JP2780941B2 - セラミック放電管を備えた高圧放電灯、その放電管に適した焼結体並びにその焼結体の製造方法 - Google Patents

セラミック放電管を備えた高圧放電灯、その放電管に適した焼結体並びにその焼結体の製造方法

Info

Publication number
JP2780941B2
JP2780941B2 JP6305855A JP30585594A JP2780941B2 JP 2780941 B2 JP2780941 B2 JP 2780941B2 JP 6305855 A JP6305855 A JP 6305855A JP 30585594 A JP30585594 A JP 30585594A JP 2780941 B2 JP2780941 B2 JP 2780941B2
Authority
JP
Japan
Prior art keywords
ppm
discharge tube
sintered body
ceramic
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6305855A
Other languages
English (en)
Other versions
JPH0817396A (ja
Inventor
耕一朗 前川
純一 土井
リタ・ティート
ヘルムート・ヴェスケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8213478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2780941(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPH0817396A publication Critical patent/JPH0817396A/ja
Application granted granted Critical
Publication of JP2780941B2 publication Critical patent/JP2780941B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】
【0001】
【技術分野】本発明は、セラミック放電管の製造に適し
た焼結体、及びその製造方法に関するものであり、更
に、かかるセラミック放電管を備えた高圧放電灯、特
に、高圧ナトリウムランプ、及びメタルハライドランプ
に関するものである。
【0002】
【従来の技術】独国特許出願第3201750号におい
て、結晶粒の成長を制御する目的で、焼結剤として0.
02〜0.5重量%の酸化マグネシウムが添加されたア
ルミナから透光性焼結体を製造する方法が開示されてい
る。このアルミナに、更に、0.005〜0.1重量%
の酸化ジルコニウム、酸化ハフニウム若しくは酸化セリ
ウムを添加することによって、その焼結体において高い
機械的強度と透光性が得られることとなる。
【0003】さらに、独国特許出願第2042379号
においては、高圧放電灯の放電管として使用される透光
性アルミナ焼結体とその製法が記載されている。このア
ルミナ焼結体には、0.01〜0.1重量%のMgO、
0.05〜0.5重量%のY 2 3 、及び0.05〜
0.5重量%のLa2 3 が添加されている。このよう
な焼結体においては、充分な透光性と、高圧放電灯のオ
ン・オフ操作に伴って繰り返し付加される熱負荷に耐え
るために、高い機械的強度が求められる。
【0004】また、独国特許出願第3108677号に
おいては、焼結体とその製法が開示されている。この焼
結体は、0.03〜0.15重量%のMgO、0.00
2〜0.07重量%のZrO2 、及び/または0.00
3〜0.12重量%のHfO 2 が添加されたアルミナを
主として含んで構成される。MgOは、結晶粒の成長を
制御するばかりでなく、焼結体に高度の透光性を与え、
また、セラミック中の残留気孔を除去する働きをする。
他の二つの酸化物:ZrO2 とHfO2 は、スピネル相
(Al2 3 とMgOの混晶)の析出を防止し、更に
は、結晶粒の成長を制御する。
【0005】これらの焼結体は、特に有利には、高圧ナ
トリウム放電灯と共に用いられるものである(欧州特許
出願第110248号及び同第110249号を参照の
こと)。
【0006】上記出願の各公報の内容を、ここに引用す
る。
【0007】
【発明が解決しようとする課題】本発明は、高圧放電灯
に用いられるセラミック焼結体の負荷容量を向上し、ま
た、放電灯自体の負荷容量をも向上させることを目的と
するものである。ここでいう負荷とは、放電灯の作動中
に焼結体に加わる壁面熱負荷、及び放電管として使用さ
れる焼結体の壁面温度を意味するものである。また、こ
のような焼結体を製造する方法を提供することも、本発
明の目的である。
【0008】
【課題を解決するための手段】上記の目的は、請求項
1、6及び9に記載の特徴によって達成される。また、
本発明の特に有利な態様は従属請求項に記載されてい
る。
【0009】
【具体的構成】セラミック放電管を備えた高圧放電灯の
分野における技術の向上は、発光効率と光束を高め、演
色性Raを向上させることを目的としている。この目的
を達成するために、セラミック放電管の壁部の温度を高
めることが考えられる。通常では、このために、放電管
の寸法を大きくして、そのセラミック材料に熱的過負荷
がかからないようにしている。しかしながら、この場合
には、充分に高いナトリウム分圧が維持されなければな
らない。このためには、例えば、蓄熱紙などを使う方法
が知られている(独国実用新案第8907848号参
照)。
【0010】本発明においては、従来とは全く異なる方
法によって、放電管を形成するセラミック材料が有する
特徴を向上させ、放電管の小寸法化と壁部における高温
度の達成を可能にしている。従来、数多くの刊行物が、
放電灯製造用のセラミック焼結体の添加剤に関係してい
る。しかし、これら刊行物からは、この技術分野におい
ては最早これ以上の進歩はなく、個々の添加剤の添加量
が、その添加剤の種類によって一次的に決まってしまう
ような印象を受ける。
【0011】しかしながら、驚くべきことに、三種類の
添加剤、MgO、ZrO2 、及びY 2 3 が共に用いら
れると、これら三種類の物質間で相互作用が起こり、こ
れら添加剤の単なる添加の結果よりも明らかに優れた特
徴をセラミック材料に付与することが可能となることが
見出されたのである。従来技術で考えられた添加剤は、
MgOとZrO2 、或いはMgO、Y2 3 及びLa2
3 の組み合わせのどちらかであり、しかも、どの物質
も比較的多量に用いられていた。しかしながら、これら
MgO、La2 3 及びY2 3 を添加しても、満足の
ゆく結果が得られないことがわかった。即ち、その添加
の結果得られるセラミックは、MgOだけが添加された
セラミックよりも品質的に劣るということがわかったの
である。
【0012】本発明においては、三種類の物質、即ちM
gO、ZrO2 及びY2 3 を、同時に、しかも少量添
加するのである。その添加量は、重量割合において、酸
化マグネシウム(MgO)が100〜800ppm、好
ましくは100〜600ppm、特に好ましくは150
〜280ppm、酸化ジルコニウム(ZrO2 )が、2
00〜1200ppm、好ましくは200〜800pp
m、特に好ましくは300〜600ppm、そして酸化
イットリウム(Y2 3 )が、10〜300ppm、好
ましくは10〜150ppm、特に好ましくは20〜7
5ppmである。
【0013】本発明の好ましい態様においては、これら
添加剤の相対的割合、即ちMgO:ZrO2 :Y2 3
は、以下のようにして定められる。即ち、MgOとZr
2の量が同じ桁数で表される程度、例えば、3:1か
ら1:3の間の範囲が好ましい。それに対して、Y2
3 の割合はかなり小さめに設定され、ZrO2 量の3%
から20%の間とされる。この割合の選定は、本発明に
おいて特に重要な意味を持つ。
【0014】酸化イットリウムの添加を酸化ジルコニウ
ムの添加と同時に行うと、放電管内のナトリウムやアル
ミニウムが放電灯の外管へ拡散し、外管の壁部が黒化す
るのを防ぐのに重要な役割を果たすこととなる。温度が
上昇するにつれて,ZrO2の単斜晶系が、1200℃
で正方晶系に、更に2200℃で立方晶系となり、その
セラミック材料の密度が変化する。例えば、放電灯の作
動中のような比較的低温状態の時、ZrO2 の微結晶の
幾らかは高温変態の状態のまま存在しており、その高密
度の故に周囲に存在するAl2 3 のマトリックスに安
定化圧縮応力を生ぜしめるのである。
【0015】このような高温変態の微結晶は、当量的に
釣り合ったY2 3 を添加することによって、更に安定
化させられることとなる。このようにして、安定化され
たセラミック材料の強度が高められるのである。この圧
縮応力によって、セラミック内における微小亀裂の発生
が妨げられ、また、ナトリウムやアルミニウムがセラミ
ック放電管から放電灯の外管へ拡散するのをかなり防ぐ
ことができるのである。更には、外管の黒化が起こらな
いので、放電管の発光効率が放電管の寿命を通して一定
であることが可能となる。また、有利には、酸化ジルコ
ニウムと酸化イットリウムが、それら二つの物質が結合
した化合物の状態でアルミナ粉末に添加される。特に少
量(10〜50ppm)の酸化イットリウムを使用する
場合には、部分安定化ジルコニア(PSZ)を用いるこ
とが極めて望ましい。なぜなら、そうしない限り、これ
ら少量の酸化イットリウムや酸化ジルコニウムはアルミ
ナマトリックス中に微細に拡散して結合しなくなるから
である。部分安定化ジルコニアとしては、例えば『J.
Am.Ceram.Soc.』、75、1229〜12
38、1992に記載されているものが知られている。
しかしながら、部分安定化ジルコニアが添加剤として極
めて少量使用される際に、その安定化特性がアルミナマ
トリックスにおいても効果的に働くということは、現在
に至るまで考慮されなかったのである。比較的多量(通
常100ppm以上)の酸化イットリウムを用いる際に
は、その一部或いは全部が、酸化ジルコニウムとは別に
添加されてもよい。なぜなら、酸化イットリウムが多量
に用いられる場合には、それら二つの成分の結合がより
容易になり、及び/または、少量の結合されなかった酸
化イットリウムは有益だからである。実際、セラミック
材料中においては、ZrO2 とY2 3 の二つの成分が
結合する傾向が見られる。それら二つの成分は、室温で
は、二成分ZrO2 とY2 3 の比が3:1である液滴
構造に似た特殊な相を、高温影響下において(放電灯作
動中における高温下で)形成することがある。
【0016】MgOの添加下限量は100ppmであ
る。MgOの割合がそれより少ない場合には、焼結体の
結晶粒成長が不均一に増加し、セラミック焼結体の機械
的強度の向上を阻害することになる。MgO量が600
ppm以上になると、結晶中に第二次相が形成されはじ
め、放電管内のナトリウムが放電灯の外管へ拡散し易く
なる。このことから、MgOの最大添加許容量は、80
0ppmとされる。従って、比較的少量の、特には15
0〜280ppmのMgOであることが望ましい。
【0017】ZrO2 を添加することによって、焼結体
の高温に対する耐性と、放電管内封入物の浸食成分、と
りわけナトリウムに対する耐性を向上させることが可能
になる。このようなナトリウムの浸食性は、放電灯の作
動圧力が高いときに、特に強いものとなる。ZrO2
が200ppm未満であると、充分な効果が得られな
い。また、800ppm以上になると、望ましくない現
象が現れてくる。即ち、結晶粒成長の増加が最終的に
は、つまりZrO2 量が1200ppmを超えたとき
に、焼結体の機械的強度と密度に好ましくない影響を与
えるのである。従って、約100〜500ppmのMg
Oと約300〜600ppmのZrO2 が同時に用いら
れたときに、特に好ましい結果が得られることとなる。
また、前述したように、これにさらに少量のY2 3
添加することによって驚くべき効果が数多く得られる。
このY2 3 の添加によって、MgOとZrO2 の割合
を減少させることが可能となるのである。
【0018】MgOの添加は、結晶中に第二次相が形成
されるのを抑制する上で極めて有利である。この効果
は、放電灯が2000時間以上継続して使用されたとき
に明らかになる。また、ZrO2 の添加は、セラミック
の機械的安定度の点から有利である。とりわけ、透光性
の著しい増加と、更には放電管内封入物の外管への拡散
防止において著しい向上がみられることとなる。
【0019】Y2 3 の添加量が約10ppm以下であ
る場合には、特に有益な効果は認められない。また、Y
2 3 の添加量が150ppm以上になると、結晶粒成
長が不均一に加速され始め、放電管の透光性に悪影響を
及ぼす。それ故に、Y2 3量は、300ppmを超え
てはならない。Y2 3 の添加によって得られる特に際
立った特徴は、その添加量が、それによって取って替わ
られるMgOとZrO 2 の量に比べて、極めて少ないと
いうことである。
【0020】これら添加剤の、特に好ましい割合は、M
gOが150〜280ppm、ZrO2 が300〜60
0ppm、そしてY2 3 が20〜75ppmである。
【0021】従来技術によるY2 3 の添加方法は、結
果的には高圧放電灯の製造には不利であるということが
明らかである。なぜなら、従来の方法では、Y2 3
ZrO2 と同時に添加することについては、特に言及し
ていないからである。また、そのような公知の通常の製
造方法で得られた高圧放電灯においては、その透光性と
機械的強度において不規則なばらつきが生じてしまうの
である。しかしながら、本発明においては、添加剤の好
ましい添加量はごく少量であり、そのようなばらつきは
大きな影響を与えるものではない。
【0022】高圧放電灯の製造に際しては、セラミック
材料がナトリウムやアルミニウムの拡散に対して高い耐
性を持つことが極めて有利であるということが明白であ
る。本発明においては、セラミック放電管の壁面温度が
従来の1100℃から1200℃よりおよそ15%高い
値まで選択可能となることから、1350℃までの値を
達成することが可能となる。
【0023】放電管の壁面負荷は、従来技術による放電
管のそれよりも60%高い値まで選択可能となる。即
ち、特には、25W/cm2 となる。
【0024】放電管は、通常、管状を呈する。より詳細
には、円筒管状或いは突き出し状の円筒管状であり、屈
曲(カーブ)していたり、例えばU字形のように角度が
つけられていてもよい。そうすることによって、放電管
の内径を10〜15%削減することができ、放電管を形
成するセラミック材料や放電管の中に充填される封入物
の量を少なくし、更には、放電灯の寸法を小さくするこ
とが可能になる。
【0025】
【実施例】以下、本発明を、幾つかの実施例に基き、詳
細に説明する。
【0026】図1は、出力定格約35W〜1000Wで
使用される高圧ナトリウム放電灯の略図である。この放
電灯は、硬質ガラスから成る外管(outer bulb) 1を含
む。この外管1は、図示されるような円筒状であった
り、或いは楕円形であり、ねじ込み口金2を備えてい
る。2本の電流供給ワイヤ4、5が、外管1のステム3
に溶封され、外管1内中央に配設された円筒管状セラミ
ック放電管6を、外管1の軸方向に支持している。短い
方の電流供給ワイヤ4は、放電管6の基部に近い方の端
部7において、図示されていない第一の電極を、放電管
6の端子(base contact) に接続する。長い方の電流供
給ワイヤ5は、放電管6の基部から遠い方の端部8から
セラミック放電管6に沿って延び、その端部8で第二の
電極を第二の端子に接続する。セラミック放電管6は、
100〜600ppmのMgO、200〜800ppm
のZrO2 、及び10〜150ppmのY2 3 が添加
された多結晶質アルミナセラミックから成る。放電管6
の端部7、8は、例えば、主としてアルミナから成るセ
ラミックプラグ9によって閉塞され、そのセラミックプ
ラグ9を通して、気密密閉されたニオブ導管(feed-thro
ugh)10が放電管6の内部を前記二つの電極に向かって
延びている。放電管6内には、例えばキセノンや、アル
ゴン或いはネオンの混合物のような不活性な基礎ガス
と、ナトリウムが封入される。このナトリウムは、ナト
リウムアマルガムの形態で導入されることが多いが、放
電管内においては、他の形態で存在し得る。この高圧放
電灯については、前述の刊行物において、より詳細に記
述されている(更には、米国特許第5,192,239
号を参照のこと)。
【0027】図2、3及び4は、セラミック放電管を備
えた定格250Wの高圧ナトリウム放電灯の幾つかにつ
いて、その特徴をグラフに表したものであり、そのセラ
ミック放電管を形成するアルミナセラミックは、それぞ
れ、以下の材料が添加されている。 (a)500ppmのMgOと300ppmのZrO2 (b)500ppmのMgOと500ppmのZrO2 (c)500ppmのMgOと1000ppmのZrO
2 (d)500ppmのMgO、400ppmのZr
2 、及び50ppmのY23
【0028】この放電管は、内径4.8mm、壁厚0.
7mm、長さ86mmである(従来の放電管において
は、内径6.7mm、壁厚0.75mm、長さ94mm
であった)。図4のグラフに示されているように、90
00時間まで示されている作動時間の関数としての作動
電圧は、50ppmのY2 3 の添加によって大きく影
響を受けることがわかる(グラフにおいて実線dで示さ
れている上記材料(d)使用の放電管)。この材料
(d)使用の放電管の9000時間における作動電圧値
は、Y2 3 が添加されていないセラミック材料使用の
放電管の作動電圧値より約10%低くなっている。ま
た、図2のグラフからも明らかなように、発光効率の点
でも同様の効果があらわれる。即ち、50ppmのY2
3 を含む上記材料(d)が添加されたセラミック放電
管の9000時間以降における発光効率の低下は、15
時間後の値に比べておよそ9%足らずであるのに対し、
2 3 を含まずにMgOとZrO2 のみが添加された
セラミック材料(a)或いは(b)使用の放電管におけ
る発光効率の低下はおよそ15%である。図3のグラフ
からも明らかなように、光束の低下についても同様のこ
とがいえる。この材料(d)の有利な特性は、放電灯の
12000時間以上の作動時間にわたって持続するもの
である。上記材料(d)の、図2〜4のグラフで示され
た3つの特徴、即ち、発光効率、光束及び作動電圧の1
2000時間以降の値は、その他の3つのセラミック材
料(a)〜(c)の9000時間以降のそれぞれの値よ
りも優れたものである。
【0029】図5及び図6は、定格400Wの放電灯に
ついての測定データをグラフに表したものである。この
放電灯は、キセノン200ミリバール (mbar)と、
24.5重量%のナトリウム割合をもつナトリウムアマ
ルガム30mgとからなる改善された光色(De Luxe) 用封
入物が放電管内に充填されている。従来技術によって製
造されるこのタイプの放電灯は蓄熱手段を必要とし、そ
れによって円筒状の放電管内において充分に高い蒸気圧
を確保することが可能となる。このような従来の放電管
は、内径10.9mm、壁厚0.75mm、長さ10
2.0mmの寸法をもち、750ppmのMgOが添加
された多結晶質アルミナから形成される。この放電灯の
作動電圧は105V、光束は38.5klm、そして演
色性はRa57である。
【0030】本発明による放電灯は400ppmのZr
2 、200ppmのMgO、及び20ppmのY2
3 が添加された材料から形成される放電管を備え、その
円筒状放電管においては、従来必要であった蓄熱手段が
不用となり、内径8.0mm、壁厚0.75mm、長さ
80.0mmの寸法をもって形成される。このような放
電管を有する放電灯においては、光束を40.0kl
m、演色性をRa60にまで増加させることが可能とな
る。
【0031】図5及び図6は、それぞれ、作動動間10
0時間経過後の放電灯において、作動電圧を理論値10
5V近傍で変動させた時の演色性と発光効率の変化を表
したグラフである。それらグラフにおいて、十字形の測
定点(+)は従来の放電管を備えた放電灯における測定
結果を表し、円形の測定点(●)は本発明による、イッ
トリウムを含んで形成された、小型化された放電管を備
えた放電灯における測定結果を表す。発光効率に関して
は、イットリウムを含んで形成されているが、寸法は従
来通りの放電管を備えた放電灯についても測定結果がX
字形の測定点(X)で示されている。図5のグラフから
も明らかなように、本発明による放電灯における演色性
は、従来の放電灯に比して約10%増加していることが
わかる。即ち、100Vの作動電圧で演色性がRa54
からRa58と約7%の増加を示し、また、105Vの
作動電圧でRa57からRa64と約12%の増加を示
している。発光効率に関しては、図6のグラフからも明
らかなように、105Vの作動電圧で、従来の放電管に
おける発光効率が約97lm/Wであるのに対し、本発
明の放電管においては、105lm/Wの値を示し、従
来に比べて8%の増加となっていることがわかる。
【0032】図7のグラフは、定格70Wを有し、放電
管内に圧力30ミリバール(mbar)のキセノンと1
8.4重量%のナトリウム割合をもつナトリウムアマル
ガム30mgとが封入物として充填されている放電灯に
ついて、発光効率と光束を測定した結果をそれぞれグラ
フに表したものである。これらグラフからも明らかなよ
うに、750ppmのMgOが添加されたアルミナから
成る従来のセラミック放電管を備えた放電灯(グラフ
中、実線1で示される)においては、その使用期間にわ
たって発光効率(ルーメン/ワット)と光束(キロルー
メン)においてかなりの低下がみられる。放電灯の作動
時間約9000時間後、発光効率と光束は共に、放電灯
使用開始直後の値のおよそ3分の2にまで低下してい
る。これに対し、400ppmのZrO2 、200pp
mのMgO、及び20ppmのY2 3 が添加されたイ
ットリウムを含むセラミックから成る本発明のセラミッ
ク放電管を備えた放電灯(グラフ中、実線2で示され
る)においては、発光効率、光束共に使用開始直後の値
を殆ど維持し続けている。比較を容易にするために、測
定はすべて内径3.3mmのセラミック管を使用して行
ったが、従来の放電管は内径3.7mmであるので実際
には壁面負荷が26%高いことになる。
【0033】本発明による焼結体の製造は、主に、前記
刊行物に記載の何れかの方法によって行われる。スター
ト材料は主として均一に分散せしめられたアルミナで、
それに、100〜800ppmのMgO(或いは当量の
MgO前駆体、例えばマグネシウムの硝酸塩)、200
〜1200ppmのZrO2 (或いは当量のZrO2
駆体)、及び10〜300ppmのY2 3 (或いは当
量のY2 3 前駆体)とが混合される。好ましくは、酸
化イットリウムと酸化ジルコニウムは部分安定化ジルコ
ニア(PSZ)材料として添加されることが望ましい。
アルミナは、その混合物中、アルファ相で存在する。こ
の分散体を成形し、その成形体を予備焼成し、更には1
700℃以上の水素雰囲気下、より好ましくは真空下に
おいて、最終焼成することによって、求める焼結体が得
られるのである。
【0034】焼結体の製造過程において、MgOを作用
させるのに必要な高温及び放電灯作動中における高温の
ために、初めに添加したMgO量が僅かに減少すること
がある。この減少量は、添加量全体の10%程度であ
る。例えば、アルミナ粉末中におけるMgOの添加量が
500ppmであった場合、完成した放電灯の放電管内
に存在するMgO量が455ppmという場合もある。
しかしながら、添加剤は、得られた焼結体において、初
めの添加量を維持し続けることもある。
【0035】本発明によるセラミック放電管の両端部を
閉塞するセラミックプラグは、セラミック放電管と同じ
か、或いは同様の材料にて形成され得る。
【0036】本発明の他の態様として、メタルハライド
ランプがある。このメタルハライドランプは、前述のよ
うに、MgO、ZrO2 、及びY2 3 が添加されたア
ルミナから形成されたセラミック放電管を備えている。
この放電管内には、基礎ガスとしてアルゴン、蒸発性ガ
スとして水銀、そして少量の金属ハライド、特に、ナト
リウムハロゲン化物、好ましくはヨウ化ナトリウム(ナ
トリウムヨウ化物)を含む金属ハライドが、封入物とし
て充填される。
【図面の簡単な説明】
【図1】本発明に従う高圧ナトリウム放電灯の一例を切
り欠いて示す斜視説明図である。
【図2】本発明によるセラミック放電管を有する高圧ナ
トリウム放電灯と従来の放電管を有する放電灯との間
で、作動時間に対する発光効率の変化を測定した結果を
表したグラフである。
【図3】本発明によるセラミック放電管を有する高圧ナ
トリウム放電灯と従来の放電管を有する放電灯との間
で、作動時間に対する光束の変化を測定した結果を表し
たグラフである。
【図4】本発明によるセラミック放電管を有する高圧ナ
トリウム放電灯と従来の放電管を有する放電灯との間
で、作動時間に対する作動電圧の変化を測定した結果を
表したグラフである。
【図5】100時間使用後の出力定格400Wを有する
本発明による高圧ナトリウム放電灯と従来の放電灯との
間で、演色性を作動電圧の関数として比較測定した結果
を表したグラフである。
【図6】100時間使用後の出力定格400Wを有する
本発明による高圧ナトリウム放電灯と従来の放電灯との
間で、発光効率を作動電圧の関数として比較測定した結
果を表したグラフである。
【図7】それぞれ出力定格70Wを有する本発明による
高圧ナトリウム放電灯と従来の放電灯との間で、作動時
間に対する発光効率と光束の変化を測定した結果を、そ
れぞれグラフに表したものである。
【符号の説明】
1 外管 2 ねじ込み口金 3 ステム 4 電流供給ワイヤ 5 電流供給ワイヤ 6 セラミック放電管 7 端部 8 端部 9 セラミックプラグ 10 ニオブ導管
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01J 61/34 C04B 35/10 C 35/44 (72)発明者 土井 純一 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式会社内 (72)発明者 リタ・ティート ドイツ連邦共和国 ディー−13125 ベ ルリンシュトラーセ 71 ナンバー13 (72)発明者 ヘルムート・ヴェスケ ドイツ連邦共和国 ディー−14163 ベ ルリンデュエッペルシュトラーセ 27 (56)参考文献 特開 昭62−119184(JP,A) 特開 昭63−260856(JP,A) 特開 平4−370648(JP,A) 特公 昭46−15304(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01J 61/30 H01J 9/24 H01J 61/34 C04B 35/115 C04B 35/119 C04B 35/44

Claims (10)

    (57)【特許請求の範囲】
  1. 【請求項1】 主として酸化マグネシウムと酸化ジルコ
    ニウムが添加されたアルミナで形成される、高圧放電灯
    に用いられる放電管の製造に適した透光性多結晶質焼結
    体にして、該焼結体が、添加材料として、重量ppm
    で、100ppm〜800ppm、好ましくは100p
    pm〜600ppmのMgO、200ppm〜1200
    ppm、好ましくは200ppm〜800ppmのZr
    2 、及び10ppm〜300ppm、好ましくは10
    ppm〜150ppmのY2 3なる成分を含むアルミ
    ナで形成されていることを特徴とする透光性多結晶質焼
    結体。
  2. 【請求項2】 前記添加材料が、150ppm〜280
    ppmのMgOを含むことを特徴とする請求項1記載の
    焼結体。
  3. 【請求項3】 前記添加材料が、300ppm〜600
    ppmのZrO2 を含むことを特徴とする請求項1記載
    の焼結体。
  4. 【請求項4】 前記添加材料が、20ppm〜75pp
    mのY2 3 を含むことを特徴とする請求項1記載の焼
    結体。
  5. 【請求項5】 前記ZrO2 とY2 3 の重量比が、お
    よそ5:1から20:1であることを特徴とする請求項
    1乃至請求項4の何れかに記載の焼結体。
  6. 【請求項6】 セラミック放電管(6)を備えた高圧放
    電灯で、該セラミック放電管が、その端部(7、8)近
    傍に電極を含み、さらにその内部に少なくとも一つの蒸
    発性金属と不活性な基礎ガスとを含むセラミック放電管
    にして、該セラミック放電管が、請求項1乃至請求項5
    の何れかに記載の、酸化マグネシウム、酸化ジルコニウ
    ム、及び酸化イットリウムが添加された透光性多結晶質
    アルミナセラミックから成ることを特徴とする高圧放電
    灯。
  7. 【請求項7】 前記放電管(6)が、透明な外管(1)
    にて覆われていることを特徴とする請求項6記載の高圧
    放電灯。
  8. 【請求項8】 前記放電管(6)が、基礎ガスとして少
    なくとも一つの希ガスと、蒸発性金属として少なくとも
    ナトリウム及び/または水銀を含むことを特徴とする請
    求項6記載の高圧放電灯。
  9. 【請求項9】 請求項1及び請求項6に記載の透光性多
    結晶質焼結体の製造方法にして、 a)アルミナ粉末に、それぞれ重量で、100ppm〜
    800ppmのMgOまたは当量のMgO前駆体、20
    0ppm〜1200ppmのZrO2 または当量のZr
    2 前駆体、及び10ppm〜300ppmのY2 3
    または当量のY2 3 前駆体を混合して、実質的に均一
    な分散体を形成する工程と、 b)かかる分散体から放電管形状の成形体を成形し、該
    放電管形状成形体を予備焼成する工程と c)予備焼成された前記成形体を、1700℃以上の水
    素及び/または真空雰囲気下において最終焼成する工程
    と、を含むことを特徴とする焼結体の製造方法。
  10. 【請求項10】 前記酸化イットリウム及び酸化ジルコ
    ニウムが、化合物として、特に、部分安定化ジルコニア
    (PSZ)として添加されることを特徴とする請求項9
    記載の焼結体の製造方法。
JP6305855A 1993-12-10 1994-12-09 セラミック放電管を備えた高圧放電灯、その放電管に適した焼結体並びにその焼結体の製造方法 Expired - Lifetime JP2780941B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93119959A EP0657399B1 (en) 1993-12-10 1993-12-10 High-pressure discharge lamp having a ceramic discharge vessel, sintered body suitable therefor, and methods for producing the said sintered body
DE93119959:0 1993-12-10

Publications (2)

Publication Number Publication Date
JPH0817396A JPH0817396A (ja) 1996-01-19
JP2780941B2 true JP2780941B2 (ja) 1998-07-30

Family

ID=8213478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6305855A Expired - Lifetime JP2780941B2 (ja) 1993-12-10 1994-12-09 セラミック放電管を備えた高圧放電灯、その放電管に適した焼結体並びにその焼結体の製造方法

Country Status (7)

Country Link
US (1) US5625256A (ja)
EP (1) EP0657399B1 (ja)
JP (1) JP2780941B2 (ja)
CN (1) CN1069442C (ja)
AT (1) ATE155452T1 (ja)
DE (1) DE69312299T2 (ja)
HU (1) HU215321B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305621A2 (en) 2009-09-09 2011-04-06 NGK Insulators, Ltd. Translucent polycrystalline sintered body, method for producing the same, and arc tube for high-intensity discharge lamp

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507179B2 (ja) * 1995-01-13 2004-03-15 日本碍子株式会社 高圧放電灯
US6083451A (en) * 1995-04-18 2000-07-04 Applied Materials, Inc. Method of producing a polycrystalline alumina ceramic which is resistant to a fluorine-comprising plasma
US5621275A (en) * 1995-08-01 1997-04-15 Osram Sylvania Inc. Arc tube for electrodeless lamp
US5682082A (en) * 1996-07-29 1997-10-28 Osram Sylvania Inc. Translucent polycrystalline alumina and method of making same
DE19943075A1 (de) * 1999-09-03 2001-03-15 Fraunhofer Ges Forschung Poröse Aluminiumoxidstrukturen und Verfahren zu ihrer Herstellung
JP4613408B2 (ja) 1999-10-15 2011-01-19 日本碍子株式会社 高圧放電灯用発光管の製造方法
US6399528B1 (en) 2000-09-01 2002-06-04 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Porous aluminum oxide structures and processes for their production
US6639362B1 (en) * 2000-11-06 2003-10-28 General Electric Company High pressure discharge lamp
EP1463691B1 (en) * 2002-01-04 2006-06-14 Koninklijke Philips Electronics N.V. Sintered body and electric lamp
US8198812B1 (en) 2002-05-21 2012-06-12 Imaging Systems Technology Gas filled detector shell with dipole antenna
US7727040B1 (en) 2002-05-21 2010-06-01 Imaging Systems Technology Process for manufacturing plasma-disc PDP
US8198811B1 (en) 2002-05-21 2012-06-12 Imaging Systems Technology Plasma-Disc PDP
US8513887B1 (en) 2002-05-21 2013-08-20 Imaging Systems Technology, Inc. Plasma-dome article of manufacture
US7932674B1 (en) 2002-05-21 2011-04-26 Imaging Systems Technology Plasma-dome article of manufacture
US7405516B1 (en) 2004-04-26 2008-07-29 Imaging Systems Technology Plasma-shell PDP with organic luminescent substance
JP2005532250A (ja) * 2002-07-10 2005-10-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 透明多結晶酸化アルミニウム
US6984592B2 (en) * 2002-08-28 2006-01-10 Micron Technology, Inc. Systems and methods for forming metal-doped alumina
US7253122B2 (en) * 2002-08-28 2007-08-07 Micron Technology, Inc. Systems and methods for forming metal oxides using metal diketonates and/or ketoimines
US7087481B2 (en) * 2002-08-28 2006-08-08 Micron Technology, Inc. Systems and methods for forming metal oxides using metal compounds containing aminosilane ligands
US6844285B1 (en) 2003-09-03 2005-01-18 Osram Sylvania Inc. Transparent polycrystalline yttrium aluminum garnet
US7772773B1 (en) 2003-11-13 2010-08-10 Imaging Systems Technology Electrode configurations for plasma-dome PDP
JP4951842B2 (ja) * 2004-02-25 2012-06-13 パナソニック株式会社 高圧ナトリウムランプ
US8129906B1 (en) 2004-04-26 2012-03-06 Imaging Systems Technology, Inc. Lumino-shells
US8339041B1 (en) 2004-04-26 2012-12-25 Imaging Systems Technology, Inc. Plasma-shell gas discharge device with combined organic and inorganic luminescent substances
US8113898B1 (en) 2004-06-21 2012-02-14 Imaging Systems Technology, Inc. Gas discharge device with electrical conductive bonding material
US8368303B1 (en) 2004-06-21 2013-02-05 Imaging Systems Technology, Inc. Gas discharge device with electrical conductive bonding material
EP1805119B1 (en) * 2004-10-01 2015-07-01 Ceranova Corporation Polycrystalline alumina articles and methods of manufacture
US8951608B1 (en) 2004-10-22 2015-02-10 Imaging Systems Technology, Inc. Aqueous manufacturing process and article
US8299696B1 (en) 2005-02-22 2012-10-30 Imaging Systems Technology Plasma-shell gas discharge device
US7247591B2 (en) * 2005-05-26 2007-07-24 Osram Sylvania Inc. Translucent PCA ceramic, ceramic discharge vessel, and method of making
US7481963B2 (en) * 2005-06-28 2009-01-27 Osram Sylvania Inc. Method of reducing magnesium loss during sintering of aluminum oxide articles
US7863815B1 (en) 2006-01-26 2011-01-04 Imaging Systems Technology Electrode configurations for plasma-disc PDP
US8618733B1 (en) 2006-01-26 2013-12-31 Imaging Systems Technology, Inc. Electrode configurations for plasma-shell gas discharge device
US8410695B1 (en) 2006-02-16 2013-04-02 Imaging Systems Technology Gas discharge device incorporating gas-filled plasma-shell and method of manufacturing thereof
US8035303B1 (en) 2006-02-16 2011-10-11 Imaging Systems Technology Electrode configurations for gas discharge device
US8278824B1 (en) 2006-02-16 2012-10-02 Imaging Systems Technology, Inc. Gas discharge electrode configurations
US7535175B1 (en) 2006-02-16 2009-05-19 Imaging Systems Technology Electrode configurations for plasma-dome PDP
US7678725B2 (en) * 2007-05-14 2010-03-16 General Electric Company Translucent polycrystalline alumina ceramic
US20080283522A1 (en) * 2007-05-14 2008-11-20 Shuyl Qin Translucent polycrystalline alumina ceramic
DE102007032267B4 (de) * 2007-07-11 2018-01-18 Emcon Technologies Germany (Augsburg) Gmbh Abgasanlagen-Rohr mit maßgeschneiderter Wandstärke
US8029595B2 (en) * 2008-06-02 2011-10-04 Nitto Denko Corporation Method and apparatus of producing nanoparticles using nebulized droplet
JP5272658B2 (ja) * 2008-10-31 2013-08-28 東ソー株式会社 高靭性で透光性のアルミナ焼結体及びその製造方法並びに用途
EP2366675B1 (en) * 2008-11-18 2015-05-27 Tosoh Corporation Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
US8123981B2 (en) * 2009-02-19 2012-02-28 Nitto Denko Corporation Method of fabricating translucent phosphor ceramics
US8137587B2 (en) * 2009-02-19 2012-03-20 Nitto Denko Corporation Method of manufacturing phosphor translucent ceramics and light emitting devices
US9013102B1 (en) 2009-05-23 2015-04-21 Imaging Systems Technology, Inc. Radiation detector with tiled substrates
CN102449111B (zh) * 2009-06-01 2014-12-24 日东电工株式会社 发光陶瓷和使用发光陶瓷的发光装置
US8206672B2 (en) * 2009-07-10 2012-06-26 Nitto Denko Corporation Production of phase-pure ceramic garnet particles
WO2012052054A1 (de) 2010-10-19 2012-04-26 Osram Ag Keramische durchführung für eine hochdruckentladungslampe
US20120306365A1 (en) * 2011-06-06 2012-12-06 General Electric Company Polycrystalline transluscent alumina for high intensity discharge lamps
WO2013054219A1 (en) * 2011-10-11 2013-04-18 Koninklijke Philips Electronics N.V. Diffusive ceramic envelope
US8482198B1 (en) 2011-12-19 2013-07-09 General Electric Company High intensity discharge lamp with improved startability and performance
CN102709148B (zh) * 2012-06-06 2014-10-22 宁波泰格尔陶瓷有限公司 具有净化空气的氧化铝陶瓷电弧管及制造方法
JP6035682B2 (ja) * 2013-04-19 2016-11-30 岩崎電気株式会社 セラミックメタルハライドランプ用発光管の製造方法
US9287106B1 (en) 2014-11-10 2016-03-15 Corning Incorporated Translucent alumina filaments and tape cast methods for making
KR20180018756A (ko) * 2015-06-16 2018-02-21 세람텍-에텍 게엠베하 파괴-저항성 광학 장치용 부품으로서의 투명 세라믹
JP5861853B1 (ja) * 2015-08-25 2016-02-16 岩崎電気株式会社 高圧ナトリウムランプ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1252851A (ja) * 1969-08-27 1971-11-10
US4285732A (en) * 1980-03-11 1981-08-25 General Electric Company Alumina ceramic
EP0055049B1 (en) * 1980-12-20 1986-03-19 Thorn Emi Plc Discharge lamp arc tubes
HU185242B (en) * 1981-02-18 1984-12-28 Egyesuelt Izzolampa Method for producing light-passing alumina sintered bodies advantageously cylinder-symmetrical ones
US4949010A (en) * 1982-02-04 1990-08-14 Tektronix, Inc. X-ray attenuating ceramic materials
US4567396A (en) * 1982-11-26 1986-01-28 General Electric Company Increased efficacy high pressure sodium lamp yielded by increased wall temperature operation
US4580075A (en) * 1982-11-26 1986-04-01 General Electric Company High pressure sodium lamp having improved coloring rendition
CA1207372A (en) * 1982-11-26 1986-07-08 General Electric Company High pressure sodium lamp having improved efficacy
US4797238A (en) * 1985-11-27 1989-01-10 Gte Laboratories Incorporated Rapid-sintering of alumina
US4762655A (en) * 1985-11-27 1988-08-09 Gte Laboratories Incorporated Method of sintering translucent alumina
EP0237103B1 (en) * 1986-03-11 1991-11-21 Koninklijke Philips Electronics N.V. Composite body
US5082809A (en) * 1987-12-21 1992-01-21 Kyocera Corporation High-strength alumina sintered body and process for preparation thereof
DE8907848U1 (de) * 1989-06-27 1989-08-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
DE4037721C2 (de) * 1990-11-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer Natriumhochdrucklampe sowie dafür geeignete Vorrichtung
EP0567095B1 (en) * 1992-04-22 1996-07-03 Sumitomo Chemical Company, Limited Translucent polycrystalline alumina and process for producing the same
US5426343A (en) * 1992-09-16 1995-06-20 Gte Products Corporation Sealing members for alumina arc tubes and method of making the same
US5403794A (en) * 1994-04-14 1995-04-04 Vesuvius Crucible Company Alumina-zirconia refractory material and articles made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305621A2 (en) 2009-09-09 2011-04-06 NGK Insulators, Ltd. Translucent polycrystalline sintered body, method for producing the same, and arc tube for high-intensity discharge lamp
US8278233B2 (en) 2009-09-09 2012-10-02 Ngk Insulators, Ltd. Translucent polycrystalline sintered body, method for producing the same, and arc tube for high-intensity discharge lamp

Also Published As

Publication number Publication date
DE69312299T2 (de) 1998-01-15
HUT69828A (en) 1995-09-28
DE69312299D1 (de) 1997-08-21
CN1110003A (zh) 1995-10-11
HU215321B (hu) 1998-11-30
CN1069442C (zh) 2001-08-08
EP0657399A1 (en) 1995-06-14
ATE155452T1 (de) 1997-08-15
US5625256A (en) 1997-04-29
JPH0817396A (ja) 1996-01-19
EP0657399B1 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP2780941B2 (ja) セラミック放電管を備えた高圧放電灯、その放電管に適した焼結体並びにその焼結体の製造方法
JP5138606B2 (ja) セラミックメタルハライドランプ
US4150317A (en) Polycrystalline alumina material
US5682082A (en) Translucent polycrystalline alumina and method of making same
US4841195A (en) Discharge lamp having a yttrium aluminum garnet discharge envelope
US20080283522A1 (en) Translucent polycrystalline alumina ceramic
US4169875A (en) Method of producing a tubular body of polycrystalline alumina
US6046544A (en) High-pressure metal halide discharge lamp
US7678725B2 (en) Translucent polycrystalline alumina ceramic
EP1463691B1 (en) Sintered body and electric lamp
US8274224B2 (en) Metal halide lamp including ceramic sealing material
JPH06236749A (ja) アルミナ製品およびナトリウムアーク放電ランプ
US6639362B1 (en) High pressure discharge lamp
US4617492A (en) High pressure sodium lamp having improved pressure stability
US20120306365A1 (en) Polycrystalline transluscent alumina for high intensity discharge lamps
US6796869B1 (en) Ceramic arc tube by annealing
JP3385952B2 (ja) セラミック製放電ランプ
CA1095690A (en) Polycrystalline alumina material
JP2002184352A (ja) 高輝度放電灯用多結晶セラミックス発光管及びその製造方法
MX2008007587A (en) Ceramic metal halide lamp

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term