JP2744732B2 - 砥 粒 - Google Patents

砥 粒

Info

Publication number
JP2744732B2
JP2744732B2 JP4135593A JP13559392A JP2744732B2 JP 2744732 B2 JP2744732 B2 JP 2744732B2 JP 4135593 A JP4135593 A JP 4135593A JP 13559392 A JP13559392 A JP 13559392A JP 2744732 B2 JP2744732 B2 JP 2744732B2
Authority
JP
Japan
Prior art keywords
abrasive grains
grains
primary crystal
size
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4135593A
Other languages
English (en)
Other versions
JPH05311154A (ja
Inventor
正治 鈴木
知己 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4135593A priority Critical patent/JP2744732B2/ja
Priority to DE4314341A priority patent/DE4314341C2/de
Publication of JPH05311154A publication Critical patent/JPH05311154A/ja
Priority to US08/253,196 priority patent/US5443605A/en
Application granted granted Critical
Publication of JP2744732B2 publication Critical patent/JP2744732B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、研削砥石用の多結晶型
の立方晶窒化ほう素(cBN)砥粒に関するものであ
る。本発明の砥粒が応用される研削砥石としては、特に
重研削、高速研削用のメタルボンド砥石、電着砥石、ビ
トリファイド砥石等があげられる。
【0002】
【従来の技術】窒化ほう素の高圧相であるcBNは、ダ
イヤモンドに次ぐ硬さと熱伝導率を有し、鉄系金属と反
応しないとうダイヤモンドにはない特徴を持つことか
ら、鉄系金属の研削加工用砥粒としての利用が進められ
ている。
【0003】近年の研削加工は、省力化、無人化の方向
にある。その具体例は、重研削、高速研削であるが、こ
のような過酷な研削条件下では砥石、特に砥粒部分に大
きな負荷がかかるため、高い強度を持つ砥粒が要求され
ている。
【0004】高強度のcBN砥粒の一つとしては、多結
晶型のものが知られており、既に一部は市販されてい
る。多結晶型の砥粒は、微細な結晶粒子が互いに強固に
結合した多結晶体構造を有するため、粒子一つが単結晶
により構成される単結晶型砥粒のようにへき開などの大
破壊を起こさず、高い強度を示す。
【0005】多結晶型の砥粒は、特公昭63-44417号公報
にも述べられているように、触媒を用いて合成される単
結晶型のものと異なり、触媒を用いない無触媒直接転換
法によって得られる焼結体を所望の粒度に粉砕すること
により得ることができる。しかし、このようにして得ら
れる多結晶型の砥粒も、実際の重研削、高速研削などの
過酷な条件下での砥石として用いると、砥石表面の一部
の砥粒が破壊あるいは摩滅してしまい、加工物の表面が
粗れたり切れ味が低下したりするので頻繁にドレッシン
グ、ツルーイングを行わなければならない等の問題があ
った。
【0006】
【発明が解決しようとする課題】本発明の目的は、重研
削、高速研削などの過酷な使用条件下に耐え得る高強度
で耐摩耗性の大きい研削砥石用多結晶型cBN砥粒を提
供することにある。
【0007】本発明者らは、高強度かつ耐摩耗性の多結
晶型cBN砥粒を開発すべく種々検討した結果、以下の
ように、多結晶体である砥粒を構成する一次結晶粒子の
大きさが砥粒の強度と耐摩耗性に大きく影響しているこ
とを見いだし、本発明を完成させたものである。
【0008】(1)一次結晶粒子の大きさの異なるさま
ざまな砥粒を用いた砥石で実際に重研削を行い研削の前
後で砥石表面に突き出している砥粒一つ一つの状態を観
察した結果、一次結晶粒子が1.0 μmを越える大きい砥
粒は選択的に表面が著しく摩耗し、一方、一次結晶粒子
の大きさがまちまちの砥粒は大破壊を起こし研削中には
実際に研削点として寄与していない。 (2)一次結晶粒子の大きさが、ある大きさ以下でバラ
ツキの少ない砥粒のみを用いた砥石では、上記したよう
な砥粒の摩滅や大破壊が起きにくく、著しく砥石の寿命
が長くなる。 (3)実施例で詳細に示すが、従来より市販されている
多結晶型cBN砥粒は、粒子を構成する一次結晶粒子の
大きさの平均及び標準偏差がそれぞれ2.3 、0.9であっ
て、この砥粒をそのまま用いた砥石では砥石の摩耗が激
しく被削物の表面も粗くなってしまうのに対し、本発明
で特定された砥粒を用いた砥石は非常に摩耗が少なく被
削物の表面粗さも格段に小さくなる。 (4)cBN多結晶体の合成法の中で、直接転換法を用
いて適当な合成条件を選ぶと粒子を構成するcBNの一
次結晶粒子の大きさが一定で均一な微細組織を持つもの
が得られる。
【0009】
【課題を解決するための手段】すなわち、本発明は、粒
子を構成する一次結晶粒子の大きさの平均が1.0 μm以
下で、その標準偏差が0.5 以下である多結晶型立方晶窒
化ほう素からなることを特徴とする砥粒である。
【0010】以下に本発明についてさらに詳しく説明す
る。
【0011】本発明におけるcBN砥粒を構成する一次
結晶粒子の大きさとは、多結晶体である砥粒を構成する
cBN結晶粒子の大きさのことを意味し、別の言い方と
しては、その大きさを砥粒の一次粒径と呼ぶこともあ
る。
【0012】cBN砥粒を構成する一次結晶粒子の大き
さの平均と標準偏差は、たとえば以下のようにして測定
することができる。ただし、いずれの測定法において
も、微少部分の解析となるので、砥粒全体の組織を均一
に調べられるように複数の場所を測定するのが望まし
い。
【0013】(1)砥粒を薄片として、透過型電子顕微
鏡を用い、特定の回折線だけを用いて結像させて一次結
晶粒子の大きさに対応したコントラストを持つ暗視野像
を得、その写真(多数個の一次結晶粒子像を含む)を画
像解析することによって測定する。 (2)砥粒を破断して、粒界で破断した部分の組織を走
査型原子斥力顕微鏡を用い直接観察し、得られた写真を
画像解析することによって測定する。 (3)砥粒の表面を熱溶融炭酸ナトリウムでエッチング
し、粒界部分を選択的にエッチングして表面に凹凸をつ
け、表面粗さ計を用いて凹凸の大きさを測定することに
よって測定する。
【0014】本発明において、一次結晶粒子の大きさを
特定する際に、平均値や標準偏差等の統計量を用いて行
う理由は、多結晶型砥粒の各々は数多くの一次結晶粒子
から構成されているので、一つの粒子全体の平均品質を
規定するには統計量を用いる必要があるからである。ま
た、異なる砥粒の粒子の間でもバラツキがある場合もあ
るので、砥粒全体の品質を正確に得るためには縮分操作
によるサンプリング方法が重要となる。これについて
は、JIS R6003に「研磨材のサンプリング方
法」が規定されているので、この方法を用いると良い。
【0015】本発明において、cBN粒子を構成する一
次結晶粒子の大きさの平均を1.0 μm以下と規定したの
は、一次粒子の大きさが1.0 μmを越えると砥粒の靭性
が低下し、また、研削工具として用いた場合に耐摩耗性
が著しく低下するからである。また、その標準偏差を0.
5 以下と規定したのは、後記の実施例でも示すように、
砥粒を構成する一次結晶粒子の大きさが0.5 を越えて砥
粒の微細組織が不均一となると、強度が低下し破壊し易
くなるからである。
【0016】本発明の多結晶型立方晶窒化ほう素砥粒を
入手するには、たとえば以下の方法がある。すなわち、
多結晶型cBN砥粒は、上記したように、触媒を用いな
い無触媒直接転換法によって得られる焼結体を所望の粒
度に粉砕することによって得られ、その直接転換焼結体
の合成法については、たとえば特公昭63-394号公報に述
べられているように、熱分解窒化ほう素をcBNの安定
領域である高温高圧下で処理することによって得ること
ができる。
【0017】本発明においては、原料、高温高圧を発生
する反応室、及び保持温度と時間を以下に述べるように
厳密に制御することによって、純度と一次結晶粒子の大
きさの制御されたcBN焼結体を得ることができる。
【0018】まず、原料や反応室には高純度のものを用
いる。cBN合成時に焼結体中に不純物が存在すると、
その部分で異常粒成長などが起こるためか、均質な組織
を持った焼結体が得られなくなる。原料として、熱分解
窒化ほう素などの高純度の低圧相窒化ほう素を用いるの
が良く、その純度としては、99.0重量%以上が好まし
い。
【0019】また、高温高圧処理過程で汚染されないよ
うに、反応室の材質も、cBNと反応せず純度の高いも
のを用いる必要がある。具体的には半導体グレードの9
9.9重量%以上の高純度カーボンを加熱用ヒーターとし
て用い、高純度のNaCl粉末の成形体からなるスリー
ブをヒーター内部に配し、さらにタンタル(Ta)の金
属箔で包んだ低圧相窒化ほう素原料をその中に入れる構
造が良い。このような反応室構造であると、Taが不純
物を吸収するゲッターとなるので、カーボンヒーターや
その外部からの不純物の拡散をTa箔で食い止めること
ができる。また、NaClは電気伝導率が小さいので、
これを電気良導体であるTaとカーボンの間にスリーブ
として配することにより、Taとカーボンを接触させる
ことなく安定した加熱ができる。
【0020】高温高圧下で保持する温度、圧力及び時間
については、得られる焼結体の純度と一次結晶粒子の大
きさに深く影響する。一次結晶粒子の大きさの平均が1.
0 μm以下で、その標準偏差が0.5 以下であるものを得
るためには、熱力学的にcBNの安定な温度・圧力下
で、かつ、1900℃以上2100℃以下の温度である
必要がある。1900℃未満では、低圧相窒化ほう素原
料が完全にcBNに転換しないので純度99重量%以上の
焼結体が得らず、一方、2100℃を越えると、粒成長
が始まるためか、一部の一次結晶粒子が大きくなって組
織が不均質となり、一次結晶粒子の大きさの標準偏差が
0.5 を越えてしまう。特に、2200℃以上となると粒
成長が大きく進むためか、一次結晶粒子の大きさの平均
が1.0 μmを越えてしまう。
【0021】また、上記条件での保持時間は、120分
間以下が好ましい。120分間を越えると一旦できた1.
0 μm以下の一次結晶粒子の焼結が進み、粒成長を起こ
して一次結晶粒子の大きさが大きくなったり不均一にな
ったりする。
【0022】
【作用】本発明のように、粒子を構成する一次結晶粒子
の大きさの平均が1.0 μm以下で、その標準偏差が0.5
以下である多結晶型cBN粒子を砥粒とすることによっ
て、砥粒の強度が大きく耐摩耗性に優れる理由として
は、以下のことが考えられる。
【0023】砥粒には、研削中に衝撃的で大きな剪断力
がかかり、機械的特性は、微細組織に大きく影響され
る。本発明のように、多結晶型cBN粒子を構成する一
次結晶粒子の大きさの平均が1.0 μm以下でその標準偏
差が0.5 以下と粒径が小さく均質な微細組織を有してい
ると、クラックの伝播が起こりにくく靭性が大きいため
に研削中にも破壊しにくいものとなる。これに対し、一
次結晶粒子の大きさが不揃いな場合には、外力が作用し
た際に不均質な部分に応力集中が起きるためか粒子強度
が低下し、研削中に破壊しやすくなる。
【0024】また、本発明の砥粒の摩耗速度が小さくな
る理由としては、砥粒先端の摩耗は、先端に衝撃的なせ
ん断力がかかるので一次結晶粒子の欠落によって起こる
が、本発明の砥粒は、粒子を構成する一次結晶粒子の大
きさの平均が1.0 μm以下と小さいので、一回に欠落す
る量が小さく、摩耗速度が小さくなると考えている。
【0025】
【実施例】以下、実施例、比較例をあげて本発明をさら
に具体的に説明する。 比較例1 多結晶型cBN砥粒として唯一市販されているゼネラル
エレクトリック社製「ボラゾンBZ550 」(粒度60/80 メ
ッシュ)を入手し、JIS R6003の方法でサンプ
リングし、透過型電子顕微鏡を用い、(111) 回折線の一
部だけを用いて結像させ、一次結晶粒子の大きさに対応
したコントラストを持つ暗視野像を得た。
【0026】得られた暗視野像の写真(多数個の一次結
晶粒子像を含む)をピアス社製の画像解析装置「LA5
55」で解析することによって、砥粒を構成する一次結
晶粒子の大きさの平均と標準偏差を測定した。測定は、
砥粒全体を平均的に捉えられるように、任意に10個所
の視野を選んで行った。その結果を表1に示す。
【0027】次に、この内の200 カラットを抜き出し、
直径200mm 、厚さ10mm、集中度200のビトリファイドボ
ンド砥石を作製した。この砥石を用いて、平面プランジ
カット法による試験を行い、60分間後の砥石摩耗量と被
削物の表面粗さを測定した。その結果を表1に示す。
【0028】なお、試験に用いた被削材は、軸受鋼SUJ2
であり、研削条件は砥石周速度3600m/min 、被削材送り
速度9m/min、砥石切込み量15μm、研削時間60分間であ
る。
【0029】実施例1〜5及び比較例2〜4 原料に98.0〜99.9重量%のさまざまな純度を持つ市販の
熱分解窒化ほう素を用い、半導体グレードの99.9重量%
以上の高純度カーボンを加熱用ヒーターとし、高純度の
NaCl粉末の成形体からなるスリーブをヒーター内部
に配し、さらにタンタルの金属箔で包んだ熱分解窒化ほ
う素原料をその中に入れる構造の反応セルを組み立て
た。この反応セルを、フラットベルト型超高圧高温発生
装置に装填して表1に示す温度、8.0GPaの圧力で100 分
間処理して直接転換法によるcBN多結晶体を合成し
た。
【0030】得られた多結晶体をロールクラッシャーで
粉砕した後、分級して60/80 メッシュの砥粒をより分け
た。この砥粒から、JIS R6003の方法でサンプ
リングし、透過型電子顕微鏡を用い、(111) 回折線の一
部だけを用いて結像させ、一次結晶粒子の大きさに対応
したコントラストを持つ暗視野像を得た。得られた暗視
野像の写真(多数個の一次結晶粒子像を含む)をピアス
社製の画像解析装置「LA555」で解析して、砥粒を
構成する一次結晶粒子の大きさの平均と標準偏差を測定
した。
【0031】測定は、砥粒全体を平均的に捉えられるよ
うに、任意に10個所の視野を選んで行った。暗視野像
の写真及び画像解析によって得られた砥粒を構成する一
次結晶粒子の大きさの平均と標準偏差を表1に示す。ま
た、図1に、実施例1によって得られたcBN砥粒の一
次結晶粒子の粒子構造を示す透過型電子顕微鏡による暗
視野像(倍率:8000倍)の写真を示した。
【0032】次に、実施例1〜5と比較例2〜4で得ら
れた砥粒を用いて比較例1と同一の方法で砥石を作製
し、同一の条件で研削性能を測定した。その結果を表1
に示す。
【0033】
【表1】
【0034】
【発明の効果】本発明によれば、従来にくらべて格段に
寿命の長い高精度な研削砥石を得ることができる。
【図面の簡単な説明】
【図1】 実施例1によって得られた多結晶型cBN砥
粒の一次結晶粒子の粒子構造を示す倍率8000倍の透
過型電子顕微鏡による暗視野像の写真である。

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 粒子を構成する一次結晶粒子の大きさの
    平均が1.0 μm以下で、その標準偏差が0.5 以下である
    多結晶型立方晶窒化ほう素からなることを特徴とする砥
    粒。
JP4135593A 1992-04-30 1992-04-30 砥 粒 Expired - Lifetime JP2744732B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4135593A JP2744732B2 (ja) 1992-04-30 1992-04-30 砥 粒
DE4314341A DE4314341C2 (de) 1992-04-30 1993-04-30 Schleifmittel aus polykristallinem kubischen Bornitrid
US08/253,196 US5443605A (en) 1992-04-30 1994-06-01 Polycrystalline cubic boron nitride abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135593A JP2744732B2 (ja) 1992-04-30 1992-04-30 砥 粒

Publications (2)

Publication Number Publication Date
JPH05311154A JPH05311154A (ja) 1993-11-22
JP2744732B2 true JP2744732B2 (ja) 1998-04-28

Family

ID=15155451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135593A Expired - Lifetime JP2744732B2 (ja) 1992-04-30 1992-04-30 砥 粒

Country Status (3)

Country Link
US (1) US5443605A (ja)
JP (1) JP2744732B2 (ja)
DE (1) DE4314341C2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618509A (en) * 1993-07-09 1997-04-08 Showa Denko K.K. Method for producing cubic boron nitride
US5691260A (en) * 1994-12-30 1997-11-25 Denki Kagaku Kogyo Kabushiki Kaisha Cubic system boron nitride sintered body for a cutting tool
US6737377B1 (en) * 1998-05-22 2004-05-18 Sumitomo Electric Industries, Ltd. Cutting tool of a cubic boron nitride sintered compact
US20050081456A1 (en) * 2003-01-06 2005-04-21 Showa Denko K.K. Cubic boron nitride abrasive grain, production method therefor, and grinding wheel and coated abrasive using the same
JP4677665B2 (ja) * 2000-11-21 2011-04-27 日油株式会社 高圧相物質の製造方法
WO2002094736A1 (en) * 2001-05-21 2002-11-28 Showa Denko K.K. Method for producing cubic boron nitride abrasive grains
TWI334408B (en) * 2002-05-28 2010-12-11 Nat Inst Of Advanced Ind Scien Brittle material formed of ultrafine particles
JP5554052B2 (ja) * 2009-11-27 2014-07-23 株式会社アドマテックス 研磨用組成物および研磨方法
CN103831737A (zh) * 2014-02-11 2014-06-04 当涂县南方红月磨具磨料有限公司 一种含贝壳粉的立方氮化硼砂轮

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2500515A1 (de) * 1974-01-23 1975-07-24 Hitachi Ltd Verfahren zur herstellung von kubischem bornitrid
US4188194A (en) * 1976-10-29 1980-02-12 General Electric Company Direct conversion process for making cubic boron nitride from pyrolytic boron nitride
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
JPS5939362B2 (ja) * 1981-11-12 1984-09-22 昭和電工株式会社 窒化ホウ素系化合物およびその製造方法
EP0301492B1 (en) * 1987-07-29 1992-02-19 Sumitomo Electric Industries, Ltd. Method for bonding cubic boron nitride sintered compact

Also Published As

Publication number Publication date
DE4314341A1 (de) 1993-11-04
US5443605A (en) 1995-08-22
DE4314341C2 (de) 1995-05-04
JPH05311154A (ja) 1993-11-22

Similar Documents

Publication Publication Date Title
KR100219930B1 (ko) 초경질 복합부재 및 이의 제조방법
EP2752398B1 (en) Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP2005514300A (ja) 低酸素立方晶窒化ホウ素及びその産物
CN107406334B (zh) 金刚石多晶体、切削工具、耐磨工具、磨削工具以及金刚石多晶体的制造方法
EP3401040A1 (en) Polycrystalline diamond and method of manufacturing the same
JP2744732B2 (ja) 砥 粒
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
CN107405756A (zh) 易碎的陶瓷结合的金刚石复合粒子以及其制造方法
CN110219042A (zh) 多晶金刚石体、切削工具、耐磨工具、磨削工具以及用于制造多晶金刚石体的方法
US5691260A (en) Cubic system boron nitride sintered body for a cutting tool
JP3472630B2 (ja) 切削工具用立方晶窒化ほう素燒結体及び切削工具
EP3932893A1 (en) Polycrystalline cubic boron nitride and production method therefor
CN116472132A (zh) 金刚石烧结体以及具备金刚石烧结体的工具
JPH0931442A (ja) 砥 粒
JPH07291732A (ja) 多結晶型立方晶窒化ほう素焼結体及びその用途
JPH07291735A (ja) 多結晶型立方晶窒化ほう素焼結体及びその用途
JP2761321B2 (ja) 砥 粒
JP3411593B2 (ja) 切削工具用立方晶窒化ほう素焼結体
JPH08301661A (ja) 多結晶型立方晶窒化ほう素焼結体及びその用途
JP2761322B2 (ja) 砥 粒
JPH07291733A (ja) 多結晶型立方晶窒化ほう素焼結体及びその用途
JP2761318B2 (ja) 砥 粒
JPH07291734A (ja) 多結晶型立方晶窒化ほう素焼結体及びその用途
JPH0711240A (ja) 立方晶窒化ほう素砥粒及び研磨工具
WO2020174921A1 (ja) 立方晶窒化硼素多結晶体及びその製造方法