JP2002004175A - Pan based precursor for carbon fiber and method of producing the same - Google Patents

Pan based precursor for carbon fiber and method of producing the same

Info

Publication number
JP2002004175A
JP2002004175A JP2000184273A JP2000184273A JP2002004175A JP 2002004175 A JP2002004175 A JP 2002004175A JP 2000184273 A JP2000184273 A JP 2000184273A JP 2000184273 A JP2000184273 A JP 2000184273A JP 2002004175 A JP2002004175 A JP 2002004175A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
precursor
pan
pan based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000184273A
Other languages
Japanese (ja)
Inventor
Katsumi Yamazaki
勝巳 山▲ざき▼
Yoji Matsuhisa
要治 松久
Masashi Tokuda
政志 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000184273A priority Critical patent/JP2002004175A/en
Publication of JP2002004175A publication Critical patent/JP2002004175A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a PAN based precursor for a graphite fiber having an excellent adhesion with a matrix resin and a high compression strength at 0 deg. (flexural strength practically) by suppressing crystallization of the surface, and to provide a method of manufacturing it. SOLUTION: This PAN based precursor for carbon fiber includes sugars as a character. This method of manufacturing the PAN based precursor for carbon fiber imparts sugars to a water swollen fiber and then dries and densifies in manufacturing the precursor for carbon fiber by wet spinning or dry/wet spinning a PAN based copolymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マトリックス樹脂
との接着性に優れ、かつ、コンポジットの実用特性であ
る曲げ強度(0°圧縮強度と関連)の高い黒鉛化繊維を
提供するためのPAN系プリカーサーおよびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PAN system for providing a graphitized fiber which has excellent adhesion to a matrix resin and high bending strength (related to 0 ° compression strength) which is a practical property of a composite. The present invention relates to a precursor and a method for manufacturing the precursor.

【0002】[0002]

【従来の技術】炭素繊維は、その比強度、比弾性率が高
い特徴を生かしてあらゆる用途に展開されてきている。
特にPAN(ポリアクリロニトリル、以下単にPANと
いう)系プリカーサーを出発原料とした炭素繊維は比強
度が高く加工性も優れているため、広く利用されてい
る。炭素繊維は熱硬化樹脂や熱可塑樹脂をマトリックス
とする複合材料として使用されるのが一般的である。複
合材料において炭素繊維の強度や弾性率を有効に利用す
るためには、炭素繊維とマトリックスである樹脂が強固
に接着することが必要である。そのために炭素繊維の製
造工程の仕上げとして酸化処理を施して炭素繊維表面に
官能基を付与することが一般的である。しかしながら、
炭化温度を高くして弾性率を上げていくと炭素繊維と樹
脂との接着が悪くなるという現象が認められる。この原
因は炭化(黒鉛化)温度を上げるに従って、炭素繊維の
グラファイト構造の結晶が完全なものに近ずくため酸化
され難くなり、従って、樹脂との接着に十分な官能基が
付与されにくいためと推定される。このようなことか
ら、弾性率の高い炭素繊維ほど、より強い酸化処理が必
要となるが、酸化処理だけでは十分な樹脂との接着力が
得られていないという問題があった。また、炭化(黒鉛
化)温度を上げ弾性率を高くするほど、0°圧縮強度が
低下するという問題があった。
2. Description of the Related Art Carbon fibers have been developed for various uses by taking advantage of their high specific strength and high specific elastic modulus.
In particular, carbon fibers starting from a PAN (polyacrylonitrile, hereinafter simply referred to as PAN) -based precursor are widely used because of their high specific strength and excellent workability. Carbon fibers are generally used as a composite material having a thermosetting resin or a thermoplastic resin as a matrix. In order to effectively utilize the strength and elastic modulus of the carbon fiber in the composite material, it is necessary that the carbon fiber and the matrix resin are firmly bonded. To this end, it is common to apply an oxidation treatment as a finish of the carbon fiber manufacturing process to impart a functional group to the carbon fiber surface. However,
When the carbonization temperature is increased to increase the elastic modulus, a phenomenon that the adhesion between the carbon fiber and the resin deteriorates is recognized. This is because, as the carbonization (graphitization) temperature is increased, the graphite structure of the carbon fiber is less likely to be oxidized because it approaches a perfect crystal, and therefore it is difficult to provide a sufficient functional group for bonding with the resin. Presumed. For this reason, a carbon fiber having a higher elastic modulus requires a stronger oxidation treatment, but there has been a problem that a sufficient adhesive force with a resin cannot be obtained by the oxidation treatment alone. There is also a problem that the 0 ° compressive strength decreases as the carbonization (graphitization) temperature is increased and the elastic modulus is increased.

【0003】炭素繊維の結晶性は、単繊維断面の半径方
向において、必ずしも均一ではなく、内層部に対して、
表層部の方が高いことが多く、繊維表面の欠陥による強
度低下が、より助長されるという問題があった。この原
因として、プリカーサーを加熱空気中で耐炎化する工程
で、酸素が繊維表面から拡散するために、表層部の方が
耐炎化構造として完成度が高くなるためと推定される。
[0003] The crystallinity of the carbon fiber is not always uniform in the radial direction of the cross section of the single fiber.
The surface layer portion is often higher, and there has been a problem that a decrease in strength due to defects on the fiber surface is further promoted. This is presumed to be due to the fact that oxygen diffuses from the fiber surface in the step of making the precursor flame-resistant in heated air, so that the surface layer has a higher degree of perfection as a flame-resistant structure.

【0004】上記問題を解決し、マトリックス樹脂との
接着に寄与する繊維の表面の結晶性を低下させ、酸化処
理を容易にすると同時に、炭素繊維の強度を向上させる
手段として、PAN系プリカーサーの繊維表層部にホウ
素などの耐炎化遅延元素を存在させる提案がなされてい
る(特開平10−8843号公報)。
[0004] As a means for solving the above problems, reducing the crystallinity of the surface of the fiber contributing to the adhesion to the matrix resin, facilitating the oxidation treatment, and improving the strength of the carbon fiber, the fiber of the PAN-based precursor is used. It has been proposed that a flame retardant element such as boron be present in the surface layer (JP-A-10-8843).

【0005】しかしながら、ホウ素などの元素は、炭化
温度が高くなり、2000℃以上の黒鉛化領域になる
と、黒鉛化を促進する触媒的作用が発揮されるようにな
るため、むしろ表層部の結晶性がより高くなるという問
題があった。
[0005] However, elements such as boron have a high carbonization temperature and exhibit a catalytic action to promote graphitization in a graphitized region of 2000 ° C. or higher. Was higher.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる従来
技術の背景に鑑み、表層部の結晶性を抑制して、マトリ
ックス樹脂との接着が良好で、かつ、0°圧縮強度(実
用特性としては曲げ強度)の高い黒鉛化繊維を提供する
ための、炭素繊維用PAN系プリカーサーおよびその製
造方法を提供せんとするものである。
SUMMARY OF THE INVENTION In view of the background of the prior art, the present invention suppresses the crystallinity of the surface layer, has good adhesion to the matrix resin, and has a 0 ° compressive strength (as a practical characteristic). Is to provide a PAN-based precursor for carbon fiber and a method for producing the same to provide a graphitized fiber having high bending strength.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、次のような手段を採用する。すなわち、
本発明の炭素繊維用PAN系プリカーサーは、糖類を含
有することを特徴とするものである。
The present invention employs the following means in order to solve the above-mentioned problems. That is,
The PAN precursor for carbon fiber of the present invention is characterized by containing a saccharide.

【0008】また、本発明の炭素繊維用PAN系プリカ
ーサーの製造方法は、PAN系共重合体を湿式、乾湿式
紡糸して炭素繊維用プリカーサーを製造するに際して、
水膨潤繊維に糖類を付与した後に、乾燥緻密化すること
を特徴とするものである。
The method for producing a PAN-based precursor for carbon fiber of the present invention is characterized in that the PAN-based copolymer is wet-spun and dry-wet-spun to produce a precursor for carbon fiber.
The method is characterized in that after the swelling is given to the water-swelled fiber, the fiber is dried and densified.

【0009】[0009]

【発明の実施の形態】本発明者らは、上記観点から鋭意
検討を重ね、PAN系プリカーサーの表層部に、糖類を
含有させ、これを焼成してみたところ、炭素繊維の表層
部のグラファイト構造の非晶部分を増加させ、表層部の
平均的な結晶性を抑制することができ、前記課題を一挙
に解決することを究明したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have conducted intensive studies from the above-mentioned viewpoints. The PAN-based precursor contained saccharides in the surface layer thereof and was calcined. As a result, the graphite structure of the surface layer of the carbon fiber was obtained. It has been found that the amorphous portion can be increased, the average crystallinity of the surface layer portion can be suppressed, and the above problem can be solved at once.

【0010】本発明の炭素繊維用PAN系プリカーサー
は、少なくともその表面に糖類を含有しているものであ
る。かかる糖類としては、例えばアラビノース、キシロ
ース、グルコース、フルクトース、マンノース、ガラク
トース、スクロース、ラクトース、マルトース、ラフィ
ノース、デンプン、セルロースおよびその水溶化セルロ
ース、グリコーゲンなどが好ましく使用される。
[0010] The PAN precursor for carbon fiber of the present invention contains a saccharide at least on its surface. As such a saccharide, for example, arabinose, xylose, glucose, fructose, mannose, galactose, sucrose, lactose, maltose, raffinose, starch, cellulose and its water-soluble cellulose, glycogen and the like are preferably used.

【0011】該糖類の適正な含有量は、使用する糖類に
より異なるため、いちがいに言い難いが、大まかには繊
維重量当たり好ましくは0.5〜10重量%、より好ま
しくは0.5〜5重量%であるのがよい。0.5重量%
未満では、表層部の結晶性を抑制する効果が不足し、1
0重量%を越えると、平均的な結晶性の低下が大きく、
炭素繊維の弾性率の低下が大きくなり好ましくない。
The appropriate content of the saccharide varies depending on the saccharide used, and is therefore difficult to say, but is generally about 0.5 to 10% by weight, more preferably about 0.5 to 5% by weight per fiber weight. It is good. 0.5% by weight
If it is less than 1, the effect of suppressing the crystallinity of the surface layer portion is insufficient, and 1
If it exceeds 0% by weight, the average crystallinity is greatly reduced,
The decrease in the elastic modulus of the carbon fiber is undesirably large.

【0012】また、かかる糖類の含有効果をより有効に
発揮するためには、単繊維の断面半径方向において、主
に表層部に偏って含有されていることがより好ましい。
In order to more effectively exert the effect of containing such saccharides, it is more preferable that the saccharides are contained mainly in the surface layer in the cross-sectional radial direction.

【0013】本発明の炭素繊維用PAN系プリカーサー
の製造方法は、PAN系共重合体を湿式、乾湿式紡糸し
て炭素繊維用PAN系プリカーサーを製造するに際し
て、乾燥緻密化前の水膨潤度繊維に水溶性の糖類を付与
してから、乾燥緻密化することが重要である。
The method for producing a PAN-based precursor for carbon fiber according to the present invention is characterized in that when a PAN-based copolymer is produced by spinning a PAN-based copolymer by a wet or dry-wet method, the water-swelling degree fiber before drying and densification is produced. It is important to provide a water-soluble saccharide to the mixture and then dry-densify it.

【0014】PAN系重合体の紡糸方法としては、湿
式、あるいは乾湿式のどちらも使用される。糖類を繊維
の表層部に含有させるためには、乾燥緻密化前の膨潤度
が50〜300%の水膨潤繊維に糖類を付与することが
好ましい。膨潤度が50%未満では、糖類が繊維の表層
部から浸入しにくく、300%を越えては、繊維内層部
まで浸入するため好ましくないが、紡糸条件によって、
膨潤度が同じでもボイド径や数が異なるので、膨潤度は
特に限定されるものではない。
As a method for spinning the PAN polymer, either a wet method or a dry-wet method is used. In order to include the saccharide in the surface layer of the fiber, it is preferable to add the saccharide to the water-swelled fiber having a degree of swelling of 50 to 300% before dry densification. If the degree of swelling is less than 50%, saccharides hardly penetrate from the surface layer of the fiber, and if it exceeds 300%, it penetrates into the inner layer of the fiber, which is not preferable.
Even though the degree of swelling is the same, the diameter and number of voids are different, so the degree of swelling is not particularly limited.

【0015】さらに、かかる糖類としては、水溶性のも
のが好ましく使用される。すなわち、非水溶性物質で
は、繊維表層部に含浸することが困難なため好ましくな
い。また、プリカーサーが含有する糖類は、プリカーサ
ーを常法に従って焼成し、炭素繊維に転換後、炭化物と
して残存し、わずかでもグラファイトの結晶構造を形成
し、その配向に関与していることが好ましく、また、こ
の炭化残存率は、少なくとも5%以上であることが好ま
しい。このような観点から、糖類の中でも水溶化セルロ
ース、例えば、デンプン、グリコーゲンやカルボキシメ
チルセルロース、ヒドロキシエチルセルロース、ヒドロ
キシプロピルセルロース、メチルセルロースなどが特に
好ましく使用される。
Further, as such saccharides, water-soluble saccharides are preferably used. That is, a water-insoluble substance is not preferable because it is difficult to impregnate the fiber surface layer. In addition, the saccharides contained in the precursor are preferably baked in a conventional manner, converted into carbon fibers, remain as carbides, form even a small amount of graphite crystal structure, and are preferably involved in the orientation thereof. Preferably, the carbonization residual ratio is at least 5% or more. From such a viewpoint, among sugars, water-soluble cellulose, for example, starch, glycogen, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose and the like are particularly preferably used.

【0016】本発明の炭素繊維用PAN系プリカーサー
の製造方法をさらに詳細に説明する。
The method for producing the PAN precursor for carbon fiber of the present invention will be described in more detail.

【0017】PAN系の共重合体組成としては、特に限
定されるものではないが、アクリロニトリルを、好まし
くは90重量%以上、さらに好ましくは95重量%以上
含有するものがよい。
The PAN copolymer composition is not particularly limited, but preferably contains acrylonitrile preferably at least 90% by weight, more preferably at least 95% by weight.

【0018】上記共重合体の溶媒としては、特に限定さ
れるものではないが、例えば塩化亜鉛やチオシアン酸ナ
トリウムなどの無機塩系、ジメチルスルホキシド、ジメ
チルホルムアミド、ジメチルアセトアミド、N−メチル
ピロリドンなどの有機系のものを使用することができ
る。
The solvent for the copolymer is not particularly restricted but includes, for example, inorganic salts such as zinc chloride and sodium thiocyanate, and organic solvents such as dimethylsulfoxide, dimethylformamide, dimethylacetamide and N-methylpyrrolidone. A system can be used.

【0019】かかる共重合体を溶媒に溶解した紡糸原液
は、常法に従って、湿式あるいは乾湿式紡糸して繊維化
される。次いで、水洗した後に浴延伸、あるいは浴延伸
した後に水洗を施して、膨潤度が50〜300%の水膨
潤繊維を得る。該膨潤度を決定する要因としては、共重
合体の親水性、紡糸原液濃度、溶媒の種類、凝固浴の溶
媒濃度、凝固浴温度、浴延伸温度、浴延伸倍率などがあ
るため、生産性を損なわない範囲で、繊維の膨潤度が5
0〜300%になるように、これらの要因を適正に設定
する。
The spinning dope obtained by dissolving the copolymer in a solvent is spun into fibers by wet or dry-wet spinning according to a conventional method. Next, after water-washing, bath stretching, or water-washing after bath stretching is performed to obtain a water-swelled fiber having a degree of swelling of 50 to 300%. Factors that determine the degree of swelling include the hydrophilicity of the copolymer, the concentration of the spinning dope, the type of solvent, the solvent concentration of the coagulation bath, the coagulation bath temperature, the bath stretching temperature, and the bath stretching ratio. The degree of swelling of the fiber is 5 as long as it is not damaged.
These factors are set appropriately so as to be 0 to 300%.

【0020】次いで、該膨潤繊維に糖類の水溶液を付与
する。付与方法は特に限定されないが、例えばディップ
法、噴霧法、タッチロ−ル法、ガイド供給法などが採用
されるが、処理が容易なディップ法が好ましく使用され
る。処理液の濃度は、最終のプリカーサーが糖類を好ま
しくは0.5〜10重量%、より好ましくは0.5〜5
重量%含有するように設定する。また、糖類と同時に、
単繊維間の接着を防止するための油剤を付与することが
できる。あるいは、糖類を付与した後に、単繊維間の接
着を防止するための油剤を付与することができる。単繊
維間の接着を防止するための油剤としては、特に限定さ
れないが、各種の官能基で変成されたシリコーン系化合
物が好ましく使用される。
Next, an aqueous solution of a saccharide is applied to the swollen fibers. The application method is not particularly limited. For example, a dipping method, a spraying method, a touch roll method, a guide supply method and the like are employed, but a dipping method which is easy to process is preferably used. The concentration of the processing solution is such that the final precursor preferably contains 0.5 to 10% by weight of saccharide, more preferably 0.5 to 5% by weight.
It is set so as to contain the weight%. Also, at the same time as sugars,
An oil agent for preventing adhesion between single fibers can be provided. Alternatively, after providing the saccharide, an oil agent for preventing adhesion between the single fibers can be provided. The oil agent for preventing the adhesion between the single fibers is not particularly limited, but a silicone compound modified with various functional groups is preferably used.

【0021】糖類が付与された膨潤繊維は、次いで、常
法に従って乾燥緻密化するが、乾燥温度は130〜20
0℃が好ましい。乾燥温度が130℃未満では、水の蒸
発が遅く、糖類が単繊維の内層部まで拡散し、繊維全体
として弾性率の低下が起こり、本発明の効果の上から好
ましくない。また、乾燥温度が200℃を越える高温度
では、単繊維間の接着が発生し易く好ましくない。
The swelled fiber to which the saccharide is added is then dried and densified according to a conventional method.
0 ° C. is preferred. If the drying temperature is lower than 130 ° C., the evaporation of water is slow, the saccharides diffuse to the inner layer of the single fiber, and the elasticity of the fiber as a whole decreases, which is not preferable from the viewpoint of the effect of the present invention. On the other hand, if the drying temperature is higher than 200 ° C., the adhesion between the single fibers tends to occur, which is not preferable.

【0022】乾燥緻密化後、必要に応じて加圧スチーム
などの加熱熱媒中で延伸して、配向を調整し、また、必
要に応じて130〜200℃の熱処理を施し、巻き取っ
て炭素繊維用プリカーサーとして提供される。
After drying and densification, if necessary, the film is stretched in a heating medium such as pressurized steam to adjust the orientation. If necessary, a heat treatment at 130 to 200 ° C. is performed. Provided as a precursor for fibers.

【0023】本発明の炭素繊維用PAN系プリカーサー
から炭素繊維を製造するに際しては、特に限定されるも
のではなく、常法に従って、耐炎化、炭化処理、必要に
応じてさらに高温度の黒鉛化処理を施した後、表面電解
処理し、さらに表面処理剤を付与して、所望の炭素繊維
を得ることができる。
The production of carbon fiber from the PAN precursor for carbon fiber of the present invention is not particularly limited, and it is carried out in accordance with a conventional method by flame resistance, carbonization and, if necessary, further graphitization at a higher temperature. , A surface electrolytic treatment is performed, and a surface treating agent is further applied to obtain a desired carbon fiber.

【0024】[0024]

【実施例】以下、本発明を実施例を挙げて、さらに具体
的に説明する。 <ストランド強度、弾性率の測定>炭素繊維束に下記組
成の樹脂を含浸させ、130℃35分間硬化させた後、
JIS R−7601に準じて引っ張り試験を行った。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. <Measurement of strand strength and elastic modulus> After impregnating a carbon fiber bundle with a resin having the following composition and curing it at 130 ° C. for 35 minutes,
A tensile test was performed according to JIS R-7601.

【0025】 *樹脂組成 ・エポキシ樹脂ERL−4221 100部 (ユニオン・カーバイド社製) ・3フッ化ホウ素モノエチルアミン(BF3・MEA) 3部 ・アセトン 4部 <金型法コンポジットILSS(層間せん断強度)、曲
げ強度の測定>金枠に巻き取った炭素繊維を、炭素繊維
の体積含有率(Vf)が60%になるように凸凹かみ合
わせの溝幅6mmの凹側金型に入れ、樹脂を流し込んだ
後、加熱して真空脱泡する。脱泡後、プレス機にセット
し厚さ2.5mmのスペーサーをはさんで凸凹金型をか
み合わせて、加圧しながら加熱して樹脂を硬化させ、幅
6mm、厚さ2.5mmの試験片を作成する。測定はイ
ンストロン試験機を用い、Vf=60%に換算する。
* Resin composition ・ Epoxy resin ERL-4221 100 parts (manufactured by Union Carbide Co.) ・ Boron trifluoride monoethylamine (BF3 ・ MEA) 3 parts ・ Acetone 4 parts <Mold method composite ILSS (interlaminar shear strength) Measurement of bending strength> The carbon fiber wound around the metal frame was put into a concave mold having a groove width of 6 mm for engaging and recessing so that the volume content (Vf) of the carbon fiber became 60%, and the resin was poured. Then, heat and vacuum degas. After defoaming, set it on a press, engage a 2.5 mm-thick spacer, engage the concave and convex molds, and heat while pressing to cure the resin, and form a 6 mm wide, 2.5 mm thick test specimen. create. The measurement is converted to Vf = 60% using an Instron tester.

【0026】 樹脂:Ep828(ペトロケミカルズ(株)製) 100部 3フッ化ホウ素モノエチルアミン 3部 成型条件: 脱法;真空(10mmHg以下)下、80℃×4時間 成型;プレス圧4.9MPa、、170℃×1時間 アフターキュアー;金型から試験片を取り出した後、1
70℃×2時間 測定: ILSS;試験片の長さを18mmにカットし、3点曲
げ治具を用い、支持スパンを試験片の厚みの4倍として
n=6測定し、平均値を求める。
Resin: Ep828 (manufactured by Petrochemicals Co., Ltd.) 100 parts Boron trifluoride monoethylamine 3 parts Molding conditions: Demolding: molding under vacuum (10 mmHg or less) at 80 ° C. for 4 hours; pressing pressure of 4.9 MPa; 170 ° C x 1 hour After cure; After removing the test piece from the mold, 1
70 ° C. × 2 hours Measurement: ILSS: Cut the length of the test piece to 18 mm, measure n = 6 using a three-point bending jig with the supporting span being four times the thickness of the test piece, and determine the average value.

【0027】曲げ強度;試験片の長さを90mmにカッ
トし、3点曲げ治具を用い、支持スパンを試験片の24
倍としてn=5測定し、平均値を求める。 (実施例1)アクリロニトリル99.0wt%、イタコ
ン酸1.0wt%の共重合組成で、極限粘度が1.7の
共重合体の20wt%DMSO溶液にアンモニアガスを
吹き込みPHを8.0に調整して紡糸原液とした。該紡
糸原液を3000ホールの口金を通してDMSO濃度6
0wt%、温度60℃の水系凝固浴中に導き、10m/
分の速度で引き取った。
Bending strength: The length of the test piece was cut to 90 mm, and the supporting span was set to 24 by using a three-point bending jig.
Measure n = 5 as a factor and determine the average value. (Example 1) Ammonia gas was blown into a 20 wt% DMSO solution of a copolymer having an intrinsic viscosity of 1.7 and a copolymer composition of acrylonitrile 99.0 wt% and itaconic acid 1.0 wt% to adjust the pH to 8.0. This was used as a spinning solution. The spinning stock solution was passed through a 3000-hole die to a DMSO concentration of 6
0 wt%, guided into an aqueous coagulation bath at a temperature of 60 ° C, 10 m /
Withdrawn at a speed of minutes.

【0028】次いで、55〜75℃の6段温水浴中でト
ータル1.15倍の延伸比を保持しながら水洗した後、
熱水浴中で3.91倍延伸し、膨潤度が200%の水膨
潤繊維を得た。
Then, after washing in a 6-stage hot water bath at 55 to 75 ° C. while maintaining a total draw ratio of 1.15 times,
The film was stretched 3.91 times in a hot water bath to obtain a water-swelled fiber having a swelling degree of 200%.

【0029】次いで、糖類として、濃度が2wt%の水
溶液で、20℃の粘度が25cPであるメチルセルロー
スを用い、この水溶液を45℃に保持しながら水膨潤繊
維をディップ処理し、ニップロールで余分の表面付着液
を除去後、オイル粘度が3000cStのアミノ変成シ
リコーンの水分散処理液に通した後、再度ニップロール
を通し、表面温度が150℃の加熱ローラによって乾燥
緻密化した。
Next, as the saccharide, methylcellulose having an aqueous solution having a concentration of 2 wt% and having a viscosity of 25 cP at 20 ° C. is used. The aqueous swelling fiber is dipped while maintaining the aqueous solution at 45 ° C. After removing the adhering liquid, the mixture was passed through a water-dispersed solution of amino-modified silicone having an oil viscosity of 3000 cSt, then passed again through a nip roll, and dried and densified by a heating roller having a surface temperature of 150 ° C.

【0030】次いで、145℃の加圧スチーム中で2.
89倍延伸した後、表面温度が170℃の加熱ローラで
乾燥熱処理して、単繊維繊度が0.8dtexのプリカ
ーサーを巻き取った。
Then, in a steam pressurized at 145 ° C.
After stretching 89 times, the sheet was dried and heat-treated with a heating roller having a surface temperature of 170 ° C. to wind a precursor having a single fiber fineness of 0.8 dtex.

【0031】該プリカーサーを245℃、次いで255
℃の加熱空気中を延伸比1.0で通過させ、繊維比重が
1.34になるまで加熱して耐炎化繊維を得た。
The precursor was heated at 245 ° C. and then at 255
The fiber was passed through heated air at a drawing temperature of 1.0 ° C. at a draw ratio of 1.0, and heated until the fiber specific gravity reached 1.34 to obtain an oxidized fiber.

【0032】次いで、窒素雰囲気で最高温度が750℃
の前炭化炉を延伸比1.05で通し、次いで、窒素雰囲
気で最高温度が1700℃の炭化炉を延伸比0.97で
通し、次いで、窒素雰囲気で最高温度が2300℃の黒
鉛化炉を延伸比1.03で通して黒鉛化繊維を得た。
Next, the maximum temperature is 750 ° C. in a nitrogen atmosphere.
Through a carbonization furnace having a maximum temperature of 1700 ° C. in a nitrogen atmosphere at a stretching ratio of 0.97, and then a graphitization furnace having a maximum temperature of 2300 ° C. in a nitrogen atmosphere. The fiber was passed at a draw ratio of 1.03 to obtain a graphitized fiber.

【0033】次いで、希硫酸を電解液として40クーロ
ン/gの表面電解処理を行い、水洗、乾燥して黒鉛化繊
維を得た。
Next, a surface electrolytic treatment of 40 coulomb / g was performed using dilute sulfuric acid as an electrolytic solution, washed with water and dried to obtain a graphitized fiber.

【0034】樹脂含浸ストランド強度、弾性率を評価し
た結果、それぞれ4.55GPa、410GPaであっ
た。また金型法コンポジットのILSS(層間せん断強
度)、曲げ強度を測定した結果、それぞれ72.1MP
a、1840MPaと高いものであった。 (比較例1)糖類を付与しない以外は、実施例1と同様
にして黒鉛化繊維を得た。樹脂含浸ストランド強度、弾
性率を評価した結果、それぞれ4.50GPa、415
GPaであった。また金型法コンポジットのILSS
(層間せん断強度)、曲げ強度を測定した結果、それぞ
れ65.3MPa、1680MPaであった。 (実施例2)糖類として、濃度が2wt%の水溶液で、
20℃の粘度が200cPであるヒドロキシエチルセル
ロースを用い、この水溶液を80℃に保持しながら、水
膨潤繊維をディップ処理した以外は実施例1と同様にし
て黒鉛化繊維を得た。樹脂含浸ストランド強度、弾性率
を評価した結果、それぞれ4.52GPa、413GP
aであった。また金型法コンポジットのILSS(層間
せん断強度)、曲げ強度を測定した結果、それぞれ7
2.5MPa、1860MPaと高いものであった。 (実施例3)糖類としてグリコーゲンを用い、その2w
t%水溶液を80℃に保持しながら、水膨潤繊維をディ
ップ処理した以外は実施例1と同様にして黒鉛化繊維を
得た。樹脂含浸ストランド強度、弾性率を評価した結
果、それぞれ4.45GPa、410GPaであった。
また金型法コンポジットのILSS(層間せん断強
度)、曲げ強度を測定した結果、それぞれ71.5MP
a、1820MPaと高いものであった
The strength and elastic modulus of the resin-impregnated strand were evaluated to be 4.55 GPa and 410 GPa, respectively. Also, as a result of measuring ILSS (interlaminar shear strength) and bending strength of the mold method composite, each was 72.1MP.
a, which was as high as 1840 MPa. (Comparative Example 1) Graphitized fibers were obtained in the same manner as in Example 1 except that no saccharide was added. As a result of evaluating the strength and elastic modulus of the resin-impregnated strand, 4.55 GPa and 415 GPa were obtained, respectively.
GPa. Also, mold method composite ILSS
As a result of measuring (interlayer shear strength) and bending strength, they were 65.3 MPa and 1680 MPa, respectively. (Example 2) As a saccharide, an aqueous solution having a concentration of 2 wt%
Graphitized fibers were obtained in the same manner as in Example 1 except that hydroxyethyl cellulose having a viscosity of 200 cP at 20 ° C. was used, and the aqueous swelling fibers were dipped while maintaining the aqueous solution at 80 ° C. As a result of evaluating the strength and elastic modulus of the resin-impregnated strand, 4.52 GPa and 413 GP respectively were obtained.
a. In addition, as a result of measuring the ILSS (interlaminar shear strength) and the bending strength of the mold method composite, each was 7
It was as high as 2.5 MPa and 1860 MPa. (Example 3) Glycogen is used as a saccharide and its 2w
Graphitized fibers were obtained in the same manner as in Example 1 except that the water-swelled fibers were dipped while maintaining the t% aqueous solution at 80 ° C. As a result of evaluating the strength and elastic modulus of the resin-impregnated strand, they were 4.45 GPa and 410 GPa, respectively.
Also, as a result of measuring ILSS (interlaminar shear strength) and bending strength of the mold method composite, each was 71.5MP.
a, which was as high as 1820 MPa

【0035】[0035]

【発明の効果】本発明によれば、樹脂との接着性および
コンポジットの曲げ強度に優れた黒鉛化繊維を安定して
提供することができる。
According to the present invention, it is possible to stably provide a graphitized fiber having excellent adhesion to a resin and excellent bending strength of a composite.

フロントページの続き Fターム(参考) 4L033 AA05 AB01 AC15 CA02 CA05 4L035 BB03 BB04 BB06 BB11 BB15 BB17 BB59 BB60 BB66 BB69 BB80 BB82 BB85 BB89 BB91 DD13 FF01 HH10 MB04 4L037 AT02 CS03 CS04 FA03 FA05 PA55 PA65 PC13 PF29 PF32 PF45 PF51 PG07 PS02 PS10 PS17 Continued on the front page F-term (reference) 4L033 AA05 AB01 AC15 CA02 CA05 4L035 BB03 BB04 BB06 BB11 BB15 BB17 BB59 BB60 BB66 BB69 BB80 BB82 BB85 BB89 BB91 DD13 FF01 HH10 MB04 4L037 AT02 CS03 PA04 PF31 PF91 PF91 PS10 PS17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維用PAN系プリカーサーの少なく
とも表面に糖類を含有することを特徴とする炭素繊維用
PAN系プリカーサー。
1. A PAN precursor for carbon fiber, wherein the PAN precursor for carbon fiber contains a saccharide at least on the surface.
【請求項2】PAN系共重合体を湿式、乾湿式紡糸して
炭素繊維用プリカーサーを製造するに際して、水膨潤繊
維に糖類を付与した後に、乾燥緻密化することを特徴と
する炭素繊維用PAN系プリカーサーの製造方法。
2. A PAN for carbon fiber, wherein a PAN copolymer is wet-dried and dry-wet-spun to produce a precursor for carbon fiber, wherein saccharides are imparted to water-swelled fiber and then dried and densified. Manufacturing method of precursor.
【請求項3】該糖類が、水溶性糖類であることを特徴と
する、請求項2記載の炭素繊維用PAN系プリカーサー
の製造方法。
3. The method for producing a PAN precursor for carbon fibers according to claim 2, wherein said saccharide is a water-soluble saccharide.
JP2000184273A 2000-06-20 2000-06-20 Pan based precursor for carbon fiber and method of producing the same Pending JP2002004175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184273A JP2002004175A (en) 2000-06-20 2000-06-20 Pan based precursor for carbon fiber and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184273A JP2002004175A (en) 2000-06-20 2000-06-20 Pan based precursor for carbon fiber and method of producing the same

Publications (1)

Publication Number Publication Date
JP2002004175A true JP2002004175A (en) 2002-01-09

Family

ID=18684737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184273A Pending JP2002004175A (en) 2000-06-20 2000-06-20 Pan based precursor for carbon fiber and method of producing the same

Country Status (1)

Country Link
JP (1) JP2002004175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247968A (en) * 2007-03-29 2008-10-16 Hodogaya Chem Co Ltd Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, electroconductive composite material and electroconductive coating material derived from the carbon fiber dispersion, coating method, and article coated by the coating method
DE102011080548A1 (en) * 2011-08-05 2013-02-07 Sgl Carbon Se Precursor fibers based on renewable raw materials
CN103198931A (en) * 2013-03-22 2013-07-10 哈尔滨工业大学深圳研究生院 Preparation method of graphene nano-fiber and super-capacitor application thereof
CN108286090A (en) * 2018-02-05 2018-07-17 北京化工大学 A kind of preparation method of polyacrylonitrile-radical high-strength high-modules carbon fibre
CN108611705A (en) * 2018-04-21 2018-10-02 郭平 A kind of preparation method of polyacrylonitrile-radical high-performance carbon fibre

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247968A (en) * 2007-03-29 2008-10-16 Hodogaya Chem Co Ltd Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, electroconductive composite material and electroconductive coating material derived from the carbon fiber dispersion, coating method, and article coated by the coating method
DE102011080548A1 (en) * 2011-08-05 2013-02-07 Sgl Carbon Se Precursor fibers based on renewable raw materials
CN103198931A (en) * 2013-03-22 2013-07-10 哈尔滨工业大学深圳研究生院 Preparation method of graphene nano-fiber and super-capacitor application thereof
CN108286090A (en) * 2018-02-05 2018-07-17 北京化工大学 A kind of preparation method of polyacrylonitrile-radical high-strength high-modules carbon fibre
CN108286090B (en) * 2018-02-05 2020-10-27 北京化工大学 Preparation method of polyacrylonitrile-based high-strength high-modulus carbon fiber
CN108611705A (en) * 2018-04-21 2018-10-02 郭平 A kind of preparation method of polyacrylonitrile-radical high-performance carbon fibre
CN108611705B (en) * 2018-04-21 2020-11-20 安徽昊华环保科技有限公司 Preparation method of polyacrylonitrile-based high-performance carbon fiber

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
CN101161880A (en) Method for preparing polyacrylonitrile-based carbon fiber precursor fiber
CN111793857A (en) Carbon fiber surface treatment method
CN105463607A (en) Manufacturing method for 48K polyacrylonitrile-based carbon fiber precursor
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
JP4023226B2 (en) Carbon fiber bundle processing method
JP2003073932A (en) Carbon fiber
JP2002004175A (en) Pan based precursor for carbon fiber and method of producing the same
CN109280997A (en) The high-strength high-modules carbon fibre and preparation method thereof of low degree of graphitization
JP4726102B2 (en) Carbon fiber and method for producing the same
JP2003020516A (en) Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JPH02242920A (en) Carbon fiber containing composite metal
JPH04257313A (en) Production of precursor fiber for carbon fiber
CN110330754B (en) Nascent thin film, polyacrylonitrile-based carbon thin film and preparation method
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP4507908B2 (en) Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
JP2002105747A (en) Acrylic precursor fiber and method for producing the same
JP2002069758A (en) Method for manufacturing graphite fiber
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2021139062A (en) Production method of carbon fiber bundle
KR20110078306A (en) Process for producing precursor fiber for acrylonitrile-based carbon fiber and carbon fiber obtained from the precursor fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same