JP2747916B2 - チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法 - Google Patents

チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法

Info

Publication number
JP2747916B2
JP2747916B2 JP63316324A JP31632488A JP2747916B2 JP 2747916 B2 JP2747916 B2 JP 2747916B2 JP 63316324 A JP63316324 A JP 63316324A JP 31632488 A JP31632488 A JP 31632488A JP 2747916 B2 JP2747916 B2 JP 2747916B2
Authority
JP
Japan
Prior art keywords
fiber
potassium
purity
potassium titanate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63316324A
Other languages
English (en)
Other versions
JPH02164722A (ja
Inventor
直通 堀
裕司 松並
琢磨 吉田
亘 篭橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP63316324A priority Critical patent/JP2747916B2/ja
Publication of JPH02164722A publication Critical patent/JPH02164722A/ja
Application granted granted Critical
Publication of JP2747916B2 publication Critical patent/JP2747916B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラスチックや金属の補強材及び耐火材、断
熱材として有用性の高いチタン酸カリウム長繊維及び該
チタン酸カリウム長繊維から誘導されるチタニア繊維の
製造方法に関するものである。
〔従来の技術〕
チタン酸カリウム繊維の製造方法としてはすでに種々
の方法が提案されている。それらを例示すると、 焼成法 二酸化チタンと炭酸カリウムとの混合物を
600〜1200℃で一定時間焼成する方法。
フラツクス法 二酸化チタンと炭酸カリウムとの混
合物に融剤を添加する方法。
が、工業的規模でのチタン酸カリウム繊維の製造方法と
して一般的とされている。
さらに近時、比較的価格の高い二酸化チタンに代えて
天然産のルチルサンドまたはアナターゼサンドを原料と
して使用し、炭酸カリウムと一定の割合で混合した後、
該混合物を加熱して溶融体となし、該溶融体から二チタ
ン酸カリウムと同じ層状構造の結晶体からなる繊維状物
質を形成させ、次いで該繊維状物質中の酸化カリウム成
分を抽出した後、800℃以上で熱処理する方法(特開昭6
0-34617号公報)も開示されている。
また、特開昭61-55216号公報においては特定量の酸化
チタンと炭酸カリウムとを水を加えて混練してペースト
状とし、900〜1250℃で20〜50時間焼成する際に窒素ガ
ス等の不活性ガスを流し込む方法が提案されている。
〔従来技術に残された課題〕
前記した焼成法は単繊維結晶の収率は優れており、工
業的規模での生産は可能であるが、繊維の結晶性が良い
とはいえず、また数μm程度の繊維長しか得られないと
いう欠点があつた。
フラツクス法は数10μmの比較的繊維長の長い結晶も
得られ、また、単繊維結晶の収率にも優れているが、融
剤として用いる塩化カリウムや弗化カリウムの影響で有
害かつ腐食性のガスが多量に発生すること、さらには解
繊工程および水洗工程で排出される廃液の処理ならびに
融剤の回収装置を必要とするなど、その設備費が高く、
かつ煩雑な工程を要するという問題があつた。
また、前記特開昭60-24617号公報に開示されている方
法によれば、出発原料が天然産のルチルサンドまたはア
ナターゼサンドという点で原料コストは低減できるもの
の、カリウム分とチタン分との混合比と反応温度に起因
する製品のバラつきが大きく、最適の条件を整えるため
には高価な白金ルツボを必要とするなど設備費が高くな
り、かつ解繊が難かしくなるなどの問題点を残してい
た。
さらに、特開昭61-55216号公報に開示されている方法
は、出発原料と反応しない気体雰囲気中すなわち不活性
ガス雰囲気中で処理することから装置上の制約を受ける
こと、また一端水と混練してペースト状を作るために長
時間の乾燥工程や、焼成時間そのものも極めて長時間を
要するなどの課題を残していた。
本発明者等は先に同じ酸化チタン含有天然鉱石とカリ
ウム化合物とを反応させる際にチタン粉を共存させるこ
とにより原料費を低減し、焼成時間も短縮させたチタン
酸カリウム繊維の製造方法を提案した(特開昭62-25679
9)。
この方法によれば目的とする繊維を安定して廉価に製
造することは可能となつたが、本発明の目的とするチタ
ニア繊維の前駆体として用いる場合はその繊維長や繊維
径が十分とはいえないものであつた。
本発明者等は前記した従来技術に残された種々の課題
を解決すべく鋭意研究の結果、繊維長が長く、かつ、径
の大きいチタン酸カリウム繊維が、チタニア繊維を製造
する際にも望ましいものであるとの知見を得、茲に提案
するものである。
〔課題を解決するための手段〕
すなわち、本発明は (a)純度99.9重量%以上、平均粒径0.5〜3μmの
高純度酸化チタン(以下単に(a)物質ということがあ
る。)と、(b)純度99重量%以上の酸化カリウムおよ
び/または加熱により酸化カリウムを生成するカリウム
化合物(以下単に(b)物質ということがある。)およ
び(c)チタン粉(以下単に「(c)物質」ということ
がある。)とを混合し、該混合物を1000〜1200℃の温度
域で加熱焼成することによつて得られた組成物から水ま
たは温水にて水可溶分を抽出することによつて生成され
たチタン酸カリウム長繊維の製造方法および該チタン酸
カリウム長繊維を、酸性水溶液中で脱カリウム処理を施
してチタニア水和物繊維を得、さらに600〜1100℃で熱
処理後、分散解繊してカリウム残分が5重量%以下、平
均繊維長が10〜100μm、平均繊維径が0.2〜2μmに調
製されることを特徴とするチタニア繊維の製造方法を提
供するものである。
本発明において使用される(a)物質としてはルチル
型またはアナターゼ型の酸化チタンで、通常顔料用酸化
チタンとして市販されているものに較べてその純度が9
9.9重量%以上と高く、平均粒径も0.5〜3.0μmに調整
された高純度酸化チタンが好ましい。
本発明において使用される(b)物質としては純度が
99重量%以上の酸化カリウムおよび/または加熱により
酸化カリウムを生成するカリウム化合物であれば特に限
定しないが、好ましい物質としては炭酸カリウムがあげ
られる。
本発明において使用される(c)物質としてはその平
均粒径が50〜1000μm、純度99重量%以上のチタン粉が
好ましいが、場合により水素化チタン粉またはチタン粉
と水素化チタン粉との混合物を用いることも妨げない。
本発明における前記各物質の使用割合は必要に応じて
自由に選択できるが、通常(a)物質と(b)物質との
混合比は各々チタン原子またはカリウム原子比で略2:6
になるように調製することが好ましく、(c)物質は
(a)物質と(b)物質との合計に対し1〜10重量%、
好ましくは3〜5重量%の範囲で用いられる。
本発明における前記各成分の混合はV型ブレンダーな
どの乾式混合機で5〜30分、好ましくは15分程度の混合
で足りる。
以上の如くして得られた混合物をサヤ容器に装入し、
1000〜1200℃の温度域において1〜5時間好ましくは3
時間程度焼成反応を行なう。
この際、チタン酸カリウムの生成は原料として例えば
炭酸カリウムを使用した場合、炭酸カリウムの分解点で
ある890℃付近から始まるものと推考されるが、この温
度付近ではチタン粉の酸化発熱反応が発生し、外部から
供給される熱源に加えて内部発熱によるエネルギーが反
応の促進と均一化に寄与し、焼成時間を大幅に短縮する
要因となること、また、チタン粉の粒径により酸化発熱
反応の発生温度に著しく影響することも判明した。
更に使用する(a)物質の粒径が大きい程、生成され
るチタン酸カリウム繊維の繊維径や繊維長を大きくする
ことも明らかとなつた。したがつて所望の繊維形状のチ
タン酸カリウム繊維を得るためには、チタン粉や高純度
酸化チタンの粒径の組合せの変化で相当程度制御し得る
ことが可能となつた。
次に、前記焼成処理した組成物を水または温水中で水
可溶分を抽出して本発明の一つであるチタン酸カリウム
長繊維が調製された。
この様にして得られたチタン酸カリウム長繊維をpH0
〜2の酸性水溶液中で脱カリウム処理を行ない、チタニ
ア水和物繊維とした後、600〜1100℃で約3時間熱処理
を行なうことによりチタニア繊維が得られた。なお、チ
タニア繊維として実用に供するに当つては熱処理後、分
散処理することにより凝集繊維を解繊処理することも必
要である。
〔作用効果〕
以上詳述の如く、本発明によれば出発物質として特定
の粒径の高純度酸化チタンを用いることにより酸化カリ
ウムおよび/または加熱により酸化カリウムを生成する
カリウム化合物とを簡易な乾式ブレンダーで混合し、該
混合物を焼成反応することによつて繊維径が大きく、か
つ繊維長の長いチタン酸カリウム繊維を工業的規模で製
造し得ることが可能となつた。
また、前記混合の際に特定の粒径のチタン粉(または
水素化チタン粉)を一定量添加混合することにより、焼
成反応に当り、酸化発熱反応が発生し、それが内部発熱
作用として働き、外部加熱の省力化を図れると共に、か
かる固相反応の場合内部まで均一に焼成するためには長
時間を要するが、本発明によれば極めて短時間で焼成反
応を完結することができ、得られたチタン酸カリウム繊
維の遍折も少ないという品質上および経済的効果も優れ
ている。
さらに原料となる高純度酸化チタンおよび添加剤とし
てのチタン粉(または水素化チタン粉)の粒径と添加割
合を適宜に変化させることにより、製品となるチタン酸
カリウム繊維の繊維径や繊維長をコントロールすること
も可能である。
次いで前記した如くにして得られたチタン酸カリウム
繊維を前駆体として用い、酸性水溶液中で脱カリウム処
理を施すことによりチタニア繊維水和物を得、これを60
0〜1100℃で約3時間熱処理することによりチタニア繊
維を製造する。
チタニア繊維の繊維径や繊維長は前駆体となるチタン
酸カリウム繊維の形状が起因となつて定まることは知ら
れているが、本発明方法によれば、その前駆体の形状を
適宜にコントロールすることにより、用途に応じた形状
のチタニア繊維を製造し得るという利点がある。
〔実施例〕
以下、本発明を実施例および比較例により、更に具体
的に説明する。
実施例1 市販の炭酸カリウム(純度99重量%以上、平均粒径10
0μm以下)1,825gと、特に精製して純度を99.9重量%
以上とし、平均粒径を2〜3μmに揃えた高純度酸化チ
タン(ルチル型)2,758gおよびチタン粉(純度99%以
上、平均粒径250μm)250gをV型ブレンダーにて15分
間混合した。その混合物をサヤ容器に入れ、1100℃で3
時間の焼成を行つた。その後、室温まで冷却して焼成物
を取り出し、水に浸漬して水可溶分を抽出した後、繊維
形状を走査電子顕微鏡で測定したところ、平均繊維長は
500μm、平均繊維径が3μmのチタン酸カリウム繊維
であつた。その後該チタン酸カリウム繊維を水に浸漬し
てデイスパーミルにより解繊処理を行い、過すること
によつて回収されたチタン酸カリウム水和物繊維をpH0
〜1の酸水溶液によりカリウム成分を抽出し、チタニア
水和物繊維にした後、800℃で3時間熱処理を行い、次
いで分散機により凝集繊維の分散処理を行つて、得られ
た生成物をX線回折により測定した結果、アナターゼ型
チタニア繊維であることが確認された。また、その形状
を走査電子顕微鏡撮影により測定したところ、平均繊維
長は60μm、平均粒径は2μmであつた。
なお、原子吸光分析により残留カリウム分を測定した
ところ、1.2重量%であつた。
実施例2 酸化チタンをアナターゼ型とし、平均粒径を1〜2μ
m、使用量を2,925g、チタン粉の使用量を150gとした以
外は実施例1と同様の処理でチタン酸カリウム繊維を
得、そのチタン酸カリウム繊維を取り出し、実施例1と
同様にして測定したところ、平均繊維長は200μm、平
均繊維径は1.5μmであつた。その後、実施例1と同様
の処理でチタニア水和物繊維を得た。
次いで、1050℃で3時間の加熱処理を行つた後、実施
例1と同様にして分散処理を行い得られた生成物をX線
回折により測定した結果、ルチル型のチタニア繊維であ
ることが確認された。
また、その繊維形状を実施例1と同様にして測定した
ところ平均繊維長は30μm、平均繊維径は1.0μmであ
つた。
なお、実施例1と同様にして残留カリウム分を測定し
たところ、3.0重量%であつた。
実施例3 酸化チタンの平均粒径を0.5〜1.0μmとし、チタン粉
の平均粒径を150μm以下、使用量を150gとした以外は
実施例1と同様の処理を行い、チタン酸カリウム繊維を
得、そのチタン酸カリウム繊維を取り出し実施例1と同
様にして繊維形状を測定したところ、平均繊維長は150
μm、平均繊維径は0.8μmであつた。その後、実施例
1と同様の処理でチタニア水和物繊維を得た。次いで、
800℃で3時間の加熱処理を行つた後、実施例1と同様
にして分散処理を行い、得られた生成物をX線回折によ
り測定した結果、アナターゼ型のチタニア繊維であるこ
とが確認された。
また、その繊維形状を実施例1と同様にして測定した
ところ、平均繊維長は25μm、平均繊維径は1.0μmで
あつた。
なお、実施例1と同様にして残留カリウム分を測定し
たところ、1.1重量%であつた。
実施例4 酸化チタンをアナターゼ型とし、平均粒径を0.5〜0.7
μm、使用量を2.758g、チタン粉の平均粒径を70μm以
下とした以外は実施例1と同様の処理を行い、チタン酸
カリウム繊維を得、そのチタン酸カリウム繊維を取り出
し実施例1と同様にして繊維形状を測定したところ、平
均繊維長は50μm、平均繊維径は0.5μmであつた。そ
の後、実施例1と同様の処理でチタニア水和物繊維を得
た。次いで、1050℃で3時間の加熱処理を行つた後、実
施例1と同様にして分散処理を行い、得られた生成物を
X線回折により測定した結果、ルチル型のチタニア繊維
であることが確認された。また、その繊維形状を実施例
1と同様にして測定したところ平均繊維長は15μm、平
均繊維径は0.3μmであつた。
なお、実施例1と同様にして残留カリウム分を測定し
たところ、1.5重量%であつた。
比較例1 酸化チタンの使用量を3,175gとし、チタン粉を使用し
なかつた以外は実施例1と同様の処理を行いチタン酸カ
リウム繊維を得、そのチタン酸カリウム繊維を取り出
し、実施例1と同様にして繊維形状を測定したところ、
平均繊維長は15μm、平均繊維径は0.7μmであつた。
次いで、実施例1と同様の方法で加熱処理及び分散処理
を行い、得られた生成物をX線回折により測定した結
果、ルチル型のチタニア繊維であることが確認された
が、その形状を実施例1と同様にして測定したところ、
平均繊維長は5μm、平均繊維径は0.6μmで粉体に近
似したものであつた。
なお、実施例1と同様にして残留カリウム分を測定し
たところ、1.5重量%であつた。
比較例2 炭酸カリウム(純度98重量%、平均粒径500μm)1,8
25gと天然ルチル鉱石(TiO2含有率95重量%、平均粒径5
00μm)2,758gおよびチタン粉(純度98重量%、平均粒
径840μm)250gをボールミルで2時間混合粉砕し、そ
の平均粒径を80μmにした混合物を実施例1と同様の処
理を行い、チタン酸カリウム繊維を得、そのチタン酸カ
リウム繊維を取り出し、実施例1と同様にして繊維形状
を測定したところ平均繊維長は8μm、平均繊維径は0.
8μmであつた。その後、実施例1と同様の処理でチタ
ニア水和物繊維を得た。次いで、実施例1と同様の方法
で加熱処理及び分散処理を行い、得られた生成物をX線
回折により測定した結果、アナターゼ型のチタニア繊維
が確認された。
しかし、その繊維形状を実施例1と同様にして測定し
たところ、平均繊維長は4.0μm、平均繊維径は0.7μm
で粉体に近似したものであつた。
なお、実施例1と同様にして残留カリウム分を測定し
たところ、2.0重量%であつた。
比較例3 pH0〜1の酸水溶液による脱カリウム処理を繰り返し
行つた以外は実施例1と同様にして、チタニア繊維を得
た。実施例1と同様の方法で残留カリウム分を測定した
ところ0.2重量%であつた。また、実施例1と同様にし
て繊維形状を測定したが、平均繊維長8.0μm、平均繊
維径は2.0μmでほとんど繊維状をなさないものであつ
た。

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】酸化チタンおよびカリウム化合物とを加熱
    焼成することによりチタン酸カリウム繊維を製造する方
    法において、(a)純度99.9重量%以上、平均粒径0.5
    〜3μmの高純度酸化チタンと、(b)純度99重量%以
    上の酸化カリウムおよび/または加熱により酸化カリウ
    ムを生成するカリウム化合物および(c)チタン粉と混
    合し、該混合物を1000〜1200℃の温度域で加熱焼成する
    ことによって得られた組成物から水または温水にて水可
    溶分を抽出することを特徴とするチタン酸カリウム長繊
    維の製造方法。
  2. 【請求項2】酸化チタンおよびカリウム化合物とを加熱
    焼成することによりチタン酸カリウム繊維を製造する方
    法において、(a)純度99.9重量%以上、平均粒径0.5
    〜3μmの高純度酸化チタンと、(b)純度99重量%以
    上の酸化カリウムおよび/または加熱により酸化カリウ
    ムを生成するカリウム化合物および(c)チタン粉とを
    混合し、該混合物を1000〜1200℃の温度域で加熱焼成す
    ることによって得られた生成物から水または温水にて水
    可溶分を抽出することによって生成されたチタン酸カリ
    ウム長繊維を、酸性水溶液中で脱カリウム処理を施して
    チタニア水和物繊維を得、さらに600〜1100℃で熱処理
    後、分散解繊してカリウム残分が5%以下、平均繊維長
    が10〜100μm、平均繊維径が0.2〜2μmに調製される
    ことを特徴とするチタニア繊維の製造方法。
JP63316324A 1988-12-16 1988-12-16 チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法 Expired - Lifetime JP2747916B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316324A JP2747916B2 (ja) 1988-12-16 1988-12-16 チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316324A JP2747916B2 (ja) 1988-12-16 1988-12-16 チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法

Publications (2)

Publication Number Publication Date
JPH02164722A JPH02164722A (ja) 1990-06-25
JP2747916B2 true JP2747916B2 (ja) 1998-05-06

Family

ID=18075862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316324A Expired - Lifetime JP2747916B2 (ja) 1988-12-16 1988-12-16 チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法

Country Status (1)

Country Link
JP (1) JP2747916B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383963A (en) * 1993-02-22 1995-01-24 Kubota Corporation Composite fibers of potassium hexatitanate and titanium dioxide
JP3557688B2 (ja) * 1995-02-09 2004-08-25 株式会社クボタ 短冊状導電性粉末とその製造方法および用途
US6086844A (en) * 1996-12-26 2000-07-11 Sumitomo Chemical Company, Ltd. Titania fiber, method for producing the fiber and method for using the fiber
KR101543809B1 (ko) * 2007-03-29 2015-08-11 도호 티타늄 가부시키가이샤 티탄산 알칼리 및 티탄산 알칼리의 중공체 분말의 제조 방법, 및 이에 의해 수득된 티탄산 알칼리 및 그 중공체 분말, 및 이를 포함하는 마찰재
US8178072B2 (en) 2007-10-15 2012-05-15 Toho Titanium Co., Ltd. Method of manufacturing alkali metal titanate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835423A1 (de) * 1978-08-12 1980-03-06 Hoechst Ag Beton- und moertelzusatzmittel und dessen verwendung

Also Published As

Publication number Publication date
JPH02164722A (ja) 1990-06-25

Similar Documents

Publication Publication Date Title
AU2006329590B2 (en) Methods for production of titanium oxide particles, and particles and preparations produced thereby
AU2002319587B2 (en) Process for making lithium titanate
DE3633309C2 (de) Zusammensetzung auf der Basis von Zirkoniumdioxid und Verfahren zu ihrer Herstellung
JPH10251021A (ja) 塩素含有量の少ない微粒子酸化チタン粉末及びその製造法
KR20080080350A (ko) 조절된 특성을 가진 금속 산화물 나노 입자의 제조 방법,및 그 방법으로 제조된 나노 입자 및 조제물
JP2747916B2 (ja) チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法
JPH10310428A (ja) チタン酸リチウム水和物およびチタン酸リチウムの製造方法
CN113912391B (zh) 尖晶石结构钛酸锌纳米粉体的制备方法以及固化放射性废物的组合物及其固化氧化镧的方法
JP2764111B2 (ja) ペロブスカイト系セラミック粉末の製造方法
Srisombat et al. Chemical synthesis of magnesium niobate powders
JP2528462B2 (ja) 六チタン酸ナトリウム微細粒子粉末の製造法
JPH0244774B2 (ja)
JPH0558633A (ja) チタン酸ストロンチウムの製造方法
JP2016183073A (ja) ペロブスカイト型酸窒化物微粒子の製造方法、ペロブスカイト型酸窒化物微粒子
JPS63239104A (ja) β相含有窒化ケイ素微粉末の製造方法
JP2007137686A (ja) 新型二酸化チタン及びその製造方法
JP2000313620A (ja) 粒状8チタン酸カリウムの製造方法
JPS6330400A (ja) チタン酸カリウム繊維の製造方法
JPH05105447A (ja) 六チタン酸カリウム繊維の製造方法
JPS6191015A (ja) チタン酸バリウムの製造方法
RU2336348C1 (ru) Способ переработки титан-кремнийсодержащих концентратов с получением искусственного рутила
JPS60259627A (ja) 六チタン酸カリウム繊維または六チタン酸カリウム複合繊維の製造法
JPH07242420A (ja) チタン酸アルカリ土類金属塩多結晶繊維の製造方法
JPH0328109A (ja) 複合酸化物粉末の製造方法
JPH0341409B2 (ja)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

EXPY Cancellation because of completion of term