JP2002069758A - Method for manufacturing graphite fiber - Google Patents

Method for manufacturing graphite fiber

Info

Publication number
JP2002069758A
JP2002069758A JP2000255357A JP2000255357A JP2002069758A JP 2002069758 A JP2002069758 A JP 2002069758A JP 2000255357 A JP2000255357 A JP 2000255357A JP 2000255357 A JP2000255357 A JP 2000255357A JP 2002069758 A JP2002069758 A JP 2002069758A
Authority
JP
Japan
Prior art keywords
fiber
polyacrylonitrile
phenol resin
resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000255357A
Other languages
Japanese (ja)
Inventor
Katsumi Yamazaki
勝巳 山▲ざき▼
Yoji Matsuhisa
要治 松久
Masashi Tokuda
政志 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000255357A priority Critical patent/JP2002069758A/en
Publication of JP2002069758A publication Critical patent/JP2002069758A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a graphite fiber having excellent adhesivity to a matrix resin and excellent in a compression strength at 0 deg.C, a polyacrylonitrile fiber suitably used as the raw material and a method for manufacturing the polyacrylonitrile fiber. SOLUTION: The method for manufacturing a polyacrylonitrile fiber comprises subjecting a polyacrylonitrile-based copolymer to wet spinning or dry-wet spinning, washing the resultant fiber with water, subsequently applying a phenolic resin on the fiber, and further making the treated fiber compact by drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化複合材料
用黒鉛繊維、及びその原料として用いられるポリアクリ
ロニトリル系繊維に関する。
The present invention relates to a graphite fiber for a fiber-reinforced composite material and a polyacrylonitrile fiber used as a raw material thereof.

【0002】[0002]

【従来の技術】炭素繊維は、その比強度、比弾性率が高
く、その特徴を活かしてあらゆる用途に展開されてい
る。
2. Description of the Related Art Carbon fibers have a high specific strength and a high specific elastic modulus, and are utilized in various applications by utilizing their characteristics.

【0003】特にポリアクリロニトリル(以下、PAN
という)系繊維を原料とする炭素繊維は加工性に優れる
ため、広く用いられている。
In particular, polyacrylonitrile (hereinafter referred to as PAN)
) -Based fibers are widely used because of their excellent workability.

【0004】炭素繊維は、熱硬化樹脂や熱可塑樹脂をマ
トリックス樹脂として繊維強化複合材料とする際にその
優れた比強度や比弾性率を効果的に発現させるために、
炭素繊維とマトリックス樹脂との接着性(以下、単に接
着性という)が高いのが良いことが知られている。その
ため、酸又はアルカリ水溶液中で電解酸化処理等を施し
て炭素繊維の繊維の表層部に−COOH等の官能基を付
与することが一般的に行われている。
[0004] When a carbon fiber is used as a matrix resin of a thermosetting resin or a thermoplastic resin to form a fiber-reinforced composite material, the carbon fiber is required to effectively exhibit its excellent specific strength and specific elastic modulus.
It is known that the adhesion between the carbon fiber and the matrix resin (hereinafter simply referred to as adhesion) is good. For this reason, it is common practice to apply a functional group such as -COOH to the surface layer of the carbon fiber by subjecting it to electrolytic oxidation treatment or the like in an aqueous acid or alkali solution.

【0005】しかしながら、かかる方法では、炭素繊維
の弾性率を高めるため、炭化の温度を上昇させるに従い
接着性が低下する傾向があった。この原因としては、炭
化の温度を上昇させるに従い、炭素繊維の結晶化が促さ
れることにより、即ち、グラファイト構造の結晶構造が
発達することにより繊維の表層部が酸化され難くなり、
官能基の発生量が低下するためと推定される。
However, in such a method, in order to increase the elastic modulus of the carbon fiber, the adhesiveness tends to decrease as the carbonization temperature is increased. As a cause of this, as the temperature of carbonization is increased, the crystallization of the carbon fiber is promoted, that is, the surface layer of the fiber is hardly oxidized due to the development of the crystal structure of the graphite structure,
This is presumed to be due to a decrease in the amount of generated functional groups.

【0006】一方、酸化処理を高くしても接着性の改善
度合には限界があり、炭化の温度の上昇に伴い、0°圧
縮強度に影響する曲げ強度が低下するという問題も生じ
ていた。
[0006] On the other hand, even if the oxidation treatment is increased, the degree of improvement in the adhesiveness is limited, and there has been a problem that the bending strength, which affects the 0 ° compression strength, decreases as the carbonization temperature increases.

【0007】また、一般に、炭素繊維の結晶化度は、耐
炎化時に結晶化を促す酸素が、繊維の表層部から内層部
へと拡散するため、内層部に比して、表層部の方が高く
なり易く、かかる不均一構造のため、繊維の表層部の微
細な欠陥により強度が低下する問題もあった。
In general, the degree of crystallinity of the carbon fiber is higher in the surface layer than in the inner layer because oxygen which promotes crystallization during flame resistance diffuses from the surface layer of the fiber to the inner layer. Because of the non-uniform structure, the strength tends to decrease due to minute defects in the surface layer of the fiber.

【0008】以上の問題に対して、特開平10−884
3号公報にPAN系繊維の表層部にホウ素等の耐炎化遅
延元素を局在させ、繊維の表層部の結晶化を抑えて接着
性を高めると共に、繊維内部からの酸素の拡散を防ぎ、
強度も高める技術が開示されている。
[0008] To solve the above problems, Japanese Patent Laid-Open No. 10-884
No. 3 localizes a flame retardant element such as boron in the surface layer of the PAN-based fiber, suppresses the crystallization of the surface layer of the fiber, increases the adhesiveness, and prevents diffusion of oxygen from inside the fiber.
A technique for increasing the strength is disclosed.

【0009】しかしながら、かかる方法では、2000
℃以上で黒鉛化処理すると、ホウ素が炭化処理の触媒と
して作用するようになり、繊維の表層部の結晶化度が過
大となる欠点があった。
However, in such a method, 2000
If the graphitization treatment is performed at a temperature of not less than ° C., boron acts as a catalyst for the carbonization treatment, and there is a disadvantage that the crystallinity of the surface layer of the fiber becomes excessive.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、かか
る従来技術の問題点を解決し、マトリックス樹脂との接
着性が良好で、かつ、0°圧縮強度に優れた黒鉛繊維、
並びにその原料として好適に用いられるポリアクリロニ
トリル系繊維及びその製造方法を提供せんとするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a graphite fiber having good adhesiveness with a matrix resin and excellent 0 ° compression strength.
And a polyacrylonitrile fiber suitably used as a raw material thereof and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するため、次の構成を有する。即ち、表層部にフェノ
ール樹脂が付着されてなるポリアクリロニトリル系繊維
である。
The present invention has the following arrangement to solve the above-mentioned problems. That is, it is a polyacrylonitrile fiber in which a phenol resin is attached to the surface layer.

【0012】また、本発明は、上記課題を解決するた
め、次の構成を有する。即ち、ポリアクリロニトリル系
共重合体を湿式又は乾湿式紡糸法により紡糸してなる繊
維を水洗後、該繊維にフェノール樹脂を付与し、さらに
乾燥緻密化するポリアクリロニトリル系繊維の製造方法
である。
Further, the present invention has the following configuration in order to solve the above problems. That is, this is a method for producing a polyacrylonitrile-based fiber in which a fiber obtained by spinning a polyacrylonitrile-based copolymer by a wet or dry-wet spinning method is washed with water, a phenol resin is applied to the fiber, and the fiber is further dried and densified.

【0013】さらに、本発明は、上記課題を解決するた
め、次の構成を有する。即ち、上記製造方法により得ら
れたポリアクリロニトリル系炭素繊維を耐炎化、炭化処
理後、さらに2000℃以上で黒鉛化処理する黒鉛繊維
の製造方法である。
Further, the present invention has the following configuration in order to solve the above problems. That is, this is a method for producing graphite fibers in which the polyacrylonitrile-based carbon fiber obtained by the above-mentioned production method is subjected to flame resistance and carbonization treatment, and then graphitized at 2000 ° C. or higher.

【0014】[0014]

【発明の実施の形態】本発明者らは、鋭意検討を重ね、
PAN系繊維の表層部に、フェノール樹脂を付着させ、
これを炭化処理、次いで2000℃以上の温度で黒鉛化
処理してみたところ、意外にも、前記した課題を一挙に
解決する黒鉛繊維が得られることを見いだしたものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies,
Attach phenolic resin to the surface layer of PAN fiber,
When this was carbonized and then graphitized at a temperature of 2000 ° C. or higher, it was surprisingly found that a graphite fiber which could solve the above-mentioned problems at once was obtained.

【0015】本発明のPAN系繊維は、繊維の表層部に
フェノール樹脂が付着されてなるものである。
The PAN fiber of the present invention is obtained by attaching a phenol resin to the surface layer of the fiber.

【0016】フェノール樹脂としては、フェノール類
(フェノール、クレゾール、キシレノール、レゾルシン
等)とアルデヒド類(ホルムアルデヒド、アセトアルデ
ヒド、フルフラール等)から得られる樹脂、及びそれら
の変成樹脂が挙げられる。中でも、フェノールとホルム
アルデヒドからなるフェノール樹脂が本発明に好適に用
いられる。
Examples of the phenol resin include resins obtained from phenols (phenol, cresol, xylenol, resorcin, etc.) and aldehydes (formaldehyde, acetaldehyde, furfural, etc.), and modified resins thereof. Among them, a phenol resin composed of phenol and formaldehyde is suitably used in the present invention.

【0017】フェノール樹脂の付着量は、繊維重量10
0重量%に対して、0.5〜10重量%、好ましくは
0.5〜5重量%であるのが良い。0.5重量%未満で
あると、繊維の表層部の結晶化を抑える効果が低下し、
10重量%を越えると、繊維全体としての結晶化が抑え
られ、炭素繊維の弾性率が大きく低下することがある。
The amount of the phenol resin adhered was a fiber weight of 10
The amount is 0.5 to 10% by weight, preferably 0.5 to 5% by weight, based on 0% by weight. When the content is less than 0.5% by weight, the effect of suppressing crystallization of the surface layer portion of the fiber decreases,
If it exceeds 10% by weight, crystallization of the whole fiber is suppressed, and the elastic modulus of the carbon fiber may be greatly reduced.

【0018】本発明のPAN系繊維は、例えば、PAN
系共重合体を湿式又は乾湿式紡糸法により紡糸してなる
繊維を水洗後、該繊維にフェノール樹脂を付与し、さら
に乾燥緻密化することにより製造できる。
The PAN fiber of the present invention is, for example, PAN
The fiber can be produced by spinning a copolymer by a wet or dry-wet spinning method, washing the fiber with water, applying a phenol resin to the fiber, and further drying and densifying the fiber.

【0019】先ず、PAN系共重合体から、紡糸口金よ
り直接、凝固浴に吐出する湿式紡糸法、又は紡糸口金よ
り、一旦エアーパスを通過させて凝固浴に吐出する乾湿
式紡糸法のいずれかによって繊維を形成せしめる。
First, either a wet spinning method in which a PAN copolymer is directly discharged from a spinneret into a coagulation bath, or a dry-wet spinning method in which a PAN copolymer is once passed through an air path and discharged into a coagulation bath through a spinneret. Form fibers.

【0020】ここで、PAN系共重合体は、アクリロニ
トリルを90重量%以上、好ましくは95重量%以上含
むものが良い。また、紡糸原液を調整するのに用いる溶
媒としては、塩化亜鉛やチオシアン酸ナトリウムなどの
無機塩系、ジメチルスルホキシド、ジメチルホルムアミ
ド、ジメチルアセトアミド、N−メチルピロリドンなど
の有機系のものが使用できる。
Here, the PAN copolymer preferably contains acrylonitrile in an amount of 90% by weight or more, preferably 95% by weight or more. As the solvent used for preparing the spinning dope, inorganic solvents such as zinc chloride and sodium thiocyanate, and organic solvents such as dimethylsulfoxide, dimethylformamide, dimethylacetamide and N-methylpyrrolidone can be used.

【0021】次に、繊維中に残存する溶媒を洗浄するた
め、温水中で水洗処理し、更にフェノール樹脂を0.3
〜1.5重量%、好ましくは0.5〜1.0重量%の濃
度で溶存させた水溶液中を通過させる。かかる濃度の範
囲から外れると、フェノール樹脂の付着効率が低下する
ことがある。また、フェノール樹脂は、このように通
常、水溶液の形で付与するのが良いことから、フェノー
ル樹脂には、前述した水溶性のものが好ましく使用され
る。したがって、フェノール樹脂は、酸で反応させたノ
ボラック系のものよりもアルカリで反応させたレゾール
系のものが好ましく用いられる。
Next, in order to wash the solvent remaining in the fiber, the fiber is washed with warm water, and the phenol resin is further washed with 0.3%.
It is passed through an aqueous solution dissolved at a concentration of 1.51.5% by weight, preferably 0.5-1.0% by weight. If the concentration is out of the range, the adhesion efficiency of the phenol resin may decrease. As described above, the phenol resin is usually preferably provided in the form of an aqueous solution, and thus, the above-mentioned water-soluble phenol resin is preferably used. Therefore, as the phenol resin, a resol-based resin reacted with an alkali is preferably used rather than a novolak-based resin reacted with an acid.

【0022】尚、フェノール樹脂は、金属元素を含まな
いものが好ましい。金属元素が含まれると、該繊維を炭
化処理や黒鉛化処理して得られる黒鉛繊維等の耐酸化性
が低下することがある。
The phenol resin preferably does not contain a metal element. When a metal element is contained, the oxidation resistance of graphite fibers or the like obtained by carbonizing or graphitizing the fibers may decrease.

【0023】繊維の表層部にフェノール樹脂を効果的に
付着させるため、繊維は、その膨潤度が50〜300
%、好ましくは100〜250%の、いわゆる水膨潤繊
維であるのが好ましい。膨潤度が50%未満であると、
フェノール樹脂が繊維の表面から浸透し難くなることが
あり、300%を越えると、繊維の内層部まで浸透して
しまい、繊維全体の結晶性が低下し、得られる炭素繊維
の弾性率が大幅に低下することがある。
In order to effectively adhere the phenol resin to the surface layer of the fiber, the fiber has a swelling degree of 50 to 300.
%, Preferably 100 to 250%, so-called water-swellable fibers. When the degree of swelling is less than 50%,
The phenolic resin may be difficult to penetrate from the fiber surface, and if it exceeds 300%, it penetrates to the inner layer of the fiber, the crystallinity of the whole fiber is reduced, and the elastic modulus of the obtained carbon fiber is greatly increased. May drop.

【0024】膨潤度は、PAN系共重合体の親水性、紡
糸原液の濃度、用いる溶媒の種類、凝固浴の溶媒濃度、
凝固浴温度、浴延伸温度、浴延伸倍率等により左右され
るため、繊維の膨潤度が前記した範囲になるよう、これ
ら要因を適正に調整するのが良い。
The degree of swelling is determined based on the hydrophilicity of the PAN copolymer, the concentration of the spinning solution, the type of solvent used, the concentration of the solvent in the coagulation bath,
Since these factors depend on the coagulation bath temperature, bath stretching temperature, bath stretching ratio, and the like, it is preferable to appropriately adjust these factors so that the degree of swelling of the fiber falls within the above-mentioned range.

【0025】また、フェノール樹脂を付着させた直後
に、単糸接着を防止するため、繊維にアミノ変成等のシ
リコーン系油剤を付与しても良い。
Immediately after the phenolic resin is adhered, a silicone oil such as amino denaturation may be applied to the fiber in order to prevent single yarn adhesion.

【0026】次いで、130〜200℃の温度で乾燥緻
密化する。乾燥温度が130℃未満では、水の蒸発が遅
く、フェノール樹脂が繊維の内層部まで浸透してしま
い、繊維全体として弾性率が低下することがあり、、乾
燥温度が200℃を越えると、単繊維間の接着が助長さ
れることがある。
Next, it is dried and densified at a temperature of 130 to 200 ° C. If the drying temperature is lower than 130 ° C., the evaporation of water is slow, the phenol resin penetrates into the inner layer of the fiber, and the elastic modulus of the fiber as a whole may decrease. Adhesion between fibers may be promoted.

【0027】乾燥緻密化後、必要に応じて加圧スチーム
等の熱媒中で延伸して、繊維の配向を調整し、更に必要
に応じて130〜200℃の熱処理を施した後、本発明
によるPAN系繊維が得られる。
After the drying and densification, if necessary, the film is drawn in a heat medium such as pressurized steam to adjust the fiber orientation, and further subjected to a heat treatment at 130 to 200 ° C. if necessary. Can be obtained.

【0028】本発明による炭素繊維は、前記したような
方法によって得られるPAN系繊維を、200〜300
℃、好ましくは230〜270℃の空気等の酸化性雰囲
気中、0.95〜1.05倍に延伸し、次に、最高温度
が600〜900℃、好ましくは700〜800℃の窒
素等の不活性雰囲気中、1.0〜1.1倍に延伸し、次
いで、最高温度が1600〜1800℃の窒素等の不活
性雰囲気中、0.95〜1.0倍に延伸して得ることが
できる。
The carbon fiber according to the present invention is obtained by converting the PAN fiber obtained by the above-described method to 200 to 300.
C., preferably from 0.95 to 1.05 times in an oxidizing atmosphere such as air at 230 to 270 ° C., and then at a maximum temperature of 600 to 900 ° C., preferably 700 to 800 ° C. Stretched 1.0 to 1.1 times in an inert atmosphere, and then stretched 0.95 to 1.0 times in an inert atmosphere such as nitrogen at a maximum temperature of 1600 to 1800 ° C. it can.

【0029】また、本発明による黒鉛繊維は、前記炭素
繊維を、最高温度が2000〜3000℃、好ましくは
2000〜2800℃の窒素等の不活性雰囲気中、1.
01〜1.2倍に延伸して得ることができる。本発明に
おいては、かかる炭化処理、又は黒鉛化処理の後、酸又
はアルカリ水溶液中で10〜200クーロン/gで繊維
表面の電解処理を行い繊維表面に接着性を高める官能基
を生じさせることができる。
The graphite fiber according to the present invention is obtained by subjecting the above carbon fiber to an inert atmosphere such as nitrogen at a maximum temperature of 2000 to 3000 ° C., preferably 2000 to 2800 ° C.
It can be obtained by stretching 01 to 1.2 times. In the present invention, after the carbonization treatment or the graphitization treatment, the fiber surface may be subjected to an electrolytic treatment at 10 to 200 coulomb / g in an acid or alkali aqueous solution to generate a functional group which enhances the adhesiveness on the fiber surface. it can.

【0030】[0030]

【実施例】以下、本発明を実施例により、さらに具体的
に説明する。実施例では、各物性値の測定は次に示す方
法によった。 <ストランド強度、弾性率>測定する炭素繊維束に、次
の組成の樹脂を含浸せしめ、130℃で35分間硬化さ
せた後、JIS R7601に準じて引張試験を行う。 ・エポキシ樹脂ERL−4221(ユニオン・カーバイド社製) 100部 ・3フッ化ホウ素モノエチルアミン(BF3・MEA) 3部 ・アセトン 4部 <層間せん断強度(ILSS)、曲げ強度>測定する炭
素繊維束を金枠に巻き取り、炭素繊維の体積含有率(V
f)が60%になるように溝幅6mmの凹側金型に入
れ、下記(1)の組成の樹脂を流し込んだ後、加熱して
真空脱泡する。この後、プレス機にセットし厚さ2.5
mmのスペーサーを挟み込み、金型の凹凸を噛み合わせ
て、下記する条件にて加圧、加熱して樹脂を硬化せし
め、幅6mm、厚さ2.5mmの試験片を作成する。
EXAMPLES The present invention will be described more specifically with reference to the following examples. In the examples, the measurement of each physical property value was performed by the following method. <Strand strength, modulus of elasticity> A carbon fiber bundle to be measured is impregnated with a resin having the following composition, cured at 130 ° C for 35 minutes, and then subjected to a tensile test according to JIS R7601. 100 parts of epoxy resin ERL-4221 (manufactured by Union Carbide Co.) 3 parts of boron trifluoride monoethylamine (BF3 / MEA) 4 parts of acetone <Interlayer shear strength (ILSS), bending strength> It is wound around a metal frame, and the volume content of carbon fiber (V
f) is set to 60% in a concave mold having a groove width of 6 mm, a resin having the following composition (1) is poured into the mold, and then heated and vacuum degassed. After that, it is set on a press machine and thickness 2.5
A spacer having a width of 2 mm is sandwiched, the irregularities of the mold are engaged with each other, and the resin is cured by applying pressure and heating under the following conditions to prepare a test piece having a width of 6 mm and a thickness of 2.5 mm.

【0031】尚、測定には、インストロン試験機を用
い、得られた結果をVf60%に換算した。 (1)樹脂組成 Ep828(ペトロケミカルズ(株)製) 100部 3フッ化ホウ素モノエチルアミン 3部 (2)成型条件 ・脱泡:真空(≦10mmHg)下、80℃×4時間 ・成型:プレス圧4.9MPa、170℃×1時間 ・アフターキュアー:金型から試験片を取り出し後、1
70℃×2時間 (3)測定: ・ILSS:試験片の長さを18mmにカットし、3点
曲げ治具を用い、支持スパンを試験片の厚みの4倍とし
てn=6測定し、平均値を求める。 (4)曲げ強度:試験片の長さを90mmにカットし、
3点曲げ治具を用い、支持スパンを試験片の24倍とし
てn=5測定し、平均値を求める。 [実施例1]アクリロニトリル99重量%、イタコン酸
1重量%組成であり、極限粘度が1.7のPAN系共重
合体の20重量%ジメチルスルホキシド(以下、DMS
Oという)溶液にアンモニアガスを吹き込み、pH8.
0の紡糸原液を調整した。
The measurement was performed using an Instron tester, and the obtained results were converted to Vf of 60%. (1) Resin composition Ep828 (manufactured by Petrochemicals Co., Ltd.) 100 parts Boron trifluoride monoethylamine 3 parts (2) Molding conditions-Defoaming: 80 ° C x 4 hours under vacuum (≤ 10 mmHg)-Molding: Press pressure 4.9 MPa, 170 ° C. × 1 hour ・ After cure: After removing the test piece from the mold, 1
70 ° C. × 2 hours (3) Measurement: ILSS: Cut the length of the test piece to 18 mm, use a three-point bending jig, make the support span 4 times the thickness of the test piece, and measure n = 6, average Find the value. (4) Flexural strength: Cut the length of the test piece to 90 mm,
Using a three-point bending jig, the support span is set to 24 times the test piece, and n = 5 is measured, and the average value is determined. Example 1 20% by weight of a PAN copolymer having a composition of 99% by weight of acrylonitrile and 1% by weight of itaconic acid and an intrinsic viscosity of 1.7% dimethyl sulfoxide (hereinafter referred to as DMS)
O) solution, ammonia gas was blown into the solution to obtain a pH of 8.
A spinning solution of 0 was prepared.

【0032】この紡糸原液を孔数3000の口金を通し
てDMSOの濃度60重量%、温度60℃の水溶液を張
った凝固浴中に導き、10m/分の速度で引き取った。
The undiluted spinning solution was introduced into a coagulation bath filled with an aqueous solution having a concentration of DMSO of 60% by weight and a temperature of 60 ° C. through a spinneret having 3,000 holes, and was taken out at a speed of 10 m / min.

【0033】次に、55〜75℃の6段の温水を張った
水浴液中で総延伸倍率1.15倍の延伸比を保持しなが
ら水洗後、熱水浴中で3.9倍に延伸し、膨潤度200
%の水膨潤繊維とした。
Next, the film was washed with water while maintaining a total draw ratio of 1.15 times in a water bath containing 6 stages of warm water at 55 to 75 ° C., and then stretched 3.9 times in a hot water bath. Swelling degree 200
% Water-swelled fiber.

【0034】次いで、この水膨潤繊維を水溶性フェノー
ル樹脂であるフェノールとホルムアルデヒドからなる樹
脂(昭和高分子社製、ショーノールBRL−2854
[商標、型番])を0.7重量%溶存させた、温度20
℃の水溶液中に通過させ、ニップロールで繊維表面に付
着した余剰の溶液を除去後、粘度3000cStのアミ
ノ変成シリコーンを分散させた水系処理液を通過させ
た。次に、再度ニップロールで余剰溶液を除去後、表面
温度150℃の加熱ローラによって乾燥緻密化した。
Next, this water-swelled fiber was converted to a resin composed of a water-soluble phenol resin, phenol and formaldehyde (Shownol BRL-2854, manufactured by Showa Polymer Co., Ltd.).
[Trademark, model number]) dissolved at 0.7% by weight at a temperature of 20
After passing through an aqueous solution at ℃ and removing excess solution adhered to the fiber surface with a nip roll, an aqueous treatment liquid in which amino-modified silicone having a viscosity of 3000 cSt was dispersed was passed. Next, the excess solution was removed again by a nip roll, and then dried and densified by a heating roller having a surface temperature of 150 ° C.

【0035】さらに、145℃の加圧スチーム中で2.
89倍に延伸後、表面温度170℃の加熱ローラで乾燥
処理して、単繊維繊度が0.8dtexのPAN系繊維
を得た。
Further, in a steam pressurized at 145 ° C.
After drawing 89 times, it was dried with a heating roller having a surface temperature of 170 ° C. to obtain a PAN-based fiber having a single fiber fineness of 0.8 dtex.

【0036】得られた繊維を245℃、次いで255℃
の加熱空気中を1.0倍の無延伸、無収縮状態で通過さ
せ、比重が1.34になるまで加熱して耐炎化繊維とし
た。
The obtained fiber is heated at 245 ° C. and then at 255 ° C.
Was passed through a 1.0-fold non-stretching and non-shrinking state of the heated air, and heated to a specific gravity of 1.34 to obtain an oxidized fiber.

【0037】次に、最高温度が750℃の窒素雰囲気の
前炭化炉を1.05倍に延伸しながら通過させ、し、最
高温度が1700℃の窒素雰囲気の炭化炉を0.97倍
に延伸しながら通過させ、最高温度が2300℃の窒素
雰囲気の黒鉛化炉を1.03倍に延伸しながら通過させ
て黒鉛繊維とした。
Next, the steel sheet was passed through a pre-carbonization furnace in a nitrogen atmosphere having a maximum temperature of 750 ° C. while being stretched 1.05 times while being stretched to 0.97 times in a carbonization furnace in a nitrogen atmosphere having a maximum temperature of 1700 ° C. While passing through a graphitization furnace in a nitrogen atmosphere having a maximum temperature of 2300 ° C. while being stretched 1.03 times to obtain graphite fibers.

【0038】得られた黒鉛繊維に、希硫酸を電解液とし
て40クーロン/gの電気量で電解処理を行い、水洗、
乾燥して巻き取った。
The obtained graphite fiber is subjected to electrolytic treatment using dilute sulfuric acid as an electrolytic solution at an electric quantity of 40 coulombs / g, followed by washing with water.
Dried and rolled up.

【0039】この黒鉛繊維について、樹脂含浸ストラン
ド強度、弾性率を測定した結果、それぞれ4.51GP
a、406GPaであり、ILSS、曲げ強度を測定し
た結果、それぞれ72.5MPa、1395MPaと、
それぞれ良好な物性値を示した。 [比較例1]フェノール樹脂を溶存させた水溶液中を通
過させず、繊維の表層部にフェノール樹脂を付着させな
かったこと以外は、実施例1と同様にして黒鉛繊維を得
た。樹脂含浸ストランド強度、弾性率を評価した結果、
それぞれ4.50GPa、415GPaであり、ILS
S、曲げ強度を測定した結果、それぞれ65.2MP
a、1253MPaと低めの物性値を示した。
The graphite fiber was measured for the resin-impregnated strand strength and elastic modulus.
a, 406 GPa, and as a result of measuring ILSS and bending strength, 72.5 MPa and 1395 MPa, respectively,
Each showed good physical property values. Comparative Example 1 A graphite fiber was obtained in the same manner as in Example 1 except that the phenol resin was not passed through an aqueous solution in which the phenol resin was dissolved, and the phenol resin was not attached to the surface layer of the fiber. As a result of evaluating the resin-impregnated strand strength and elastic modulus,
They are 4.50 GPa and 415 GPa, respectively, and ILS
As a result of measuring S and bending strength, each was 65.2MP.
a, a lower physical property value of 1253 MPa.

【0040】[0040]

【発明の効果】本発明によれば、マトリックス樹脂との
接着性が良好で、かつ、0°圧縮強度に優れた黒鉛繊
維、並びにその原料として好適に用いられるポリアクリ
ロニトリル系繊維及びその製造方法が提供できる。
According to the present invention, there are provided a graphite fiber having good adhesion to a matrix resin and excellent in 0 ° compressive strength, a polyacrylonitrile fiber suitably used as a raw material thereof, and a method for producing the same. Can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L033 AA05 AB01 CA34 CA70 4L037 AT02 CS03 CS04 FA03 PA55 PA65 PC10 PC11 PC13 PF29 PF41 PF45 PG07 PS00 PS02 PS10 PS19 UA12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L033 AA05 AB01 CA34 CA70 4L037 AT02 CS03 CS04 FA03 PA55 PA65 PC10 PC11 PC13 PF29 PF41 PF45 PG07 PS00 PS02 PS10 PS19 UA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】表層部にフェノール樹脂が付着されてなる
ポリアクリロニトリル系繊維。
1. A polyacrylonitrile fiber in which a phenol resin is adhered to a surface layer.
【請求項2】ポリアクリロニトリル系共重合体を湿式又
は乾湿式紡糸法により紡糸してなる繊維を水洗後、該繊
維にフェノール樹脂を付与し、さらに乾燥緻密化するポ
リアクリロニトリル系繊維の製造方法。
2. A method for producing a polyacrylonitrile-based fiber, comprising spinning a polyacrylonitrile-based copolymer by a wet or dry-wet spinning method, washing the fiber with water, applying a phenol resin to the fiber, and further drying and densifying the fiber.
【請求項3】前記フェノール樹脂が、水溶性フェノール
樹脂である請求項2記載のポリアクリロニトリル系繊維
の製造方法。
3. The method for producing a polyacrylonitrile fiber according to claim 2, wherein said phenol resin is a water-soluble phenol resin.
【請求項4】請求項2又は3記載の製造方法により得ら
れたポリアクリロニトリル系炭素繊維を耐炎化、炭化処
理後、さらに2000℃以上で黒鉛化処理する黒鉛繊維
の製造方法。
4. A method for producing graphite fiber, comprising subjecting the polyacrylonitrile-based carbon fiber obtained by the production method according to claim 2 to oxidization-resistant and carbonizing treatment and then graphitizing it at 2,000 ° C. or higher.
JP2000255357A 2000-08-25 2000-08-25 Method for manufacturing graphite fiber Pending JP2002069758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255357A JP2002069758A (en) 2000-08-25 2000-08-25 Method for manufacturing graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255357A JP2002069758A (en) 2000-08-25 2000-08-25 Method for manufacturing graphite fiber

Publications (1)

Publication Number Publication Date
JP2002069758A true JP2002069758A (en) 2002-03-08

Family

ID=18744159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255357A Pending JP2002069758A (en) 2000-08-25 2000-08-25 Method for manufacturing graphite fiber

Country Status (1)

Country Link
JP (1) JP2002069758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277644A (en) * 2011-06-30 2011-12-14 东华大学 Polyacrylonitrile-based protofilaments modified by phenolic resin and preparation method thereof
CN104047070A (en) * 2014-06-27 2014-09-17 陕西天策新材料科技有限公司 Preparation method of high-modulus graphite fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277644A (en) * 2011-06-30 2011-12-14 东华大学 Polyacrylonitrile-based protofilaments modified by phenolic resin and preparation method thereof
CN102277644B (en) * 2011-06-30 2013-01-02 东华大学 Polyacrylonitrile-based protofilaments modified by phenolic resin and preparation method thereof
CN104047070A (en) * 2014-06-27 2014-09-17 陕西天策新材料科技有限公司 Preparation method of high-modulus graphite fibers

Similar Documents

Publication Publication Date Title
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
CN101161880A (en) Method for preparing polyacrylonitrile-based carbon fiber precursor fiber
WO2007069511A1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
CN109023594B (en) Polyacrylonitrile carbon fiber with ultrahigh strength and medium-high modulus property and preparation method thereof
CN111793857A (en) Carbon fiber surface treatment method
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
WO2013050779A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enhanced hybrid structures
JP4023226B2 (en) Carbon fiber bundle processing method
CN109280997A (en) The high-strength high-modules carbon fibre and preparation method thereof of low degree of graphitization
JP2002069758A (en) Method for manufacturing graphite fiber
JP4726102B2 (en) Carbon fiber and method for producing the same
JP2003020516A (en) Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same
JP2002004175A (en) Pan based precursor for carbon fiber and method of producing the same
JPS6385167A (en) Surface modified carbon fiber and its production
JP4975217B2 (en) Carbon fiber and method for producing the same, method for producing carbon fiber precursor fiber, and prepreg
JP4507908B2 (en) Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
CN114457467A (en) High-performance carbon fiber material and preparation method thereof
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
CN111088536B (en) Oiling method of polyacrylonitrile protofilament
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2595674B2 (en) Carbon fiber production method
JP4238436B2 (en) Carbon fiber manufacturing method