CN1069442C - 多晶烧结体、其制备方法和含有它的高压放电灯 - Google Patents

多晶烧结体、其制备方法和含有它的高压放电灯 Download PDF

Info

Publication number
CN1069442C
CN1069442C CN94119859A CN94119859A CN1069442C CN 1069442 C CN1069442 C CN 1069442C CN 94119859 A CN94119859 A CN 94119859A CN 94119859 A CN94119859 A CN 94119859A CN 1069442 C CN1069442 C CN 1069442C
Authority
CN
China
Prior art keywords
sintered body
zro
discharge tube
lamp
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN94119859A
Other languages
English (en)
Other versions
CN1110003A (zh
Inventor
R·蒂特
H·韦斯克
前井耕一朗
土井纯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
NGK Insulators Ltd
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8213478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1069442(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH, NGK Insulators Ltd filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of CN1110003A publication Critical patent/CN1110003A/zh
Application granted granted Critical
Publication of CN1069442C publication Critical patent/CN1069442C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Discharge Lamp (AREA)

Abstract

本发明涉及适用于制造陶瓷放电管的透光的多晶烧结体及制造该烧结体的方法。本发明还涉及含有这种陶瓷放电管的高压放电灯。该透光多晶烧结体含有掺杂有MgO、ZrO2和Y2O3作为烧结助剂的氧化铝,其中掺杂量为100-800ppm的MgO、200-1200ppm的ZrO2和10-300ppm的Y2O3的氧化铝制成。这样提高了陶瓷的负荷能力。因而改善了陶瓷放电管以及含有该陶瓷放电管的高压放电灯的负荷能力。

Description

多晶烧结体、其制备方法和含有它的高压放电灯
本发明涉及适用于制造放电管的烧结体及制造该烧结体的方法。本发明还涉及具有这种陶瓷放电管的高压放电灯,更具体地说是高压钠灯,以及金属卤化物灯。
德国专利申请3201750披露了一种用氧化铝制造透光的烧结体的方法,在氧化铝中加入了重量比为0.02%至0.5%的烧结助剂氧化镁以控制晶粒的生长。通过再加入重量比0.005%至0.1%的氧化锆、氧化铪或氧化铈可得到高的机械强度和高的透明度。
德国专利申请2042379披露了一种用于高压放电灯的放电管的透光氧化铝烧结体及制造该烧结体的方法。其中掺杂了重量比0.01%至0.1%的MgO、重量比0.05%至0.5%的Y2O3及重量比0.05%至0.5%的La2O3。由于在高压放电灯工作时烧结体暴露于交变的热负荷中,因此要有足够的透明性和高的机械强度。
德国专利申请3108677披露了一种烧结体及一种制备方法。该烧结体基本上由掺杂有重量占0.03%~0.15%的MgO及重量占0.002%~0.07%的ZrO2和/或重量占0.003%~0.12%的HfO2的氧化铝构成。MgO不仅控制晶粒的生长,而且能得到高的透明度并消除陶瓷的残余孔隙。另两种氧化物能阻止尖晶相(Al2O3和MgO的混合晶体)的沉淀,还能调节颗粒的生长。
这些烧结体有利地用在高压钠放电灯中(见欧洲专利申请110248和110249)。
美国专利US4797238公开了一种掺杂有烧结助剂的透光的多晶氧化铝陶瓷。其中使用单独的MgO或MgO与选自Y2O3、La2O3、ZrO2、HfO2和Yb2O3的第二种物质的结合作为烧结助剂。它可以在氮气和至少2.5%与至多75%体积的氢气的混合流动气流下快速烧结。
主要参考上述材料的内容。
本发明的一个目的是改善高压放电灯陶瓷烧结体的负荷能力及灯本身的负荷能力。负荷应理解成是指在灯工作时烧结体壁的负荷及在用作放电管的烧结体的壁处与此相关的温度。本发明的另一目的是提供一种制备这种烧结体的方法。
这些目的通过本发明达到。
具有陶瓷放电管的高压放电灯技术的开发目的在于提高发光效率和光通量以及改善彩色再现性指数Ra。为此一定要考虑更高的放电管壁温度。通常这是通过增大放电管的尺寸以避免陶瓷材料的热过载来进行的。但是,在这种情况下必须保持足够高的钠分压。这是通过诸如蓄热片之类的方法得到的(参见德国实用新型专利8907848)。
本发明采用一种完全不同的方法来改善陶瓷材料的特性,该陶瓷材料能够制备更小尺寸和更高壁温的放电管。许多公开材料涉及用于制造灯的陶瓷烧结体的掺杂,它们造成这样一种印象,即在这个领域不会再取得进展以及可以把掺杂物质和掺杂材料的量线性地联系在一起。
然而,令人惊奇的是,已经发现,当一起使用三种掺杂物质MgO、ZrO2和Y2O3时,会发生相互作用,这将赋予陶瓷材料多种性质,这些性质明显优于这三种掺杂物质简单相加所能预期的性质。已有技术所考虑的掺杂物质或者是MgO和ZrO2,或者是MgO、Y2O3和La2O3,且使用较大的量。令人惊奇的是,已经发现掺杂MgO、La2O3和Y2O3会得到不尽人意的结果。所得到的陶瓷逊于只掺杂MgO的陶瓷。
本发明同时采用三种物质MgO、ZrO2和Y2O3、按较小的量(重量比)对Al2O3进行掺杂:
--氧化镁(MgO),量为100-800ppm,优选为100-600ppm,更具体地为150-280ppm;
--氧化锆(ZrO2),量为200-1200ppm,优选为200-800ppm,更具体地为300-600ppm;
--氧化钇(Y2O3),量为10-300ppm,优选为10-150ppm,更具体地为20-75ppm。
在一优选实施方案中,相对比例MgO∶ZrO2∶Y2O3应选择如下:比例MgO∶ZrO2应有同样的数量级,即它优选在3∶1和1∶3之间变化。与此相比,Y2O3的比例要小得多,即介于ZrO2量的3%和20%之间。这一比例的选择特别重要。
如果在掺杂锆的同时进行钇的掺杂,则钇的掺杂在避免钠或铝扩散到灯的外泡上而弄黑外泡壁方面起到决定性的作用。随着温度的升高,ZrO2单斜晶体在1200℃时变为四方晶体,在2200℃变为立方晶体,且材料的密度也改变了。在较冷的状态,例如在灯工作时,一些ZrO2晶粒保留于高温晶态。这是需要的,由于其较高的密度,它们在周围的Al2O3基体中产生平衡压应力。
这些高温晶态通过加入当量匹配的Y2O3来稳定。这样,提高了稳定后陶瓷的强度。压应力能阻止在陶瓷中形成微裂纹并大大减少钠和铝通过陶瓷放电管向外泡的扩散。由于没有外泡的变黑,因而在灯泡寿命内发光效率维持恒定,以一种氧化锆和氧化钇相结合的化合物的形式向氧化铝粉末中加入这两种材料是较好的。特别是对于少量的氧化钇(10-50ppm),极希望使用部分稳定的氧化锆(PSZ),这是因为,如果不这样,则这些少量的氧化物在氧化铝基体中分散得太细而致使它们无法共同作用。这种PSZ材料本身是熟知的,可参见诸如J.Am.Ceram.Soc.75,1229-1238,1992。但是,此前,还未想到当以极小量仅作为掺杂剂使用时它的稳定特性在氧化铝基体中也有效。对量大一些的氧化钇(典型的为100ppm或更多),可以与氧化锆分开加入部分甚至全部氧化钇,这是因为这两种成分的结合容易实现和/或少量未结合的氧化钇是有益的。的确,已经发现,在陶瓷材料中这两种成分ZrO2和Y2O3有进行结合的自然倾向。在高温影响(在工作条件下已得到)下它们能产生一特殊相,该相在室温下象一种水滴状结构,其中这两种成分的比例ZrO2∶Y2O3固定为约3∶1的比例。
掺杂MgO的下限量为100ppm。如果MgO的比例更小,则烧结体的颗粒生长会不成比例地增加,使陶瓷的机械强度变差。如果MgO的量大于600ppm,则开始形成有利于钠向外泡扩散的第二相。这样,可以接受的最高MgO量为800ppm。因此,优选采用较小量的MgO,特别是150-280ppm范围内的值。
加入ZrO2提高了烧结体耐高温及耐填充物中侵蚀性成分、特别是钠的侵蚀的能力,所说的侵蚀在灯的工作压力较高时尤其强烈。如果采用低于200ppm的ZrO2量,则效果尚不如人意。如果采用高于800ppm的ZrO2量,则不需要的副作用就变得明显了,这一副作用即晶粒长大的加速,当ZrO2的量超过1200ppm时,这一加速将使烧结体的机械强度和密度变差。通过同时使用约100-500ppm的MgO和约300-600ppm的ZrO2能得到特别好的结果,再加少量上述的Y2O3,会产生一些其它的意想不到的效果。它可以减少MgO和ZrO2的比例。
对于MgO,它对限制第二相的形成特别有益。只有当灯已连续工作超过2000小时后这一效果才会较明显。对于ZrO2,它对陶瓷的机械性稳定有益。更重要的是,透明性明显提高,而且还提高了阻止各成分由填充物向外泡扩散的能力。
如果Y2O3的量小于10ppm,则不能获得明显的积极效果。加入高于150ppm的Y2O3开始按不需要且不均匀的方式加速晶粒的生长,给光透过性带来不利影响。因此,Y2O3的量不能超过300ppm,添加Y2O3的一个特定特征是可以把添加量保持为明显低于它所代替的MgO和ZrO2的量。
一组特别优选的掺杂材料比例为150-280ppm的MgO、300-600ppm的ZrO2及20-75ppm的Y2O3
因为先有技术添加Y2O3的方法没有与同时添加ZrO2特意联系起来,因而最终已证明它对灯的制造是不利的。但是,在这种已知的一般条件下,它会引起透光性以及机械强度的不规则地波动。幸运的是所需要的掺杂材料的量很小;这种波动不会起太大作用。
在灯的制造中,已证明陶瓷材料对钠和铝的扩散的强抵抗作用是特别有益的。如今壁温可选择为比此前所用的1100℃至1200℃高大约15%从而最高达到1350℃。
放电管的壁负荷可选择为比先有技术高最高达60%,典型值为25W/cm2
典型的放电管为筒形结构。更具体地说,为圆柱形或外凸的圆柱形管,它也可弯曲(曲面)或折角(如U形)。相应地这种管的内径可减小10-15%,节省陶瓷材料和填充材料,且可减小灯的尺寸。
下面将通过几个实施方案对本发明进行更详细的说明,其中:
图1表示本发明的高压钠放电灯。
图2表示具有陶瓷放电管的高压钠放电灯的发光效率(图2a)、光通量(图2b)和工作电压(图2c)运行情况的对比。
图3表示作为工作电压的函数、在运行100小时后额定功率400W的高压钠放电灯的彩色再现性指数(图3a)和发光效率(图3b)的对比。
图4表示额定功率70W的高压钠放电灯的发光效率和光通量的运行情况的对比。
图1示意性地表示了一个典型的高压钠放电灯,额定功率为约35W至1000W。它有一个硬玻璃的外层泡壳,该泡壳可如图示那样为圆柱形或为椭球形,上有螺丝灯座2。两根供电线4、5熔封于芯柱3中,沿轴向支撑着在外层泡壳中心的筒形圆柱陶瓷放电管6。供电线中较短的一根4把放电管临近灯座的一端7处的第一电极在图中看不到)与灯座一个接点连接起来。供电线中较长的一根5沿放电管6接到放电管6远离灯座的一端8并把远离的这一端8处的第二电极连接到第二个灯座接点。放电管6由掺杂100-600ppm MgO、200-800ppm ZrO2及10-150ppm Y2O3的多晶氧化铝陶瓷组成。放电管的两端7、8通过诸如主要由氧化铝制成的陶瓷塞9密封起来,气密的铌连通件10通过该陶瓷塞伸进放电管内,达到电极。填充物包括不活泼的基本气体(例如氙气或者是氩气和氖气的混合气)和钠,钠通常以钠汞合金的形式引入,但它也可以其它形式存在于放电管中。在参考的公开材料中对灯进行了更详细的说明(再参见重点参考的美国专利5,192,239)。
图2示出了几种具有陶瓷放电管的、额定功率为250瓦的高压钠放电灯的特性,其中氧化铝陶瓷已掺杂了:
a)500ppm的MgO和300ppm的ZrO2
b)500ppm的MgO和500ppm的ZrO2
c)500ppm的MgO和1000ppm的ZrO2
d)500ppm的MgO和400ppm的ZrO2和50ppm的Y2O3
该放电管内径4.8mm(先有技术为6.7mm)、壁厚0.7mm(先有技术为0.75mm)、总长86mm(先有技术为94mm)。已经发现,添加50ppm的Y2O3(材料d)对工作电压(图2c)随工作时间(显示到9000小时)的变化有很积极的影响。在9000小时点工作电压常数值比未掺杂Y2O3的陶瓷的工作电压值高大约10%。发光效率(图2a)显示了类似的积极影响。9000小时后,掺杂材料d)-即有50ppm的Y2O3-的陶瓷的发光效率相对于15小时点仅下降大约9%。只掺杂MgO和ZrO2而没有Y2O3(材料a)或b))的陶瓷发光效率降低大约15%。这也类似地适用于光通量的降低(图2b)。材料d)的这一优点能保持到工作时间超过12000小时。在12000小时后材料d)的图2所讨论的三个特性均优于9000小时后另三种材料a)-c)的特性。
图3示出额定功率400W的灯的数据。为改进光色(豪华),它包括200毫巴的氙气和钠的重量比占24.5%的30mg钠汞合金的填充物。先有技术的这种类型的灯要求有蓄热元件以确保具有下列尺寸的圆柱形放电管内有足够的蒸汽压:内径10.9mm、壁厚0.75mm、长102.0mm。放电管由掺杂有750ppm的MgO的多晶氧化铝组成。工作电压为105V,光通量为38.5Klm,彩色再现性指数为57。
本发明的灯使用掺杂有400ppm ZrO2、200ppm MgO和20ppmY2O3的放电管。该圆柱形放电管不再需要蓄热元件,其尺寸如下:内径8.0mm、壁厚0.75mm、长80.0mm。这使得光通量提高到40.0Klm,彩色再现性指数提高到60。
图3表示了彩色再现性指数(图3a)和发光效率(图3b)随工作电压微小变化而变化在理论值105V附近的100小时时的值。十字测点对应于标准型,圆圈测点对应于含钇小尺寸的改进型。对于发光效率,也给出了含钇而没有减小放电管尺寸的改进型的值(X形测点)。彩色再现性指数增加了大约10%(在工作电压为100V时,增量为7%,从54到58;在105V工作电压下,增量为12%,从57到64)。对105V的工作电压,可得到105lm/W的发光效率,比发光效率约97lm/W的标准型提高了8%。
图4表示了填充压强为30毫巴的氙气和30毫克钠汞合金(钠的重量比占18.4%)的70W灯的测量值。具有已进行已知掺杂(Al2O3掺杂750ppm的MgO)的陶瓷放电管的灯在其寿命期间发光效率(流明/瓦)和光通量(千流明)明显降低(线1)。在大约9000小时后,发光效率和光通量降到大约为其初值的三分之二。当使用含钇陶瓷(400ppmZrO2、200ppm MgO和20ppm Y2O3)时(线2),这两个被测特性的初值基本上维持不变。为便于比较,所有测量是用内径3.3mm的陶瓷管进行的。先有技术的内径为3.7mm,即现在管壁负荷高了26%。
本发明的烧结体的制造可用主要在参考材料中说明的几种方法中的某一种进行。起始材料为大致均匀的氧化铝分散体,向其中混入了100-800ppm的MgO(或其等当量的前体,例如硝酸镁)、200-1200ppm的ZrO2(或其等当量的前体)和10-300ppm的Y2O3(或其等当量的前体)。优选以PSZ材料形式加入氧化钇和氧化锆。氧化铝应大体上以α相存在。然后,该分散体成形为坯体,它先被预烧一下,最后在高于1700℃的温度下在氢气或优选在真空中烧结。
在烧结体的制造过程中,处理材料及灯工作所需的高温会使最初加入的MgO的量稍微减小。这一减小量最高多达10%。例如,在一特殊情况下,在Al2O3粉末中最初500ppm的MgO的掺杂量在成品灯的放电管中的量最后为455ppm。但是,在有些情况下,掺杂材料的量可能保持不变。
塞子可由与放电管同样的材料或类似的材料制成。
另一实施方案为具有陶瓷放电管的金属卤化物灯,所说的放电管由如上所述掺杂有MgO、ZrO2和Y2O3的氧化铝制成。填充物包括作为基础气体的氩气和作为可蒸发气体的汞,还包括少量的金属卤化物,特别是包括钠的卤化物,优选碘化钠。

Claims (12)

1.一种透光的多晶烧结体,它适用于制造用于灯的放电管,含有掺杂有烧结助剂的氧化铝,其特征在于所述烧结体由包含作为掺杂材料的以重量的ppm表示的下列成分的氧化铝制成:
MgO     100-800ppm,
ZrO2   200-1200ppm,
Y2O3  10-300ppm。
2.按照权利要求1的一种透光的多晶烧结体,其特征在于所述烧结体由包含作为掺杂材料的以重量的ppm表示的下列成分的氧化铝制成:
MgO     100-600ppm,
ZrO2   200-800ppm,
Y2O3  10-150ppm。
3.按照权利要求1烧结体,其特征在于掺杂材料包括150-280ppm的MgO。
4.按照权利要求1烧结体,其特征在于掺杂材料包括300-600ppm的ZrO2
5.按照权利要求1烧结体,其特征在于掺杂材料包括20-75ppm的Y2O3
6.按照上述权利要求中任一项的烧结体,其特征在于Y2O3量为ZrO2的3%至20%。
7.具有陶瓷放电管(6)的高压放电灯,所说的放电灯具有临近放电管两端(7,8)的电极和包括至少一种可蒸汽化的金属和一种惰性基本气体的填充物,所说的放电管为根据上述任一权利要求的掺杂有氧化镁、氧化锆和氧化钇的透光多晶氧化铝陶瓷的烧结体。
8.按照权利要求7的灯,其特征在于所说的放电管(6)由一透明的外层泡壳(1)包围。
9.按照权利要求7的灯,其特征在于所说的放电管包括至少一种惰性气体作为基本气体和至少有钠作为可蒸汽化的金属。
10.制造按照权利要求1-5中任一项的透光的多晶烧结体的方法,其特征在于向氧化铝粉末中混入下列添加剂而形成大致均匀的分散体:
a)重量占100-800ppm的MgO或其等当量的前体;
b)重量占200-1200ppm的ZrO2或其等当量的前体;
c)重量占10-300ppm的Y2O3或其等当量的前体;
--由这种分散体制成坯体并进行预烧;和
--最后在高于1700℃的温度下在氢气或在真空中进行坯体的烧结。
11.按照权利要求10的方法,其特征在于以化合物形式加入氧化钇和氧化锆。
12.按照权利要求11的方法,其特征在于以部分稳定的氧化锆形式加入。
CN94119859A 1993-12-10 1994-12-07 多晶烧结体、其制备方法和含有它的高压放电灯 Expired - Lifetime CN1069442C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93119959.0 1993-12-10
EP93119959A EP0657399B1 (en) 1993-12-10 1993-12-10 High-pressure discharge lamp having a ceramic discharge vessel, sintered body suitable therefor, and methods for producing the said sintered body

Publications (2)

Publication Number Publication Date
CN1110003A CN1110003A (zh) 1995-10-11
CN1069442C true CN1069442C (zh) 2001-08-08

Family

ID=8213478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94119859A Expired - Lifetime CN1069442C (zh) 1993-12-10 1994-12-07 多晶烧结体、其制备方法和含有它的高压放电灯

Country Status (7)

Country Link
US (1) US5625256A (zh)
EP (1) EP0657399B1 (zh)
JP (1) JP2780941B2 (zh)
CN (1) CN1069442C (zh)
AT (1) ATE155452T1 (zh)
DE (1) DE69312299T2 (zh)
HU (1) HU215321B (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507179B2 (ja) * 1995-01-13 2004-03-15 日本碍子株式会社 高圧放電灯
US6083451A (en) * 1995-04-18 2000-07-04 Applied Materials, Inc. Method of producing a polycrystalline alumina ceramic which is resistant to a fluorine-comprising plasma
US5621275A (en) * 1995-08-01 1997-04-15 Osram Sylvania Inc. Arc tube for electrodeless lamp
US5682082A (en) * 1996-07-29 1997-10-28 Osram Sylvania Inc. Translucent polycrystalline alumina and method of making same
DE19943075A1 (de) * 1999-09-03 2001-03-15 Fraunhofer Ges Forschung Poröse Aluminiumoxidstrukturen und Verfahren zu ihrer Herstellung
JP4613408B2 (ja) 1999-10-15 2011-01-19 日本碍子株式会社 高圧放電灯用発光管の製造方法
US6399528B1 (en) 2000-09-01 2002-06-04 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Porous aluminum oxide structures and processes for their production
US6639362B1 (en) * 2000-11-06 2003-10-28 General Electric Company High pressure discharge lamp
US7538058B2 (en) * 2002-01-04 2009-05-26 Koninklijke Philips Electronics N.V. Sintered body and electric lamp
US8198811B1 (en) 2002-05-21 2012-06-12 Imaging Systems Technology Plasma-Disc PDP
US7405516B1 (en) 2004-04-26 2008-07-29 Imaging Systems Technology Plasma-shell PDP with organic luminescent substance
US7932674B1 (en) 2002-05-21 2011-04-26 Imaging Systems Technology Plasma-dome article of manufacture
US8198812B1 (en) 2002-05-21 2012-06-12 Imaging Systems Technology Gas filled detector shell with dipole antenna
US8513887B1 (en) 2002-05-21 2013-08-20 Imaging Systems Technology, Inc. Plasma-dome article of manufacture
US7727040B1 (en) 2002-05-21 2010-06-01 Imaging Systems Technology Process for manufacturing plasma-disc PDP
CN100369859C (zh) * 2002-07-10 2008-02-20 皇家飞利浦电子股份有限公司 透光多晶氧化铝及形成方法
US7253122B2 (en) * 2002-08-28 2007-08-07 Micron Technology, Inc. Systems and methods for forming metal oxides using metal diketonates and/or ketoimines
US7087481B2 (en) * 2002-08-28 2006-08-08 Micron Technology, Inc. Systems and methods for forming metal oxides using metal compounds containing aminosilane ligands
US6984592B2 (en) * 2002-08-28 2006-01-10 Micron Technology, Inc. Systems and methods for forming metal-doped alumina
US6844285B1 (en) 2003-09-03 2005-01-18 Osram Sylvania Inc. Transparent polycrystalline yttrium aluminum garnet
US7772773B1 (en) 2003-11-13 2010-08-10 Imaging Systems Technology Electrode configurations for plasma-dome PDP
JP4951842B2 (ja) * 2004-02-25 2012-06-13 パナソニック株式会社 高圧ナトリウムランプ
US8339041B1 (en) 2004-04-26 2012-12-25 Imaging Systems Technology, Inc. Plasma-shell gas discharge device with combined organic and inorganic luminescent substances
US8129906B1 (en) 2004-04-26 2012-03-06 Imaging Systems Technology, Inc. Lumino-shells
US8113898B1 (en) 2004-06-21 2012-02-14 Imaging Systems Technology, Inc. Gas discharge device with electrical conductive bonding material
US8368303B1 (en) 2004-06-21 2013-02-05 Imaging Systems Technology, Inc. Gas discharge device with electrical conductive bonding material
WO2007001387A2 (en) * 2004-10-01 2007-01-04 Ceranova Corporation Polycrystalline alumina articles and methods of manufacture
US8951608B1 (en) 2004-10-22 2015-02-10 Imaging Systems Technology, Inc. Aqueous manufacturing process and article
US8299696B1 (en) 2005-02-22 2012-10-30 Imaging Systems Technology Plasma-shell gas discharge device
US7247591B2 (en) * 2005-05-26 2007-07-24 Osram Sylvania Inc. Translucent PCA ceramic, ceramic discharge vessel, and method of making
US7481963B2 (en) * 2005-06-28 2009-01-27 Osram Sylvania Inc. Method of reducing magnesium loss during sintering of aluminum oxide articles
US7863815B1 (en) 2006-01-26 2011-01-04 Imaging Systems Technology Electrode configurations for plasma-disc PDP
US8618733B1 (en) 2006-01-26 2013-12-31 Imaging Systems Technology, Inc. Electrode configurations for plasma-shell gas discharge device
US8410695B1 (en) 2006-02-16 2013-04-02 Imaging Systems Technology Gas discharge device incorporating gas-filled plasma-shell and method of manufacturing thereof
US8278824B1 (en) 2006-02-16 2012-10-02 Imaging Systems Technology, Inc. Gas discharge electrode configurations
US7535175B1 (en) 2006-02-16 2009-05-19 Imaging Systems Technology Electrode configurations for plasma-dome PDP
US8035303B1 (en) 2006-02-16 2011-10-11 Imaging Systems Technology Electrode configurations for gas discharge device
US20080283522A1 (en) * 2007-05-14 2008-11-20 Shuyl Qin Translucent polycrystalline alumina ceramic
US7678725B2 (en) * 2007-05-14 2010-03-16 General Electric Company Translucent polycrystalline alumina ceramic
DE102007032267B4 (de) * 2007-07-11 2018-01-18 Emcon Technologies Germany (Augsburg) Gmbh Abgasanlagen-Rohr mit maßgeschneiderter Wandstärke
US8029595B2 (en) * 2008-06-02 2011-10-04 Nitto Denko Corporation Method and apparatus of producing nanoparticles using nebulized droplet
JP5272658B2 (ja) * 2008-10-31 2013-08-28 東ソー株式会社 高靭性で透光性のアルミナ焼結体及びその製造方法並びに用途
EP2366675B1 (en) * 2008-11-18 2015-05-27 Tosoh Corporation Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
US8123981B2 (en) * 2009-02-19 2012-02-28 Nitto Denko Corporation Method of fabricating translucent phosphor ceramics
US8137587B2 (en) 2009-02-19 2012-03-20 Nitto Denko Corporation Method of manufacturing phosphor translucent ceramics and light emitting devices
US9013102B1 (en) 2009-05-23 2015-04-21 Imaging Systems Technology, Inc. Radiation detector with tiled substrates
CN102449111B (zh) * 2009-06-01 2014-12-24 日东电工株式会社 发光陶瓷和使用发光陶瓷的发光装置
US8206672B2 (en) * 2009-07-10 2012-06-26 Nitto Denko Corporation Production of phase-pure ceramic garnet particles
EP2305621B1 (en) 2009-09-09 2015-04-22 NGK Insulators, Ltd. Translucent polycrystalline sintered body, method for producing the same, and arc tube for high-intensity discharge lamp
WO2012052054A1 (de) 2010-10-19 2012-04-26 Osram Ag Keramische durchführung für eine hochdruckentladungslampe
US20120306365A1 (en) * 2011-06-06 2012-12-06 General Electric Company Polycrystalline transluscent alumina for high intensity discharge lamps
WO2013054219A1 (en) * 2011-10-11 2013-04-18 Koninklijke Philips Electronics N.V. Diffusive ceramic envelope
US8482198B1 (en) 2011-12-19 2013-07-09 General Electric Company High intensity discharge lamp with improved startability and performance
CN102709148B (zh) * 2012-06-06 2014-10-22 宁波泰格尔陶瓷有限公司 具有净化空气的氧化铝陶瓷电弧管及制造方法
JP6035682B2 (ja) * 2013-04-19 2016-11-30 岩崎電気株式会社 セラミックメタルハライドランプ用発光管の製造方法
US9287106B1 (en) 2014-11-10 2016-03-15 Corning Incorporated Translucent alumina filaments and tape cast methods for making
DE102016210811A1 (de) * 2015-06-16 2016-12-22 Ceramtec-Etec Gmbh Transparente Keramik als Komponente für bruchfeste Optiken
JP5861853B1 (ja) * 2015-08-25 2016-02-16 岩崎電気株式会社 高圧ナトリウムランプ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110248A2 (en) * 1982-11-26 1984-06-13 General Electric Company High pressure sodium lamp having improved efficacy
US4762655A (en) * 1985-11-27 1988-08-09 Gte Laboratories Incorporated Method of sintering translucent alumina
US4797238A (en) * 1985-11-27 1989-01-10 Gte Laboratories Incorporated Rapid-sintering of alumina

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1252851A (zh) * 1969-08-27 1971-11-10
US4285732A (en) * 1980-03-11 1981-08-25 General Electric Company Alumina ceramic
EP0055049B1 (en) * 1980-12-20 1986-03-19 Thorn Emi Plc Discharge lamp arc tubes
HU185242B (en) * 1981-02-18 1984-12-28 Egyesuelt Izzolampa Method for producing light-passing alumina sintered bodies advantageously cylinder-symmetrical ones
US4949010A (en) * 1982-02-04 1990-08-14 Tektronix, Inc. X-ray attenuating ceramic materials
US4580075A (en) * 1982-11-26 1986-04-01 General Electric Company High pressure sodium lamp having improved coloring rendition
US4567396A (en) * 1982-11-26 1986-01-28 General Electric Company Increased efficacy high pressure sodium lamp yielded by increased wall temperature operation
EP0237103B1 (en) * 1986-03-11 1991-11-21 Koninklijke Philips Electronics N.V. Composite body
US5082809A (en) * 1987-12-21 1992-01-21 Kyocera Corporation High-strength alumina sintered body and process for preparation thereof
DE8907848U1 (de) * 1989-06-27 1989-08-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
DE4037721C2 (de) * 1990-11-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer Natriumhochdrucklampe sowie dafür geeignete Vorrichtung
US5382556A (en) * 1992-04-22 1995-01-17 Sumitomo Chemical Company, Limited Translucent polycrystalline alumina and process for producing the same
US5426343A (en) * 1992-09-16 1995-06-20 Gte Products Corporation Sealing members for alumina arc tubes and method of making the same
US5403794A (en) * 1994-04-14 1995-04-04 Vesuvius Crucible Company Alumina-zirconia refractory material and articles made therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110248A2 (en) * 1982-11-26 1984-06-13 General Electric Company High pressure sodium lamp having improved efficacy
US4762655A (en) * 1985-11-27 1988-08-09 Gte Laboratories Incorporated Method of sintering translucent alumina
US4797238A (en) * 1985-11-27 1989-01-10 Gte Laboratories Incorporated Rapid-sintering of alumina

Also Published As

Publication number Publication date
EP0657399A1 (en) 1995-06-14
CN1110003A (zh) 1995-10-11
ATE155452T1 (de) 1997-08-15
JP2780941B2 (ja) 1998-07-30
US5625256A (en) 1997-04-29
JPH0817396A (ja) 1996-01-19
EP0657399B1 (en) 1997-07-16
HU215321B (hu) 1998-11-30
DE69312299T2 (de) 1998-01-15
HUT69828A (en) 1995-09-28
DE69312299D1 (de) 1997-08-21

Similar Documents

Publication Publication Date Title
CN1069442C (zh) 多晶烧结体、其制备方法和含有它的高压放电灯
US4150317A (en) Polycrystalline alumina material
US6844285B1 (en) Transparent polycrystalline yttrium aluminum garnet
CN1880269A (zh) 半透明pca陶瓷、陶瓷放电管和制备方法
EP2229687B1 (en) Metal halide lamp including a source of available oxygen
EP1964158A2 (en) Ceramic metal halide lamp
EP0647964A1 (en) High-pressure metal halide discharge lamp
CN101855186A (zh) 半透明的多晶氧化铝陶瓷
US4169875A (en) Method of producing a tubular body of polycrystalline alumina
US6046544A (en) High-pressure metal halide discharge lamp
CN86105927A (zh) 气密烧结半透明铝的氧化物
US7678725B2 (en) Translucent polycrystalline alumina ceramic
CN1633399A (zh) 烧结体和电灯
US4617492A (en) High pressure sodium lamp having improved pressure stability
WO2012170337A1 (en) Polycrystalline translucent alumina doped with magnesium oxide/zirconium for high intensity discharge lamps
CA1267279A (en) Tungsten laden emission mix of improved stability
JP3340024B2 (ja) 放電灯用発光管に用いる透光管の製造方法
WO2003075312A1 (fr) Boitier electroluminescent pour lampe a decharge haute tension et procede de preparation d'un produit fritte d'alumine transparente polycristalline
Kappen Status quo of ceramic material for metal halide discharge lamps
JP3407284B2 (ja) 透光性セラミックス
JP3575344B2 (ja) 透光性セラミック発光管及びその製造方法
Kappen Ceramic metal halide lamps; a world of lighting
JP2001035445A (ja) 発光管の封止部構造
JP3517066B2 (ja) 金属蒸気放電灯用発光管
CA1095690A (en) Polycrystalline alumina material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20141207

Granted publication date: 20010808