JP5381368B2 - 電源制御装置、画像形成装置、電源制御方法 - Google Patents

電源制御装置、画像形成装置、電源制御方法 Download PDF

Info

Publication number
JP5381368B2
JP5381368B2 JP2009142596A JP2009142596A JP5381368B2 JP 5381368 B2 JP5381368 B2 JP 5381368B2 JP 2009142596 A JP2009142596 A JP 2009142596A JP 2009142596 A JP2009142596 A JP 2009142596A JP 5381368 B2 JP5381368 B2 JP 5381368B2
Authority
JP
Japan
Prior art keywords
voltage
charging member
power supply
charging
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009142596A
Other languages
English (en)
Other versions
JP2010286787A (ja
Inventor
直宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009142596A priority Critical patent/JP5381368B2/ja
Publication of JP2010286787A publication Critical patent/JP2010286787A/ja
Application granted granted Critical
Publication of JP5381368B2 publication Critical patent/JP5381368B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

本発明は、帯電部材に供給される電力の電源制御装置等に関し、特に、電子写真方式を採用した画像形成における電力の電源制御装置、画像形成装置及び電源制御方法に関する。
図16は、従来の電子写真方式による画像形成ユニットの概略構成図を示す。画像形成ユニットは、像担持体であるドラム形状の感光体204の周辺に、感光体204の周面を帯電する帯電ローラ202と、感光体204に潜像を形成するためレーザビームにより感光体35を走査する露光装置206と、レーザビームを誘導するミラー203と、潜像として形成された像にトナーを付着させ感光体の周面にトナー像を形成する現像装置205と、感光体204の表面に残留したトナーを除去するクリーニング装置201等を有する。
この帯電ローラ202の態様として、接触式帯電ローラと非接触式帯電ローラが知られているが、近年、感光体の表面に帯電面を接触させずに、感光体を帯電させる非接触式帯電ローラ(以下、単に「帯電ローラ」という場合がある)が用いられることが増えつつある。非接触式の帯電ローラ202は、帯電面と感光体204が接触しないので、感光体204に付着したトナーが帯電ローラ202に付着しにくい。一方、非接触ゆえ帯電ローラ202と感光体との間にギャップが形成されるため、帯電電圧が変動し帯電ムラを生じさせることがある。このため、感光体204を均一に帯電できるように、非接触式の帯電ローラ202の帯電装置は、AC+DC重畳方式を採用することが多い(例えば、特許文献1参照。)。
図17(a)は、帯電ローラ202に印加されるAC電圧を模式的に示す図の一例である。このようにAC電圧を印加することで非接触式帯電ローラにより感光体204を帯電しても、感光体204を均一に帯電させることができる。
ところで、感光体204を帯電後、帯電装置はAC電圧の印加を速やかに停止するが、こうすると感光体に残留電圧が残ってしまうことがある。
図17(b)は、印加を停止した後のAC電圧を模式的に示す図の一例である。例えば、AC電圧のピークで印加が停止されると、感光体上に過大な残留電圧が残る。過大な残留電圧が感光体に長時間放置されると感光体204に電圧履歴が残ってしまう場合がある。
そこで、感光体に残る残留電圧を低減してからAC電圧をオフにするため、AC電圧を規定する基準電圧の出力を停止してから所定時間の後、クロック信号をオフにする技術が提案されている(例えば、特許文献2参照。)。
図17(c)は、基準電圧の出力を停止した時のAC電圧を模式的に示す図の一例である。所定の時定数に応じてAC電圧が徐々に小さくなることがわかる。特許文献2記載の帯電装置は、AC電圧を規定する基準電圧の出力を停止した後、時定数により定まる時間T2が経過してから、クロック信号を停止するとしている。このクロック信号は、AC電圧の周波数を規定するものなので、クロック信号を停止することで、AC電圧は周期的な変化を示すことなく時定数に応じて減少していく。
しかしながら、一般的な帯電装置は、電源から増幅回路に供給される電力を増幅してAC+DC電圧を感光体204に印可するものであるため、クロック信号を停止しても、帯電装置が消費する電力はゼロにならないという問題がある。すなわち、基準電圧を停止して時間T2が経過することでAC電圧は低下するので、感光体上に過大な残留電圧が残ることは防止できるが、その後も電力を消費したままであるという問題が残る。
そこで、増幅回路に供給される電力をオフにすることが考えられる。図17(d)は、増幅回路に供給される電力をオフにした場合のAC電圧を模式的に示す図の一例である。図17(b)(c)と異なり、AC電圧を急激に低下すること(瞬間的にゼロにすること)ができる。しかしながら、AC電圧を瞬間的にゼロにすると、異常な放電履歴が感光体204に残るおそれがある。
異常な放電履歴とは、感光体204の回転方向のある部分に極大又は極小の放電履歴が残ることをいう。例えば、AC電圧のプラス側のピーク時にAC電圧を瞬間的にゼロにすると、感光体204の回転軸と平行にプラス側の大きな電圧の放電履歴が残ることがある。この場合、画像形成装置で印刷された用紙には、黒筋(色筋)が現れる。逆に、AC電圧のマイナス側のピーク時にAC電圧を瞬間的にゼロにすると、感光体204の回転軸と平行にマイナス側の大きな電圧の放電履歴が残ることがある。この場合、画像形成装置で印刷された用紙には、白筋が現れる。
すなわち、引用文献2のように従来の帯電装置では、異常な放電履歴が感光体に残ることを防止すること、及び、画像形成装置の待機時の消費電力をゼロにするということを両立して実現できないという問題がある。
本発明は、上記課題に鑑み、異常な放電履歴が感光体に残ることを抑制し、かつ、消費電力を低減可能な電源制御装置、画像形成装置及び電源制御方法を提供することを目的とする。
上記課題を解決するため、本発明は、帯電部材に印可するためのAC電圧を生成する電源制御装置であって、前記AC電圧の基準電圧信号を出力する基準電圧信号出力手段と、前記基準電圧信号と前記帯電部材から検出されるフィードバック電圧の差、に応じた電圧信号を出力するフィードバック手段と、電力の供給を受けて、前記電圧信号を増幅すると共に前記AC電圧を生成する増幅手段と、前記AC電圧とDC電圧を重畳させて前記帯電部材に印可する電圧印加手段と、基準電圧信号出力手段が前記基準電圧信号をオフにした後、前記帯電部材の電圧が放電開始電圧未満に低下する時間が経過したタイミングかつ、前記帯電部材の電圧がゼロになるまでの間に前記増幅手段に供給される電力をオフにする電力オフ手段と、を有することを特徴とする。
画像形成装置の概略構成図の一例である。 帯電制御装置と帯電ローラを模式的に示す図の一例である。 制御基板の概略ハードウェア構成図の一例である。 高圧電源装置と制御基板の機能ブロック図の一例である。 フィルタ回路の出力の一例を示す図である。 トリガー回路を説明する図の一例である。 感光体と帯電ローラの間隔とパッシェンの法則を説明する図の一例である。 AC電圧が放電開始電圧未満に低下する時間を説明する図の一例である。 AC電圧と立ち下がり時間t1の関係を示す図の一例である。 帯電制御装置が帯電ローラに印可するAC電圧を制御する手順を示すフローチャート図の一例である。 高圧電源装置と制御基板の機能ブロック図の一例である(実施例2)。 高圧電源装置と制御基板の機能ブロック図の一例である(実施例3)。 帯電制御装置が帯電ローラに印可するAC電圧を制御する手順を示すフローチャート図の一例である(実施例3)。 高圧電源装置と制御基板の機能ブロック図の一例である(実施例4)。 帯電制御装置が帯電ローラに印可するAC電圧を制御する手順を示すフローチャート図の一例である(実施例4)。 従来の電子写真方式による画像形成ユニットの概略構成図である。 帯電装置が帯電ローラに印加するAC電圧を模式的に示す図の一例である(従来図)。
以下、本発明を実施するための形態について図面を参照しながら実施例を挙げて説明する。
まず、本実施形態の帯電制御装置100が適用される画像形成装置200について説明する。画像形成装置200は、例えば、コピー機、プリンタ、ファクシミリ、又は、これらの機能の一以上を備えたMFP(Multifunction Peripheral)等である。また、スキャナ機能を備えていてもよい。本実施形態の帯電制御装置100は、電子写真方式の画像形成装置200に好適に適用できる。
図1は、画像形成装置200の概略構成図の一例を示す。図1の画像形成装置200はMFPと呼ばれるものである。MFPは、自動原稿送り装置(ADF)1000と、スキャナ部2000と、画像形成部3000と、給紙ユニット4000を有する。スキャナ部2000は、ADF1000又は原稿給紙台11に載置された原稿を1枚ずつコンタクトガラス21上に搬送し、原稿から画像データを読み取った後に排紙トレイ18上に排出する。具体的には、原稿給紙台11上にセットされた原稿は、サイドフェンス(不図示)によって用紙の幅方向が揃えられ、給紙ローラ12によって最下位の原稿から分離されて給紙され、搬送ベルト19によってコンタクトガラス21上に搬送される。また、給送部15には、原稿幅検知センサ13及び原稿長さ検知センサ14が設けられ、これらによってADF1000から搬送される原稿のサイズ(B5、A4、B4等)を検知することができる。そして、コンタクトガラス21上の原稿は、画像データの読み取りが終了した後に、搬送ベルト19及び排紙ローラ16によって排紙トレイ18上に排出され、一連の動作が終了する。
また、両面コピー時には、原稿は、給紙ローラ12によって給紙され、搬送ベルト19によってコンタクトガラス21上を通過して反転爪17で反転した後、再びコンタクトガラス21上に搬送されて、原稿の裏面が読み取られる。次に、原稿は、搬送ベルト19によって搬送されると共に、反転爪17で反転した後、再びコンタクトガラス21上に搬送されて、原稿の表面が読み取られる。そして、コンタクトガラス21上の原稿は、搬送ベルト19及び排紙ローラ16によって排紙トレイ18上に排出される。
スキャナ部2000は、原稿を載置するためのコンタクトガラス21と、光学走査系20を有する。光学走査系20は、露光ランプ23、第1ミラー26、第2ミラー24、第3ミラー25、レンズ22及びフルカラーCCD27を備える。露光ランプ23及び第1ミラー12は、不図示の第1キャリッジに装備され、第1キャリッジは、原稿を読み取る際に、ステッピングモータによって一定速度で副走査方向に移動する。第2ミラー24及び第3ミラー25は、不図示の第2キャリッジに装備され、第2キャリッジは、原稿を読み取る際に、ステッピングモータによって第1キャリッジのほぼ1/2の速度で移動する。そして、第1キャリッジ及び第2キャリッジが移動することによって、原稿の画像面が光学的に走査され、読み取られたデータがレンズ22によってフルカラーCCD27の受光面に結像され、光電変換される。フルカラーCCD27によって、赤(R)、緑(G)及び青(B)の各色に光電変換された画像データは、A/D変換され各種の画像処理が施される。
さらに、複写する際には、画像形成部3000によって用紙に画像データが複写される。画像形成部3000は、レーザ出力部28、fθレンズ27及びミラー29を備える。レーザ出力部28は、レーザダイオード(LD)、ポリゴンミラー及びポリゴンモータを有する。感光体35の周囲には、帯電ローラ30、黒現像器31、赤信号の画像を書き込むためのLED書き込みユニット33、赤現像器34、転写器及び分離器(不図示)が配置されている。
帯電ローラ30は、後述するように非接触型帯電ローラである。帯電ローラ30は、帯電制御装置100によりAC+DC電圧が印可され、感光体35の周面を帯電させる。レーザ出力部28は、複写時にスキャナで読み取られた画像に応じて変調された黒信号のレーザ光を出射する。レーザ光はミラー29により帯電した感光体35の周面を主走査方向に走査するように誘導される。これにより、感光体35上に潜像が形成される。
黒現像器31及び赤現像器34は、潜像形成された像にトナーを付着させ感光体35の周面にトナー像(トナーによって可視化した像)を形成する。次述するように所定のタイミングで用紙が転写装置40に搬送され、転写装置40にてトナー像が用紙に転写される。感光体35の表面に残留したトナーは、感光体35の周面に摺接するブレードを備えたクリーニング装置により除去される。
用紙は、画像形成装置200内の両面ユニット46、第1トレイ57、給紙ユニット4000内の第2トレイ54、第3トレイ55及び第4トレイ56のいずれかから選択される。選択された用紙は、フィードローラ43及び分離コロ47、第1給紙装置48、第2給紙装置49、第3給紙装置51又は第4給紙装置52によって給紙される。
また、両面ユニット46及び第1トレイ57から給紙された用紙は、縦搬送ユニット45によって上方に向けて搬送され、第2給紙装置49、第3給紙装置51又は第4給紙装置52によって給紙された用紙は、バンク縦搬送ユニット53及び縦搬送ユニット45を経由して搬送される。そして、この用紙は、その先端がレジストセンサ42によって検出された後、所定時間が経過すると、レジストローラ41に突き当てられて一端停止する。さらに、用紙は、副走査有効期間信号(FGATE)に同期してレジストローラ41の回転により搬送され、感光体35上のトナー像が転写される。
次に、用紙は、感光体35から分離器(不図示)により分離された後に、搬送装置36によって定着装置37まで搬送され、定着装置37により熱と圧力でトナー像が定着される。定着後の用紙は、片面印刷時と、両面印刷時の両面印刷後に、切り換え爪39及び排紙ローラ38によって排紙トレイ58上に排出される。
本実施例の帯電制御装置100について説明する。本実施例の帯電制御装置100は、増幅回路86に供給される電源をオフすることができる。また、本実施例の帯電制御装置100は、PWM信号により帯電ローラ30に印可するAC電圧の電圧値(振幅)を制御する。このような帯電制御装置100において、本実施形態の帯電制御装置100は、PWM信号をOFFにした後、フィルタ回路の時定数で決まるAC電圧の立ち下がり時間t1を経てから、増幅回路86に供給される電源をOFFにする。
PWM信号をOFFにしてから、増幅回路86に供給される電源をOFFにするまで、立ち下がり時間t1待つことで、異常な放電履歴が感光体に残ることを防止できる。また、増幅回路86に供給される電源をOFFにすることで、待機時(画像形成していない間)の消費電力を低減することができる。
図2は、帯電制御装置100と帯電ローラ30を模式的に示す図の一例である。帯電制御装置100は、制御基板61と高圧電源装置62を有する。帯電制御装置100と高圧電源装置62は3つの信号線により接続されており、高圧電源と帯電ローラ30は1つの信号線により接続されている。なお、この図は本実施形態に有用な信号線のみを示すもので、これ以外の信号線は省略した。
高圧電源装置62は、画像形成装置200の帯電ローラ30に高圧な帯電電圧(AC+DC電圧)を供給する装置である。本実施形態は、帯電電圧のうちAC電圧の制御に特徴があるので、以下、帯電電圧を単にAC電圧という。AC電圧の大きさと周波数は制御基板61により制御される。制御基板61は、次の3つの信号を高圧電源装置62に出力する。3つの信号により、高圧電源装置62がAC電圧の電圧値(振幅)、周波数、及び、増幅回路86に供給される電源のON/OFFを制御することができる。
PWM信号(特許請求の範囲における「基準電圧信号」に対応する): AC電圧の電圧値
TRG信号 : 増幅回路86の電源のON/OFF
CLK信号 : AC電圧の周波数
なお、制御基板61はマイコンの一形態であり、CPU71に代表されるマイコンのハードウェアを有する。
図3は、制御基板61の概略ハードウェア構成図の一例を示す。この図は、主にソフトウェアによって帯電制御装置100を実装する場合のハードウェア構成図であり、例えば、ASIC(Application Specific Integrated Circuit)等の特定機能向けに生成されたICを利用してもよい。
制御基板61は、CPU71、メモリ72、ハードディスク73、入力装置74、メモリ装着部75、ディスプレイユニット76及びネットワーク装置77を有する。ハードディスク73には、帯電制御装置100を制御するためのプログラム70が記憶されている。
CPU71は、ハードディスク73からプログラム70を読み出し実行し、帯電制御装置100の全体を統括的に制御する。メモリ72は、DRAMなどの揮発性メモリで、CPU71がプログラム70を実行する際の作業エリアとなる。入力装置74は、例えば、画像形成装置200の操作部であり、タッチパネルとハードキーとを有する。一般のコンピュータと同様に、マウスやキーボードを搭載していてもよい。また、ディスプレイユニット76は、例えば操作部と一体のLCD(Liquid Crystal Display)である。
メモリ装着部75には、記憶媒体78が脱着可能であり、記憶媒体78からデータを読み出し、また、記録媒体にデータを書き込む際に利用される。メモリ装着部75は、例えばUSBインターフェイスである。プログラム70は、記憶媒体78に記憶された状態で配布され、メモリ装着部75が記憶媒体78から読み出したプログラム70は、ハードディスク73にインストールされる。なお、記憶媒体78は、例えば、USBメモリ、DIMM(Dual Inline Memory Module)、CD−ROM/RW、DVD−ROM/RAM/RW、ブルーレイディスク、SDカード、メモリースティック(登録商標)等、不揮発性の可搬容易な記憶媒体である。
ネットワーク装置77は、LANやインターネットなどのネットワークに接続するためのインターフェイス(例えばイーサネット(登録商標)カード)である。ネットワーク装置77は、OSI基本参照モデルの物理層、データリンク層に規定されたプロトコルに従う処理を実行して、ネットワークに接続された各種のサーバと通信することを可能にする。プログラム70は、ネットワークを介して接続した所定のサーバからダウンロードすることができる。
図4は、高圧電源装置62と制御基板61の機能ブロック図の一例を示す。制御基板61は、PWM信号出力部81と、トリガー信号出力部82と、クロック信号出力部83をそれぞれ有する。これらの各機能は、制御基板61のCPU71がプログラム70を実行することで実現される。不図示の入出力インターフェイスを介して、PWM信号出力部81はフィルタ回路84に、トリガー信号出力部82とクロック信号出力部83は増幅回路86に、それぞれ接続されている。
高圧電源装置62においてフィルタ回路84は差動アンプ85の入力端子の正側に、帯電AC電圧FB回路89が作動アンプの入力端子の負側に、それぞれ接続されている。差動アンプ85の出力は、増幅回路86に接続されている。増幅回路86は高圧変換回路87と接続されており、高圧変換回路87は帯電AC電圧FB回路89と、コンデンサを介して接続されている。高圧変換回路87,帯電AC電圧FB回路89及び差動アンプ85により、負帰還ループが構成される。帯電AC電圧FB回路89は、例えば半波整流回路や全波整流回路である。また、高圧変換回路87には、帯電DC出力回路88が接続されている。
PWM信号出力部81は、帯電ローラ30にAC電圧を出力する際にPWM信号をフィルタ回路84に出力する。すなわち、画像形成装置200が潜像を形成するため感光体35を帯電する際、PWM信号出力部81はPWM信号を出力する。PWM信号はフィルタ回路84により積分される。
図5は、フィルタ回路84の出力の一例を示す図である。フィルタ回路84は抵抗とコンデンサが直列に接続されているため、フィルタ回路84から出力される電圧値は、抵抗値R1と静電容量C1により定まる時定数τ(=R1・C1)に従い、徐々に「PWM信号の振幅×デューティー比」の電圧値に到達する。一方、PWM信号の周期は時定数τよりも充分に短いので、フィルタによりパルスは完全になまり、フィルタ回路84の出力は、電圧が徐々に大きくなる形状となる。
AC電圧を決定するのは、主にPWM信号の振幅であるが、PWM信号のデューティー比によってAC電圧を高精度に調整できる。したがって、PWM信号の振幅とデューティー比が、AC電圧の出力基準値となる。
なお、PWM信号出力部81は、例えば、画像形成装置200がその日始めて電源オンされると、予め定められた初期のデューティー比のPWMを出力する。そして、制御基板61は実際のAC電圧を検出し、適切な値が検出されるように、デューティー比をフィードバック制御する。一度、デューティー比を定めると、デューティー比とAC電圧の関係は大きく変化しないので、例えば、所定数印刷するまで、PWM信号出力部81は同じデューティー比のPWM信号を出力する。なお、出力基準値は必ずしもPWM信号でなくてもよく、値を調整可能な定電圧であってもよい。
差動アンプ85は、2つの入力電圧(フィルタ回路84の出力電圧と帯電AC電圧FB回路89の出力電圧)の電位差に応じた電圧を出力する。増幅回路86は差動アンプ85から出力された電圧を正弦波に整形する。増幅回路86は、例えば、増幅後又は増幅前の電圧からCLK信号のON/OFFを利用して、例えば、CLK信号のONに対応した正の矩形波とOFFに対応した負の矩形波を生成する。この矩形波にローパスフィルタを通過させて高調波を除去することで、正弦波を得ることができる。したがって、クロック信号の周波数がAC電圧の周波数となる。
増幅前に正弦波を生成した場合、さらに増幅回路86は、正弦波の波形を増幅して高圧変換回路87に出力する。すなわち、増幅回路86は、後述する電源Vdから電力の供給を受け、差動アンプ85から出力された電圧に比例した振幅のAC電圧を生成する。
高圧変換回路87は主にトランスなどで構成されており、増幅回路86の出力を高圧出力に昇圧する。高圧変換回路87は、増幅回路86から入力された数十ボルトレベルの正弦波を、例えば数キロボルトレベルの正弦波に昇圧し、さらに、帯電DC出力回路88が出力するDC電圧と重畳させて、帯電AC+DC出力として帯電ローラ30に印加する。帯電DC出力回路88が出力するDC電圧は、感光体35の帯電電圧と同程度である。前述したように、帯電AC+DC出力をAC電圧と称す。
増幅回路86、高圧変換回路87、帯電AC電圧FB回路89、差動アンプ85により負帰還ループが成立するので、帯電ローラ30に印加されるAC電圧は、フィルタ回路84と帯電AC電圧FB回路89の出力が一致したところで安定する。
〔TRG信号〕
図6(a)を用いて、TRG信号について説明する。図示するように、増幅回路86には電源VdとGND1が接続されている。増幅回路86は電源Vdから供給される電力により、矩形波から生成した正弦波を増幅する。
図6(b)は増幅回路86に対するトリガー回路90の作用を説明する図の一例である。トリガー回路90は2つのスイッチA、Bを有し、それぞれがトリガー信号出力部82と接続されている。スイッチAとスイッチBは、TRG信号がONの時にONとなり、TRG信号がOFFの時にOFFとなる。
また、トリガー回路90は電源Vcc及びGNDと接続されている。Vccは画像形成装置200の電源電圧(100V/200V)でなく、高圧電源基板の電源電圧(24V)、すなわち、電源ユニット(PSU)から高圧電源に供給される電圧である。GNDは画像形成装置200の接地電位である。したがって、Vcc>Vd、GND1>GNDの関係がある。
TRG信号がONの状態では、スイッチAがONとなるのでVdとVccが等電位になる。また、TRG信号がONの状態ではスイッチBがONとなるので、GND1とGNDが等電位になる。したがって、VccからGNDに電流が流れ、増幅回路86が電力を消費する。
一方、TRG信号がOFFの状態では、スイッチAがOFFとなるので、VdとVccが電気的に切断され、スイッチBがOFFとなるので、GND1とGNDが電気的に切断される。したがって、VdからGND1に電流が流れることがなく、増幅回路86が電力を消費することを防止できる。したがって、トリガー信号出力部82がトリガー回路90にOFFのTRG信号を出力することで、増幅回路86が待機時に電力を消費することを防止できる。
また、TRG信号がOFFになると、増幅回路86から帯電ローラ30側には、電力が供給されないので、AC電圧は例えば感光体35側の接地にぬけ、瞬間的にゼロになる。すなわち、TRG信号がOFFになるとほぼ同時に、帯電ローラ30に印可されていたAC電圧は瞬間的にゼロになる。
本実施形態の帯電制御装置100は、このTRG信号をOFFにするタイミングを制御することで、感光体35に異常放電の履歴が残留することを防止する。
〔TRG信号をOFFにするタイミング〕
まず、放電開始電圧Vについて説明する。感光体35と帯電ローラ30の間にギャップを形成する非接触型の帯電ローラ30の場合、放電により感光体35の表面を帯電させる。
図7(a)は、感光体35と帯電ローラ30の間隔を説明する図の一例である。非接触型の帯電ローラ30は、帯電ローラ30に高圧のAC+DC電圧を印加して、感光体35に放電する。ここで、帯電ローラ30が放電を開始するために必要な放電開始電圧Vは、パッシェンの法則にしたがうことが知られている。
図7(b)はパッシェンの法則を説明する図の一例である。帯電ローラ30と感光体35のギャップをdとすると、放電開始電圧Vは大気圧と間隔dの関数として得られる。すなわち、感光体35への放電開始電圧Vは、間隔dと気圧により決まる。大気圧が一定であるとすれば、放電開始電圧Vは、ほぼ間隔dにより定まる。したがって、放電開始電圧Vはほぼ一定である。
異常放電も放電の一形態であるので、異常放電もパッシェンの法則により定まる放電開始電圧V未満では生じないとすることができる。したがって、AC電圧が放電開始電圧V未満まで低下したら、TRG信号をOFFにしてよいことが分かる。
図8は、AC電圧が放電開始電圧V未満に低下する立ち下がり時間t1を説明する図の一例である。図8の縦軸はAC電圧を、横軸は時間をそれぞれ表す。なお、図8では、AC電圧の周期的な変動を省略した。
増幅回路86は、差動アンプ85が出力する2つの入力電圧の電位差を増幅するが、負帰還ループ側の入力電圧は極短時間に、フィルタ回路84からの入力電圧に追随する。また、PWM信号がOFFになると、フィルタ回路84から差動アンプ85への入力電圧はフィルタ回路84の時定数τに従い減衰する。したがって、帯電ローラ30に印可されたAC電圧は、フィルタ回路84の時定数τに従い減衰する。この時定数τは、AC電圧の立ち上がり時と同じ時定数である。すなわち、AC電圧は、次式に従い時間と共に低減する。
AC電圧=V×exp(-t/τ)
ここで、Vは時刻t=0におけるAC電圧である。AC電圧が低下を始めるのは、フィルタ回路84の電圧が低下し始めた時であるので、PWM信号がOFFになった時である。したがって、Vは、PWM信号がOFFになった時のAC電圧である。
以上から、PWM信号がOFFになった時から、図8に示した放電開始電圧Vを下回る立ち下がり時間t1が経過すれば、TRG信号をOFFにしても、異常放電が生じることを防止できる。立ち下がり時間t1は次式により算出することができる。
立ち下がり時間t1=τ×ln(V/V) = R1・C1×ln(V/V
トリガー信号出力部82は、PWM信号がOFFになった時から、立ち下がり時間t1が経過したあと、TRG信号をOFFにする。
図9は、AC電圧と立ち下がり時間t1の関係を示す図の一例である。AC電圧がVの時にPWM信号がOFFになっている。AC電圧は、exp(-t/τ)に比例して低下していき、やがて放電開始電圧V未満に低下する。PWM信号がOFFになってから、AC電圧が放電開始電圧V未満になるまでの時間が、時定数τにより定まる立ち下がり時間t1である。
〔立ち下がり時間t1の決定方法〕
立ち下がり時間t1はいくつかの方法で決定することができる。立ち下がり時間t1は、予め定めておきハードディスク73に記憶しておいてもよいし、所定期間毎(毎月、毎週、毎日)に計算してもよいし、所定枚数印刷する毎に計算してもよいし、PWM信号をOFFにする毎に計算してもよい。このような計算は、トリガー信号出力部82が行う。所定枚数印刷する毎に計算する場合、PWM信号のデューティー比を調整するタイミングと同じタイミングで計算できるので、正確に校正されたAC電圧Vの振幅に対し、立ち下がり時間t1を算出することができる。
例えば、PWM信号のデューティー比を調整した後、トリガー信号出力部がAC電圧の振幅を検出しておく。この値をPWM信号がOFFになった時のAC電圧として、t1=τ×ln(V/V)から、立ち下がり時間t1を算出することができる。
τは固定値であるが、Vは大気圧の関数なので、さらに大気圧を検出し、立ち下がり時間t1を算出してもよい。
なお、立ち下がり時間t1は、PWM信号がOFFになった時のAC電圧Vによって異なるはずであるが、PWM信号がOFFになった時にAC電圧が最大値を取っていると仮定する。こうすることで、立ち下がり時間t1にマージンを設けることができる。
また、PWM信号をOFFにする毎に計算する場合、トリガー信号出力部82は、PWM信号がOFFになった時のAC電圧を検出して、立ち下がり時間t1を算出できる。したがって、PWM信号がOFFになった時にAC電圧の大きさに応じて、立ち下がり時間t1を算出でき、立ち下がり時間t1を最小限に抑制できる。したがって、消費電力を抑制しやすくすることができる。
ところで、立ち下がり時間t1は、PWM信号がOFFになった時のAC電圧Vに関わりなく異常放電を防止しうる、最も早いタイミングであるが、必ずしも立ち下がり時間t1で、トリガー信号出力部82がTRG信号をOFFにしなくてもよい。立ち下がり時間t1以降は、さらに異常放電の可能性が低下するので、立ち下がり時間t1は長い方が好ましい。したがって、例えば、AC電圧がゼロになってから、トリガー信号出力部82がTRG信号をOFFにすることができる。図9では、AC電圧がゼロ(ほぼゼロでもよい)になるまでの時間を時間t2で示した。
一方、PWM信号がOFFになってから、TRG信号がOFFになるまで、あまり長いと待機状態の消費電力が増大する。したがって、PWM信号がOFFになってから、TRG信号をOFFにするまでの時間は、「立ち下がり時間t1以上、時間t2以下」の間で適宜設定できる。例えば、実験的に、異常放電の生じることをほぼ必ず防止できる時間を定めることができる。
〔動作手順〕
図10は、帯電制御装置100が帯電ローラ30に印可するAC電圧を制御する手順を示すフローチャート図の一例である。図10のフローチャート図は、制御基板61がAC電圧のOFFをPWM信号出力部81に要求するとスタートする。この要求は、例えば画像形成のプロセスから取得する。
PWM信号出力部81は、AC電圧のOFFの要求を取得すると、PWM信号をOFFにする(S10)。また、PWM信号出力部81は、PWM信号をOFFにしたことを、トリガー信号出力部82に通知する。
この通知を受けて、トリガー信号出力部82は、予め定められた立ち下がり時間t1の計測を開始し、立ち下がり時間t1が経過するまで待機する(S20)。立ち下がり時間t1の計測は、クロック信号をカウントしてもよいし、タイマーに立ち下がり時間t1を設定して割り込みを待ってもよい。
立ち下がり時間t1が経過すると(S20のYes)、AC電圧が放電開始電圧V未満に低下したとしてよいので、トリガー信号出力部82は、TRG信号をOFFにする(S30)。また、トリガー信号出力部82はTRG信号をOFFにしたことをクロック信号出力部83に通知する。
TRG信号がOFFになると、AC電圧を生成するためのクロック信号も不要となるので、クロック信号出力部83は、クロック信号をOFFにする(S40)。ステップS30とS40を略同時に実行してもよい。
以上説明したように、PWM信号がOFFになってから、TRG信号をOFFにするまでに、立ち下がり時間t1待つことで、感光体に異常放電の履歴が残ることを防止でき、かつ、TRG信号をOFFにすることで、待機時の消費電力を低減することができる。
る。
本実施例では、帯電AC電圧FB回路89の時定数を考慮して、立ち下がり時間t1を決定する帯電制御装置100について説明する。帯電AC電圧FB回路89によって負帰還ループに遅れが生じうる場合、帯電AC電圧FB回路89の時定数を考慮することで、立ち下がり時間t1を正確に決定することができる。
図11は、本実施例における、高圧電源装置62と制御基板61の機能ブロック図の一例を示す。図11において図4と同一部には同一の符号を付しその説明は省略する。図11の帯電制御装置100は、帯電AC電圧FB回路89に交流平滑回路95を有する。交流平滑回路95は、コンデンサと抵抗が直列に接続されている。抵抗95aの抵抗値はR2、コンデンサ95bの静電容量はC2である。
図11のように帯電AC電圧FB回路89が交流平滑回路95を有する場合、差動アンプ85に入力するAC電圧は時手数τ(=R2・C2)だけ遅れる。また、フィルタ回路84が時定数τを有しているのは、実施例1と同様である。したがって、図11のように差動アンプ85の2つの入力電圧が、それぞれ時定数τとτの遅れをもって入力される場合、AC電圧の立ち下がりの時定数は、次式で現される。
立ち下がりの時定数=τ+τ=R1・C1+R2・C2
したがって、立ち下がり時間t1は次式により算出することができる。
立ち下がり時間t1=(τ+τ)×ln(V/V)
トリガー信号出力部82は、PWM信号がOFFになった時から、この立ち下がり時間t1が経過したあと、TRG信号をOFFにすればよいことになる。
図11の交流平滑回路95は、一例、又は、帯電AC電圧FB回路89の等価回路とみなすことができるが、差動アンプ85には帯電AC電圧FB回路89による遅れが生じることが多い。したがって、本実施例の帯電制御装置100によれば、帯電AC電圧FB回路89の構成に応じて、立ち下がり時間t1を正確に決定することができる。PWM信号がOFFになってから、本実施例の立ち下がり時間t1だけ待つことで、より確実に感光体に異常放電の履歴が残ることを防止できる。
実施例1,2では、PWM信号がOFFになってから、立ち下がり時間t1が経過した後、トリガー信号出力部82がTRG信号を出力した。本実施例では立ち下がり時間t1を用いることなく、制御基板61によりAC電圧を監視して、AC電圧が放電開始電圧Vを下回ったら、TRG信号をOFFする。こうすることで、立ち下がり時間t1を算出したり、記憶しておくことなく、異常放電の履歴が残ることを防止できる。
図12は、本実施例における、高圧電源装置62と制御基板61の機能ブロック図の一例を示す。図12において図4と同一部には同一の符号を付しその説明は省略する。図12の帯電制御装置100は、制御基板61にAC電圧検出部91を有する。AC電圧検出部91は、CPU71がプログラム70を実行することで実現される。
AC電圧検出部91は例えば包絡線検波回路92を有している、包絡線検波回路92は、ダイオード92aと、ダイオード92aに直列なコンデンサ92b及び抵抗92cを有する。ダイオード92aは帯電AC電圧FB回路89に接続される。包絡線検波回路92は、図8の点線で示した「AC電圧=V0×exp(-t/τ)」の電圧値を検出することを可能にする。AC電圧検出部91は、帯電AC電圧FB回路89からの入力されたAC電圧を、例えばA/D変換してその値を検出する。なお、包絡線検波回路92は、帯電AC電圧FB回路89が有していてもよい。
包絡線検波回路92によりAC電圧の包絡線の電圧を検出することで、AC電圧が周期的に変動して一時的に放電開始電圧Vを下回っても、AC電圧検出部91が、AC電圧が放電開始電圧Vを下回ったと誤検知することを防止できる。AC電圧検出部91は、AC電圧の包絡線が放電開始電圧Vを下回ったことを検出すると、トリガー信号出力部82に通知する。トリガー信号出力部82はこの通知を取得すると、トリガー信号をOFFにする。したがって、AC電圧が放電開始電圧Vを実際に下回ったことを確認してから、トリガー信号をOFFにでき、感光体に異常放電の履歴が残ることを確実に防止できる。
PWM信号をOFFにした時のAC電圧Vが、AC電圧の最大値よりも低い場合には、立ち下がり時間t1の経過を待つよりも早期にトリガー信号をOFFにできる。このため、より消費電力を節約しやすくなる。
また、PWM信号をOFFの度にAC電圧を検出するのでなく、AC電圧が放電開始電圧Vを下回る時間を予め記憶しておいてもよい。例えば、その日の最初に画像形成装置100の電源がオンになる立ち上げの一回目に(すなわち初期化作業において)、PWM信号出力部は、PWM信号をONしてAC電圧が安定したらPWM信号をOFFする。OFFしたことは、トリガー信号出力部に通知する。トリガー信号出力部は、PWM信号がOFFされてから、AC電圧を監視し、放電開始電圧V以下になる時間を計測する。この時間が立ち下がり時間t1なので、ハードディスクに記憶しておく。画像形成時にトリガー信号出力部は、PWM信号がOFFされてから、ハードディスクに記憶されたAC電圧が放電開始電圧Vを下回る時間が経過すると、TRG信号をOFFにする。
また、AC電圧の周波数によって、AC電圧が放電開始電圧Vを下回る時間が可変となる場合がある。したがって、増幅回路86がAC電圧の周波数を変えることができる場合、各周波数ごとにAC電圧が放電開始電圧Vを下回る時間をハードディスクに記憶しておくことが好ましい。
図13は、帯電制御装置100が帯電ローラ30に印可するAC電圧を制御する手順を示すフローチャート図の一例である。図13において図10と同じステップには同じ符号を付した。図13のフローチャート図は、制御基板61がAC電圧のOFFをPWM信号出力部81に要求するとスタートする。この要求は、例えば画像形成のプロセスから取得する。
PWM信号出力部81は、AC電圧のOFFの要求を取得すると、PWM信号をOFFにする(S10)。
AC電圧検出部91は、PWM信号出力部81から、PWM信号をOFFにしたことの通知を受けて、AC電圧の監視を開始してもよいし、PWM信号のON、OFFに関わらず、常時、AC電圧を監視していてもよい。
AC電圧検出部91は、AC電圧が放電開始電圧Vを下回ったか否かを判定する(S21)。AC電圧検出部91は、AC電圧が放電開始電圧Vを下回るまで監視を継続する。
AC電圧が放電開始電圧Vを下回ると(S21のYes)、AC電圧検出部91はトリガー信号出力部82にAC電圧が放電開始電圧Vを実際に下回ったことを通知する。
この通知を取得すると、トリガー信号出力部82は、TRG信号をOFFにする(S30)。また、トリガー信号出力部82はTRG信号をOFFにしたことをクロック信号出力部83に通知する。
TRG信号がOFFになると、AC電圧を生成するためのクロック信号も不要となるので、クロック信号出力部83は、クロック信号をOFFにする(S40)。
このように、AC電圧が放電開始電圧Vを下回ったらTRG信号をOFFすることで、立ち下がり時間t1を算出したり、記憶しておくことなく、感光体に異常放電の履歴が残ることを防止できる。
なお、実施例1又は2と、本実施例を組み合わせてもよい。この場合、立ち下がり時間t1が経過し、かつ、AC電圧が放電開始電圧Vを下回ったら、トリガー信号出力部82は、TRG信号をOFFにする。こうすることで、さらに、感光体に異常放電の履歴が残ることを確実に防止できる。
実施例3では、AC電圧を監視したが、放電により生じる電流を監視して、放電するおそれがあるか否かを判定してもよい。
図14は、本実施例における、高圧電源装置62と制御基板61の機能ブロック図の一例を示す。図14において図4と同一部には同一の符号を付しその説明は省略する。図14の帯電制御装置100は、制御基板61にAC電流検出部94を、高圧電源装置62に帯電AC電流FB回路93を有する。帯電AC電流FB回路93は高圧変換回路87に接続され、帯電AC電流FB回路93はAC電流検出部94と接続されている。
高圧変換回路87から帯電ローラ30に放電が生じている間は、高圧電源装置62から帯電ローラ30にAC電流が流れていることになる。したがって、PWM信号がOFFにされ、AC電圧が放電開始電圧Vを下回って放電が停止すると、AC電流も停止する。すなわち、放電している間はAC電流が流れ、放電が停止している間はAC電流が流れない。これから、AC電流がゼロになったことは、AC電圧が放電開始電圧Vを下回ることは同義的な意味を有することが分かる。
帯電AC電流FB回路93は、例えば、ダイオード93aと、ダイオード93aに直列なコンデンサ93bを有する。帯電AC電流FB回路93によりAC電流は半波整流される。AC電流検出部94は、帯電AC電流FB回路93からの入力された半波整流後のAC電流を、例えばA/D変換してその値を検出する。
AC電流検出部94は、AC電流の値がゼロになったことを検出すると、トリガー信号出力部82に通知する。完全なゼロでなく、ほぼゼロになったことを検出してもよい。以下、AC電流検出部94は、AC電流の値が略ゼロになったことを検出するものとする。トリガー信号出力部82はこの通知を取得すると、トリガー信号をOFFにする。したがって、AC電流がゼロになったことを確認してから、トリガー信号をOFFにでき、感光体に異常放電の履歴が残ることを確実に防止できる。
また、PWM信号をOFFにした時のAC電圧Vが、AC電圧の最大値よりも低い場合には、立ち下がり時間t1の経過を待つよりも早期にトリガー信号をOFFにできる。このため、より消費電力を電源しやすくなる。
また、PWM信号をOFFの度にAC電流を検出するのでなく、AC電流が略ゼロになるまでの時間を予めハードディスクに記憶しておいてもよい。増幅回路86がAC電圧の周波数を変えることができる場合、各周波数ごとにAC電流が略ゼロになるまで時間をハードディスクに記憶しておくことが好ましい。
図15は、帯電制御装置100が帯電ローラ30に印可するAC電圧を制御する手順を示すフローチャート図の一例である。図15において図13と同じステップには同じ符号を付した。図15のフローチャート図は、制御基板61がAC電圧のOFFをPWM信号出力部81に要求するとスタートする。この要求は、例えば画像形成のプロセスから取得する。
PWM信号出力部81は、AC電圧のOFFの要求を取得すると、PWM信号をOFFにする(S10)。
AC電流検出部94は、PWM信号出力部81から、PWM信号をOFFにしたことの通知を受けてAC電流の監視を開始してもよいし、PWM信号のON、OFFに関わらず、常時、AC電流を監視していてもよい。
AC電流検出部94は、AC電流が略ゼロになったか否かを判定する(S22)。AC電流検出部94は、AC電流が略ゼロになるまで監視を継続する。
AC電流が略ゼロになると(S22のYes)、AC電流検出部94はトリガー信号出力部82にAC電流が略ゼロになったことを通知する。
この通知を取得すると、トリガー信号出力部82は、TRG信号をOFFにする(S30)。また、トリガー信号出力部82はTRG信号をOFFにしたことをクロック信号出力部83に通知する。
TRG信号がOFFになると、AC電圧を生成するためのクロック信号も不要となるので、クロック信号出力部83は、クロック信号をOFFにする(S40)。
このように、AC電流が略ゼロになったらTRG信号をOFFすることで、立ち下がり時間t1を算出したり、記憶しておくことなく、感光体に異常放電の履歴が残ることを防止できる。
なお、実施例1又は2と、本実施例を組み合わせてもよい。この場合、立ち下がり時間t1が経過し、かつ、AC電流が略ゼロになったら、トリガー信号出力部82は、TRG信号をOFFにする。こうすることで、さらに、感光体に異常放電の履歴が残ることを確実に防止できる。
また、実施例1又は2と、実施例3及び本実施例を組み合わせてもよい。この場合、立ち下がり時間t1が経過し、AC電圧が放電開始電圧Vを下回り、かつ、AC電流が略ゼロになったら、トリガー信号出力部82は、TRG信号をOFFにする。こうすることで、さらに、感光体に異常放電の履歴が残ることを確実に防止できる。
30 帯電ローラ
35 感光体
61 制御基板
62 高圧電源装置
81 PWM信号出力部
82 トリガー信号出力部
83 クロック信号出力部
84 フィルタ回路
85 差動アンプ
86 増幅回路
87 高圧変換回路
88 帯電DC出力回路
89 帯電AC電圧FB回路
90 トリガー回路
91 AC電圧検出部
92 包絡線検波回路
93 帯電AC電流FB回路
94 AC電流検出部
100 帯電制御装置
200 画像形成装置
特開2007−65485号公報 特開2001−117325号公報

Claims (6)

  1. 帯電部材に印可するためのAC電圧を生成する電源制御装置であって、
    前記AC電圧の基準電圧信号を出力する基準電圧信号出力手段と、
    前記基準電圧信号と前記帯電部材から検出されるフィードバック電圧の差、に応じた電圧信号を出力するフィードバック手段と、
    電力の供給を受けて、前記電圧信号を増幅すると共に前記AC電圧を生成する増幅手段と、
    前記AC電圧とDC電圧を重畳させて前記帯電部材に印可する電圧印加手段と、
    基準電圧信号出力手段が前記基準電圧信号をオフにした後、前記帯電部材の電圧が放電開始電圧未満に低下する時間が経過したタイミング、かつ、前記帯電部材の電圧がゼロになるまでの間に前記増幅手段に供給される電力をオフにする電力オフ手段と、
    を有することを特徴とする電源制御装置。
  2. 前記基準電圧信号出力手段は、所定の時定数を有するフィルタを介して、前記基準電圧信号を出力し、
    前記電力オフ手段は、前記時定数によって定まる前記時間が経過した最も早いタイミング、かつ、前記帯電部材の電圧がゼロになるまでの間に、前記増幅手段に供給される電力をオフにする、
    ことを特徴とする請求項1記載の電源制御装置。
  3. 前記電圧印加手段と前記フィードバック手段が、前記フィードバック電圧を出力するフィードバック電圧生成回路を介して接続されており、
    前記電力オフ手段は、前記時定数及び前記フィードバック電圧生成回路の第2の時定数に基づき定まる、前記時間が経過した最も早いタイミング、かつ、前記帯電部材の電圧がゼロになるまでの間に、前記増幅手段に供給される電力をオフにする、
    ことを特徴とする請求項2記載の電源制御装置。
  4. 前記帯電部材の電圧を検出する電圧検出手段を有し、
    前記電力オフ手段は、前記帯電部材の電圧が放電開始電圧未満に低下したことを検出した後、前記増幅手段に供給される電力をオフにする、
    ことを特徴とする請求項1〜3いずれか1項記載の電源制御装置。
  5. 請求項1〜4いずれか1項記載の電源制御装置と、
    前記帯電部材と、
    前記帯電部材により周面が帯電される感光体と、
    レーザビームにより感光体を走査して前記感光体に潜像を形成する露光装置と、
    潜像にトナーを付着させ感光体の周面にトナー像を形成する現像装置と、
    記録紙にトナー像を転写する転写装置と、
    熱と圧力で記録紙にトナー像を定着する定着装置と、
    感光体の表面に残留したトナーをブレードで除去するクリーニング装置と、
    を有することを特徴とする画像形成装置。
  6. 帯電部材に印可するためのAC電圧を生成する電源制御装置の電源制御方法であって、
    基準電圧信号出力手段が、前記AC電圧の基準電圧信号を出力するステップと、
    フィードバック手段が、前記基準電圧信号と前記帯電部材から検出されるフィードバック電圧の差に応じた電圧信号を出力するステップと、
    増幅手段が、電力の供給を受けて、前記電圧信号を増幅すると共に前記AC電圧を生成するステップと、
    電圧印加手段が、前記AC電圧とDC電圧を重畳させて前記帯電部材に印可するステップと、
    基準電圧信号出力手段が前記基準電圧信号をオフにした後、前記帯電部材の電圧が放電開始電圧未満に低下する時間が経過したタイミング、かつ、前記帯電部材の電圧がゼロになるまでの間に、電力オフ手段が前記増幅手段に供給される電力をオフにするステップと、を有することを特徴とする電源制御方法。
JP2009142596A 2009-06-15 2009-06-15 電源制御装置、画像形成装置、電源制御方法 Expired - Fee Related JP5381368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142596A JP5381368B2 (ja) 2009-06-15 2009-06-15 電源制御装置、画像形成装置、電源制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142596A JP5381368B2 (ja) 2009-06-15 2009-06-15 電源制御装置、画像形成装置、電源制御方法

Publications (2)

Publication Number Publication Date
JP2010286787A JP2010286787A (ja) 2010-12-24
JP5381368B2 true JP5381368B2 (ja) 2014-01-08

Family

ID=43542507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142596A Expired - Fee Related JP5381368B2 (ja) 2009-06-15 2009-06-15 電源制御装置、画像形成装置、電源制御方法

Country Status (1)

Country Link
JP (1) JP5381368B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2591800A (en) * 2020-02-07 2021-08-11 Univ Plymouth Electrical conversion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261746B2 (ja) * 1992-06-30 2002-03-04 キヤノン株式会社 帯電装置及び画像形成装置
JP3423632B2 (ja) * 1999-01-29 2003-07-07 キヤノン株式会社 画像形成装置
JP2001117325A (ja) * 1999-10-20 2001-04-27 Canon Inc 帯電装置および画像形成装置
JP2008065355A (ja) * 2007-11-26 2008-03-21 Ricoh Co Ltd 画像形成装置

Also Published As

Publication number Publication date
JP2010286787A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
US8638481B2 (en) Optical writing control apparatus for controlling a light source emitting a light beam onto a photosensitive member and control method using the same
US9977361B2 (en) Image forming apparatus and image forming system
US20110157624A1 (en) Image forming system setting condition for executing acquisition process
US8983312B2 (en) Image forming apparatus
JP6406123B2 (ja) 電圧調整システム及び電圧調整方法
JP5381368B2 (ja) 電源制御装置、画像形成装置、電源制御方法
JP2016020970A (ja) 画像形成装置
JP2010250227A (ja) 画像形成装置、画像形成装置に含まれる消耗部品の劣化検知方法及び制御プログラム
JP6440424B2 (ja) 画像形成装置
JP2009294255A (ja) 画像形成装置および画像形成方法
JP7322633B2 (ja) 画像形成装置、画像形成装置の制御方法、及びプログラム
US10732551B2 (en) Control device, image forming apparatus, and control method
JP7147587B2 (ja) 画像形成装置、画像形成装置の制御方法、及びプログラム
JP6465578B2 (ja) 画像形成装置
JP6447058B2 (ja) 光走査装置、およびそれを備えた画像形成装置
WO2021206791A1 (en) Organic photo conductor charger
JP4338429B2 (ja) ゼロクロス信号出力装置,画像形成装置
JP4363333B2 (ja) 画像形成装置
JP7468188B2 (ja) 電源装置及び画像形成装置
JP7180437B2 (ja) 画像形成装置及び放電制御方法
JP7211245B2 (ja) 画像形成装置及び電源制御方法
JP2001117325A (ja) 帯電装置および画像形成装置
JP2009122487A (ja) 画像形成装置およびその制御方法
JP2007047211A (ja) 定着ヒータ制御装置、定着ヒータ制御方法、および画像形成装置
JP6204704B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees