JP2003020516A - Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same - Google Patents

Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same

Info

Publication number
JP2003020516A
JP2003020516A JP2001203262A JP2001203262A JP2003020516A JP 2003020516 A JP2003020516 A JP 2003020516A JP 2001203262 A JP2001203262 A JP 2001203262A JP 2001203262 A JP2001203262 A JP 2001203262A JP 2003020516 A JP2003020516 A JP 2003020516A
Authority
JP
Japan
Prior art keywords
fiber
water
polyacrylonitrile
carbon fiber
soluble protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001203262A
Other languages
Japanese (ja)
Inventor
Masaru Tanaka
勝 田中
Katsumi Yamasaki
勝巳 山▲さき▼
Masashi Tokuda
政志 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001203262A priority Critical patent/JP2003020516A/en
Publication of JP2003020516A publication Critical patent/JP2003020516A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide both a polyacrylonitrile precursor fiber for obtaining a graphitized fiber suppressing crystallinity of a surface layer part, having good adhesion to a matrix resin and having a high flexural strength and a method for producing the precursor fiber. SOLUTION: This polyacrylonitrile precursor fiber for a carbon fiber is characterized by comprising a water-soluble protein in at least the surface layer. The method for producing the polyacrylonitrile precursor fiber for the carbon fiber is characterized by applying the water-soluble protein to a water- swollen fiber prepared by wet or dry jet-wet spinning of a polyacrylonitrile polymer and then drying and densifying the resultant fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マトリックス樹脂
との接着性に優れ、かつ、コンポジットの実用特性であ
る曲げ強度の高い黒鉛化繊維を提供するためのポリアク
リロニトリル系前駆体繊維およびその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a polyacrylonitrile-based precursor fiber for producing a graphitized fiber having excellent adhesiveness with a matrix resin and high bending strength which is a practical property of a composite, and a method for producing the same. Regarding

【0002】[0002]

【従来の技術】炭素繊維は、その比強度、比弾性率が高
い特徴を生かしてあらゆる用途に展開されてきている。
特にポリアクリロニトリル(以下PANと表示)系前駆
体繊維を出発原料とした炭素繊維は比強度が高く加工性
も優れているため、広く利用されている。炭素繊維は熱
硬化樹脂や熱可塑樹脂をマトリックスとする複合材料と
して使用されるのが一般的である。複合材料において炭
素繊維の強度や弾性率を有効に利用するためには、炭素
繊維とマトリックスである樹脂が強固に接着することが
必要である。そのために炭素繊維の製造工程の仕上げと
して酸化処理を施して炭素繊維表面に官能基を付与する
ことが一般的である。しかしながら、炭化温度を高くし
て弾性率を上げていくと、炭素繊維と樹脂との接着が悪
くなるという現象が認められる。この原因は炭化温度を
上げるに従って、炭素繊維のグラファイト構造の結晶が
大きくなり、酸化され難くなる。これに伴い、樹脂との
接着に十分な官能基が付与されにくくなるためと推定さ
れる。このようなことから、弾性率の高い炭素繊維ほ
ど、より強い酸化処理が必要となるが、酸化処理だけで
は十分な樹脂との接着力が得られにくいという問題があ
った。また、炭化温度を上げ、弾性率を高くするほど曲
げ強度が低下するという問題があった。この問題は、炭
素繊維をさらに2000℃程度以上の温度で焼成するこ
とにより得られる黒鉛化繊維において、その結晶サイズ
の大きさ故に特に顕著なものとなる。
2. Description of the Related Art Carbon fibers have been developed for various uses by taking advantage of their high specific strength and high specific elastic modulus.
In particular, carbon fibers starting from polyacrylonitrile (hereinafter referred to as PAN) -based precursor fibers are widely used because they have high specific strength and excellent workability. Carbon fibers are generally used as a composite material having a thermosetting resin or a thermoplastic resin as a matrix. In order to effectively utilize the strength and elastic modulus of carbon fibers in a composite material, it is necessary that the carbon fibers and the resin that is the matrix be firmly bonded. For this reason, it is common to give a functional group to the surface of the carbon fiber by subjecting it to an oxidation treatment as the finish of the manufacturing process of the carbon fiber. However, when the carbonization temperature is increased and the elastic modulus is increased, it is observed that the adhesion between the carbon fiber and the resin deteriorates. The reason for this is that as the carbonization temperature is raised, the crystals of the graphite structure of the carbon fiber become larger and are less likely to be oxidized. It is presumed that, along with this, it becomes difficult to impart a functional group sufficient for adhesion to the resin. For this reason, the higher the elastic modulus of the carbon fiber, the stronger the oxidation treatment is required, but there is a problem that it is difficult to obtain sufficient adhesive force with the resin only by the oxidation treatment. Further, there is a problem that the bending strength decreases as the carbonization temperature increases and the elastic modulus increases. This problem becomes particularly noticeable in the graphitized fiber obtained by firing the carbon fiber at a temperature of about 2000 ° C. or higher because of its large crystal size.

【0003】曲げ強度は、繊維軸方向に垂直な方向に撓
みを加えた際の破壊に至るまでの強度を示す。撓みを加
える際、その物には「引張り、圧縮、剪断」の各応力が
加わり、各強度の中で最も弱い所から破壊が開始する。
よって曲げ強度が高いということは、「引張り、圧縮、
剪断」の各強度のバランスが良いことを示し、実用特性
として重要視される強度である。
Bending strength indicates the strength up to the point of destruction when bending is applied in the direction perpendicular to the fiber axis direction. When a flexure is applied, each stress of "pulling, compressing, shearing" is applied to the product, and the fracture starts from the weakest place of each strength.
Therefore, high bending strength means "tensile, compression,
It shows that each strength of “shear” has a good balance, and it is an important strength as a practical property.

【0004】炭素繊維の結晶性は、単繊維断面の半径方
向において必ずしも均一ではなく、内層部に対して表層
部の方が高いことが多い。これに伴い単繊維の表層部の
弾性率が高くなる、つまり、伸びにくくなる。この場
合、繊維束に応力を加えると、単繊維の内部と比べて表
層部に高い応力が分布することになり、繊維表面の欠陥
による強度低下がより助長されるという問題があった。
この原因として、PAN系前駆体繊維を加熱空気中で耐
炎化する工程で、酸素が繊維表面から拡散するため、表
層部の方が耐炎化進行度が高く、耐熱性の高い構造とな
るためと推定される。
The crystallinity of the carbon fibers is not always uniform in the radial direction of the single fiber cross section, and the surface layer portion is often higher than the inner layer portion in many cases. Along with this, the elastic modulus of the surface layer portion of the single fiber becomes high, that is, it becomes difficult to stretch. In this case, when stress is applied to the fiber bundle, a higher stress is distributed in the surface layer portion than in the inside of the single fiber, and there is a problem that the strength reduction due to defects on the fiber surface is further promoted.
This is because oxygen diffuses from the surface of the fiber in the step of making the PAN-based precursor fiber flame resistant in heated air, and thus the surface layer portion has a higher degree of flame resistance progressing and a structure with higher heat resistance. Presumed.

【0005】上記問題を解決し、マトリックス樹脂との
接着に寄与する繊維表層部の結晶性を低下させ、酸化処
理を容易にすると同時に、炭素繊維の強度を向上させる
手段として、PAN系前駆体繊維の繊維表層部にホウ素
などの耐炎化遅延元素を存在させる提案がなされている
(特開平10−88430号公報)。
As a means for solving the above problems and lowering the crystallinity of the fiber surface layer portion contributing to the adhesion with the matrix resin, facilitating the oxidation treatment, and at the same time improving the strength of the carbon fiber, the PAN-based precursor fiber It has been proposed that a flame retardant retarding element such as boron be present in the surface layer of the fiber (JP-A-10-88430).

【0006】しかしながら、ホウ素などの元素は、炭化
温度が高くなり、2000℃以上の黒鉛化領域になる
と、黒鉛化を促進する触媒的作用が発揮されるようにな
るため、むしろ表層部の結晶性がより高くなり、接着性
や曲げ強度が低下するという問題があった。
However, when the carbonization temperature of the element such as boron becomes high and the graphitization region is 2000 ° C. or higher, a catalytic action for promoting the graphitization is exerted, so that the crystallinity of the surface layer is rather increased. Was higher, and there was a problem that adhesiveness and bending strength were reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる従来
技術の背景に鑑み、表層部の結晶性を抑制してマトリッ
クス樹脂との接着が良好で、かつ、曲げ強度の高い黒鉛
化繊維を提供するためのPAN系前駆体繊維、およびそ
の製造方法を提供せんとするものである。
SUMMARY OF THE INVENTION In view of the background of the prior art, the present invention provides a graphitized fiber which suppresses the crystallinity of the surface layer portion, has good adhesion to a matrix resin, and has high bending strength. The present invention provides a PAN-based precursor fiber and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明のPAN系前駆体
繊維は、上記課題を解決するために、次の構成を有す
る。すなわち、少なくとも表層に水溶性タンパク質を含
有することを特徴とする炭素繊維用PAN系前駆体繊維
である。
The PAN-based precursor fiber of the present invention has the following constitution in order to solve the above-mentioned problems. That is, the PAN-based precursor fiber for carbon fiber is characterized in that at least the surface layer contains a water-soluble protein.

【0009】また、本発明のPAN系前駆体繊維の製造
方法は、上記課題を解決するために、次の構成を有す
る。すなわち、PAN系重合体を湿式、乾湿式紡糸して
得た水膨潤繊維に水溶性タンパク質を付与し、その後乾
燥緻密化することを特徴とする炭素繊維用PAN系前駆
体繊維の製造方法である。
The method for producing a PAN-based precursor fiber of the present invention has the following constitution in order to solve the above problems. That is, the method for producing a PAN-based precursor fiber for carbon fiber is characterized in that a water-soluble protein is added to water-swelled fiber obtained by wet- and dry-wet spinning of a PAN-based polymer, and then dried and densified. .

【0010】[0010]

【発明の実施の形態】本発明者らは、上記観点から鋭意
検討を重ね、PAN系前駆体繊維の表層部に、種々の物
質を含有させて、これを焼成してみたところ、水溶性タ
ンパク質を含有させた系において炭素繊維の表層部のグ
ラファイト構造の非晶部分を増加させ、表層部の平均的
な結晶性を抑制することができる事を見いだした。これ
により、マトリックス樹脂との接着が良好で、かつ、曲
げ強度の高い黒鉛化繊維を提供することができるとい
う、前記課題を一挙に解決することを究明したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have made extensive studies from the above viewpoints, and when various substances were contained in the surface layer portion of a PAN-based precursor fiber and baked, the water-soluble protein was found. It was found that in a system containing carbon, the amorphous portion of the graphite structure in the surface layer of the carbon fiber can be increased and the average crystallinity of the surface layer can be suppressed. It has been clarified that this can solve the above-mentioned problems all at once by providing a graphitized fiber having good adhesion with a matrix resin and high bending strength.

【0011】本発明でいう炭素繊維とは前駆体繊維を不
活性雰囲気中1000℃以上の温度にて焼成したものを
指し、黒鉛化繊維とは、弾性率をさらに上げる目的で不
活性雰囲気中2000℃以上の温度で焼成したものを指
す。本発明の効果は、炭素繊維の表層の結晶性を水溶性
タンパク質を含有させた前駆体繊維を用いることにより
制御することで得られるものであり、結晶性の高い黒鉛
化繊維において特に顕著となる。
The carbon fiber in the present invention refers to a precursor fiber fired at a temperature of 1000 ° C. or higher in an inert atmosphere, and a graphitized fiber is 2000 in an inert atmosphere for the purpose of further increasing the elastic modulus. It refers to one baked at a temperature of ℃ or more. The effect of the present invention is obtained by controlling the crystallinity of the surface layer of carbon fiber by using a precursor fiber containing a water-soluble protein, and is particularly remarkable in graphitized fiber having high crystallinity. .

【0012】本発明のPAN系前駆体繊維は、少なくと
もその表層に水溶性タンパク質を含有しているものであ
る。
The PAN-based precursor fiber of the present invention contains a water-soluble protein at least in its surface layer.

【0013】本発明で用いるタンパク質としては、水溶
性であることが必要である。非水溶物では、繊維表層部
に含浸することが困難なため好ましくない。水溶性であ
るとは、水に均一な状態にて溶解若しくは分散している
状態を指し、水に可溶なタンパク質を用いることも、水
に不溶なタンパク質を界面活性剤等にて強制的に分散さ
せた物などをも用いることができる。また、前駆体繊維
に含有する水溶性タンパク質は、前駆体繊維を焼成し、
炭素繊維に転換する際、その熱により分解し飛散する。
この分解が急激な場合、炭素繊維表面での欠陥の原因と
なり、強度低下を招く恐れがある。耐熱性の指標とし
て、炭化残存率が5重量%以上であることが好ましい。
The protein used in the present invention must be water-soluble. A non-water-soluble material is not preferable because it is difficult to impregnate the surface layer of the fiber. Water-soluble refers to a state in which it is dissolved or dispersed in water in a uniform state, and it is possible to use water-soluble proteins or to force water-insoluble proteins with a surfactant etc. A dispersed product can also be used. Further, the water-soluble protein contained in the precursor fiber, the precursor fiber is fired,
When it is converted into carbon fiber, it decomposes and scatters due to the heat.
If this decomposition is rapid, it may cause defects on the surface of the carbon fiber, leading to a decrease in strength. As an index of heat resistance, the carbonization residual rate is preferably 5% by weight or more.

【0014】かかる水溶性タンパク質としては、例えば
ゼラチン、ペプトン、ペプチドなどが好ましく使用され
るが、これらに限定されるものではない。
As the water-soluble protein, for example, gelatin, peptone, peptide and the like are preferably used, but not limited to these.

【0015】該水溶性タンパク質の適正な含有量は、使
用するタンパク質により異なるため、いちがいに言い難
いが、大まかには繊維重量当たり0.5〜10重量%が
好ましい。0.5重量%未満では、表層部の結晶性を抑
制する効果が不足し、10重量%を越えると、平均的な
結晶性の低下が大きく、炭素繊維の弾性率の低下が大き
くなる事がある。
Since the proper content of the water-soluble protein varies depending on the protein used, it is difficult to say that it is roughly 0.5 to 10% by weight based on the weight of the fiber. If it is less than 0.5% by weight, the effect of suppressing the crystallinity of the surface layer part is insufficient, and if it exceeds 10% by weight, the average crystallinity is largely lowered, and the elastic modulus of the carbon fiber is greatly lowered. is there.

【0016】また、かかる水溶性タンパク質の含有効果
をより有効に発揮するためには、単繊維の断面半径方向
において、主に表層部に偏って含有されていることがよ
り好ましい。
Further, in order to exert the effect of containing the water-soluble protein more effectively, it is more preferable that the monofilament is contained mainly in the surface layer portion in the radial direction of the cross section.

【0017】本発明のPAN系前駆体繊維は次の方法に
より製造することができる。すなわち、PAN系重合体
を湿式、乾湿式紡糸してPAN系前駆体繊維を製造する
に際して、乾燥緻密化前の水膨潤繊維に水溶性タンパク
質を付与してから、乾燥緻密化するのである。かかる紡
糸方法としては、湿式、あるいは乾湿式のどちらも使用
される。
The PAN-based precursor fiber of the present invention can be manufactured by the following method. That is, when the PAN-based polymer is wet- or dry-wet-spun to produce a PAN-based precursor fiber, a water-soluble protein is added to the water-swelled fiber before the dry densification, and then the dry densification is performed. As the spinning method, either a wet method or a dry-wet method is used.

【0018】PAN系重合体としては、特に限定される
ものではないが、アクリロニトリルを、好ましくは90
重量%以上、さらに好ましくは95重量%以上含有する
ものがよい。必要に応じて、アクリトニトリルと共重合
可能な第二成分を加えて共重合することも可能である。
前記重合体は、紡糸にあたって、溶媒に溶解した紡糸原
液として使用できる。
The PAN-based polymer is not particularly limited, but acrylonitrile, preferably 90
It is preferable that the content is not less than wt%, more preferably not less than 95 wt%. If necessary, a second component copolymerizable with acrytonitrile can be added and copolymerized.
When spinning, the polymer can be used as a spinning stock solution dissolved in a solvent.

【0019】上記重合体の溶媒としては、特に限定され
るものではないが、例えば塩化亜鉛やチオシアン酸ナト
リウムなどの無機塩系、ジメチルスルホキシド、ジメチ
ルホルムアミド、ジメチルアセトアミド、N−メチルピ
ロリドンなどの有機系のものを使用することができる。
The solvent for the above-mentioned polymer is not particularly limited, but for example, an inorganic salt system such as zinc chloride and sodium thiocyanate, an organic system such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Can be used.

【0020】かかる重合体を溶媒に溶解した紡糸原液
は、通常、湿式あるいは乾湿式紡糸して繊維化される。
次いで、水洗した後に浴延伸、あるいは浴延伸した後に
水洗を施して、膨潤度が50〜300重量%の水膨潤繊
維を得る。該膨潤度を決定する要因としては、重合体の
親水性、紡糸原液濃度、溶媒の種類、凝固浴の溶媒濃
度、凝固浴温度、浴延伸温度、浴延伸倍率などがあるた
め、生産性を損なわない範囲で、繊維の膨潤度が50〜
300重量%になるようにこれらの要因を適正に設定す
る事ができる。水溶性タンパク質を繊維の表層部に含有
させるためには、乾燥緻密化前の膨潤度が50〜300
重量%の水膨潤繊維に水溶性タンパク質を付与すること
が好ましい。膨潤度が50重量%未満では、水溶性タン
パク質が繊維の表層部から浸入しにくく本発明の顕著な
効果を十分に発揮出来ない事があり、300重量%を越
えると、逆に繊維内層部まで浸入し、焼成後の炭素繊維
全体の弾性率が低下する可能性がある。
The spinning dope prepared by dissolving the polymer in a solvent is usually spun into a fiber by wet or dry-wet spinning.
Then, the resultant is washed with water and then subjected to bath stretching, or subjected to bath stretching and then washed with water to obtain a water-swelled fiber having a swelling degree of 50 to 300% by weight. Factors that determine the degree of swelling include the hydrophilicity of the polymer, the concentration of the spinning dope, the type of solvent, the concentration of the solvent in the coagulation bath, the coagulation bath temperature, the bath stretching temperature, and the bath stretching ratio, which impairs productivity. Within the range that does not exist, the swelling degree of the fiber is 50-
These factors can be properly set so as to be 300% by weight. In order to contain the water-soluble protein in the surface layer of the fiber, the degree of swelling before drying and densification is 50 to 300.
It is preferred to add water-soluble proteins to the weight percent water swollen fiber. If the degree of swelling is less than 50% by weight, the water-soluble protein may be difficult to penetrate from the surface layer of the fiber and the remarkable effects of the present invention may not be sufficiently exerted, and if it exceeds 300% by weight, conversely to the inner layer of the fiber. The elastic modulus of the entire carbon fiber after infiltration and firing may decrease.

【0021】次いで、該膨潤繊維に水溶性タンパク質を
付与する。付与方法は特に限定されないが、水溶性タン
パク質を水に溶解したものを例えばディップ法、噴霧
法、タッチロ−ル法、ガイド供給法などが採用される
が、処理が容易なディップ法が好ましく使用される。処
理液の濃度は、最終の前駆体繊維が水溶性タンパク質を
0.5〜10重量%含有するように設定する。水溶性タ
ンパク質を含有させるためには、水溶性タンパク質の濃
度を2.0〜10重量%の範囲で調整すれば問題ないこ
とが多い。また、水溶性タンパク質と同時に、単繊維間
の接着を防止するための油剤を付与することができる。
あるいは、タンパク質を付与した後に、単繊維間の接着
を防止するための油剤を付与することができる。単繊維
間の接着を防止するための油剤としては、特に限定され
ないが、各種の官能基で変成されたシリコーン系化合物
が好ましく使用される。
Next, a water-soluble protein is applied to the swollen fiber. The application method is not particularly limited, but a solution obtained by dissolving a water-soluble protein in water is adopted, for example, a dipping method, a spraying method, a touch roll method, a guide feeding method, etc., but a dipping method that is easy to treat is preferably used. It The concentration of the treatment liquid is set so that the final precursor fiber contains 0.5 to 10% by weight of the water-soluble protein. In order to contain the water-soluble protein, there is often no problem if the concentration of the water-soluble protein is adjusted within the range of 2.0 to 10% by weight. Further, an oil agent for preventing adhesion between single fibers can be added at the same time as the water-soluble protein.
Alternatively, after applying the protein, an oil agent for preventing adhesion between the single fibers can be applied. The oil agent for preventing the adhesion between the single fibers is not particularly limited, but silicone compounds modified with various functional groups are preferably used.

【0022】タンパク質が付与された膨潤繊維は、次い
で、乾燥緻密化されるが、乾燥温度は130〜200℃
が好ましい。乾燥温度が130℃未満では、水の蒸発が
遅く、タンパク質が単繊維の内層部まで拡散し、繊維全
体として弾性率の低下を招く可能性がある。また、乾燥
温度が200℃を越える高温度では、単繊維間の接着が
発生し易くなる。
The swollen fiber to which the protein has been added is then densified by drying, and the drying temperature is 130 to 200 ° C.
Is preferred. If the drying temperature is lower than 130 ° C., water may be slowly evaporated, and the protein may be diffused to the inner layer portion of the single fiber, leading to a decrease in elastic modulus of the entire fiber. Further, at a high drying temperature of more than 200 ° C., adhesion between single fibers is likely to occur.

【0023】乾燥緻密化後、必要に応じて加圧スチーム
などの加熱熱媒中で延伸して、配向を調整し、また、必
要に応じてさらに130〜200℃の熱処理を施し、巻
き取ってPAN系前駆体繊維として提供される。
After the drying and densification, if necessary, it is stretched in a heating heat medium such as pressure steam to adjust the orientation, and if necessary, further heat-treated at 130 to 200 ° C. and wound up. It is provided as a PAN-based precursor fiber.

【0024】本発明のPAN系前駆体繊維から炭素繊維
を製造するに際しては、前記したような方法によって得
られるPAN系繊維を、200〜300℃、好ましくは
230〜270℃の空気等の酸化性雰囲気中、0.95
〜1.05倍に延伸して耐炎化繊維へと変換させた後、
最高温度が600〜900℃、好ましくは700〜80
0℃の窒素等の不活性雰囲気中、1.0〜1.1倍に延
伸し、さらに最高温度が1000〜1800度の窒素等
不活性雰囲気中、0.95〜1.0倍に延伸して炭素繊
維とすることができる。
When the carbon fiber is produced from the PAN-based precursor fiber of the present invention, the PAN-based fiber obtained by the above-mentioned method is oxidized at 200 to 300 ° C., preferably 230 to 270 ° C., such as air. 0.95 in the atmosphere
~ 1.05 times and then converted into flame resistant fiber,
Maximum temperature is 600-900 ° C, preferably 700-80
Stretched 1.0 to 1.1 times in an inert atmosphere such as nitrogen at 0 ° C., and further stretched 0.95 to 1.0 times in an inert atmosphere such as nitrogen having a maximum temperature of 1000 to 1800 degrees. Can be carbon fiber.

【0025】また、このようにして得られた炭素繊維
を、最高温度が2000〜3000℃、好ましくは20
00〜2800℃の窒素等の不活性雰囲気中、1.01
〜1.2倍に延伸し、必要に応じて表面酸化処理、好ま
しくは酸又はアルカリ水溶液中で10〜200クーロン
/gの電解酸化処理を行い、繊維表面に接着性を高める
官能基を生じさせて黒鉛化繊維とする。
The carbon fiber thus obtained has a maximum temperature of 2000 to 3000 ° C., preferably 20
1.01 in an inert atmosphere such as nitrogen at 00 to 2800 ° C
Stretched to 1.2 times and, if necessary, subjected to surface oxidation treatment, preferably electrolytic oxidation treatment of 10 to 200 coulomb / g in an acid or alkali aqueous solution to form a functional group on the fiber surface that enhances adhesiveness. To form graphitized fiber.

【0026】このようにして得られた黒鉛化繊維は、マ
トリックス樹脂との接着性に優れ、かつ、曲げ強度が高
いという優れた特性を有することとなる。
The graphitized fiber thus obtained has excellent properties such as excellent adhesiveness with the matrix resin and high bending strength.

【0027】[0027]

【実施例】以下、本発明を実施例を挙げて、さらに具体
的に説明する。 <ストランド強度、弾性率の測定>炭素繊維束に下記組
成の樹脂を含浸させ、130℃35分間硬化させた後、
JIS R7601に準じて引っ張り試験を行った。
EXAMPLES The present invention will be described in more detail below with reference to examples. <Measurement of Strand Strength and Elastic Modulus> After impregnating a carbon fiber bundle with a resin having the following composition and curing at 130 ° C. for 35 minutes,
A tensile test was conducted according to JIS R7601.

【0028】 (1)樹脂組成 ・エポキシ樹脂ERL−4221(ユニオン・カーバイド社製) 100部 ・3フッ化ホウ素モノエチルアミン(BF3・MEA) 3部 ・アセトン 4部 <層間剪断強度(以下ILSSと表示)、曲げ強度の測
定>金枠に巻き取った炭素繊維を、炭素繊維の体積含有
率(Vf)が60%になるように凸凹かみ合わせの溝幅
6mmの凹側金型に入れ、樹脂を流し込んだ後、加熱し
て真空脱泡した。脱泡後、プレス機にセットし厚さ2.
5mmのスペーサーをはさんで凸凹金型をかみ合わせ
て、加圧しながら加熱して樹脂を硬化させ、幅6mm、
厚さ2.5mmの試験片を作成した。測定はインストロ
ン試験機を用い、曲げ強度に対してはVf=60%に換
算した。
(1) Resin composition-Epoxy resin ERL-4221 (manufactured by Union Carbide) 100 parts-Boron trifluoride monoethylamine (BF3 MEA) 3 parts-Acetone 4 parts <interlayer shear strength (hereinafter referred to as ILSS ), Measurement of flexural strength> The carbon fiber wound on a metal frame is put into a concave side mold having a groove width of 6 mm for uneven engagement so that the volume content (Vf) of the carbon fiber is 60%, and the resin is poured. After that, it was heated and degassed in vacuum. After defoaming, set it on a press machine to a thickness of 2.
Engage the uneven mold with a 5 mm spacer, and heat while applying pressure to cure the resin. Width 6 mm,
A test piece having a thickness of 2.5 mm was prepared. The measurement was performed using an Instron tester, and the bending strength was converted to Vf = 60%.

【0029】 (1)樹脂組成 ・Ep828(ペトロケミカルズ(株)製) 100部 ・3フッ化ホウ素モノエチルアミン 3部 (2)成型条件 脱法 ;真空(10mmHg以下)下、80
℃×4時間 成型 ;プレス圧4.9MPa、170℃×
1時間 アフターキュアー;金型から試験片を取り出した後、1
70℃×2時間 (3)測定条件 ILSS;試験片の長さを18mmにカットし、3点曲
げ治具を用い、支持スパンを試験片の厚みの4倍として
n=6測定し、平均値を求めた。
(1) Resin composition: Ep828 (manufactured by Petrochemicals Co., Ltd.) 100 parts: Boron trifluoride monoethylamine 3 parts (2) Molding condition method: 80 under vacuum (10 mmHg or less)
℃ × 4 hours molding; press pressure 4.9MPa, 170 ℃ ×
1 hour after cure; 1 after removing the test piece from the mold
70 ° C. × 2 hours (3) Measurement conditions ILSS; Cut the length of the test piece to 18 mm, use a three-point bending jig, set the supporting span to 4 times the thickness of the test piece, and measure n = 6, and the average value. I asked.

【0030】曲げ強度;試験片の長さを90mmにカッ
トし、3点曲げ治具を用い、支持スパンを試験片の厚み
の24倍としてn=5測定し、平均値を求めた。 (実施例1) アクリロニトリル99.0重量%、イタコン酸1.0重
量%の共重合組成で、極限粘度が1.7の共重合体の2
0重量%ジメチルスルホキシド(以下DMSO)溶液に
アンモニアガスを吹き込みPHを8.0に調整して紡糸
原液とした。該紡糸原液を3000ホールの口金を通し
てDMSO濃度60重量%、温度60℃の水系凝固浴中
に導き、10m/分の速度で引き取った。
Bending strength: The length of the test piece was cut to 90 mm, a three-point bending jig was used, the supporting span was set to 24 times the thickness of the test piece, and n = 5 measurements were performed to obtain an average value. Example 1 2 of a copolymer having a copolymer composition of 99.0% by weight of acrylonitrile and 1.0% by weight of itaconic acid and an intrinsic viscosity of 1.7.
Ammonia gas was blown into a 0 wt% dimethylsulfoxide (hereinafter referred to as DMSO) solution to adjust the pH to 8.0 to prepare a spinning dope. The spinning solution was introduced into a water-based coagulation bath having a DMSO concentration of 60% by weight and a temperature of 60 ° C. through a 3000-hole spinneret and was taken at a speed of 10 m / min.

【0031】次いで、55〜75℃の6段温水浴中でト
ータル1.15倍の延伸比を保持しながら水洗した後、
熱水浴中で3.91倍延伸し、膨潤度が200%の水膨
潤繊維を得た。
Then, after washing with water in a 6-stage warm water bath at 55 to 75 ° C. while maintaining a total draw ratio of 1.15 times,
It was stretched 3.91 times in a hot water bath to obtain a water-swollen fiber having a swelling degree of 200%.

【0032】次いで、水溶性タンパク質として濃度2重
量%、温度20℃における粘度が30cPであるゼラチ
ン(和光純薬工業(株)社製、1級、077−0315
5)を用い、この2重量%の水溶液を70℃に保持しな
がら水膨潤繊維にディップ処理し、ニップロールで余分
の表面付着液を除去後、さらにオイル粘度が3000c
Stのアミノ変成シリコーンの水分散処理液に通した
後、再度ニップロールを通し、表面温度が150℃の加
熱ローラによって乾燥緻密化した。
Next, a gelatin having a concentration of 2% by weight as a water-soluble protein and a viscosity of 30 cP at a temperature of 20 ° C. (manufactured by Wako Pure Chemical Industries, Ltd., grade 1, 077-0315).
5%) was used to dip the water-swollen fiber while keeping the 2% by weight aqueous solution at 70 ° C., and the excess surface-adhering liquid was removed by a nip roll.
After passing through an aqueous dispersion treatment liquid of amino-modified silicone of St, it was passed through a nip roll again and dried and densified by a heating roller having a surface temperature of 150 ° C.

【0033】次いで、145℃の加圧スチーム中で2.
89倍延伸した後、表面温度が170℃の加熱ローラで
乾燥熱処理して、単繊維繊度が0.8dtexの前駆体
繊維を巻き取った。
Then, in pressurized steam at 145 ° C.
After being stretched 89 times, it was dried and heat-treated with a heating roller having a surface temperature of 170 ° C. to wind up a precursor fiber having a single fiber fineness of 0.8 dtex.

【0034】該前駆体繊維を245℃、次いで255℃
の加熱空気中を延伸比1.0で通過させ、繊維比重が
1.34になるまで加熱して耐炎化繊維を得た。
The precursor fiber was heated to 245 ° C., then 255 ° C.
The heated air was passed through at a draw ratio of 1.0 and heated until the fiber specific gravity became 1.34 to obtain flame-resistant fibers.

【0035】次いで、得られた耐炎化繊維を最高温度が
750℃の窒素雰囲気で延伸比1.05で通過させ、次
いで、最高温度が1700℃の窒素雰囲気中で延伸比
0.97で通過させ、次いで、最高温度が2300℃の
窒素雰囲気で延伸比1.03で通過させた。
Next, the obtained flame-resistant fiber was passed through a nitrogen atmosphere having a maximum temperature of 750 ° C. at a draw ratio of 1.05, and then passed in a nitrogen atmosphere having a maximum temperature of 1700 ° C. at a draw ratio of 0.97. Then, the film was passed through a nitrogen atmosphere having a maximum temperature of 2300 ° C. at a draw ratio of 1.03.

【0036】次いで、希硫酸を電解液として40クーロ
ン/gの表面電解処理を行い、水洗、乾燥して黒鉛化繊
維を得た。
Next, a surface electrolysis treatment of 40 coulomb / g was carried out using dilute sulfuric acid as an electrolytic solution, washed with water and dried to obtain a graphitized fiber.

【0037】樹脂含浸ストランド強度、弾性率を評価し
た結果、それぞれ4.65GPa、420GPaであっ
た。またILSS、曲げ強度を測定した結果、それぞれ
72.1MPa、1650MPaと高いものであった。 (比較例1)水溶性タンパク質を付与しない以外は、実
施例1と同様にして黒鉛化繊維を得た。樹脂含浸ストラ
ンド強度、弾性率を評価した結果、それぞれ4.60G
Pa、425GPaであった。またILSS、曲げ強度
を測定した結果、それぞれ65.1MPa、1430M
Paであった。
The resin-impregnated strand strength and elastic modulus were evaluated to be 4.65 GPa and 420 GPa, respectively. As a result of measuring ILSS and bending strength, they were as high as 72.1 MPa and 1650 MPa, respectively. (Comparative Example 1) A graphitized fiber was obtained in the same manner as in Example 1 except that no water-soluble protein was added. As a result of evaluating the resin-impregnated strand strength and elastic modulus, each is 4.60 G
Pa was 425 GPa. Moreover, as a result of measuring ILSS and bending strength, 65.1 MPa and 1430 M, respectively.
It was Pa.

【0038】[0038]

【発明の効果】本発明によれば、樹脂との接着性および
コンポジットの曲げ強度に優れた黒鉛化繊維を安定して
提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to stably provide a graphitized fiber having excellent adhesiveness with a resin and bending strength of a composite.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも表層に水溶性タンパク質を含有
することを特徴とする炭素繊維用ポリアクリロニトリル
系前駆体繊維。
1. A polyacrylonitrile-based precursor fiber for carbon fiber, which contains a water-soluble protein in at least the surface layer.
【請求項2】前記水溶性タンパク質が、ゼラチンである
請求項1記載の炭素繊維用ポリアクリロニトリル系前駆
体繊維。
2. The polyacrylonitrile-based precursor fiber for carbon fiber according to claim 1, wherein the water-soluble protein is gelatin.
【請求項3】前記水溶性タンパク質が、ポリアクリロニ
トリル系前駆体繊維に対して0.5〜10重量%含有さ
れてなる請求項1または2に記載の炭素繊維用ポリアク
リロニトリル系前駆体繊維。
3. The polyacrylonitrile precursor fiber for carbon fiber according to claim 1, wherein the water-soluble protein is contained in an amount of 0.5 to 10% by weight based on the polyacrylonitrile precursor fiber.
【請求項4】ポリアクリロニトリル系重合体を湿式また
は乾湿式紡糸して得た水膨潤繊維に水溶性タンパク質を
付与し、その後乾燥緻密化することを特徴とする炭素繊
維用ポリアクリロニトリル系前駆体繊維の製造方法。
4. A polyacrylonitrile-based precursor fiber for carbon fiber, which is characterized in that water-swelling fiber obtained by wet or dry-wet spinning of a polyacrylonitrile-based polymer is provided with a water-soluble protein and then dried and densified. Manufacturing method.
【請求項5】前記水溶性タンパク質が、濃度2.0〜1
0重量%の水溶液として付与されるものである請求項4
記載の炭素繊維用ポリアクリロニトリル系前駆体繊維の
製造方法。
5. The water-soluble protein has a concentration of 2.0 to 1.
5. It is provided as a 0% by weight aqueous solution.
A method for producing a polyacrylonitrile-based precursor fiber for a carbon fiber as described above.
【請求項6】前記水膨潤繊維は、その膨潤度が50〜3
00重量%である請求項4記載の炭素繊維用ポリアクリ
ロニトリル系前駆体繊維の製造方法。
6. The water-swellable fiber has a swelling degree of 50 to 3
The method for producing a polyacrylonitrile-based precursor fiber for carbon fiber according to claim 4, wherein the content is 00% by weight.
JP2001203262A 2001-07-04 2001-07-04 Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same Pending JP2003020516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203262A JP2003020516A (en) 2001-07-04 2001-07-04 Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203262A JP2003020516A (en) 2001-07-04 2001-07-04 Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003020516A true JP2003020516A (en) 2003-01-24

Family

ID=19039930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203262A Pending JP2003020516A (en) 2001-07-04 2001-07-04 Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003020516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018136A1 (en) * 2005-08-09 2007-02-15 Toray Industries, Inc. Flame-resistant fiber, carbon fiber, and processes for the production of both
CN100395387C (en) * 2004-12-21 2008-06-18 东华大学 Method for preparing polyacrylonitrile pomace
CN102746453A (en) * 2011-04-20 2012-10-24 中国石油化工股份有限公司 Method for preparing high-performance polyacrylonitrile solution for carbon fibers
TWI408267B (en) * 2010-03-19 2013-09-11
CN111892406A (en) * 2020-06-18 2020-11-06 山东理工大学 Preparation of weak interface fiber monolithic zirconium boride ultra-high temperature ceramic by wet spinning-dipping method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395387C (en) * 2004-12-21 2008-06-18 东华大学 Method for preparing polyacrylonitrile pomace
WO2007018136A1 (en) * 2005-08-09 2007-02-15 Toray Industries, Inc. Flame-resistant fiber, carbon fiber, and processes for the production of both
JPWO2007018136A1 (en) * 2005-08-09 2009-02-19 東レ株式会社 Flame resistant fiber, carbon fiber and method for producing them
US7976945B2 (en) 2005-08-09 2011-07-12 Toray Industires, Inc. Flame resistant fiber, carbon fiber and production method thereof
TWI406983B (en) * 2005-08-09 2013-09-01 Toray Industries Flame resistance, carbon fiber and method for producing the same
TWI408267B (en) * 2010-03-19 2013-09-11
CN102746453A (en) * 2011-04-20 2012-10-24 中国石油化工股份有限公司 Method for preparing high-performance polyacrylonitrile solution for carbon fibers
CN111892406A (en) * 2020-06-18 2020-11-06 山东理工大学 Preparation of weak interface fiber monolithic zirconium boride ultra-high temperature ceramic by wet spinning-dipping method

Similar Documents

Publication Publication Date Title
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
KR101813433B1 (en) Carbon fiber bundle and method of producing carbon fibers
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP4023226B2 (en) Carbon fiber bundle processing method
JP2003020516A (en) Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same
JP2002004175A (en) Pan based precursor for carbon fiber and method of producing the same
JPH02242920A (en) Carbon fiber containing composite metal
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
JP4507908B2 (en) Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
KR20110078306A (en) Process for producing precursor fiber for acrylonitrile-based carbon fiber and carbon fiber obtained from the precursor fiber
JP2002069758A (en) Method for manufacturing graphite fiber
JP2001248025A (en) Method for producing carbon fiber
KR102197333B1 (en) Polyacrylonitrile-based STABILIZED FIBER, CARBON FIBER, AND PREPARATION METHOD THEREOF
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2003027378A (en) Silicone oil solution for carbon fiber precursor, precursor fiber for carbon fiber and method for producing carbon fiber
JP2002105747A (en) Acrylic precursor fiber and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
KR20110130186A (en) Manufacturing method of carbon fiber
JP2007182645A (en) Method for producing acrylic fiber