JP2023161338A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2023161338A
JP2023161338A JP2022071674A JP2022071674A JP2023161338A JP 2023161338 A JP2023161338 A JP 2023161338A JP 2022071674 A JP2022071674 A JP 2022071674A JP 2022071674 A JP2022071674 A JP 2022071674A JP 2023161338 A JP2023161338 A JP 2023161338A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
sensor
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022071674A
Other languages
English (en)
Inventor
圭一郎 青木
Keiichiro Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022071674A priority Critical patent/JP2023161338A/ja
Priority to US18/170,226 priority patent/US20230340920A1/en
Priority to DE102023103879.6A priority patent/DE102023103879A1/de
Priority to CN202310433477.8A priority patent/CN116950790A/zh
Publication of JP2023161338A publication Critical patent/JP2023161338A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/147Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrogen content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】触媒の下流側に配置された空燃比センサの出力に基づいて排気ガスの空燃比が制御される場合に、触媒における水素の発生状況に応じた空燃比制御を実施することで排気エミッションの悪化を抑制する。【解決手段】内燃機関の排気浄化装置は、内燃機関の排気通路22に配置されると共に酸素を吸蔵可能な触媒20と、触媒から流出する流出排気ガスの空燃比を検出する空燃比センサ42と、触媒に流入する流入排気ガスの空燃比を制御する空燃比制御装置31とを備える。空燃比制御装置は、空燃比センサによって検出された流出排気ガスの空燃比が理論空燃比よりもリッチなリッチ側切替空燃比以下に低下したときに、空燃比センサによって検出された流出排気ガスの空燃比が理論空燃比よりもリッチな微リッチ設定空燃比に維持されるように流入排気ガスの空燃比を制御する微リッチ制御を開始する。【選択図】図6

Description

本発明は内燃機関の排気浄化装置に関する。
従来、酸素を吸蔵可能な触媒を内燃機関の排気通路に配置し、排気ガス中のHC、CO、NOx等を触媒において浄化することが知られている。特許文献1、2に記載の内燃機関では、触媒の排気浄化性能を高めるために、触媒の下流側に配置された空燃比センサの出力に基づいて排気ガスの空燃比が制御される。
しかしながら、触媒において酸素が枯渇すると、水性ガスシフト反応及び水蒸気改質反応が生じ、これらの反応によって生成された水素が触媒から流出する。この結果、触媒の下流側に配置された空燃比センサの出力に誤差が生じる。これに対して、特許文献1には、触媒で生じた水素に起因する空燃比センサの出力誤差が算出され、出力誤差が相殺されるように目標空燃比を設定することが記載されている。
特開2008-128110号公報 特開平09-126012号公報
しかしながら、特許文献1に記載の手法では、触媒において常に水素が発生することが想定されており、触媒の状態に応じた空燃比制御が実施されていない。このため、内燃機関の運転状態に応じて触媒の状態が変化したときに、排気エミッションが悪化するおそれがある。
そこで、上記課題に鑑みて、本発明の目的は、触媒の下流側に配置された空燃比センサの出力に基づいて排気ガスの空燃比が制御される場合に、触媒における水素の発生状況に応じた空燃比制御を実施することで排気エミッションの悪化を抑制することにある。
本開示の要旨は以下のとおりである。
(1)内燃機関の排気通路に配置されると共に酸素を吸蔵可能な触媒と、前記触媒から流出する流出排気ガスの空燃比を検出する空燃比センサと、前記触媒に流入する流入排気ガスの空燃比を制御する空燃比制御装置とを備え、前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比よりもリッチなリッチ側切替空燃比以下に低下したときに、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比よりもリッチな微リッチ設定空燃比に維持されるように前記流入排気ガスの空燃比を制御する微リッチ制御を開始する、内燃機関の排気浄化装置。
(2)前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比以上に維持されるように前記流入排気ガスの空燃比を制御している間に、前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リッチ側切替空燃比以下に低下したときに前記微リッチ制御を開始する、上記(1)に記載の内燃機関の排気浄化装置。
(3)前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比に維持されるように前記流入排気ガスの空燃比を制御する理論空燃比制御を実行し、該理論空燃比制御において前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リッチ側切替空燃比以下に低下したときに前記微リッチ制御を開始する、上記(1)又は(2)に記載の内燃機関の排気浄化装置。
(4)前記空燃比制御装置は、前記微リッチ制御において前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比以上のリーン側切替空燃比以上に上昇したときに該微リッチ制御を終了させる、上記(1)から(3)のいずれか1つに記載の内燃機関の排気浄化装置。
(5)前記空燃比制御装置は、前記微リッチ制御において前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リーン側切替空燃比以上に上昇したときに、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比に維持されるように前記流入排気ガスの空燃比を制御する理論空燃比制御を開始する、上記(4)に記載の内燃機関の排気浄化装置。
(6)前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リッチ側切替空燃比以下に低下したときの最小空燃比に基づいて、前記微リッチ設定空燃比のリッチ度合を決定する、上記(1)から(5)のいずれか1つに記載の内燃機関の排気浄化装置。
(7)前記空燃比制御装置は、前記流出排気ガス中の水素濃度を推定し、該水素濃度に基づいて前記微リッチ設定空燃比のリッチ度合を決定する、上記(1)から(5)のいずれか1つに記載の内燃機関の排気浄化装置。
本発明によれば、触媒の下流側に配置された空燃比センサの出力に基づいて排気ガスの空燃比が制御される場合に、触媒における水素の発生状況に応じた空燃比制御を実施することで排気エミッションの悪化を抑制することができる。
図1は、本発明の第一実施形態に係る内燃機関の排気浄化装置が適用される内燃機関を概略的に示す図である。 図2は、三元触媒の浄化特性の一例を示す図である。 図3は、下流側空燃比センサの部分断面図である。 図4は、下流側空燃比センサにおける排気ガスの空燃比とセンサ素子の出力電流との関係を示す図である。 図5Aは、流入排気ガスの空燃比が理論空燃比よりもリッチな空燃比と理論空燃比よりもリーンな空燃比との間で交互に切り替えられたときの各種パラメータのタイムチャートである。 図5Bは、図5Aの各時刻における触媒の酸素吸蔵状態を概略的に示す図である。 図6は、本発明の第一実施形態における空燃比制御が実行されるときの各種パラメータのタイムチャートである。 図7Aは、第一実施形態における空燃比制御の制御ルーチンを示すフローチャートである。 図7Bは、第一実施形態における空燃比制御の制御ルーチンを示すフローチャートである。 図7Cは、第一実施形態における空燃比制御の制御ルーチンを示すフローチャートである。 図8は、下流側空燃比センサの出力空燃比がリッチ側切替空燃比以下に低下したときの最小空燃比を示す図である。 図9は、第二実施形態における空燃比制御の制御ルーチンを示すフローチャートである。 図10は、最小空燃比に基づいて、微リッチ設定空燃比、第1上側判定空燃比及び第1下側判定空燃比の値を決定するためのマップの一例を示す図である。 図11は、本発明の第三実施形態に係る内燃機関の排気浄化装置が適用される内燃機関の一部を概略的に示す図である。 図12は、第三実施形態における空燃比制御の制御ルーチンを示すフローチャートである。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<第一実施形態>
最初に図1~図7Cを参照して、本発明の第一実施形態について説明する。
<内燃機関全体の説明>
図1は、本発明の第一実施形態に係る内燃機関の排気浄化装置が適用される内燃機関を概略的に示す図である。図1に示される内燃機関は火花点火式内燃機関である。内燃機関は、車両に搭載され、車両の動力源として用いられる。
内燃機関は、シリンダブロック2及びシリンダヘッド4を含む機関本体1を備える。シリンダブロック2の内部には、複数(例えば4つ)の気筒が形成される。各気筒には、気筒の軸線方向に往復運動するピストン3が配置される。ピストン3とシリンダヘッド4との間には燃焼室5が形成される。
シリンダヘッド4には吸気ポート7及び排気ポート9が形成される。吸気ポート7及び排気ポート9はそれぞれ燃焼室5に接続される。
また、内燃機関は、シリンダヘッド4内に配置された吸気弁6及び排気弁8を備える。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
また、内燃機関は点火プラグ10及び燃料噴射弁11を備える。点火プラグ10は、シリンダヘッド4の内壁面の中央部に配置され、点火信号に応じて火花を発生させる。燃料噴射弁11は、シリンダヘッド4の内壁面周辺部に配置され、噴射信号に応じて燃料を燃焼室5内に噴射する。本実施形態では、燃料噴射弁11に供給される燃料として、理論空燃比が14.6であるガソリンが用いられる。
また、内燃機関は、吸気マニホルド13、サージタンク14、吸気管15、エアクリーナ16及びスロットル弁18を備える。各気筒の吸気ポート7はそれぞれ対応する吸気マニホルド13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気マニホルド13、サージタンク14、吸気管15等は、空気を燃焼室5に導く吸気通路を形成する。スロットル弁18は、サージタンク14とエアクリーナ16との間の吸気管15内に配置され、スロットル弁駆動アクチュエータ17(例えばDCモータ)によって駆動される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、その開度に応じて吸気通路の開口面積を変更することができる。
また、内燃機関は、排気マニホルド19、触媒20、ケーシング21及び排気管22を備える。各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部と、これら枝部が集合した集合部とを有する。排気マニホルド19の集合部は、触媒20を内蔵したケーシング21に連結される。ケーシング21は排気管22に連結される。排気ポート9、排気マニホルド19、ケーシング21、排気管22等は、燃焼室5における混合気の燃焼によって生じた排気ガスを排出する排気通路を形成する。
また、内燃機関を搭載した車両には、電子制御ユニット(ECU)31が設けられる。図1に示されるように、ECU31は、デジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36及び出力ポート37を備える。なお、本実施形態では、一つのECU31が設けられているが、機能毎に複数のECUが設けられていてもよい。
ECU31は、車両又は内燃機関に設けられた各種センサの出力等に基づいて内燃機関の各種制御を実行する。このため、ECU31には、各種センサの出力が送信される。本実施形態では、エアフロメータ40、上流側空燃比センサ41、下流側空燃比センサ42、負荷センサ44及びクランク角センサ45の出力がECU31に送信される。
エアフロメータ40は、内燃機関の吸気通路、具体的にはスロットル弁18よりも上流側の吸気管15内に配置される。エアフロメータ40は、吸気通路を流れる空気の流量を検出する。エアフロメータ40はECU31に電気的に接続され、エアフロメータ40の出力は対応するAD変換器38を介して入力ポート36に入力される。
上流側空燃比センサ41は、触媒20の上流側の排気通路、具体的には排気マニホルド19の集合部に配置される。上流側空燃比センサ41は、排気マニホルド19内を流れる排気ガス、すなわち内燃機関の気筒から排出されて触媒20に流入する排気ガスの空燃比を検出する。上流側空燃比センサ41はECU31に電気的に接続され、上流側空燃比センサ41の出力は対応するAD変換器38を介して入力ポート36に入力される。
下流側空燃比センサ42は、触媒20の下流側の排気通路、具体的には排気管22に配置される。下流側空燃比センサ42は、排気管22内を流れる排気ガス、すなわち触媒20から流出する排気ガスの空燃比を検出する。下流側空燃比センサ42はECU31に電気的に接続され、下流側空燃比センサ42の出力は対応するAD変換器38を介して入力ポート36に入力される。
負荷センサ44は、内燃機関を搭載した車両に設けられたアクセルペダル43に接続され、アクセルペダル43の踏み込み量を検出する。負荷センサ44はECU31に電気的に接続され、負荷センサ44の出力は対応するAD変換器38を介して入力ポート36に入力される。ECU31は負荷センサ44の出力に基づいて機関負荷を算出する。
クランク角センサ45は、内燃機関のクランクシャフトが所定角度(例えば10度)回転する毎に出力パルスを発生させる。クランク角センサ45はECU31に電気的に接続され、クランク角センサ45の出力は入力ポート36に入力される。ECU31はクランク角センサ45の出力に基づいて機関回転数を計算する。
一方、ECU31の出力ポート37は、対応する駆動回路39を介して、点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続され、ECU31はこれらを制御する。具体的には、ECU31は、点火プラグ10の点火時期、燃料噴射弁11から噴射される燃料の噴射時期及び噴射量、並びにスロットル弁18の開度を制御する。
なお、上述した内燃機関は、ガソリンを燃料とする無過給内燃機関であるが、内燃機関の構成は、上記構成に限定されるものではない。したがって、気筒配列、燃料の噴射態様、吸排気系の構成、動弁機構の構成、過給器の有無のような内燃機関の具体的な構成は、図1に示した構成と異なっていてもよい。例えば、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、排気通路から吸気通路にEGRガスを還流させるための構成が設けられていてもよい。
<内燃機関の排気浄化装置>
以下、本発明の第一実施形態に係る内燃機関の排気浄化装置(以下、単に「排気浄化装置」という)について説明する。排気浄化装置は、触媒20、上流側空燃比センサ41、下流側空燃比センサ42及び空燃比制御装置を備える。本実施形態では、ECU31が空燃比制御装置として機能する。
触媒20は、内燃機関の排気通路に配置され、排気通路を流れる排気ガスを浄化するように構成される。本実施形態では、触媒20は、酸素を吸蔵可能であり、例えば、炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOx)を同時に浄化可能な三元触媒である。触媒20は、セラミック又は金属から成る担体(基材)と、触媒作用を有する貴金属(例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等)と、酸素吸蔵能力を有する助触媒(例えば、セリア(CeO2)等)とを有する。貴金属及び助触媒は担体に担持される。
図2は、三元触媒の浄化特性の一例を示す図である。図2に示されるように、三元触媒によるHC、CO及びNOxの浄化率は、三元触媒に流入する排気ガスの空燃比が理論空燃比近傍領域(図2における浄化ウィンドウA)にあるときに非常に高くなる。したがって、触媒20は、排気ガスの空燃比が理論空燃比近傍に維持されているときに、HC、CO及びNOxを効果的に浄化することができる。
また、触媒20は助触媒によって排気ガスの空燃比に応じて酸素を吸蔵し又は放出する。具体的には、触媒20は、排気ガスの空燃比が理論空燃比よりもリーンであるときには、排気ガス中の過剰な酸素を吸蔵する。一方、触媒20は、排気ガスの空燃比が理論空燃比よりもリッチであるときには、HC及びCOを酸化させるのに不足している酸素を放出する。この結果、排気ガスの空燃比が理論空燃比から若干ずれた場合であっても、触媒20の表面上における空燃比が理論空燃比近傍に維持され、触媒20においてHC、CO及びNOxが効果的に浄化される。
上流側空燃比センサ41及び下流側空燃比センサ42は内燃機関の排気通路に配置され、下流側空燃比センサ42は上流側空燃比センサ41の下流側に配置される。上流側空燃比センサ41及び下流側空燃比センサ42は、それぞれ、排気通路を流れる排気ガスの空燃比を検出するように構成される。
図3は、下流側空燃比センサ42の部分断面図である。下流側空燃比センサ42は公知の構成を有するため、以下、その構成について簡単に説明する。なお、上流側空燃比センサ41は下流側空燃比センサ42と同様の構成を有する。
下流側空燃比センサ42はセンサ素子411及びヒータ420を備える。本実施形態では、下流側空燃比センサ42は、複数の層を積層して構成された積層型空燃比センサである。図3に示されるように、センサ素子411は、固体電解質層412、拡散律速層413、第1不透過層414、第2不透過層415、排気側電極416及び大気側電極417を有する。固体電解質層412と拡散律速層413との間には被測ガス室418が形成され、固体電解質層412と第1不透過層414との間には大気室419が形成されている。
被測ガス室418には、拡散律速層413を介して排気ガスが被測ガスとして導入され、大気室419には大気が導入される。センサ素子411に電圧が印加されると、排気側電極416上の排気ガスの空燃比に応じて排気側電極416と大気側電極417との間を酸化物イオンが移動し、この結果、排気ガスの空燃比に応じてセンサ素子411の出力電流が変化する。
図4は、下流側空燃比センサ42における排気ガスの空燃比とセンサ素子411の出力電流Iとの関係を示す図である。図4の例では、0.45Vの電圧がセンサ素子411に印加されている。図4からわかるように、排気ガスの空燃比が理論空燃比であるときに、出力電流Iはゼロとなる。また、下流側空燃比センサ42では、排気ガスの酸素濃度が高いほど、すなわち排気ガスの空燃比がリーンであるほど、出力電流Iが大きくなる。したがって、下流側空燃比センサ42及び下流側空燃比センサ42と同様の構成を有する上流側空燃比センサ41は、それぞれ、排気ガスの空燃比を連続的に(リニアに)検出することができる。
なお、本実施形態では、上流側空燃比センサ41及び下流側空燃比センサ42として、限界電流式の空燃比センサを用いている。しかしながら、排気ガスの空燃比に対して出力電流がリニアに変化するものであれば、上流側空燃比センサ41及び下流側空燃比センサ42として、限界電流式ではない空燃比センサが用いられてもよい。また、上流側空燃比センサ41と下流側空燃比センサ42とは互いに異なる構造の空燃比センサであってもよい。
空燃比制御装置は、触媒20に流入する排気ガス(以下、「流入排気ガス」という)の空燃比を制御する。本実施形態では、空燃比制御装置は上流側空燃比センサ41及び下流側空燃比センサ42の出力に基づいて流入排気ガスの空燃比を制御する。具体的には、空燃比制御装置は、下流側空燃比センサ42の出力に基づいて流入排気ガスの目標空燃比を設定し、上流側空燃比センサ41の出力空燃比が目標空燃比に一致するように、燃焼室5への燃料供給量をフィードバック制御する。ここで、「出力空燃比」は、空燃比センサの出力値に相当する空燃比、すなわち空燃比センサによって検出される空燃比を意味する。
なお、空燃比制御装置は、上流側空燃比センサ41を用いることなく、流入排気ガスの空燃比が目標空燃比に一致するように、燃焼室5への燃料供給量を制御してもよい。この場合、上流側空燃比センサ41が排気浄化装置から省略され、空燃比制御装置は、燃焼室5に供給される燃料と空気との比率が目標空燃比に一致するように、吸入空気量、機関回転数及び目標空燃比から燃焼室5への燃料供給量を算出する。
本実施形態では、基本的に、触媒20を排気浄化に適した状態に維持するように、流入排気ガスの空燃比が制御される。触媒20が排気浄化に適した状態にあるときには、排気ガスが触媒20において浄化され、触媒20から流出する排気ガス(以下、「流出排気ガス」という)の空燃比は理論空燃比となる。このため、触媒20の下流側に配置された下流側空燃比センサ42の出力空燃比が理論空燃比になるように流入排気ガスの空燃比を制御することが考えられる。
しかしながら、触媒20において酸素が枯渇すると、下記の水性ガスシフト反応(1)及び水蒸気改質反応(2)が生じ、触媒20において水素が生成される。
CO+H2O→H2+CO2…(1)
HC+H2O→CO+H2…(2)
この結果、水素を含む排気ガスが触媒20から流出して下流側空燃比センサ42に流入することになる。このとき、水素の分子量が酸素の分子量よりも小さいため、排気ガス中の水素が排気ガス中の酸素よりも早く拡散律速層413を通過して排気側電極416に到達する。このため、排気側電極416上における排気ガス中の酸素濃度が排気通路における排気ガス中の酸素濃度よりも低くなる。この結果、下流側空燃比センサ42の出力にずれが生じ、下流側空燃比センサ42の出力が実際の値よりもリッチ側にずれる。したがって、触媒20から下流側空燃比センサ42に水素が流入するときには、下流側空燃比センサ42の出力の信頼性が低下する。
図5Aは、流入排気ガスの空燃比が理論空燃比よりもリッチな空燃比と理論空燃比よりもリーンな空燃比との間で交互に切り替えられたときの各種パラメータのタイムチャートである。図5Aには、各種パラメータとして、下流側空燃比センサ42の出力空燃比、流入排気ガスの目標空燃比、上流側空燃比センサ41の出力空燃比、流出排気ガス中の水素濃度、流出排気ガス中のCO濃度及び流出排気ガス中のNOx濃度が示されている。
図5Bは、図5Aの各時刻(時刻t0~t5)における触媒20の酸素吸蔵状態を概略的に示す図である。図5Bには、触媒20に対して排気ガスが流れる方向と共に、触媒20の酸素吸蔵状態が示されている。触媒20のハッチング部分は、酸素が枯渇した酸素枯渇領域を示しており、触媒20のその他の部分は、酸素で満たされた領域を示している。
この例では、時刻t0において、流入排気ガスの目標空燃比が理論空燃比よりもリッチなリッチ設定空燃比TAFrichに設定されている。酸素で満たされていた触媒20にリッチな空燃比の排気ガスが流入すると、触媒20の上流側から酸素が徐々に放出される。この結果、図5Bに示されるように、時刻t0では、触媒20の上流側に酸素枯渇領域が生じている。この場合、酸素枯渇領域で生成された水素が触媒20の下流側で酸化されるため、触媒20から水素がほとんど流出しない。また、排気ガス中のCO及びNOxが触媒20において効果的に浄化されるため、下流側空燃比センサ42の出力空燃比は理論空燃比に維持されている。
その後、時刻t1において、触媒20のほとんどの領域が酸素枯渇領域となり、触媒20から水素及びCOが流出し、下流側空燃比センサ42の出力空燃比がリッチ側に変化し始める。図5Aの例では、時刻t2において下流側空燃比センサ42の出力空燃比がリッチ判定空燃比AFrichに達したときに、流入排気ガスの目標空燃比がリッチ設定空燃比TAFrichから理論空燃比よりもリーンなリーン設定空燃比TAFleanに切り替えられる。時刻t2では、図5Bに示されるように、触媒20の全ての領域が酸素枯渇領域となっている。
酸素が枯渇した触媒20にリーンな空燃比の排気ガスが流入すると、触媒20の上流側から触媒20が徐々に酸素で満たされる。この結果、図5Bに示されるように、時刻t3では、触媒20の上流側が酸素で満たされ、触媒20の下流側に酸素枯渇領域が残されている。この場合、排気ガス中のCO及びNOxが触媒20において効果的に浄化される。しかしながら、触媒20の下流側の酸素枯渇領域において生成された水素が触媒20から下流側空燃比センサ42に流入するため、下流側空燃比センサ42の出力空燃比が理論空燃比よりもリッチな値を示している。
その後、時刻t4において、触媒20のほとんどの領域が酸素で満たされ、触媒20からNOxが流出し始める。このときも、触媒20の下流側に僅かに残された酸素枯渇領域において生成された水素が触媒20から流出し、下流側空燃比センサ42の出力が水素の影響を受ける。図5Aの例では、時刻t5において下流側空燃比センサ42の出力空燃比がリーン判定空燃比AFleanに達したときに、流入排気ガスの目標空燃比がリーン設定空燃比TAFleanからリッチ設定空燃比TAFrichに切り替えられる。時刻t5では、図5Bに示されるように、触媒20の全ての領域が酸素で満たされている。このため、時刻t5において、触媒20からの水素の流出が終了する。
図5Aからわかるように、触媒20から水素が流出している場合には、下流側空燃比センサ42の出力空燃比が理論空燃比よりもリッチであるときに、触媒20が排気浄化に適した状態になる。このため、触媒20における水素の発生状況に関わらず、下流側空燃比センサ42の出力空燃比が理論空燃比になるように流入排気ガスの空燃比が制御されると、触媒20からのNOxの流出量が増加し、排気エミッションが悪化するおそれがある。
一方、触媒20から水素が流出していない場合には、下流側空燃比センサ42の出力空燃比が理論空燃比であるときに、触媒20が排気浄化に適した状態になる。このため、水素の影響を考慮した空燃比制御が常に実行されると、内燃機関の運転状態に応じて触媒20の状態が変化したときに、排気エミッションが悪化するおそれがある。
そこで、本実施形態では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比が理論空燃比よりもリッチなリッチ側切替空燃比以下に低下したときに、下流側空燃比センサ42の出力空燃比が理論空燃比よりもリッチな微リッチ設定空燃比に維持されるように流入排気ガスの空燃比を制御する微リッチ制御を開始する。このことによって、触媒20から水素が流出している可能性が高いときに、水素の影響を考慮した空燃比制御を実施することができる。すなわち、本実施形態では、触媒20における水素の発生状況に応じた空燃比制御を実施することで排気エミッションの悪化を抑制することができる。
空燃比制御装置は、微リッチ制御において、下流側空燃比センサ42の出力空燃比を微リッチ設定空燃比に維持すべく、下流側空燃比センサ42の出力空燃比が微リッチ設定空燃比を中心とする所定範囲内で変化するように流入排気ガスの空燃比を制御する。例えば、空燃比制御装置は、微リッチ制御において、下流側空燃比センサ42の出力空燃比が第1上側判定空燃比以上に上昇したときに、理論空燃比よりもリッチなリッチ設定空燃比に流入排気ガスの目標空燃比を設定し、下流側空燃比センサ42の出力空燃比が第1下側判定空燃比以下に低下したときに、理論空燃比よりもリーンなリーン設定空燃比に流入排気ガスの目標空燃比を設定する。第1上側判定空燃比及び第1下側判定空燃比は、第1上側判定空燃比と微リッチ設定空燃比との差が第1下側判定空燃比と微リッチ設定空燃比との差と等しく且つ第1上側判定空燃比が第1下側判定空燃比よりも大きくなるように(リーンになるように)予め定められる。
特に、本実施形態では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比が理論空燃比以上に維持されるように流入排気ガスの空燃比を制御している間、例えば流入排気ガスの空燃比を理論空燃比以上の値に制御している間に下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比以下に低下したときに微リッチ制御を開始する。このことによって、意図せず触媒20から水素が流出したときに排気エミッションが悪化することを抑制することができる。
また、微リッチ制御中に外乱等の影響により触媒20が酸素で満たされると、触媒20からの水素の流出が終了する。このため、本実施形態では、空燃比制御装置は、微リッチ制御において下流側空燃比センサ42の出力空燃比が理論空燃比以上のリーン側切替空燃比以上に上昇したときに微リッチ制御を終了させる。このことによって、触媒20からの水素の流出が終了した適切なタイミングで微リッチ制御を終了させることができる。
触媒20からの水素の流出が終了すると、下流側空燃比センサ42の出力ずれが解消される。このため、空燃比制御装置は、下流側空燃比センサ42の出力空燃比がリーン側切替空燃比以上に上昇したときに、下流側空燃比センサ42の出力空燃比が理論空燃比に維持されるように流入排気ガスの空燃比を制御する理論空燃比制御を開始する。このことによって、触媒20から水素が流出していないときの排気エミッションの悪化を効果的に抑制することができる。
空燃比制御装置は、理論空燃比制御において、下流側空燃比センサ42の出力空燃比を理論空燃比に維持すべく、下流側空燃比センサ42の出力空燃比が理論空燃比を中心とする所定範囲内で変化するように流入排気ガスの空燃比を制御する。例えば、空燃比制御装置は、理論空燃比制御において、下流側空燃比センサ42の出力空燃比が第2上側判定空燃比以上に上昇したときに、理論空燃比よりもリッチなリッチ設定空燃比に流入排気ガスの目標空燃比を設定し、下流側空燃比センサ42の出力空燃比が第2下側判定空燃比以下に低下したときに、理論空燃比よりもリーンなリーン設定空燃比に流入排気ガスの目標空燃比を設定する。第2上側判定空燃比及び第2下側判定空燃比は、第2上側判定空燃比と理論空燃比との差が第2下側判定空燃比と理論空燃比との差と等しく且つ第2上側判定空燃比が第2下側判定空燃比よりも大きくなるように(リーンになるように)予め定められる。
したがって、本実施形態では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比以下に低下してから下流側空燃比センサ42の出力空燃比がリーン側切替空燃比以上に上昇するまで微リッチ制御を実行する。また、空燃比制御装置は、下流側空燃比センサ42の出力空燃比がリーン側切替空燃比以上に上昇してから下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比以下に低下するまで理論空燃比制御を実行する。すなわち、空燃比制御装置は、理論空燃比制御において下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比以下に低下したときに微リッチ制御を開始し、微リッチ制御において下流側空燃比センサ42の出力空燃比がリーン側切替空燃比以上に上昇したときに理論空燃比制御を開始する。
<タイムチャートを用いた空燃比制御の説明>
図6を参照して、上述した空燃比制御について具体的に説明する。図6は、本発明の第一実施形態における空燃比制御が実行されるときの各種パラメータのタイムチャートである。図6には、各種パラメータとして、下流側空燃比センサ42の出力空燃比、下流側空燃比センサ42の目標出力値、流入排気ガスの目標空燃比、流出排気ガス中の水素濃度、流出排気ガス中のCO濃度及び流出排気ガス中のNOx濃度が示されている。
図6の例では、時刻t0において、理論空燃比制御が実行され、下流側空燃比センサ42の目標出力値が理論空燃比(14.6)に設定されている。また、時刻t0では、理論空燃比制御において、流入排気ガスの目標空燃比が理論空燃比よりもリッチなリッチ設定空燃比TAFrichに設定されている。このため、時刻t0以降、下流側空燃比センサ42の出力空燃比は徐々に低下する。時刻t1において下流側空燃比センサ42の出力空燃比が第2下側判定空燃比JAFdwn2に達すると、流入排気ガスの目標空燃比が理論空燃比よりもリーンなリーン設定空燃比TAFleanに設定される。
図6の例では、理論空燃比制御において流入排気ガスの目標空燃比がリーン設定空燃比TAFleanに設定されているにも拘わらず、時刻t2において、外乱等の影響によって下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比SWrichに達している。すなわち、理論空燃比制御において、下流側空燃比センサ42の出力空燃比が理論空燃比以上の値からリッチ側切替空燃比SWrichまで低下している。このため、時刻t2において、理論空燃比制御が終了し、微リッチ制御が開始される。すなわち、下流側空燃比センサ42の目標出力値が理論空燃比から理論空燃比よりもリッチな微リッチ設定空燃比RAFTsrichに切り替えられる。
また、下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比SWrichに向かって低下するときに触媒20の酸素が枯渇し、触媒20から水素及びCOが流出する。この結果、水素を含む排気ガスが下流側空燃比センサ42に流入し、下流側空燃比センサ42の出力にずれが生じる。しかしながら、時刻t2において微リッチ制御を開始することで、触媒20を排気浄化に適した状態にすることができ、時刻t2以降のCO及びNOxの流出を効果的に抑制することができる。
時刻t2の後、時刻t3において下流側空燃比センサ42の出力空燃比が第1上側判定空燃比JAFup1に達すると、微リッチ制御において流入排気ガスの目標空燃比がリーン設定空燃比TAFleanからリッチ設定空燃比TAFrichに切り替えられる。なお、図6の例では、第1上側判定空燃比JAFup1の値は第2下側判定空燃比JAFdwn2の値と等しい。
時刻t3の後、時刻t4において下流側空燃比センサ42の出力空燃比が第1下側判定空燃比JAFdwn1に達すると、微リッチ制御において流入排気ガスの目標空燃比がリッチ設定空燃比TAFrichからリーン設定空燃比TAFleanに切り替えられる。その後も、微リッチ制御において流入排気ガスの目標空燃比が下流側空燃比センサ42の出力空燃比に基づいてリッチ設定空燃比TAFrichとリーン設定空燃比TAFleanとの間で同様に切り替えられる。
図6の例では、微リッチ制御において流入排気ガスの目標空燃比がリッチ設定空燃比TAFrichに設定されているにも拘わらず、時刻t5において、外乱等の影響によって下流側空燃比センサ42の出力空燃比がリーン側切替空燃比SWlean(図6の例では14.6)に達している。このため、時刻t5において、微リッチ制御が終了し、理論空燃比制御が開始される。すなわち、下流側空燃比センサ42の目標出力値が微リッチ設定空燃比RAFTsrichから理論空燃比に切り替えられる。
また、下流側空燃比センサ42の出力空燃比がリーン側切替空燃比SWleanに向かって上昇するときに触媒20が酸素で満たされ、触媒20からNOxが流出する。この結果、触媒20からの水素の流出が終了し、下流側空燃比センサ42の出力ずれが解消される。しかしながら、時刻t5において理論空燃比制御を開始することで、触媒20を排気浄化に適した状態にすることができ、時刻t5以降のCO及びNOxの流出を効果的に抑制することができる。
時刻t5の後、時刻t6において下流側空燃比センサ42の出力空燃比が第2下側判定空燃比JAFdwn2に達すると、理論空燃比制御において流入排気ガスの目標空燃比がリッチ設定空燃比TAFrichからリーン設定空燃比TAFleanに切り替えられる。時刻t6の後、時刻t7において下流側空燃比センサ42の出力空燃比が第2上側判定空燃比JAFup2に達すると、理論空燃比制御において流入排気ガスの目標空燃比がリーン設定空燃比TAFleanからリッチ設定空燃比TAFrichに切り替えられる。その後も、理論空燃比制御において流入排気ガスの目標空燃比が下流側空燃比センサ42の出力空燃比に基づいてリッチ設定空燃比TAFrichとリーン設定空燃比TAFleanとの間で同様に切り替えられる。
<空燃比制御のフローチャート>
以下、図7A~図7Cのフローチャートを用いて、上述した空燃比制御について詳細に説明する。図7A~図7Cは、第一実施形態における空燃比制御の制御ルーチンを示すフローチャートである。本制御ルーチンは、空燃比制御装置として機能するECU31によって所定の実行間隔で繰り返し実行される。
最初に、ステップS101において、空燃比制御装置は、空燃比制御の実行条件が成立しているか否かを判定する。空燃比制御の実行条件は、例えば、触媒20の温度が所定の活性温度以上であり且つ上流側空燃比センサ41及び下流側空燃比センサ42の素子温度が所定の活性温度以上であるときに成立する。触媒20の温度は、例えば、触媒20若しくは触媒20近傍の排気通路に設けられた温度センサの出力に基づいて算出され又は内燃機関の所定の状態量(例えば、機関水温、吸入空気量、機関負荷等)に基づいて算出される。上流側空燃比センサ41及び下流側空燃比センサ42の素子温度は例えばセンサ素子のインピーダンスに基づいて算出される。なお、空燃比制御の実行条件は、内燃機関が始動してから所定時間が経過していること、内燃機関の所定部品(燃料噴射弁11、触媒20、上流側空燃比センサ41、下流側空燃比センサ42等)が正常であること等を含んでいてもよい。
ステップS101において空燃比制御の実行条件が成立していないと判定された場合、本制御ルーチンは終了する。一方、ステップS101において空燃比制御の実行条件が成立していると判定された場合、本制御ルーチンはステップS102に進む。
ステップS102では、空燃比制御装置は、リッチフラグFrが1であるか否かを判定する。リッチフラグFrは、微リッチ制御が開始されたときに1に設定され、微リッチ制御が終了したときにゼロに設定されるフラグである。なお、内燃機関が始動されたときのリッチフラグFrの初期値はゼロである。ステップS102においてリッチフラグFrがゼロであると判定された場合、本制御ルーチンはステップS103に進む。
ステップS103では、空燃比制御装置は、ストイキフラグFsが1であるか否かを判定する。ストイキフラグFsは、理論空燃比制御が開始されたときに1に設定され、理論空燃比制御が終了したときにゼロに設定されるフラグである。なお、内燃機関が始動されたときのストイキフラグFsの初期値はゼロである。ステップS103においてストイキフラグFsがゼロであると判定された場合、本制御ルーチンはステップS104に進む。
ステップS104では、空燃比制御装置は微リッチ制御を開始する。すなわち、空燃比制御装置は下流側空燃比センサ42の目標出力値を微リッチ設定空燃比に設定する。微リッチ設定空燃比は、予め定められ、理論空燃比よりも僅かにリッチな空燃比に設定される。例えば、微リッチ設定空燃比は、14.50~14.58、好ましくは14.58に設定される。
次いで、ステップS105において、空燃比制御装置は流入排気ガスの目標空燃比TAFをリーン設定空燃比TAFleanに設定する。すなわち、空燃比制御装置は上流側空燃比センサ41の出力に基づいて流入排気ガスの空燃比をリーン設定空燃比TAFleanにフィードバック制御する。リーン設定空燃比TAFleanは、予め定められ、理論空燃比よりもリーンな空燃比(例えば14.7~15.7)に設定される。
次いで、ステップS106において、空燃比制御装置はリッチフラグFrを1に設定し、本制御ルーチンはステップS107に進む。一方、制御ルーチンの開始時点において微リッチ制御が既に実行されていた場合にはステップS102においてリッチフラグFrが1であると判定され、本制御ルーチンはステップS103~S106をスキップしてステップS107に進む。
ステップS107では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnがリーン側切替空燃比SWlean以上であるか否かを判定する。リーン側切替空燃比SWleanは、予め定められ、理論空燃比以上の値に設定される。例えば、リーン側切替空燃比SWleanは、14.60~14.65に設定され、好ましくは理論空燃比(14.60)に設定される。ステップS107において下流側空燃比センサ42の出力空燃比AFdwnがリーン側切替空燃比SWlean未満であると判定された場合、本制御ルーチンはステップS108に進み、微リッチ制御が継続される。
ステップS108では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnが第1上側判定空燃比JAFup1以上であるか否かが判定される。第1上側判定空燃比JAFup1は、予め定められ、理論空燃比よりもリッチであり且つ微リッチ設定空燃比よりも僅かにリーンな空燃比に設定される。例えば、第1上側判定空燃比JAFup1は、微リッチ設定空燃比よりも0.01だけ大きな値に設定され、微リッチ設定空燃比が14.58であるときには14.59に設定される。
ステップS108において下流側空燃比センサ42の出力空燃比AFdwnが第1上側判定空燃比JAFup1以上であると判定された場合、本制御ルーチンはステップS109に進む。ステップS109では、空燃比制御装置は流入排気ガスの目標空燃比TAFをリッチ設定空燃比TAFrichに設定する。すなわち、空燃比制御装置は上流側空燃比センサ41の出力に基づいて流入排気ガスの空燃比をリッチ設定空燃比TAFrichにフィードバック制御する。リッチ設定空燃比TAFrichは、予め定められ、理論空燃比よりもリッチな空燃比(例えば13.5~14.5)に設定される。ステップS109の後、本制御ルーチンは終了する。
一方、ステップS108において下流側空燃比センサ42の出力空燃比AFdwnが第1上側判定空燃比JAFup1未満であると判定された場合、本制御ルーチンはステップS110に進む。ステップS110では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnが第1下側判定空燃比JAFdwn1以下であるか否かを判定する。第1下側判定空燃比JAFdwn1は、予め定められ、微リッチ設定空燃比よりも僅かにリッチな空燃比に設定される。例えば、第1下側判定空燃比JAFdwn1は、微リッチ設定空燃比よりも0.01だけ小さな値に設定され、微リッチ設定空燃比が14.58であるときには14.57に設定される。
ステップS110において下流側空燃比センサ42の出力空燃比AFdwnが第1下側判定空燃比JAFdwn1よりも大きいと判定された場合、本制御ルーチンは終了し、流入排気ガスの目標空燃比TAFが現在の設定値に維持される。一方、ステップS110において下流側空燃比センサ42の出力空燃比AFdwnが第1下側判定空燃比JAFdwn1以下であると判定された場合、本制御ルーチンはステップS111に進む。
ステップS111では、空燃比制御装置は流入排気ガスの目標空燃比TAFをリーン設定空燃比TAFleanに設定する。すなわち、空燃比制御装置は上流側空燃比センサ41の出力に基づいて流入排気ガスの空燃比をリーン設定空燃比TAFleanにフィードバック制御する。ステップS111の後、本制御ルーチンは終了する。
一方、ステップS107において下流側空燃比センサ42の出力空燃比AFdwnがリーン側切替空燃比SWlean以上であると判定された場合、本制御ルーチンはステップS112に進む。ステップS112では、空燃比制御装置は微リッチ制御を終了して理論空燃比制御を開始する。すなわち、空燃比制御装置は下流側空燃比センサ42の目標出力値を理論空燃比(14.60)に設定する。
次いで、ステップS113において、空燃比制御装置は、ストイキフラグFsを1に設定し、リッチフラグFrをゼロに設定する。ステップS113の後、本制御ルーチンは終了する。この場合、次の制御ルーチンのステップS103においてストイキフラグFsが1であると判定され、本制御ルーチンはステップS114に進む。
ステップS114では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnがリッチ側切替空燃比SWrich以下であるか否かを判定する。リッチ側切替空燃比SWrichは、予め定められ、理論空燃比よりもリッチな値に設定される。例えば、リッチ側切替空燃比SWrichは、14.50~14.58に設定され、好ましくは微リッチ設定空燃比と同一の値(例えば14.58)に設定される。ステップS114において下流側空燃比センサ42の出力空燃比AFdwnがリッチ側切替空燃比SWrichよりも大きいと判定された場合、本制御ルーチンはステップS115に進み、理論空燃比制御が継続される。
ステップS115では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnが第2上側判定空燃比JAFup2以上であるか否かが判定される。第2上側判定空燃比JAFup2は、予め定められ、理論空燃比よりも僅かにリーンな空燃比に設定される。例えば、第2上側判定空燃比JAFup2は、理論空燃比よりも0.01だけ大きな値(14.61)に設定される。
ステップS115において下流側空燃比センサ42の出力空燃比AFdwnが第2上側判定空燃比JAFup2以上であると判定された場合、本制御ルーチンはステップS116に進む。ステップS116では、空燃比制御装置は流入排気ガスの目標空燃比TAFをリッチ設定空燃比TAFrichに設定する。すなわち、空燃比制御装置は上流側空燃比センサ41の出力に基づいて流入排気ガスの空燃比をリッチ設定空燃比TAFrichにフィードバック制御する。ステップS116の後、本制御ルーチンは終了する。
一方、ステップS115において下流側空燃比センサ42の出力空燃比AFdwnが第2上側判定空燃比JAFup2未満であると判定された場合、本制御ルーチンはステップS117に進む。ステップS117では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnが第2下側判定空燃比JAFdwn2以下であるか否かを判定する。第2下側判定空燃比JAFdwn2は、予め定められ、理論空燃比よりも僅かにリッチな空燃比に設定される。例えば、第2上側判定空燃比JAFup2は、理論空燃比よりも0.01だけ小さな値(14.59)に設定される。
ステップS117において下流側空燃比センサ42の出力空燃比AFdwnが第2下側判定空燃比JAFdwn2よりも大きいと判定された場合、本制御ルーチンは終了し、流入排気ガスの目標空燃比TAFが現在の設定値に維持される。一方、ステップS117において下流側空燃比センサ42の出力空燃比AFdwnが第2下側判定空燃比JAFdwn2以下であると判定された場合、本制御ルーチンはステップS118に進む。
ステップS118では、空燃比制御装置は流入排気ガスの目標空燃比TAFをリーン設定空燃比TAFleanに設定する。すなわち、空燃比制御装置は上流側空燃比センサ41の出力に基づいて流入排気ガスの空燃比をリーン設定空燃比TAFleanにフィードバック制御する。ステップS118の後、本制御ルーチンは終了する。
一方、ステップS114において下流側空燃比センサ42の出力空燃比AFdwnがリッチ側切替空燃比SWrich以下であると判定された場合、本制御ルーチンはステップS119に進む。ステップS119では、空燃比制御装置は理論空燃比制御を終了して微リッチ制御を開始する。すなわち、空燃比制御装置は下流側空燃比センサ42の目標出力値を微リッチ設定空燃比に設定する。
次いで、ステップS120において、空燃比制御装置は、リッチフラグFrを1に設定し、ストイキフラグFsをゼロに設定する。ステップS120の後、本制御ルーチンは終了する。
なお、ステップS108及びS115の少なくとも一方において、空燃比制御装置は、流入排気ガスの目標空燃比TAFがリーン設定空燃比TAFleanに設定されたときからの経過時間、積算吸入空気量等が所定の閾値に達したか否かを判定してもよい。すなわち、空燃比制御装置は、微リッチ制御及び理論空燃比制御の少なくとも一方において、流入排気ガスの目標空燃比TAFがリーン設定空燃比TAFleanに設定されたときからの経過時間、積算吸入空気量等が所定の閾値に達したときに流入排気ガスの目標空燃比TAFをリーン設定空燃比TAFleanからリッチ設定空燃比TAFrichに切り替えてもよい。
また、ステップS110及びS117の少なくとも一方において、空燃比制御装置は、流入排気ガスの目標空燃比TAFがリッチ設定空燃比TAFrichに設定されたときからの経過時間、積算吸入空気量等が所定の閾値に達したか否かを判定してもよい。すなわち、空燃比制御装置は、微リッチ制御及び理論空燃比制御の少なくとも一方において、流入排気ガスの目標空燃比TAFがリッチ設定空燃比TAFrichに設定されたときからの経過時間、積算吸入空気量等が所定の閾値に達したときに流入排気ガスの目標空燃比TAFをリッチ設定空燃比TAFrichからリーン設定空燃比TAFleanに切り替えてもよい。
また、内燃機関が始動されるときには触媒20の酸素吸蔵量が最大値に達していないと考えられるため、上記の制御ルーチンでは、内燃機関始動後の最初の空燃比制御として、微リッチ制御が実行されている。しかしながら、内燃機関始動後の最初の空燃比制御として、理論空燃比制御が実行されてもよい。また、空燃比制御装置は、内燃機関始動後の最初の空燃比制御として、流入排気ガスの空燃比が所定値(例えば理論空燃比)に一致するように、上流側空燃比センサ41の出力に基づいて流入排気ガスの空燃比をフィードバック制御してもよい。この場合、この最初の空燃比制御において下流側空燃比センサ42の出力空燃比AFdwnがリッチ側切替空燃比SWrich以下に低下したときには微リッチ制御が開始され、この最初の空燃比制御において下流側空燃比センサ42の出力空燃比AFdwnがリーン側切替空燃比SWlean以上に上昇したときには理論空燃比制御が開始される。
<第二実施形態>
第二実施形態における排気浄化装置の構成及び制御は、以下に説明する点を除いて、基本的に第一実施形態における排気浄化装置と同様である。このため、以下、本発明の第二実施形態について、第一実施形態と異なる部分を中心に説明する。
上述したように、微リッチ制御では、下流側空燃比センサ42の目標出力値が微リッチ設定空燃比に設定され、第一実施形態では、微リッチ設定空燃比の値として、予め定められた固定値が用いられる。しかしながら、流入排気ガスの空燃比及び触媒20の状態に応じて、触媒20において生成される水素の量が変動するおそれがある。基本的に、触媒20から流出する水素の量が多いほど、下流側空燃比センサ42の出力ずれが大きくなり、下流側空燃比センサ42の出力空燃比がリッチになる。
そこで、第二実施形態では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比以下に低下したときの最小空燃比に基づいて、微リッチ設定空燃比のリッチ度合を決定する。このことによって、微リッチ制御における下流側空燃比センサ42の目標出力値を、触媒20から流出する水素の量に適した値に設定することができ、ひいては排気エミッションの悪化をより効果的に抑制することができる。なお、微リッチ設定空燃比のリッチ度合とは、理論空燃比よりもリッチな値として設定される微リッチ設定空燃比と理論空燃比との差を意味する。微リッチ設定空燃比のリッチ度合が大きいほど、微リッチ設定空燃比はリッチになる。
図8は、下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比以下に低下したときの最小空燃比を示す図である。図8には下流側空燃比センサ42の出力空燃比のタイムチャートが示されており、時刻t1において下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比SWrichまで低下している。下流側空燃比センサ42の出力空燃比は、時刻t1の後も低下し続け、時刻t2において最小となる。時刻t2における下流側空燃比センサ42の出力空燃比が、下流側空燃比センサ42の出力空燃比がリッチ側切替空燃比SWrich以下に低下したときの最小空燃比(AFmin)に相当する。
第一実施形態では、空燃比制御の制御ルーチンとして図7A~図7Cのフローチャートが用いられたが、第二実施形態では、空燃比制御の制御ルーチンとして、図7A、図7B及び図9のフローチャートが用いられる。すなわち、第二実施形態では、ステップS114において下流側空燃比センサ42の出力空燃比AFdwnがリッチ側切替空燃比SWrich以下であると判定された場合に、ステップS119の前にステップS201が実行される。
ステップS201では、空燃比制御装置は、下流側空燃比センサ42の出力空燃比AFdwnがリッチ側切替空燃比SWrich以下に低下したときの最小空燃比(以下、単に「最小空燃比」という)に基づいて、微リッチ制御における微リッチ設定空燃比のリッチ度合を決定する。具体的には、空燃比制御装置は、最小空燃比が小さい(リッチである)ほど、微リッチ設定空燃比のリッチ度合を大きくする。また、空燃比制御装置は、微リッチ設定空燃比の設定値に応じて第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値を変更する。微リッチ設定空燃比がリッチであるほど、第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値もリッチにされる。
例えば、空燃比制御装置は、マップ又は計算式を用いて、最小空燃比に基づいて、微リッチ設定空燃比、第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値を決定する。図10は、最小空燃比に基づいて、微リッチ設定空燃比、第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値を決定するためのマップの一例を示す図である。図10のマップでは、最小空燃比がリッチであるほど、微リッチ設定空燃比がリッチにされる。また、最小空燃比がリッチであるほど、微リッチ設定空燃比と第1上側判定空燃比JAFup1との差及び微リッチ設定空燃比と第1下側判定空燃比JAFdwn1との差が大きくされる。
ステップS201の後、ステップS119において微リッチ制御が開始され、図7BのステップS108の第1上側判定空燃比JAFup1の値及び図7BのS110の第1下側判定空燃比JAFdwn1の値として、ステップS201において決定された値が用いられる。
<第三実施形態>
第三実施形態における排気浄化装置の構成及び制御は、以下に説明する点を除いて、基本的に第一実施形態における排気浄化装置と同様である。このため、以下、本発明の第三実施形態について、第一実施形態と異なる部分を中心に説明する。
図11は、本発明の第三実施形態に係る内燃機関の排気浄化装置が適用される内燃機関の一部を概略的に示す図である。第三実施形態では、触媒20の下流側の排気通路(具体的には排気管22)に下流側空燃比センサ42に加えて水素センサ50が配置される。水素センサ50は、排気管22内を流れる排気ガス、すなわち触媒20から流出する排気ガス中の水素濃度を検出する。水素センサ50はECU31(図1参照)に電気的に接続され、水素センサ50の出力は対応するAD変換器38を介して入力ポート36に入力される。
第二実施形態に関して上述したように、基本的に、触媒20から流出する水素の量が多いほど、下流側空燃比センサ42の出力ずれが大きくなり、下流側空燃比センサ42の出力空燃比がリッチになる。そこで、第三実施形態では、空燃比制御装置は、水素センサ50の出力に基づいて流出排気ガス中の水素濃度を推定し、水素濃度に基づいて微リッチ設定空燃比のリッチ度合を決定する。このことによって、微リッチ制御における下流側空燃比センサ42の目標出力値を、触媒20から流出する水素の量に適した値に設定することができ、ひいては排気エミッションの悪化をより効果的に抑制することができる。
第一実施形態では、空燃比制御の制御ルーチンとして図7A~図7Cのフローチャートが用いられたが、第三実施形態では、空燃比制御の制御ルーチンとして、図12、図7B及び図7Cのフローチャートが用いられる。すなわち、第三実施形態では、ステップS102においてリッチフラグFrが1であると判定された場合に、図7BのステップS107の前にステップS301及びS302が実行される。
ステップS301では、空燃比制御装置は水素センサ50の出力に基づいて流出排気ガス中の水素濃度を推定する。
次いで、ステップS302において、空燃比制御装置は、流出排気ガス中の水素濃度に基づいて、微リッチ制御における微リッチ設定空燃比のリッチ度合を決定する。具体的には、空燃比制御装置は、流出排気ガス中の水素濃度が高いほど、微リッチ設定空燃比のリッチ度合を大きくする。また、空燃比制御装置は、微リッチ設定空燃比の設定値に応じて第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値を変更する。微リッチ設定空燃比がリッチであるほど、第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値もリッチにされる。例えば、空燃比制御装置は、マップ又は計算式を用いて、流出排気ガス中の水素濃度に基づいて、微リッチ設定空燃比、第1上側判定空燃比JAFup1及び第1下側判定空燃比JAFdwn1の値を決定する。
ステップS302の後、第一実施形態と同様に図7BのステップS107~S111が実行され、ステップS108の第1上側判定空燃比JAFup1の値及びS110の第1下側判定空燃比JAFdwn1の値として、ステップS302において決定された値が用いられる。
なお、空燃比制御装置は、水素センサ50を用いる代わりに、マップ又は計算式を用いて内燃機関の所定の状態量に基づいて流出排気ガス中の水素濃度を推定してもよい。所定の状態量は、例えば、機関回転数、吸入空気量、流入排気ガスの空燃比、流入排気ガスの温度、触媒20の酸素吸蔵能、EGR率(EGRガスを還流させるための構成が内燃機関に設けられている場合)等を含む。これら所定の状態量は、各種センサ(クランク角センサ45、エアフロメータ40、上流側空燃比センサ41、排気温センサ(図示せず)等)の出力等に基づいて公知の手法によって算出される。
また、空燃比制御装置は、内燃機関の所定の状態量から流出排気ガス中の水素濃度を出力するように予め学習された回帰モデルを用いて流出排気ガス中の水素濃度を推定してもよい。斯かる回帰モデルの一例として、ニューラルネットワーク、サポートベクターマシン、ランダムフォレスト等の機械学習モデルが挙げられる。
また、上記の制御ルーチンでは、ステップS102とステップS107との間にステップS301及びS302が実行されたが、ステップS102及びS106とステップS107との間にステップS301及びS302が実行されてもよい。
<その他の実施形態>
以上、本発明に係る好適な実施形態を説明したが、本発明はこれら実施形態に限定されるものではなく、特許請求の範囲の記載内で様々な修正及び変更を施すことができる。例えば、内燃機関において、触媒20の下流側の排気通路に触媒20と同様の下流側触媒が配置されていてもよい。
また、空燃比制御装置は、微リッチ制御において、流入排気ガスの目標空燃比をリッチ設定空燃比とリーン設定空燃比との間で切り替える代わりに、下流側空燃比センサ42の出力空燃比が微リッチ設定空燃比に一致するように、下流側空燃比センサ42の出力に基づいて流入排気ガスの目標空燃比をフィードバック制御してもよい。同様に、空燃比制御装置は、理論空燃比制御において、流入排気ガスの目標空燃比をリッチ設定空燃比とリーン設定空燃比との間で切り替える代わりに、下流側空燃比センサ42の出力空燃比が理論空燃比に一致するように、下流側空燃比センサ42の出力に基づいて流入排気ガスの目標空燃比をフィードバック制御してもよい。また、空燃比制御装置は微リッチ制御を実行しないときに理論空燃比制御以外の他の空燃比制御を実行してもよい。
20 触媒
22 排気管
31 電子制御ユニット(ECU)
42 下流側空燃比センサ

Claims (7)

  1. 内燃機関の排気通路に配置されると共に酸素を吸蔵可能な触媒と、
    前記触媒から流出する流出排気ガスの空燃比を検出する空燃比センサと、
    前記触媒に流入する流入排気ガスの空燃比を制御する空燃比制御装置と
    を備え、
    前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比よりもリッチなリッチ側切替空燃比以下に低下したときに、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比よりもリッチな微リッチ設定空燃比に維持されるように前記流入排気ガスの空燃比を制御する微リッチ制御を開始する、内燃機関の排気浄化装置。
  2. 前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比以上に維持されるように前記流入排気ガスの空燃比を制御している間に、前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リッチ側切替空燃比以下に低下したときに前記微リッチ制御を開始する、請求項1に記載の内燃機関の排気浄化装置。
  3. 前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比に維持されるように前記流入排気ガスの空燃比を制御する理論空燃比制御を実行し、該理論空燃比制御において前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リッチ側切替空燃比以下に低下したときに前記微リッチ制御を開始する、請求項1に記載の内燃機関の排気浄化装置。
  4. 前記空燃比制御装置は、前記微リッチ制御において前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比以上のリーン側切替空燃比以上に上昇したときに該微リッチ制御を終了させる、請求項1に記載の内燃機関の排気浄化装置。
  5. 前記空燃比制御装置は、前記微リッチ制御において前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リーン側切替空燃比以上に上昇したときに、前記空燃比センサによって検出された前記流出排気ガスの空燃比が理論空燃比に維持されるように前記流入排気ガスの空燃比を制御する理論空燃比制御を開始する、請求項4に記載の内燃機関の排気浄化装置。
  6. 前記空燃比制御装置は、前記空燃比センサによって検出された前記流出排気ガスの空燃比が前記リッチ側切替空燃比以下に低下したときの最小空燃比に基づいて、前記微リッチ設定空燃比のリッチ度合を決定する、請求項1から5のいずれか1項に記載の内燃機関の排気浄化装置。
  7. 前記空燃比制御装置は、前記流出排気ガス中の水素濃度を推定し、該水素濃度に基づいて前記微リッチ設定空燃比のリッチ度合を決定する、請求項1から5のいずれか1項に記載の内燃機関の排気浄化装置。
JP2022071674A 2022-04-25 2022-04-25 内燃機関の排気浄化装置 Pending JP2023161338A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022071674A JP2023161338A (ja) 2022-04-25 2022-04-25 内燃機関の排気浄化装置
US18/170,226 US20230340920A1 (en) 2022-04-25 2023-02-16 Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
DE102023103879.6A DE102023103879A1 (de) 2022-04-25 2023-02-16 Abgassteuerungsvorrichtung und abgassteuerungsverfahren für eine verbrennungskraftmaschine
CN202310433477.8A CN116950790A (zh) 2022-04-25 2023-04-21 内燃机的排气净化装置和排气净化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022071674A JP2023161338A (ja) 2022-04-25 2022-04-25 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2023161338A true JP2023161338A (ja) 2023-11-07

Family

ID=88238424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022071674A Pending JP2023161338A (ja) 2022-04-25 2022-04-25 内燃機関の排気浄化装置

Country Status (4)

Country Link
US (1) US20230340920A1 (ja)
JP (1) JP2023161338A (ja)
CN (1) CN116950790A (ja)
DE (1) DE102023103879A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126012A (ja) 1995-11-08 1997-05-13 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008128110A (ja) 2006-11-21 2008-06-05 Toyota Motor Corp 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
US20230340920A1 (en) 2023-10-26
CN116950790A (zh) 2023-10-27
DE102023103879A1 (de) 2023-10-26

Similar Documents

Publication Publication Date Title
JP6572932B2 (ja) アンモニア検出装置の異常診断装置
JP6601449B2 (ja) 内燃機関の排気浄化装置
CN113027580B (zh) 催化剂劣化检测装置
JP2018178762A (ja) 内燃機関の排気浄化装置
US11225896B1 (en) Degradation diagnosis device for exhaust gas control catalyst
JP4186259B2 (ja) 内燃機関の排ガス浄化装置
JP2008128110A (ja) 内燃機関の排気浄化装置
JP2023161338A (ja) 内燃機関の排気浄化装置
JP2023161331A (ja) 内燃機関の排気浄化装置
JP2024010970A (ja) 内燃機関の制御装置及び触媒異常診断方法
CN113027579B (zh) 催化剂劣化检测装置
JP2002089242A (ja) エンジンの排気浄化装置
JP7331823B2 (ja) 内燃機関の排気浄化装置及び触媒
JP2024010982A (ja) 内燃機関の排気浄化装置
JP2024000806A (ja) 内燃機関の排気浄化装置
US11486322B2 (en) Exhaust purification device of internal combustion engine and catalyst
JP2024063593A (ja) 内燃機関の制御装置
JP2003328822A (ja) 排気ガス浄化装置
JP2023116239A (ja) 内燃機関の排気浄化装置
JP2023023439A (ja) 内燃機関の排気浄化装置
JP2018003742A (ja) 内燃機関
JP2002030922A (ja) 排気浄化触媒の劣化状態診断装置
JP2021188583A (ja) 内燃機関の排気浄化装置
JP2002047918A (ja) エンジンの排気浄化装置