JP2024009458A - 電源装置、画像形成装置および電源装置の異常検知方法 - Google Patents

電源装置、画像形成装置および電源装置の異常検知方法 Download PDF

Info

Publication number
JP2024009458A
JP2024009458A JP2022110997A JP2022110997A JP2024009458A JP 2024009458 A JP2024009458 A JP 2024009458A JP 2022110997 A JP2022110997 A JP 2022110997A JP 2022110997 A JP2022110997 A JP 2022110997A JP 2024009458 A JP2024009458 A JP 2024009458A
Authority
JP
Japan
Prior art keywords
voltage
transformer
power supply
zero
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022110997A
Other languages
English (en)
Inventor
洸三郎 鈴木
Kozaburo Suzuki
健太朗 梶田
Kentaro Kajita
崇彦 長谷川
Takahiko Hasegawa
俊太郎 中山
Shuntaro Nakayama
淳一 佐々木
Junichi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2022110997A priority Critical patent/JP2024009458A/ja
Publication of JP2024009458A publication Critical patent/JP2024009458A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Rectifiers (AREA)

Abstract

【課題】電源装置に搭載されるトランスの特性がばらつく場合にも、使用電圧範囲を狭めることなくトランスが破損する前にトランスに供給される高電圧を検知する。【解決手段】電源装置は、交流電源から供給される第1交流電圧を降圧して第2交流電圧を生成するトランスと、前記第2交流電圧を整流して脈流を生成する整流回路と、前記脈流を平滑化して直流電圧を生成する平滑回路と、前記脈流のゼロクロス信号を生成するゼロクロス信号回路と、前記直流電圧が電圧閾値を超え、かつ、前記ゼロクロス信号のデューティ比が比率閾値を超えたときに前記第1交流電圧の異常を検知する異常検知部と、を有する。【選択図】図3

Description

本発明は、電源装置、画像形成装置および電源装置の異常検知方法に関する。
画像形成装置に搭載される電源装置において、入力電圧のゼロクロス信号のデューティ比に基づいて入力電圧の高電圧を検知し、高電圧を検知した場合、定着装置への電力の供給を停止する手法が知られている(例えば、特許文献1参照)。
例えば、電源装置に含まれるトランスの出力電圧は、入力電圧に追従して変化するが、入力電圧が所定以上高い場合、トランスの出力電圧の波形に歪みが発生する場合がある。このため、トランスの出力電圧のゼロクロス信号のデューティ比に基づいて入力電圧の高電圧を検知し、トランスへの電力の供給を停止する場合、個々のトランスの特性のばらつきにより、高電圧の検知点もばらついてしまう。
高電圧の検知点は、トランスが破損するおそれがある破損電圧範囲に含まれることを避けるため、例えば、破損電圧範囲に対して所定の余裕だけ低い電圧に設定される。これにより、電源装置への入力電圧の使用電圧範囲が狭くなるおそれがある。使用電圧範囲を狭めないためには、例えば、トランスの容量を大きくし、破損電圧範囲の最小電圧を上げる必要がある。しかしながら、トランスの容量を大きくする場合、トランスのサイズが大きくなる。これにより、トランスのコストが増加し、基板の実装面積が増大するため、電源装置のコストが増加する。
上記の課題に鑑み、本発明は、電源装置に搭載されるトランスの特性がばらつく場合にも、使用電圧範囲を狭めることなくトランスが破損する前にトランスに供給される高電圧を検知することを目的とする。
上記技術的課題を解決するため、本発明の一形態の電源装置は、交流電源から供給される第1交流電圧を降圧して第2交流電圧を生成するトランスと、前記第2交流電圧を整流して脈流を生成する整流回路と、前記脈流を平滑化して直流電圧を生成する平滑回路と、前記脈流のゼロクロス信号を生成するゼロクロス信号回路と、前記直流電圧が電圧閾値を超え、かつ、前記ゼロクロス信号のデューティ比が比率閾値を超えたときに前記第1交流電圧の異常を検知する異常検知部と、を有する。
電源装置に搭載されるトランスの特性がばらつく場合にも、使用電圧範囲を狭めることなくトランスが破損する前にトランスに供給される高電圧を検知することができる。
本発明の一実施形態に係る電源装置が搭載される画像形成装置の一例を示す全体構成図である。 図1の電源装置の一例を示すブロック図である。 図2の交流電源部内に設けられるトランス保護機能の一例を示すブロック図である。 図3の平滑回路、ゼロクロス信号回路および異常検知部の一例を示す回路ブロック図である。 図2の交流電源部内に設けられるトランス保護機能の別の例を示すブロック図である。 図4のゼロクロス信号回路が生成するゼロクロス信号の波形の例を示す図である。 入力電圧とゼロクロス信号のデューティ比との関係を示す特性図である。 直流電圧とゼロクロス信号のデューティ比とをそれぞれ利用して入力電圧の高電圧を検知する例を示す図である。 電圧閾値の設定と比率閾値の設定とを組み合わせて入力電圧の高電圧を検知する例を示す図である。 図3のトランスの磁気飽和領域のばらつきの例を示す図である。 図3の異常検知部による入力電圧の異常検知方法の一例を示すフロー図である。
以下、図面を用いて実施形態を説明する。以下では、電圧が伝達される電圧線には、電圧名と同じ符号を使用し、信号が伝達される信号線には、信号名と同じ符号を使用する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
図1は、本発明の一実施形態に係る電源装置が搭載される画像形成装置の一例を示す全体構成図である。図1に示す画像形成装置1は、例えば、複写機能、プリント機能、スキャナ機能およびファクシミリ機能等を有するデジタル複合機(MFP:Multi-Function Printer)である。画像形成装置1は、画像形成装置1の操作部のアプリケーション切り替えキー等により、複写機能、プリント機能、スキャナ機能およびファクシミリ機能をそれぞれ実現する動作モードを相互に切り替えることが可能である。画像形成装置1は、複写機能の選択時には複写モードとなり、プリント機能の選択時にはプリントモードとなり、スキャナ機能の選択時にはスキャナモードとなり、ファクシミリ機能の選択時にはファクシミリモードとなる。
また、画像形成装置1は、内部回路の状態に応じて、内部状態が通常モードまたは省エネモード(省電力モード)等に切り替わる。例えば、通常モードは、動作中モード(動作している状態)および待機モード(待機している状態)を有する。
例えば、動作中モードは、画像またはテキストデータ等を紙媒体等に印刷する複写モードまたはプリントモードを含む。プリントモードは、ファクシミリモードにおいて受信データを紙媒体等に印刷する動作を含む。また、動作中モードは、原稿等をスキャンするスキャナモードまたはファクシミリモードにおける送受信動作を含む。内部回路の状態は、画像形成装置1のユーザによる操作部の操作または画像形成装置1内での制御により切り替わる。
例えば、画像形成装置1は、自動原稿送り装置2(ADF:Auto Document Feeder)、画像読み取り装置3、書き込みユニット4、プリンタユニット5、操作部11、制御装置12および電源装置20を有する。プリンタユニット5は、感光体ドラム6、現像装置7、搬送ベルト8および定着装置9と、給紙トレイ10が収納される収納空間とを有する。
電源装置20は、電源ケーブル30を介して商用電源40に接続され、商用電源40から供給される交流電圧を使用して、例えば、交流電圧および直流電圧を生成して負荷に電力として供給する機能を有する。商用電源40は、交流電源の一例である。例えば、電力が供給される負荷として、自動原稿送り装置2、画像読み取り装置3、書き込みユニット4、プリンタユニット5および操作部11等がある。
プリンタユニット5は、画像情報に基づいて紙媒体等に転写するトナー像を作成する。プリンタユニット5は、画像を形成する画像形成部の一例である。以下、画像形成装置1での画像の形成の流れの一例として、動作モードが複写モードに設定されている場合について簡単に説明する。
複写モードでは、複写の対象である原稿束(複数枚の原稿)が自動原稿送り装置2にセットされ、あるいは、複写の対象である原稿が画像読み取り装置3上にセットされる。操作部11に表示されるスタートボタンが押されると、自動原稿送り装置2は、原稿を1枚ずつ画像読み取り装置3に給送する。画像読み取り装置3は、自動原稿送り装置2から順に送られる原稿の各々または画像読み取り装置3にセットされた原稿の画像情報を読み取る。画像読み取り装置3により読み取られた画像情報は、例えば、制御装置12に搭載される画像処理部により処理される。
書き込みユニット4は、画像処理部により処理された画像情報を光情報に変換する。感光体ドラム6は、感光体ドラム6に対向する位置に配置される帯電器により一様に帯電された後、書き込みユニット4により変換された光情報を含むレーザ光により露光される。露光により、感光体ドラム6上には静電潜像が形成される。現像装置7は、感光体ドラム6上の静電潜像を現像し、感光体ドラム6上にトナー像を形成する。搬送ベルト8は、トナー像を紙媒体等に転写する。定着装置9は、トナー像を紙媒体等に定着させる。そして、原稿の画像が複写された転写紙は、排出部から排出される。
操作部11は、ユーザの操作に応じた各種の入力を受け付けるとともに、操作部11の表示部に各種の情報を表示する。例えば、操作部11に表示される情報は、入力を受け付けた操作を示す情報、画像形成装置1の動作状況を示す情報、または、画像形成装置1の設定状態を示す情報などである。例えば、操作部11の制御基板は、電源装置からの直流電圧を受けて常時動作する。このため、操作部11は、通常モード中だけでなく、省エネモード中にも各種の入力を受け付けることができる。
制御装置12は、内蔵するCPU等のコントローラに制御プログラムを実行させることで、プリンタユニット5の制御、通信の制御および操作部11への入力の制御等、画像形成装置1の全体の動作を制御する。そして、制御装置12は、画像処理プログラムまたはデータ処理プログラムを実行することで画像処理またはデータ処理を実施し、紙媒体等に転写する画像を形成する。制御装置12は、例えば、通常モード中に直流電圧を受けて動作し、省エネモード中に動作を停止する。
なお、図1では、電源装置20が画像形成装置1に搭載される例が示されている。しかしながら、電源装置20は、例えば、スキャナ、プリンタまたはファクシミリ等の単一の機能を有する画像形成装置に搭載されてもよい。あるいは、電源装置20は、プロジェクタ、電子黒板、デジタルサイネージ、撮像装置、PC(Personal Computer)等の電子機器に搭載されてもよい。
図2は、図1の電源装置20の一例を示すブロック図である。電源装置20は、交流電源部200および直流電源部300を有する。交流電源部200は、電源ケーブル30を介して商用電源40から供給される交流電圧に基づいて、図1の定着装置9等に供給する交流電圧ACを生成する。直流電源部300は、商用電源40から供給される交流電圧に基づいて、直流電圧DCを生成する。例えば、直流電圧DCは、図1のプリンタユニット5の他、操作部11、自動原稿送り装置2、画像読み取り装置3および書き込みユニット4等に供給される。
交流電源部200は、定着装置9に供給する交流電圧を制御するトライアックおよび後述するトランス保護機能等を含む電源制御部210を有する。電源制御部210は、商用電源40から電源制御部210への交流電圧の供給経路に設けられるリレー等のスイッチSWを介して商用電源40に接続され、交流電圧ACの負荷への供給を制御する。
スイッチSWは、電源装置20の電源のオン時にオンされ、電源装置20の電源のオフ時にオフされる。また、画像形成装置1のユーザに対する安全性を確保するため、スイッチSWは、プリンタユニット5が収納される画像形成装置1の本体部のカバーが開けられたときにオフされ、カバーが閉められたときにオンされる。なお、直流電源部300は、スイッチSWのオン/オフにかかわらず、商用電源40から交流電圧を受けている間、直流電圧DCを生成する。
図3は、図2の交流電源部200内に設けられるトランス保護機能の一例を示すブロック図である。電源制御部210は、トランス211、整流回路212、平滑回路213、ゼロクロス信号回路214および異常検知部215を有する。トランス保護機能は、平滑回路213、ゼロクロス信号回路214、異常検知部215およびスイッチSWにより実現される。また、平滑回路213、ゼロクロス信号回路214および異常検知部215は、トランス保護回路として機能する。
トランス211は、商用電源40からの交流電圧ACINを、入力側巻き数と出力側巻き数の比に応じて降圧し、交流電圧AC1として出力する。例えば、交流電圧AC1は、トランス出力として定着装置9等に供給される。交流電圧ACINは、第1交流電圧の一例であり、交流電圧AC1は、第2交流電圧の一例である。以下では、商用電源40から供給される交流電圧ACINは、入力電圧ACINとも称され、トランス211が出力する交流電圧AC1は、トランス出力電圧AC1とも称される。
整流回路212は、例えば、ダイオードブリッジを含む全波整流回路であり、トランス出力電圧AC1を整流し、交流電圧AC2として出力する。整流回路212から出力される交流電圧AC2は、トランス出力電圧AC1の負電圧側を正電圧側に反転させた脈流となる。
平滑回路213は、交流電圧AC2を平滑化して直流電圧ACVを生成する。ゼロクロス信号回路214は、交流電圧AC2が電圧α(図6)を通過する毎に電圧値が反転するゼロクロス信号ZCRSを生成する。
異常検知部215は、平滑回路213から出力される直流電圧ACVの値と、ゼロクロス信号回路214から出力されるゼロクロス信号ZCRSとに基づいて、入力電圧ACINの異常を検知した場合、エラー信号ERRをスイッチSWに出力する。なお、異常検知部215は、入力電圧ACINの異常を検知した場合、エラー信号ERRをスイッチSWに出力するとともに、図2の操作部11に設けられる表示部にトランス211の異常を示すエラー情報を表示させてもよい。
さらに、異常検知部215は、トランス211、整流回路212および平滑回路213の特性に基づいて、直流電圧ACVからトランス211に入力された入力電圧ACINの電圧値を算出可能してもよい。異常検知部215は、算出した入力電圧ACINの電圧値が異常の場合、操作部11の表示部に電圧値の異常を示すエラー情報を電圧値とともに表示させてもよい。また、異常検知部215は、入力電圧ACINの電圧値が異常でない場合にも、操作部11の表示部に入力電圧ACINの電圧値を表示させてもよい。これにより、画像形成装置1のユーザに、入力電圧ACINが正常であることを認識させることができる。
図4は、図3の平滑回路213、ゼロクロス信号回路214および異常検知部215の一例を示す回路ブロック図である。平滑回路213は、抵抗素子R3、R4、R5、R6、R7、R8、容量素子C11、C12、C13、C14、C15およびオペアンプOP1、OP2を有する。平滑回路213は、交流電圧AC2の高周波成分をカットし、脈動成分のリップルを平滑にすることで直流電圧ACVを生成する。直流電圧ACVの値は、商用電源40からの入力電圧ACINの上昇に応じて上昇する。
ゼロクロス信号回路214は、抵抗素子R9、R10およびトランジスタTrを有し、エミッタ接地回路として動作する。抵抗素子R9、R10は、交流電圧AC2の電圧値を分圧した電圧をトランジスタTrのベースに供給する。トランジスタTrは、ベースでオン電圧以上の電圧を受けた場合にオンする。これにより、コレクタ-エミッタ間が導通し、ゼロクロス信号ZCRSの電圧は、接地電圧GND(ロウレベル)になる。トランジスタTrは、ベースでオン電圧未満の電圧を受けた場合にオフする。これにより、コレクタ-エミッタ間が遮断され、ゼロクロス信号ZCRSの電圧は、異常検知部215のプルアップ抵抗R20に接続された電源電圧Vcc(ハイレベル)になる。例えば、電源電圧Vccは、図2の直流電源部300により生成される。
電圧αは、トランジスタTrのベースにオン電圧が印加されるときの交流電圧AC2である。すなわち、トランジスタTrは、整流回路212から電圧α以上の交流電圧AC2が出力されるときにオンし、整流回路212から電圧α未満の交流電圧AC2が出力されるときにオフする。以上より、ゼロクロス信号回路214は、整流回路212から出力される交流AC2の波形の変化に同期して、電圧αをゼロクロス点とするゼロクロス信号ZCRSを生成することができる。
異常検知部215は、プルアップ抵抗R20および制御用のIC216を有する。IC216は、直流電圧ACVの値とゼロクロス信号ZCRSのデューティ比とに基づいて、入力電圧ACINの異常を検知してエラー信号ERRをスイッチSWに出力し、スイッチSWをオフさせる。これにより、トランス211への入力電圧ACINの供給が停止されるため、トランス211の故障または破壊を抑止することができる。なお、IC216は、ゼロクロス信号ZCRSのデューティ比を取得する時間計測手段としてタイマを有する。
図5は、図2の交流電源部内に設けられるトランス保護機能の別の例を示すブロック図である。図3と同じ要素については、同じ符号を付し、詳細な説明は省略する。図5に示す電源制御部210Aは、図2の電源制御部210の代わりに交流電源部200に設けられる。
電源制御部210Aは、トランス211、整流回路212、ゼロクロス信号回路214および異常検知部215Aを有する。すなわち、電源制御部210は、図3の平滑回路213を有しておらず、図3の異常検知部215の代わりに異常検知部215Aを有する。
トランス保護機能は、ゼロクロス信号回路214、異常検知部215AおよびスイッチSWにより実現される。また、ゼロクロス信号回路214および異常検知部215Aは、トランス保護回路として機能する。異常検知部215Aは、ゼロクロス信号回路214から出力されるゼロクロス信号ZCRSの周波数に基づいて、トランス211の異常を検知した場合、エラー信号ERRをスイッチSWに出力する。
図6は、図4のゼロクロス信号回路214が生成するゼロクロス信号ZCRSの波形の例を示す図である。ゼロクロス信号ZCRSの波形において、パルス幅に対応する時間t1およびパルスの周期は、IC216の内部に設けられるタイマにより計測される。ゼロクロス信号ZCRSのデューティ比は、式(1)により表される。
ZCRSのデューティ比=t1/周期 …(1)
トランス出力電圧AC1の波形は、使用電圧範囲では商用電源40からの入力電圧ACINの波形に比例する(図6(a)、(b))。入力電圧ACINが高くなり、トランス出力電圧AC1が使用電圧範囲を超えると、トランス211のコアの磁束が飽和し、インダクタンスが下がる。これにより、トランス出力電圧AC1は、電圧がゼロ点をまたぐゼロクロス点付近で変化量が小さくなり、歪みが発生する(図6(c))。
整流回路212から出力される交流電圧AC2は、トランス211から出力されるトランス出力電圧AC1の波形の負電圧側を反転させた脈流電圧となる。ゼロクロス信号ZCRSは、交流電圧AC2が電圧α以上のとき接地電圧GNDとなり、交流電圧AC2が電圧α未満のとき電源電圧Vccとなる。
トランス出力電圧AC1の使用電圧範囲内では、トランス出力電圧AC1が高いほど交流電圧AC2のゼロクロス点付近での時間当たりの変化量が大きくなる。これにより、交流電圧AC2が電圧αを下回る時間が短くなり、ゼロクロス信号ZCRSのハイレベル期間である時間t1が短くなり、ゼロクロス信号ZCRSのデューティ比が小さくなる。
トランス出力電圧AC1がさらに大きくなり使用電圧範囲を超えると(図6(c))、トランス出力電圧AC1の波形が歪む。これに伴い、交流電圧AC2の波形も歪み、ゼロクロス点付近での交流電圧AC2の変化量が小さくなる。これにより、ゼロクロス信号ZCRSのハイレベル期間である時間t1が長くなり、ゼロクロス信号ZCRSのデューティ比が大きくなる。
図7は、入力電圧ACINとゼロクロス信号ZCRSのデューティ比との関係を示す特性図である。例えば、トランス211の磁気飽和が起きない入力電圧ACINの領域は、線形領域と称される。トランス211の磁気飽和が起きる入力電圧ACINの領域は、磁気飽和領域と称される。磁気飽和領域では、図6(c)に示したように、トランス出力電圧AC1と交流電圧AC2の波形に歪みが発生する。磁気飽和領域において、入力電圧ACINがさらに高く、一定時間以上の使用によりトランス211が破損するおそれがある領域は、トランス破損領域と称される。
通常、トランス211は、トランス出力電圧AC1が歪まない領域で使用される。この実施形態では、異常検知部215は、トランス211の磁気飽和領域でのトランス出力電圧AC1の波形の歪みに伴う交流電圧AC2の波形の歪みを利用して、トランス211が破損に至る前の入力電圧ACINの高電圧を検知する。高電圧を検知したい領域は、動作保証電圧より大きく、かつ、トランス211が破損する可能性のあるトランス破損領域よりも低い入力電圧ACINの領域である。そのため、式(2)に示すように電圧検知点を定める必要がある。
動作保証電圧<電圧検知点<トランス破損領域 …(2)
例えば、トランス211の磁気飽和領域内でのトランス出力電圧AC1の上昇に伴いゼロクロス信号ZCRSのデューティ比が大きくなる特性を利用して、ゼロクロス信号ZCRSの比率閾値が設定される。これにより、トランス211が破損に至る前に入力電圧ACINの高電圧を検知することができる。一方、図7に示す線形領域では、入力電圧ACINの上昇に伴いゼロクロス信号ZCRSのデューティ比は小さくなる。以下では、ゼロクロス信号ZCRSの比率閾値は、単に比率閾値とも称される。
このため、トランス211が破損に至る前に高電圧が検知されるように比率閾値が設定される場合、動作保証電圧の範囲において、設定された比率閾値以上の領域が存在する。このため、動作保証電圧の範囲においても入力電圧ACINの高電圧が誤検知される場合がある。すなわち、比率閾値を利用して入力電圧ACINの高電圧を検知する場合、入力電圧ACINの高電圧側だけでなく、入力電圧ACINの低電圧側においても高電圧が検知されてしまう。
図8は、直流電圧ACVとゼロクロス信号ZCRSのデューティ比とをそれぞれ利用して入力電圧ACINの高電圧を検知する例を示す図である。図8(a)は、入力電圧ACINと直流電圧ACVとの関係を示す。図8(b)は、図7と同様に、入力電圧ACINとゼロクロス信号ZCRSのデューティ比との関係を示す。
図8(a)において、直流電圧ACVは、線形領域では入力電圧ACINの上昇に応じて線形に上昇する。直流電圧ACVは、磁気飽和領域ではトランス211から出力される交流電圧AC1が歪むことにより、入力電圧ACINの上昇に対する変化量が小さくなる。また、直流電圧ACVの特性は、トランス211の特性のばらつきに起因して2つの破線DL1a、DL2aで挟まれる範囲にばらつく。
例えば、破線DL2aで示す特性に合わせて、直流電圧ACVの電圧閾値が、入力電圧ACINが動作保証電圧を超える電圧値V2に設定されるとする。この場合、異常検知部215は、入力電圧ACINが動作保証電圧を超えた電圧値VLa以上のときに入力電圧ACINの高電圧を検知する。しかしながら、電圧閾値を電圧値V2に設定した場合、破線DL1aに示す特性では、入力電圧ACINの高電圧の検知は、トランス破損領域に含まれる電圧値VHa以上になってしまう。この場合、入力電圧ACINの高電圧は、電圧値VHaになってから検知されるため、トランス211を保護することができない。
また、入力電圧ACINの高電圧がトランス破損領域で検知されることを抑止するため、直流電圧ACVの電圧閾値が、電圧値V2より低い電圧値V1に設定されるとする。この場合、破線DL2aで示す特性時に、入力電圧ACINが動作保証電圧の場合にも高電圧が検知されてしまう。電圧値V1は、トランス211の特性のワースト条件下において、トランス211の破損領域に上昇する前の入力電圧ACINに対応する直流電圧ACVの電圧値である電圧閾値の一例である。
このように、直流電圧ACVの電圧閾値を設定するだけでは、トランス211を適切に保護することができない場合がある。直流電圧ACVの電圧閾値のみを利用して入力電圧ACINの高電圧を検知する場合、トランス211の容量を大きくしてトランス破損領域の電圧を上げる必要がある。あるいは、直流電圧ACVの電圧閾値と動作保証電圧を両方下げる必要がある。以下では、直流電圧ACVの電圧閾値は、単に電圧閾値とも称される。
図8(b)では、ゼロクロス信号ZCRSのデューティ比の特性は、トランス211の特性のばらつきに起因して2つの破線DL1b、DL2bで挟まれる範囲にばらつく。例えば、図8(b)では、ゼロクロス信号ZCRSのデューティ比の比率閾値が、破線DL1bの特性に合わせて、入力電圧ACINがトランス破損領域に含まれない電圧VHbに対応するデューティ比DRに設定されるとする。値DRは、トランス211の特性のワースト条件下において、トランス211の破損領域に上昇する前の入力電圧ACINに対応するゼロクロス信号ZCRSのデューティ比である比率閾値の一例である。
この場合、入力電圧ACINがトランス破損領域の手前の電圧値VHbを超えたときに入力電圧ACINの高電圧が検知される。このとき、破線DL2bの特性においても、トランス破損領域の手前で入力電圧ACINの高電圧を検知することができる。しかしながら、線形領域において入力電圧ACINが電圧値VLbより低い場合にも入力電圧ACINの高電圧が検知される場合がある。このため、比率閾値を設定するだけでは、入力電圧ACINの高電圧が誤検知されるおそれがある。
図8(a)または図8(b)単独での検知方法は、3つの問題がある。
(1)ゼロクロス信号ZCRSのデューティ比の比率閾値を値DRに設定する場合、入力電圧ACINの高電圧の検知の開始電圧が動作保証電圧内に含まれるため、誤検知してしまう。
(2)直流電圧ACVの閾値を電圧値V2に設定する場合、入力電圧ACINの高電圧の検知の開始電圧がトランス破損領域に含まれるため、トランス211が破損するおそれがある。
(3)直流電圧ACVの閾値を電圧値V1に設定する場合、入力電圧ACINの高電圧の検知の開始電圧が動作保証電圧に含まれるため、誤検知してしまう。
図9は、電圧閾値の設定と比率閾値の設定とを組み合わせて入力電圧ACINの高電圧を検知する例を示す図である。図9では、上述した(1)、(2)、(3)により電圧閾値と比率閾値とを設定した場合の入力電圧ACINの高電圧の検知の開始電圧のばらつきが太枠の矢印で示される。
この実施形態では、(1)、(3)が組み合わせられる。この場合、式(3)に示すように、異常検知部215は、(1)、(3)の両方を満たした場合、入力電圧ACINの高電圧を検知してエラー信号ERRをスイッチSWに出力する。
直流電圧ACV>V1 かつ ゼロクロス信号ZCRSのデューティ比>DR …(3)
(1)において、入力電圧ACINが低電圧側の検知開始電圧以下の場合、高電圧の検知条件を満たす。しかしながら、この電圧範囲では、(1)、(3)の高電圧の検知範囲が重複しないため、異常検知部215は、入力電圧ACINの高電圧を検知しない。すなわち、動作保証電圧の範囲内において入力電圧ACINの高電圧の検知を抑止することができる。
(3)において、入力電圧ACINが検知開始電圧以上の場合、高電圧の検知条件を満たす。しかしながら、(1)の高電圧側検知開始電圧までは、(1)、(3)の高電圧の検知範囲が重複しないため、異常検知部215は、入力電圧ACINの高電圧を検知しない。入力電圧ACINが(1)の高電圧側検知開始電圧以上になった場合、(1)、(3)の高電圧の検知範囲が重複し、式(3)の条件を満たすため、異常検知部215は、入力電圧ACINの高電圧を検知する。そして、異常検知部215は、エラー信号ERRをスイッチSWに出力する。
このように、電圧閾値と比率閾値とを組み合わせることで、入力電圧ACINの高電圧の検知範囲を適切に設定することができる。すなわち、異常検知部215は、入力電圧ACINが動作保証電圧以上、かつ、トランス破損領域以下の範囲内で入力電圧ACINの異常を検知することができる。したがって、トランス211の容量を大きくしてトランス破損領域の電圧を上げる必要はなく、電圧閾値と動作保証電圧を両方下げる必要もない。
図10は、図3のトランス211の磁気飽和領域のばらつきの例を示す図である。トランス211の磁気飽和が始まる点(以下、磁気飽和点)はトランス211によりばらつきがある。そのため、トランス211が破損するおそれがあるトランス破損領域の開始電圧(以下トランス破損点)も磁気飽和点のばらつきに応じてばらつく。図9に示した入力電圧ACINの高電圧の検知方法では、トランス211の磁気飽和を検知しているため、検知電圧は、トランスの磁気飽和点のばらつきに応じて変化する。
例えば、磁気飽和点が定格のトランス(a)の磁気飽和点に対して低い場合(ばらつき(b))、トランス破損点(b)も定格のトランス(a)のトランス破損点(a)に比べて低くなる。また、磁気飽和が始まる入力電圧ACINが低くなるため、図9(1)の比率閾値DRを使用した高電圧側検知開始電圧の最小の検知点(b)も、定格のトランス(a)での最小の検知点(a)より低くなる。
例えば、トランス211の特性のばらつきにかかわらず入力電圧ACINの電圧検知点を定電圧に設定する場合、磁気飽和点が小さいトランス211では、トランス破損点(b)が定電圧の電圧検知点より低くなるおそれがある。この場合、トランス211を保護できない場合がある。そのため、入力電圧ACINの高電圧を検知してトランス211を保護するためには、トランス211の容量を大きくするか、または、動作保証電圧の上限を下げる必要がある。この実施形態では、トランス破損点が入力電圧ACINの低い側にばらつく場合、検知点も低くなるため、トランス破損点より低い入力電圧ACINで、入力電圧ACINの高電圧(異常)を検知することができる。
一方、磁気飽和点が定格のトランス(a)の磁気飽和点に対して高い場合(ばらつき(c))、トランス破損点(c)も定格のトランス211のトランス破損点(a)に比べて高くなる。また、磁気飽和が始まる入力電圧ACINが高くなるため、比率閾値DRを使用した高電圧側検知開始電圧の最小の検知点(c)も、定格のトランス(a)での検知点(a)より高くなる。
例えば、入力電圧ACINの電圧検知点を定電圧にする場合、トランス211の特性のばらつきを考慮して、例えば、磁気飽和点が低いばらつき(b)に合わせて、余裕を持たせて検知点が設定される。この場合、ばらつき(b)よりトランス破損点が高いトランス211では、実際のトランス破損点よりもかなり前に高電圧が検知され、トランス211への入力電圧ACINの供給が停止される場合がある。すなわち、入力電圧ACINが異常電圧に到達していないのにもかかわらず、画像形成装置1が停止する場合がある。
これに対して、この実施形態では、個々のトランス211の特性に合わせてトランス破損点ぎりぎりまでトランス211に入力電圧ACINを供給することができ、電圧検知点を定電圧にする場合に比べて画像形成装置1のダウンタイムを短くすることができる。
このように、この実施形態では、トランス211の容量を上げることなく、かつ、入力電圧ACINの高電圧の検知のマージンを確保するために使用電圧範囲を狭くすることなく、トランス211を保護することができる。
図11は、図3の異常検知部215による入力電圧ACINの異常検知方法の一例を示すフロー図である。例えば、図11に示すフローは、画像形成装置1の電源がオンされたときに開始される。
まず、ステップS10において、異常検知部215は、スイッチSW(リレー)をオンする。スイッチSWのオンにより、トランス211への入力電圧ACINの供給が開始され、トランス211がトランスの出力電圧AC1の生成を開始する。平滑回路213は、直流電圧ACVの出力を開始し、ゼロクロス信号回路214は、ゼロクロス信号ZCRSの出力を開始する。
次に、ステップS12において、異常検知部215は、ゼロクロス信号回路214から出力されるゼロクロス信号ZCRSを取得する。次に、ステップS14において、異常検知部215は、平滑回路213から出力される直流電圧ACVを取得する。
次に、ステップS16において、異常検知部215は、ステップS12で取得したゼロクロス信号ZCRSのパルスの幅の時間t1およびパルスの周期をタイマを使用して計測する。そして、異常検知部215は、上述した式(1)を使用して、ゼロクロス信号ZCRSのデューティ比を算出する。
次に、ステップS18において、異常検知部215は、直流電圧ACVが電圧閾値V1より大きいか否かを判定する。直流電圧ACVが電圧閾値V1より大きい場合、入力電圧ACINが高電圧である可能性があるため、処理はステップS20に移行される。直流電圧ACVが電圧閾値V1以下の場合、入力電圧ACINが高電圧である可能性がないため、処理はステップS12に戻される。
ステップS20において、異常検知部215は、ゼロクロス信号ZCRSのデューティ比が比率閾値DRより大きいか否かを判定する。デューティ比が比率閾値DRより大きい場合、入力電圧ACINが高電圧であり、トランス211が破損するおそれがあるため、処理はステップS22に移行される。デューティ比が比率閾値DR以下の場合、入力電圧ACINが高電圧でないため、処理はステップS12に戻される。
ステップS22において、異常検知部215は、入力電圧ACINの異常(高電圧)を検知する。すなわち、異常検知部215は、トランス211が破損するおそれがある高電圧が入力電圧ACINとしてトランス211に入力されていると判断する。
次に、ステップS24において、異常検知部215は、スイッチSW(リレー)をオフし、例えば、操作部11の表示部に入力電圧ACINの電圧値の異常等を表示させ、図11に示す処理を終了する。スイッチSWのオフにより、画像形成装置1による画像の形成動作は停止される。スイッチSWのオフにより、トランス211に異常な高電圧が入力されることを抑止できるため、トランス211の故障または破損を抑止することができる。また、表示部に異常を表示することで、入力電圧ACINの電圧値の異常等を画像形成装置1のユーザに認識させることができる。
以上、この実施形態では、異常検知部215は、直流電圧ACVの電圧閾値とゼロクロス信号ZCRSのデューティ比の比率閾値とに基づいて、入力電圧ACINの異常(高電圧)を検知することができる。これにより、電源装置20に搭載されるトランス211の特性がばらつく場合にも、入力電圧ACINの使用電圧範囲を狭めることなくトランス211が破損する前にトランス211に供給される高電圧を検知することができる。
異常検知部215は、入力電圧ACINの異常を検知した場合、エラー信号ERRをスイッチSWに出力し、スイッチSWをオフさせ、トランス211への入力電圧ACINの供給を停止させる。これにより、トランス211に異常な高電圧が入力されることを抑止することができ、トランス211の故障または破壊を抑止することができる。この結果、電源装置20が搭載される画像形成装置1等の電子機器の故障を抑止することができ、画像形成装置1の信頼性の低下を抑制することができる。
ゼロクロス信号ZCRSのデューティ比は、入力電圧ACINの動作保証電圧の範囲(線形領域)では、トランス出力電圧AC1の上昇に伴い小さくなり、トランス211の磁気飽和領域内では、トランス出力電圧AC1の上昇に伴い増加する。しかしながら、電圧閾値V1と比率閾値DRとを組み合わせて入力電圧ACINの高電圧を検知することで、入力電圧ACINの動作保証電圧の範囲において、入力電圧ACINの高電圧が誤検知されることを抑止することができる。
異常検知部215は、入力電圧ACINの異常を検知した場合、操作部11の表示部に電圧値の異常等を表示させる。これにより、入力電圧ACINの電圧値の異常等をユーザに認識させることができる。
異常検知部215は、入力電圧ACINの電圧値が異常でない場合にも、操作部11の表示部に電圧値を表示させる。これにより、ユーザに、入力電圧ACINの異常が発生していないことを認識させることができる。
以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
1 画像形成装置
2 自動原稿送り装置
3 画像読み取り装置
4 書き込みユニット
5 プリンタユニット
6 感光体ドラム
7 現像装置
8 搬送ベルト
9 定着装置
10 給紙トレイ
11 操作部
12 制御装置
20 電源装置
30 電源ケーブル
40 商用電源
200 交流電源部
210 電源制御部
211 トランス
212 整流回路
213 平滑回路
214 ゼロクロス信号回路
215 異常検知部
216 IC
300 100、110、200 電源装置
AC1 交流電圧(トランス出力電圧)
AC2 交流電圧
ACIN 交流電圧(入力電圧)
ACV 直流電圧
DR 比率閾値
ERR エラー信号
SW スイッチ
V1、V1 電圧閾値
ZCRS ゼロクロス信号
特開2020-024315号公報

Claims (7)

  1. 交流電源から供給される第1交流電圧を降圧して第2交流電圧を生成するトランスと、
    前記第2交流電圧を整流して脈流を生成する整流回路と、
    前記脈流を平滑化して直流電圧を生成する平滑回路と、
    前記脈流のゼロクロス信号を生成するゼロクロス信号回路と、
    前記直流電圧が電圧閾値を超え、かつ、前記ゼロクロス信号のデューティ比が比率閾値を超えたときに前記第1交流電圧の異常を検知する異常検知部と、を有する
    電源装置。
  2. 前記交流電源から前記トランスへの前記第1交流電圧の供給経路に設けられ、前記異常検知部が前記第1交流電圧の異常を検知したときにオフされるスイッチを有する
    請求項1に記載の電源装置。
  3. 前記直流電圧は、前記第1交流電圧の上昇に応じて上昇し、
    前記ゼロクロス信号のデューティ比は、前記第1交流電圧の上昇に応じて小さくなり、前記第1交流電圧のさらなる上昇により前記トランスの磁気飽和が始まった後、前記第1交流電圧の上昇に応じて大きくなり、
    前記電圧閾値は、前記トランスの特性のワースト条件下において、トランスの破損領域に上昇する前の前記第1交流電圧に対応する前記直流電圧の電圧値に設定され、
    前記比率閾値は、前記トランスの特性のワースト条件下において、トランスの破損領域に上昇する前の前記第1交流電圧に対応する前記デューティ比に設定される
    請求項1または請求項2に記載の電源装置。
  4. 画像を形成する画像形成部と、
    前記画像形成部に供給する電圧を生成する電源装置と、を有し、
    前記電源装置は、
    交流電源から供給される第1交流電圧を降圧して第2交流電圧を生成するトランスと、
    前記第2交流電圧を整流して脈流を生成する整流回路と、
    前記脈流を平滑化して直流電圧を生成する平滑回路と、
    前記脈流のゼロクロス信号を生成するゼロクロス信号回路と、
    前記直流電圧が電圧閾値を超え、かつ、前記ゼロクロス信号のデューティ比が比率閾値を超えたときに前記第1交流電圧の異常を検知する異常検知部と、を有する
    画像形成装置。
  5. 前記画像形成部の情報を表示する表示部をさらに有し、
    前記異常検知部は、前記第1交流電圧の異常を検知した場合、前記表示部にエラー情報を表示させる
    請求項4に記載の画像形成装置。
  6. 前記異常検知部は、前記直流電圧の電圧値と、前記トランス、前記整流回路および前記平滑回路の特性とに基づいて、前記第1交流電圧の電圧値を算出し、算出した電圧値を前記表示部に表示させる
    請求項5記載の画像形成装置。
  7. 交流電源から供給される第1交流電圧を降圧して第2交流電圧を生成するトランスを有する電源装置の異常検知方法であって、
    前記第2交流電圧を整流して脈流を生成し、
    前記脈流を平滑化して直流電圧を生成し、
    前記脈流のゼロクロス信号を生成し、
    前記直流電圧が電圧閾値を超え、かつ、前記ゼロクロス信号のデューティ比が比率閾値を超えたときに前記第1交流電圧の異常を検知する
    電源装置の異常検知方法。
JP2022110997A 2022-07-11 2022-07-11 電源装置、画像形成装置および電源装置の異常検知方法 Pending JP2024009458A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022110997A JP2024009458A (ja) 2022-07-11 2022-07-11 電源装置、画像形成装置および電源装置の異常検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022110997A JP2024009458A (ja) 2022-07-11 2022-07-11 電源装置、画像形成装置および電源装置の異常検知方法

Publications (1)

Publication Number Publication Date
JP2024009458A true JP2024009458A (ja) 2024-01-23

Family

ID=89620431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022110997A Pending JP2024009458A (ja) 2022-07-11 2022-07-11 電源装置、画像形成装置および電源装置の異常検知方法

Country Status (1)

Country Link
JP (1) JP2024009458A (ja)

Similar Documents

Publication Publication Date Title
US8982380B2 (en) Power supply apparatus and image forming apparatus including the same
JP4831113B2 (ja) バッテリー接続検出装置およびそれを備えた画像形成装置
JP6406123B2 (ja) 電圧調整システム及び電圧調整方法
JPH05260232A (ja) 無停電電源付き画像形成装置
JP2007102008A (ja) 画像形成装置
JP4774349B2 (ja) 直流電源装置及び画像形成装置
JP4568249B2 (ja) 電源装置
JP2024009458A (ja) 電源装置、画像形成装置および電源装置の異常検知方法
JP2009063780A (ja) 消費電力管理システム
JP2017188978A (ja) 電源装置及び画像形成装置
JP7318528B2 (ja) 電源回路、及び電源回路を備えた電子機器
JP7458843B2 (ja) 電力変換装置
JP4338429B2 (ja) ゼロクロス信号出力装置,画像形成装置
JP5972186B2 (ja) 電源装置及びこれを備えた画像形成装置
KR20180019326A (ko) 전원공급장치 및 이를 구비한 화상형성장치
JP5381368B2 (ja) 電源制御装置、画像形成装置、電源制御方法
US20040264995A1 (en) Image forming apparatus
US11194279B2 (en) Power supply and image forming apparatus incorporating same
JP6281533B2 (ja) 画像形成装置
JP6350455B2 (ja) 電圧調整装置及び画像形成装置
JP2020086147A (ja) 画像形成装置
JP6245447B2 (ja) 電源回路、及び画像形成装置
JP7159918B2 (ja) 電源制御装置、画像形成装置および電源制御方法
JP2013099013A (ja) 電子機器
JP7073960B2 (ja) ヒータ制御装置および画像形成装置