JP2742225B2 - 耐錆び性が優れた炭素鋼用溶接ワイヤ - Google Patents

耐錆び性が優れた炭素鋼用溶接ワイヤ

Info

Publication number
JP2742225B2
JP2742225B2 JP26127594A JP26127594A JP2742225B2 JP 2742225 B2 JP2742225 B2 JP 2742225B2 JP 26127594 A JP26127594 A JP 26127594A JP 26127594 A JP26127594 A JP 26127594A JP 2742225 B2 JP2742225 B2 JP 2742225B2
Authority
JP
Japan
Prior art keywords
wire
electric resistance
contact electric
resistance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26127594A
Other languages
English (en)
Other versions
JPH08103886A (ja
Inventor
弘之 清水
晃 松口
規生 政家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26127594A priority Critical patent/JP2742225B2/ja
Priority to KR1019950032065A priority patent/KR0175958B1/ko
Publication of JPH08103886A publication Critical patent/JPH08103886A/ja
Application granted granted Critical
Publication of JP2742225B2 publication Critical patent/JP2742225B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、自動又は半自動溶接に
使用される耐錆び性が優れた炭素鋼用の溶接ワイヤに関
する。
【0002】
【従来の技術及びその問題点】炭素鋼用溶接ワイヤの耐
錆び性を向上させるために、ワイヤ表面に銅等でメッキ
処理する方法が広く用いられている。ワイヤ表面全体に
均一に銅メッキすることによって、ワイヤ表面に発生す
る点錆びの殆どは防止することができる。一方、銅メッ
キをワイヤ表面に均一に施すためには、高度な技術が必
要である。製造上のバラツキによって、銅メッキがワイ
ヤ表面に不均一に生成され、部分的に炭素鋼の地が露出
すると、銅メッキと露出炭素鋼地の間で局部電池が生成
する。局部電池が生成されると、炭素鋼地が優先的に酸
化され、点錆びが発生する。また、ワイヤ表面に銅メッ
キ処理するためには、製造工程中にメッキ工程が必要で
あり、製造コストを高めてしまう。更に、点錆びを防ぐ
ために十分な厚さの銅メッキを施された溶接ワイヤは、
溶接時に割れが発生しやすいという欠点を有している。
表面に施された銅メッキは溶接時に溶接金属中に入り、
凝固過程において偏析し、凝固割れを発生させる。
【0003】銅メッキを使用せずに、耐錆び性が優れた
炭素鋼用溶接ワイヤを製造することが、製造コスト及び
溶接部の割れの観点から望ましい。銅メッキを施さず
に、炭素鋼ワイヤを製造するために、種々の方法が採用
されている。一般的に、ワイヤ表面に防錆用の油を塗布
することによって、点錆びの発生を防止している。油塗
布によって、ワイヤの耐錆び性を向上させるためには、
塗布油組成(耐錆び性、送給性、化学的安定性等)の選
定、均一塗布技術の確立等の解決すべき問題点が多い。
油塗布の有無によらずワイヤの耐錆び性を向上させるた
めには、ワイヤ表面に鋼地とイオン化傾向の極端に異な
る部分が存在しなければよい。換言すれば、ワイヤ表面
の電気的特性が均一であれば、耐錆び性に優れた炭素鋼
用溶接ワイヤを製造することが可能である。しかしなが
ら、実際の炭素鋼地のワイヤ表面には、伸線潤滑剤が残
留するために、電気的特性が不均一となり、局部電池が
形成され、所望する耐錆び性が得られないことが多かっ
た。
【0004】本発明はかかる問題点に鑑みてなされたも
のであって、炭素鋼用溶接ワイヤ表面に銅メッキするこ
となく、点錆びが発生し難い耐錆び性が優れた炭素鋼用
溶接ワイヤを提供することを目的とする。
【0005】
【課題を解決するための手段】本発明に係る耐錆び性が
優れた炭素鋼用溶接ワイヤは、メッキ処理されていない
ソリッドワイヤ又はフラックス入りワイヤであって、こ
のワイヤの任意に取り出された長さ50mmの部分につ
いて、電流端子と電圧端子を兼用する電極として、その
先端形状が半径1mmの曲率を有し、材質が1%Cr銅
合金であり、表面粗さがエメリー紙#400で研磨した
ままの状態であるものを使用し、この電極を押し付け力
0.49N±0.05N(50±5gf)で、ワイヤ表
面に押し付けて接触電気抵抗を測定し、その測定値より
ワイヤ長さ1mm毎の複数個の接触電気抵抗値について
平均値を計算した場合、この接触抵抗平均値の最大値と
最小値との比を20未満にすることを特徴とする。
【0006】
【作用】ワイヤ表面に発生する点錆びは、局部電池によ
って発生する。即ち、鋼地の表面が物理的又は化学的に
不均一であると、局部電池が生成され、ワイヤは錆び
る。溶接用ワイヤは隣り合うワイヤの表面が機械的に接
触してスプール又はパックに巻かれている。このワイヤ
表面間の接触状態が良好でなければ、局部電池はワイヤ
長手方向のみに形成される。本願発明者等はワイヤ間の
接触状態が良好でない場合の錆の発生状態を鋭意研究し
たところ、ワイヤ50mm長の部分に物理的又は化学的
に不均一な場所が存在すると局部電池が形成され、点錆
びが発生することを知見した。
【0007】ワイヤ表面の不均一さは次のような方法で
調べた。ここでは、便宜的にワイヤ表面の接触電気抵抗
を測定し、接触電気抵抗値という電気的特性をもってワ
イヤ表面の不均一さを知る指標とした。大気中にあるワ
イヤ表面には微量ながら水が存在する。この微量な水を
介して電流を流し、そこでの接触電気抵抗を測定すれば
簡易的にワイヤ表面の局部電池の形成のしやすさを知る
ことができる。
【0008】ワイヤ表面の接触電気抵抗は、図1に示す
ような装置により測定することができる。この図1に示
す装置は市販の電気接点シミュレータを本願発明者等が
改良したものである。ワイヤ1は矢印方向に連続的に移
動させる。このワイヤ1に電流端子2と電圧端子3とを
接触させ、電流端子2は電流リード線7を介して電源6
に接続されている。電圧端子3は電圧リード線9を介し
て接触電気抵抗計8に接続されている。また、電流端子
2と電圧端子3との間のワイヤ1の表面には、電極4が
荷重機構5により適宜の荷重を印加されながらワイヤ1
に接触するようになっており、この電極4は電流リード
線7及び電圧リード線9を介して夫々電源6及び接触電
気抵抗計8の他方の端子に接触されている。
【0009】前述したように50mmにわたってワイヤ
表面の電気的不均一さを知るためには、50mm全長に
わたって、接触電気抵抗を測定する必要がある。そのた
め、ワイヤ1を連続的に駆動しながら接触電気抵抗を測
定する。電圧端子3及び電流端子2は、接触電気抵抗の
測定に影響しなければ、ワイヤ1の両端に固定しても、
又は端子位置を固定してワイヤ1表面に摺動させてもよ
い。
【0010】ワイヤ1の移動速度を1mm/分から10
m/分まで変えて測定を行ったところ、1分間に1mm
〜50cmの移動速度で測定すると、測定は可能である
が時間がかかりすぎて実用的でなく、5m〜10mの移
動速度で測定を行うと、測定は可能であるが、振動等に
より精度に問題があった。このため、適正な速度範囲は
1分間に50cm〜5mであるが、本発明においては速
度を1.2±0.4m/分とした。測定電流は交流でも
直流でも同様な接触電気抵抗値が得られるが、本発明は
局部電池の生成により近い直流電流を用いて接触電気抵
抗を測定した。電流は1μAから100Aまで変えて測
定した。測定電流が1μA〜50mAの範囲でも接触電
気抵抗は測定できるが、起電力のバラツキが大きすぎる
ために精度が低い。測定電流が5Aから100Aの範囲
でも接触電気抵抗は測定できるが、電流が高すぎて電極
4とワイヤ1との接点が変質し、酸化し、更には溶融し
てしまう。また、電流が高いと、測定される接触抵抗の
値及びその差がいずれ小さくなり、耐錆び性が異なるワ
イヤ間でもその差が不明確になる。適正な測定電流の範
囲は50mAから5Aの範囲である。本発明においては
電流を0.5±0.1Aとした。
【0011】電流を流したときの電極4とワイヤ1との
間に発生する電位差(V)を接触電気抵抗計8で測定
し、この電位差を測定電流で除することによって接触電
気抵抗(Ω)を計算した。接触電気抵抗が不均一である
と、点錆びが発生する。この電位差は測定距離を0.0
1〜0.5mm間隔で行う必要がある。これは、微小な
付着物が溶接用ワイヤ表面に残留しても、その存在を検
知できるようにするためである。実際の測定は0.1±
0.02mm間隔で行った。なお、この測定距離とは、
ワイヤ1を移動速度1.0±0.2m/分で移動させつ
つ所定の時間間隔で接触電気抵抗を測定することにより
その測定間隔を0.1±0.02mmにするものであ
る。
【0012】電流端子電極4の材質は1%Cr銅合金を
使用した。基準電極としては純銅の方が望ましいが、純
銅では摩耗が激しいという問題があった。測定される接
触電気抵抗の値は他の銅合金を用いて測定しても大差は
なかった。電流端子電極4の厚さは2mmであり、先端
にはR1mmの曲率を付け、表面粗さはエメリー紙(#
400)で研磨したままの状態にした。この電流端子電
極4を電荷機構5によりワイヤ1に押し付ける力は0.
49±0.05N(50±5gf)である。この押し付
け力は、大きくするとワイヤの表面全体の接触電気抵抗
の値が小さくなり、電気的な不均一さの程度が小さくな
って、不都合が生じた。逆に押し付け力を小さくすると
ワイヤ表面の電気的不均一さが誇張されすぎて、不都合
が生じた。ワイヤ1と電流端子電極4の相対的な移動速
度は1.0±0.2m/分とした。この速度で測定を行
えば50mmのワイヤについて3秒で測定できる。実際
の測定は4m程度の長さ全長にわたって測定し、その中
から任意の50mm部分の抵抗値を計算機によって統計
処理すればよい。ワイヤの接触電気抵抗値は直線的に測
定すればよい。必要なら螺旋状に測定しても、ジグザグ
に測定してもよい。測定の軌跡は問題ではなく、どのよ
うな軌跡であってもワイヤ50mm全長にわたって順次
接触電気抵抗を測定すればよい。但し、測定装置の簡便
の点で、直線的に測定するのが好ましい。
【0013】溶接ワイヤ表面に発生する点錆びの大きさ
は初期段階で0.5〜2mm程度の直径を有している。
本願発明者等は、溶接用ワイヤ50mmにおける耐錆び
性と接触電気抵抗の相関関係を研究したところ、錆びの
直径を1mmとして、ワイヤ表面1mmでの平均的な接
触電気抵抗値を局部電池形成のし易さの指標として採用
すると、現象がうまく整理できることを見いだした。本
発明の接触電気抵抗の測定は0.1mm間隔で行ってい
る。錆が発生する代表的な長さ1mmにおける接触電気
抵抗の値を知ることができれば、そこでの点錆びの発生
のし易さを推定できる。1mm間における平均的な接触
電気抵抗の値は、0.1mm間隔で測定された10個の
接触電気抵抗の並列合成抵抗を考えなければならない。
並列合成抵抗RPは次式によって与えられる。
【0014】1/RP=1/RO+1/R1+1/R2
+1/R3+1/R4+1/R51/R6+1/R7+
1/R8+1/R9 ここでR0からR9は、ワイヤ1mmを0.1mm間隔
で端から順番に測定した接触電気抵抗である。本願発明
者等による実験研究の結果、上記並列合成抵抗の代わり
に下記の平均抵抗値を用いても点錆びの発生のし易さを
評価できることが判明した。平均抵抗値Rmは Rm=(R0+R1+R2+R3+R4+R5+R6+
R7+R8+R9)/10 によって計算した。1mm内にN点測定したとすると、
N個の測定された抵抗値の平均値をもって平均抵抗値と
すればよい。
【0015】工業的に生産される溶接用ワイヤは伸線潤
滑剤を使用して伸線するために、製品としての溶接用ワ
イヤ表面に、この伸線潤滑剤が不可避的に残留して皮膜
を形成する。場合によっては点状に伸線潤滑剤がワイヤ
表面に残留し、この部分が電気的特性を不均一にし、ワ
イヤの耐錆び性を著しく損なう。また、伸線工程は大気
中で行われるために、ワイヤ表面は多くの場合酸化膜で
覆われている。この酸化膜によってワイヤ表面が均一に
覆われていれば耐錆び性に問題は生じない。
【0016】しかし多くの場合酸化膜は不均一に生成
し、鋼地との間で局部電池を形成し、ワイヤの耐錆び性
を損なう。上述のように工業的に生産される溶接用ワイ
ヤ表面には電気特性が不均一な場所が存在し、局部電池
が形成される。本願発明者等は、局部電池の形成のし易
さは、ワイヤ表面の接触電気抵抗をもって評価できるこ
とを見いだした接触電気抵抗が高い所と、接触電気抵
抗が低い所が、ワイヤ長手方向に混在すると、溶接ワイ
ヤの耐錆び性が悪くなる。そこで、本発明は、耐錆び性
が優れたワイヤが備えるべき必要条件として、任意に取
り出した50mm長さのワイヤ表面の1mm毎に複数の
接触電気抵抗を測定し、その平均を求め、接触電気抵抗
平均値の最大値と最小値の比が所定値以下であることを
構成要件とする。また、接触電気抵抗平均値の最大値が
一定値以下であることが好ましい。
【0017】前記接触電気抵抗平均値の最大値と最小値
との比は20未満であり、この接触電気抵抗平均値の最
大値は10Ω未満である。
【0018】この接触電気抵抗平均値の最大値と最小値
との比が20以上であると、ワイヤ表面に局部電池が容
易に形成されて、気温30℃、湿度80%の環境にワイ
ヤを露出しておくと、1カ月中にワイヤ表面全面に点錆
びが発生する。
【0019】接触電気抵抗平均値の最大値と最小値との
比が20未満であると、気温30℃、湿度80%の環境
にワイヤを露出させておいても、少なくとも1カ月はワ
イヤ表面に点錆びは発生しなかった。この条件の耐錆び
性は未開封のままのワイヤにおいて2年間点錆びが発生
しないことに相当する。更に一層耐錆び性を向上させる
ためには接触電気抵抗平均値の最大値を10Ω未満にす
ることが有効であった。気温30℃、湿度80%の環境
にこのワイヤを露出させておいても、少なくとも2カ月
はワイヤ表面に点錆は発生しなかった。この耐錆び性
は未開封のままのワイヤにおいて4年間点錆が発生し
ないことに相当する。
【0020】上述の請求範囲の接触電気抵抗を有するワ
イヤを製造するためには、ワイヤ表面に残留する伸線潤
滑剤及びワイヤ表面に生成される酸化膜を、ワイヤ長手
方向に均一化にすることが必要である。そのためには伸
線時の潤滑剤をワイヤ表面に均一に塗布する必要があ
る。ワイヤ表面に局部的に潤滑剤が塗布されると、伸線
終了時のワイヤ表面に部分的に潤滑剤が残留し、局部電
池を形成する。また、酸化膜の不均一性を防止するため
には伸線時のワイヤの温度を精度よく管理し、一定温度
で伸線加工を実施できるように、伸線ダイス及び伸線釜
の冷却を行う必要がある。伸線ダイスでワイヤが塑性加
工されるとき、潤滑膜が不十分であるとワイヤ表面と伸
線ダイスが直接接触し、ワイヤ表面が荒れる。この荒れ
が発生するとワイヤ表面に不均一に潤滑剤が残留する。
よって、耐錆び性が良好なワイヤを製造するためには、
本願発明にて規定した接触電気抵抗の範囲を満たすのに
十分な潤滑性に優れた潤滑剤を使用する。
【0021】
【実施例】以下、本発明の実施例についてその比較例と
比較して説明する。フラックス入りワイヤ用フープ素材
として炭素鋼(JIS SPCC)を使用した。ワイヤ
内部に充填するフラックスは下記表1の配合で、重量比
率14%添加し、フラックス入りワイヤとした。
【0022】
【表1】
【0023】ワイヤ表面の接触電気抵抗を種々変えるた
めに、伸線潤滑剤を選択し、更に付着残留量を調整し
た。接触電気抵抗の値はワイヤ表面状態の影響のみを受
け、フラックスの有無には影響されなかった。ワイヤ表
面の接触電気抵抗を50mmにわたって測定した結果を
下記表2に示す。測定は0.1mm間隔で行い、測定点
数は500点である。これらの測定値から1mm毎の平
均値を計算した。従って、平均値は50個である。この
算出された接触電気抵抗平均値を図2乃至図13に示
す。図中、50個の平均値の最大値、最小値及び最大値
/最小値比を付記した。
【0024】これらのワイヤについて、気温30℃、湿
度80%の環境にワイヤを露出させて耐錆び試験を行っ
た。評価の結果下記表2に合わせて示した。
【0025】
【表2】
【0026】但し、耐錆び試験において、×は1カ月中
にワイヤ全面に点錆が発生した場合、○は1カ月以内
に点錆びは全く発生しなかった場合、◎は少なくとも2
カ月は点錆びが発生しなかった場合である。
【0027】なお、同様の試験をJIS Z3312Y
GWに規定している化学組成の炭素鋼ソリッドワイヤに
ついても実施した。図14にその測定例を示す。接触電
気抵抗が規定範囲にあるために2カ月以上点錆は発生
していない。
【0028】図15乃至18にフラックス入りワイヤの
接触電気抵抗を、電流を種々変えて測定した結果を示
す。図17は通常の0.5A、0.49Nで測定された
値を示す。このワイヤは規定範囲を満足しているため、
2カ月以上点錆びは発生していない。同じワイヤを荷重
0.49Nにおいて、5mA(図15)及び50mA
(図16)で測定すると、接触電気抵抗の値は大きくな
り、その分布範囲は広くなる。これは測定電流が異なる
からである。また測定電流を10Aにすると、図18に
示すように接触電気抵抗の値は小さく、その分布範囲の
幅が狭くなる。同じワイヤの接触電気抵抗を電流を0.
5A一定にして、荷重を変えて測定した結果を図19、
及び20に示す。荷重を0.1N(10gf)(図1
9)にすると、接触電気抵抗の値は大きくなり、この分
布範囲は広くなる。荷重を2N(200gf)(図2
0)にすると、接触電気抵抗の値は小さくなり、その分
布範囲は狭くなる。
【0029】図15乃至図20に示したように、接触電
気抵抗の値は測定電流と荷重によって大きく変わる。耐
錆び性と接触電気抵抗の相関は、測定電流が0.5A、
荷重が0.49N(50gf)のときに最も良好な関係
が得られた。
【0030】
【発明の効果】以上説明したように、本発明に係る耐錆
び性が優れた炭素鋼用溶接ワイヤは、メッキ等の特別な
表面処理を必要とせずに、耐錆び性が著しく向上し、ま
た通電性及びアーク安定性も良好である。従って、本発
明により、低コストで高品質な溶接施工を行うことがで
きる。
【図面の簡単な説明】
【図1】本発明の接触電気抵抗の測定方法を示す図であ
る。
【図2】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図3】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図4】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図5】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図6】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図7】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図8】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図9】ワイヤ表面の接触電気抵抗の実測値から算出さ
れた平均値の算出結果であり、横軸に距離(mm)をと
り、縦軸に接触電気抵抗(Ω)をとって、測定距離50
mm、測定間隔0.1mmで、1mm毎の平均値を示す
図である。
【図10】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図11】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図12】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図13】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図14】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図15】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図16】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図17】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図18】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図19】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【図20】ワイヤ表面の接触電気抵抗の実測値から算出
された平均値の算出結果であり、横軸に距離(mm)を
とり、縦軸に接触電気抵抗(Ω)をとって、測定距離5
0mm、測定間隔0.1mmで、1mm毎の平均値を示
す図である。
【符号の説明】
1:ワイヤ 2;電流端子 3;電圧端子 4;電流端子と電圧端子を兼用する電極 6;直流電源 7,9;リード線 8;接触電気抵抗計

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 メッキ処理されていないソリッドワイヤ
    又はフラックス入りワイヤであって、このワイヤの任意
    に取り出された長さ50mmの部分について、電流端子
    と電圧端子を兼用する電極として、その先端形状が半径
    1mmの曲率を有し、材質が1%Cr銅合金であり、表
    面粗さがエメリー紙#400で研磨したままの状態であ
    るものを使用し、この電極を押し付け力0.49N±
    0.05N(50±5gf)で、ワイヤ表面に押し付け
    接触電気抵抗を測定し、その測定値よりワイヤ長さ1
    mm毎の複数個の接触電気抵抗値について平均値を計算
    した場合、この接触抵抗平均値の最大値と最小値との比
    を20未満にすることを特徴とする耐錆び性が優れた炭
    素鋼用溶接ワイヤ。
  2. 【請求項2】 このワイヤにおいて、平均抵抗値の最大
    値が10Ω未満となる請求項1に記載の耐錆び性に優れ
    た炭素鋼用溶接ワイヤ。
JP26127594A 1994-09-30 1994-09-30 耐錆び性が優れた炭素鋼用溶接ワイヤ Expired - Lifetime JP2742225B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26127594A JP2742225B2 (ja) 1994-09-30 1994-09-30 耐錆び性が優れた炭素鋼用溶接ワイヤ
KR1019950032065A KR0175958B1 (ko) 1994-09-30 1995-09-27 탄소강용 용접와이어

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26127594A JP2742225B2 (ja) 1994-09-30 1994-09-30 耐錆び性が優れた炭素鋼用溶接ワイヤ

Publications (2)

Publication Number Publication Date
JPH08103886A JPH08103886A (ja) 1996-04-23
JP2742225B2 true JP2742225B2 (ja) 1998-04-22

Family

ID=17359563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26127594A Expired - Lifetime JP2742225B2 (ja) 1994-09-30 1994-09-30 耐錆び性が優れた炭素鋼用溶接ワイヤ

Country Status (1)

Country Link
JP (1) JP2742225B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405855B1 (ko) 2001-04-19 2003-11-14 고려용접봉 주식회사 용접용 무도금 와이어

Also Published As

Publication number Publication date
JPH08103886A (ja) 1996-04-23

Similar Documents

Publication Publication Date Title
JP2682814B2 (ja) アーク溶接用ワイヤ
US3935414A (en) Automatic fixed position pipe welding
CN111515578A (zh) 涂覆焊丝
US4633054A (en) Resistance welding method
JPS63114817A (ja) 放電加工用電極
JP2742225B2 (ja) 耐錆び性が優れた炭素鋼用溶接ワイヤ
KR101181214B1 (ko) 동도금된 가스 실드 아크 용접용 플럭스 코어드 와이어 및 이의 제조방법
JPS63108996A (ja) 溶接用鋼ワイヤおよびその製造方法
JP2742224B2 (ja) 耐錆び性が優れた炭素鋼用溶接ワイヤ
JPH1085950A (ja) 良伝導性の材料からなる薄板あるいは異形材の抵抗点溶接のための装置
US20030164360A1 (en) Non-copper-plated solid wire for carbon dioxide gas shielded arc welding
US6696170B2 (en) Copper-free wire
JP3753173B2 (ja) ガスシールドアーク溶接用鋼ワイヤ
US3215814A (en) Welding of high yield strength steel
JPH0523731A (ja) 溶接ワイヤ伸線用潤滑剤およびフラツクス入り溶接ワイヤ
JP3017057B2 (ja) セルフシールドアーク溶接用フラックス入りワイヤ
JPH07100687A (ja) アーク溶接用ワイヤ
JP5001576B2 (ja) 銅めっき付き溶接用ワイヤ
JP2713350B2 (ja) ワイヤ放電加工用電極線
JPH0451274B2 (ja)
JP4542239B2 (ja) ガス被包アーク溶接用のステンレス鋼ワイヤ
JP2731505B2 (ja) アーク溶接用ワイヤ
JPH11309582A (ja) スポット溶接法
JPH07251289A (ja) アーク溶接用フラックス入りワイヤおよびその製造方法
JPH10193175A (ja) 溶接ワイヤの伸線用油性潤滑剤及びアーク溶接用鋼ワイヤ

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 15

EXPY Cancellation because of completion of term