総量10礎部‘こ対して、2部の
水を添加した級糸原液を、DMF:水=50:50(%
)で25℃の凝固裕中に織出し、水洗後、熱水中で4倍
に延伸し、135午0のローラー型乾燥機により、水分
率1.0%以下まで乾燥後、115qoの湿熱下で2倍
の2次延伸を行ない、クリンプ付与、クリンプセット後
幻eの繊維を得た。
After drying, secondary stretching was performed under the secondary stretching conditions shown in Example 5 to obtain crimped and crimp-set Beni e fibers. The results are shown in Table 7. Table 7 Example 8 AN:MA:SAS=90.5:9.0:0.5(%)
8 parts of an acrylic polymer having the composition and 2 parts of cellulose acetate were dissolved in DMF to give a polymer concentration of 20%, and 2 parts of water was added to the total amount of polymer and DMF of 10 parts. DMF: water = 50:50 (%
), washed with water, stretched 4 times in hot water, dried to a moisture content of 1.0% or less in a roller dryer at 135 pm, and then dried under moist heat at 115 qo. After performing 2-fold secondary stretching, crimping and crimp setting, a fiber of phantom e was obtained.

繊維はややダル調であり、空孔率VO.3流/夕、空孔
の表面積AI.03わ/夕でV/A=1/3.43のボ
ィドを含有した多孔性アクリル繊維である。
The fibers are slightly dull and have a porosity of VO. 3rd stream/evening, surface area of pores AI. It is a porous acrylic fiber containing voids with a V/A of 1/3.43 at 03W/N.

糸質はデニールがe、乾強度2.9夕/de、乾伸度3
0.5%であった。又、湿強度2.87夕/de、緑伸
度31.3%で湿潤時も糸質に低下はなかった。本発明
により得られる多孔性アクリル系合成繊維の特長は、大
きな吸水率、吸水速度をもつこと、吸水時の湿潤強伸度
がすぐれること、良好な光沢をもつこと、染色時の色が
鮮明なこと等が挙げられる。
The yarn quality has a denier of e, a dry strength of 2.9 mm/de, and a dry elongation of 3.
It was 0.5%. In addition, the wet strength was 2.87 m/de, the green elongation was 31.3%, and there was no decrease in yarn quality even when wet. The features of the porous acrylic synthetic fiber obtained by the present invention are that it has a high water absorption rate and water absorption rate, has excellent wet strength and elongation when water is absorbed, has good gloss, and has a clear color when dyed. There are many things that can be mentioned.

天然繊維においては、′湿潤時のバルキー性、腰感がな
くなるが、本発明による多孔性アクリル系合成繊維にお
いては、繊維中の空孔に水を吸い込むという物理的な吸
水機構である為に、繊維のバルキー性、腰感の低下がな
く、その上に吸水性、透水性、透湿’性にすぐれている
。又、本発明による繊維は、抗ピル的に極めてすぐれた
ものが出来る。通常、抗ピル性付与の為には、アクリル
系重合体中の可塑成分量の減少、重合体分子量の減少、
或いは低分子量重合体の混合など、級糸原液の改質と延
伸−収縮条件等、後処理条件の変化によっており、この
為に強伸度の低下、耐熱性の低下、紡績性の低下など繊
維性能の一部、及び操業性を犠牲にしているが、本発明
による多孔性アクリル系合成繊維は、それら繊維性能及
び操業性の低下もなく、抗ピル性にすぐれたものである
。更に本発明による多孔性アクリル系合成繊維は空孔率
が0.05流′夕〜0.75塊′夕であり、軽量性、保
温性が極めてすぐれている。
Natural fibers lose their bulkiness and stiffness when wet, but the porous acrylic synthetic fibers of the present invention have a physical water absorption mechanism that sucks water into the pores in the fibers. It does not reduce the bulkiness of the fibers or lower back feel, and has excellent water absorption, water permeability, and moisture permeability. Furthermore, the fibers according to the present invention have excellent anti-pilling properties. Generally, in order to impart anti-pilling properties, reduction of the amount of plastic components in the acrylic polymer, reduction of the polymer molecular weight,
Alternatively, changes in post-processing conditions such as modification of the grade yarn stock solution and stretching/shrinking conditions, such as mixing of low molecular weight polymers, can cause fibers to deteriorate, such as a decrease in strength and elongation, a decrease in heat resistance, and a decrease in spinnability. Although some of the performance and workability are sacrificed, the porous acrylic synthetic fiber according to the present invention has excellent anti-pilling properties without any deterioration in fiber performance or workability. Further, the porous acrylic synthetic fiber according to the present invention has a porosity of 0.05 pores to 0.75 lumens, and is extremely lightweight and heat retaining.

こうした従釆にない多くのすぐれた性能を持つ本発明の
多孔性アクリル系合成繊維の用途としては、内外衣とし
ての一般衣料はもちろん、スポーツウェア、ふとん綿、
カーテン等の寝装、インテリアなどに最適である。
The porous acrylic synthetic fiber of the present invention, which has many excellent properties not found in conventional products, can be used not only for general clothing as inner and outer clothing, but also for sportswear, futon cotton,
Ideal for bedding such as curtains, interior decoration, etc.

Claims (1)

【特許請求の範囲】 1 (イ)(a)少くとも80重量%のアクリロニトリ
ル単位を含有し且つスルホン酸基又はスルホン酸塩基を
有する共重合可能なモノマーを0.3〜1.2重量%共
重合したアクリロニトリル系共重合体70〜98重量%
および(b)酢酸セルローズ30〜2重量% からなる重合体を15〜35重量%含有する有機溶剤溶
液を準備し、(ロ)該有機溶剤溶液を高々30℃の凝固
浴中に紡出し、(ハ)生成する紡出糸を2.5〜8倍に
一次延伸し、(ニ)生成する水膨潤状態にある繊維を1
00〜180℃の温度で水分率1.0重量%以下に乾燥
し、次いで(ホ)得られる乾燥繊維を湿熱で3倍以下に
二次延伸し、かくして(ヘ)下記性質 (1)空孔の表面積Aが15m^2/g以下であり、空
孔率Vが0.05〜0.75cm^3/gでありそして
V/Aが1/(30)以上であり、且つ(2)微小ボイ
ドの存在が抑えられ巨大空孔を含有するを有する多孔性
アクリル系合成繊維を形成する、ことを特徴とする多孔
性アクリル系合成繊維の製造方法。 2 有機溶剤溶液を高々30℃の凝固浴中に紡出して微
小ボイドの形成が抑制された繊維となし、続いて一次延
伸して得られた水膨潤状態にあり且つ巨大孔隙を分散含
有する繊維を乾燥して実質的に微小ボイドを消滅せしめ
、次いで二次延伸を行ない巨大孔隙構造を助長する特許
請求の範囲第1項記載の方法。 3 アクリロニトリル系共重合体の上記共重合可能なモ
ノマーがメタリルスルホン酸ソーダ又はアリルスルホン
酸ソーダである特許請求範囲第1項記載の方法。 4 1次延伸が3〜6倍である特許請求の範囲第1項記
載の方法。 5 乾燥を105〜140℃で行なう特許請求の範囲第
1項記載の方法。 6 乾燥を熱ローラー型乾燥機で行なう特許請求の範囲
第1項又は第5項記載方法。 7 乾燥を、105〜140℃の熱ローラーと100〜
150℃の熱風を併用して行なう特許請求の範囲第1項
記載の方法。 8 2次延伸ら1.05〜2倍である特許請求の範囲第
1項記載の方法。
[Scope of Claims] 1 (a) (a) 0.3 to 1.2% by weight of a copolymerizable monomer containing at least 80% by weight of acrylonitrile units and having a sulfonic acid group or a sulfonic acid group; Polymerized acrylonitrile copolymer 70-98% by weight
and (b) preparing an organic solvent solution containing 15 to 35% by weight of a polymer consisting of 30 to 2% by weight of cellulose acetate, (b) spinning the organic solvent solution into a coagulation bath at a temperature of at most 30°C; c) The resulting spun yarn is primarily stretched 2.5 to 8 times, and (d) the resulting water-swollen fiber is 1
It is dried to a moisture content of 1.0% by weight or less at a temperature of 00 to 180°C, and then (e) the obtained dry fiber is secondarily stretched to 3 times or less with moist heat, and (f) the following properties (1) voids are obtained. has a surface area A of 15 m^2/g or less, a porosity V of 0.05 to 0.75 cm^3/g, and a V/A of 1/(30) or more, and (2) microscopic 1. A method for producing porous acrylic synthetic fibers, which comprises forming porous acrylic synthetic fibers in which the presence of voids is suppressed and giant pores are contained. 2. A fiber in which the formation of microvoids is suppressed by spinning an organic solvent solution into a coagulation bath at a temperature of at most 30°C, followed by primary stretching, resulting in a fiber in a water-swollen state and containing distributed giant pores. 2. The method according to claim 1, wherein the microvoids are substantially eliminated by drying, and then secondary stretching is performed to promote a macropore structure. 3. The method according to claim 1, wherein the copolymerizable monomer of the acrylonitrile-based copolymer is sodium methallylsulfonate or sodium allylsulfonate. 4. The method according to claim 1, wherein the primary stretching is 3 to 6 times. 5. The method according to claim 1, wherein the drying is carried out at 105 to 140°C. 6. The method according to claim 1 or 5, wherein the drying is carried out using a hot roller dryer. 7 Dry with a hot roller at 105-140°C and 100-140°C.
The method according to claim 1, which is carried out in combination with hot air at 150°C. 8. The method according to claim 1, wherein the secondary stretching is 1.05 to 2 times.
JP7704679A 1979-06-18 1979-06-18 Method for producing porous acrylic synthetic fiber Expired JPS6011124B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP7704679A JPS6011124B2 (en) 1979-06-18 1979-06-18 Method for producing porous acrylic synthetic fiber
US06/156,993 US4351879A (en) 1979-06-18 1980-06-06 Porous acrylic synthetic fibers comprising cellulose acetate in an acrylic matrix
DE3050231A DE3050231C2 (en) 1979-06-18 1980-06-16
DE3050897A DE3050897C2 (en) 1979-06-18 1980-06-16
DE3022537A DE3022537C2 (en) 1979-06-18 1980-06-16 Porous synthetic acrylic fiber made from cellulose acetate and acrylic polymers and process for their manufacture
GB8019925A GB2053790B (en) 1979-06-18 1980-06-18 Porous acrylic fibres
US06/397,282 US4395377A (en) 1979-06-18 1982-07-12 Porous acrylic synthetic fibers comprising cellulose acetate in an acrylic matrix and method for producing said fibers
US06/397,280 US4460648A (en) 1979-06-18 1982-07-12 Porous bicomponent acrylic synthetic fibers comprising cellulose acetate in an acrylic matrix and method for producing said fibers
GB08228954A GB2108040B (en) 1979-06-18 1982-10-11 Making porous acrylic fibres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7704679A JPS6011124B2 (en) 1979-06-18 1979-06-18 Method for producing porous acrylic synthetic fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16465184A Division JPS6065109A (en) 1984-08-06 1984-08-06 Porous acrylonitrile synthetic fiber

Publications (2)

Publication Number Publication Date
JPS56311A JPS56311A (en) 1981-01-06
JPS6011124B2 true JPS6011124B2 (en) 1985-03-23

Family

ID=13622826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7704679A Expired JPS6011124B2 (en) 1979-06-18 1979-06-18 Method for producing porous acrylic synthetic fiber

Country Status (1)

Country Link
JP (1) JPS6011124B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199718A (en) * 2012-03-26 2013-10-03 Mitsubishi Rayon Co Ltd Acrylic deodorant fiber, and spun yarn and woven and knitted fabric containing the same
JP2015030925A (en) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 Acrylic composite having antimicrobial deodorizing property and deodorant, yarn and woven or knitted fabric containing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163426A (en) * 1983-03-03 1984-09-14 Kanebo Ltd Manufacture of mothproofing acrylic synthetic fiber
JPS6059124A (en) * 1983-09-05 1985-04-05 Kanebo Ltd Production of antifungal acrylic synthetic fiber
JPS61200395U (en) * 1985-06-04 1986-12-15
JP5283823B2 (en) * 2006-01-05 2013-09-04 三菱レイヨン株式会社 A fiber in which an acrylonitrile-based polymer and a cellulose-based polymer are uniformly mixed, a nonwoven fabric containing the same, and a method for producing a fiber in which an acrylonitrile-based polymer and a cellulose-based polymer are uniformly mixed.
JP5362805B2 (en) * 2011-11-28 2013-12-11 三菱レイヨン株式会社 A nonwoven fabric containing fibers in which an acrylonitrile polymer and a cellulose polymer are uniformly mixed.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199718A (en) * 2012-03-26 2013-10-03 Mitsubishi Rayon Co Ltd Acrylic deodorant fiber, and spun yarn and woven and knitted fabric containing the same
JP2015030925A (en) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 Acrylic composite having antimicrobial deodorizing property and deodorant, yarn and woven or knitted fabric containing the same

Also Published As

Publication number Publication date
JPS56311A (en) 1981-01-06

Similar Documents

Publication Publication Date Title
JPS6011124B2 (en) Method for producing porous acrylic synthetic fiber
JPS604284B2 (en) Method for producing hydrophilic filaments or fibers
JPS6233327B2 (en)
GB2053790A (en) Porous acrylic fibres
US2907096A (en) Shaped polyacrylonitrile structures
JPS6253607B2 (en)
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JPS6360129B2 (en)
JP4191930B2 (en) Artificial hair and method for producing the same
JPS6356323B2 (en)
JP7167991B2 (en) Acrylic fiber, spun yarn and knitted fabric containing said fiber
KR860000605B1 (en) Process for producing acrylic fibers with excellent surface smoothness
JPS6360130B2 (en)
JPS5843483B2 (en) Porous modacrylic synthetic fiber and method for producing the same
JPS6149406B2 (en)
JPS601401B2 (en) Manufacturing method of acrylonitrile synthetic fiber
JPS602405B2 (en) Manufacturing method for acrylonitrile-based continuous filament yarn mixed with different fineness single yarns
JPS6018332B2 (en) Manufacturing method of acrylic hollow fiber
JPH0790722A (en) Water-absorbing conjugate yarn
JPH05302213A (en) Water-absorbing acrylic conjugate fiber
DE3021889A1 (en) POROESE, FIRE-COMBUSTIBLE SYNTHETIC ACRYLIC FIBERS AND METHOD FOR THE PRODUCTION THEREOF
JPS6018331B2 (en) Porous flame-retardant acrylic synthetic fiber
JPS6050883B2 (en) Novel acrylonitrile synthetic fiber and its manufacturing method
JP2005120512A (en) Acrylic conjugate fiber having refreshing cool feeling and method for producing the same
JPS6211083B2 (en)