JP2023137443A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2023137443A
JP2023137443A JP2022043661A JP2022043661A JP2023137443A JP 2023137443 A JP2023137443 A JP 2023137443A JP 2022043661 A JP2022043661 A JP 2022043661A JP 2022043661 A JP2022043661 A JP 2022043661A JP 2023137443 A JP2023137443 A JP 2023137443A
Authority
JP
Japan
Prior art keywords
voltage
current
charging
feedback signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022043661A
Other languages
English (en)
Inventor
侑祐 山本
Yusuke Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2022043661A priority Critical patent/JP2023137443A/ja
Publication of JP2023137443A publication Critical patent/JP2023137443A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

Figure 2023137443000001
【課題】単純な回路構成で、高精度に像担持体の表面電位を所望の電位に制御すること。
【解決手段】画像形成装置は、画像形成装置であって、像担持体と、定電圧制御された電圧を生成する電源と、前記電源により生成された電圧が印加される電圧印加部材と、前記電源から前記電圧印加部材に流れる電流を検出する電流検出部と、前記電源の出力電圧を制御する制御部と、を備え、前記制御部は、前記電流検出部から、前記電源から出力開始直後に発生する第1の電流帰還信号と、前記電源からの出力開始から所定時間経過後に発生する第2の電流帰還信号とを取得し、前記第1の電流帰還信号と前記第2の電流帰還信号とに基づいて出力電流を算出する。
【選択図】図3

Description

本発明は、画像形成装置に関する。
従来から、感光体などの像担持体上の表面電位を所望の電位にするため、帯電部材の状態を検出し、帯電部材に印加する電圧を制御する像担持体の表面電位制御技術が既に知られている。
例えば、像担持体の帯電電流を検出する際の誤差を低減するために、負荷を接続しない無負荷状態での電流帰還信号の電圧(無負荷電流)を記憶しておき、負荷接続時の電流帰還信号の電圧から無負荷電流を減算することで、負荷電流を求める技術がある。
しかしながら、従来技術では、帯電用の高圧電源には、定電流および定電圧の制御切り替え手段が必要となり、回路構成が複雑化したり、回路サイズや回路コストが増大する。
また、負荷接続時の電流帰還信号の電圧から無負荷電流を減算する技術の場合には、無負荷状態で電流帰還信号の電圧を取得する必要があるため、実際に使用時に実現しようとすると、帯電ローラとの接点の離間機構を設けたり、PCDU(Photo Conductor Development Unit)を未セット状態として、電流帰還信号の電圧を取得する必要があり,回路構成が複雑化したり、回路サイズや回路コストが増大する。
本発明は、上記に鑑みてなされたものであって、単純な回路構成で、高精度に像担持体の表面電位を所望の電位に制御することができる画像形成装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、画像形成装置であって、像担持体と、定電圧制御された電圧を生成する電源と、前記電源により生成された電圧が印加される電圧印加部材と、前記電源から前記電圧印加部材に流れる電流を検出する電流検出部と、前記電源の出力電圧を制御する制御部と、を備え、前記制御部は、前記電流検出部から、前記電源から出力開始直後に発生する第1の電流帰還信号と、前記電源からの出力開始から所定時間経過後に発生する第2の電流帰還信号とを取得し、前記第1の電流帰還信号と前記第2の電流帰還信号とに基づいて出力電流を算出する。
本発明によれば、単純な回路構成で、高精度に像担持体の表面電位を所望の電位に制御することができるという効果を奏する。
図1は、第1の実施形態にかかる画像形成装置の機械的構造の一例を示す模式図である。 図2は、第1の実施形態の画像形成装置による電子写真プロセスのための全体構成の一例を示す模式図である。 図3は、第1の実施形態にかかる画像形成装置における高圧電源と制御基板の構成を示すブロック図である。 図4は、第1の実施形態にかかる感光体ドラムと帯電ローラとを示す図である。 図5は、第1の実施形態にかかる画像形成装置の高圧電源の回路構成の一例を示す図である。 図6は、第1の実施形態において、帯電DC制御信号、帯電DC電圧V、感光体ドラムの表面電位Vd0、帯電電流Iout、電流帰還信号の電圧FBVの関係の一例を示すタイミングチャートである。 図7は、第1の実施形態にかかる画像形成装置1による帯電電流Ioutおよび帯電印加電圧Vの算出処理の一例を示すフローチャートである。 図8は、第2の実施形態において、帯電DC制御信号、帯電DC電圧V、感光体ドラムの表面電位Vd0、帯電電流Iout、電流帰還信号の電圧FBVの関係の一例を示すタイミングチャートである。
以下に添付図面を参照して、画像形成装置の実施形態を詳細に説明する。
(第1の実施形態)
図1は、第1の実施形態にかかる画像形成装置1の機械的構造の一例を示す模式図である。本実施形態に係る画像形成装置1は、複写機能とプリンタ機能とファクシミリ機能等を有するデジタル複合機である。操作部のアプリケーション切り替えキーにより、複写機能、プリンタ機能、およびファクシミリ機能を順次に切り替えて選択することが可能となっている。複写機能の選択時には複写モードとなり、プリンタ機能の選択時にはプリンタモードとなり、ファクシミリモードの選択時にはファクシミリモードとなる。
画像形成装置1での画像形成の流れを複写モードを例にあげて簡単に説明する。複写モードでは、原稿束が自動原稿送り装置(ADF:Auto Document Feeder)2により、順に画像読み取り装置3に給送される。そして、原稿は、画像読み取り装置3により、画像情報が読み取られる。原稿から読み取られた画像情報は、画像処理手段を介して書き込み手段としての書き込みユニット4により光情報に変換される。
感光体ドラム6は、帯電器(不図示)により一様に帯電された後に書き込みユニット4からの光情報で露光されて静電潜像が形成される。この感光体ドラム6上の静電潜像は現像装置7により現像されてトナー像となる。このトナー像は、搬送ベルト8により転写紙に転写され、転写紙は、定着装置9によりトナー像が定着され、排出される。
図2は、第1の実施形態の画像形成装置1による電子写真プロセスのための全体構成の一例を示す模式図である。
高圧電源10により生成された高電圧は、電圧印加部材としての帯電ローラ21に印加され、感光体ドラム6は一様に帯電する。その後、露光装置22により画像情報の信号に応じた露光がなされ、感光体ドラム6に静電潜像が形成される。そして、現像装置7によってトナー像が現像され、感光体ドラム6上のトナー像は高圧電源11により生成された高電圧を1次転写ローラ23に印加することで中間転写ベルト24に転写される。
中間転写ベルト24に転写されたトナー像は2次転写部(不図示)によって記録材に転写され、その後に定着装置9によって記録材に定着されることにより画像が得られる。また、除電器25が画像形成装置1に設けられている場合には、除電器25により感光体ドラム6の表面の電荷を除去した後に帯電処理をおこなう。カラー印刷の場合、同様の構成が4つあり、色毎に中間転写ベルトにトナー像を転写し、その後に2次転写部、定着装置9に至る。
本実施形態にかかる画像形成装置1では、像担持体としての感光体ドラム6を帯電させる際の帯電電流を検出するため、高圧電源10内の電流検出抵抗に出力電流(帯電電流)と高圧電源内部電流の総和が流れ込む構成としている。
帯電電流発生時は電流検出抵抗に出力電流(帯電電流)および内部電流が流れ込むが、感光体ドラム6が十分帯電し帯電電流が発生しなくなると内部電流のみが流れ込むため、両者の差を取ることで帯電電流のみを算出できる。これにより、簡易な構成で帯電電流を精度よく検出することができる。以下、本実施形態について詳細に説明する。
図3は、第1の実施形態にかかる画像形成装置1における高圧電源と制御基板の構成を示すブロック図である。
高圧電源10は、帯電ローラ21に印加する高電圧を生成する。高圧電源10は、図3に示すように、帯電DCバイアス生成部101と、帯電ACバイアス生成部102と、帯電DC電流検知部103と、を備える。制御基板30から送られてくる制御信号であるPWM(Pulse Width Modulation)信号により出力の大きさおよびタイミングが決定される。帯電DCバイアスと帯電ACバイアスは各々制御信号により制御可能である。
帯電DCバイアス生成部101は、DC電圧を生成する。帯電ACバイアス生成部102は、AC電圧を生成する。そして、帯電DCバイアス生成部101が生成したDC電圧と帯電ACバイアス生成部102が生成したAC電圧とを重畳した帯電バイアスが感光体ドラム6へ印加される。
帯電DC電流検知部103は、高圧電源10から感光体ドラム6へ流れる電流のうちDC成分を検出し、電圧に変換した電流帰還信号を生成し制御基板30へ送出する。なお、帯電ACバイアス生成部102を備えない構成とすることもできる。
制御基板30は、高圧電源10を制御する。制御基板30は、帯電DC制御信号であるPWM信号を高圧電源に出力する。制御基板30は、図3に示すように、演算処理部302と、メモリ301とを備えている。
演算処理部302は、高圧電源10の帯電DC電流検知部103で生成された電流帰還信号を受信し、電流帰還信号に基づいて印加する帯電DCバイアスを算出して、帯電DCバイアスに基づく帯電DC制御信号を高圧電源10に出力する。これにより、演算処理部302は、感光体ドラム6の表面電位を所望の電位となるよう制御する。演算処理部302は、制御部に相当する。演算処理部302の詳細については、後述する。
メモリ301は、演算処理部302が受信した電流帰還信号や算出した帯電DCバイアス等を一時的に保存する。
図4は、第1の実施形態にかかる感光体ドラム6と帯電ローラ21とを示す図である。帯電電流は次の(1-1)式で表すことができる。
Figure 2023137443000002
ここで、Ioutは帯電電流、Zは帯電ローラ21から感光体ドラム6のGND(グラウンド)間のインピーダンス、Vは帯電DC電圧、Vd0は帯電ローラ21のニップ近傍の感光体ドラム6の表面電位である。
感光体ドラム6を負極性に帯電させる場合を例として説明する。例えば、Z=25MΩとして感光体表面を0Vから-700Vに帯電させる場合(V=-700V、Vd0=0V)、上記(1-1)式から(1-2)式のように計算でき、Ioutは負極性となることがわかる。
図5は、第1の実施形態にかかる画像形成装置1の高圧電源10の回路構成の一例を示す図である。高圧電源10は、図1に示すように、ブリーダ抵抗105と、電流検出抵抗106と、電圧モニタ107と、制御部108と、駆動回路109と、を主に備えている。
電圧モニタ107は、高圧電源10の出力電圧を監視して、制御部108に送出する。 制御部108は、電圧モニタ107から受け取った出力電圧に基づいて駆動回路109を制御する。具体的には、制御部108は、上述した帯電DCバイアス生成部101と帯電ACバイアス生成部102とを有する。
本実施形態では、制御基板30の演算処理部302は、高圧電源10から出力開始直後に発生する第1の電流帰還信号と、高圧電源10からの出力開始から所定時間経過後に発生する第2の電流帰還信号と、に基づいて出力電流である帯電電流Ioutを算出する。すなわち、制御基板30の演算処理部302は、高圧電源10から出力開始直後に発生する第1の電流帰還信号の電圧FBV_1と、高圧電源10からの出力開始から所定時間経過後に発生する第2の電流帰還信号の電圧FBV_1と、の差に基づいて出力電流である帯電電流Ioutを算出する。より具体的には、演算処理部302は、第1の電流帰還信号の電圧FBV_1と、出力開始から所定時間として感光体ドラム6が一回回転した時間の経過後に発生する第2の電流帰還信号の電圧FBV_2と、の差に基づいて出力電流である帯電電流Ioutを算出する。以下、詳細に説明する。
電流検出抵抗106は、帯電電流Ioutを検出するために用いられる。電流帰還信号の電圧FBVは、(2-1)式に示すように、電流検出抵抗106の抵抗値Rdetと電流検出抵抗106に流れる電流Idetの積で表せる。電流検出抵抗106は、電流検出部に相当し、また、図3における帯電DC電流検知部103にも相当する。
ブリーダ抵抗105には、電圧出力時は内部電流IINTが流れ、内部電流IINTは、’(2-3)式に示すように、出力電圧Voutとブリーダ抵抗105の抵抗値RINTの商で表すことができる。ここで、出力電圧が負極性のため、IINTも負極性となる。
ここで、図5から、(2-2)式に示すように、電流検出抵抗106に流れる電流(検出電流)Idetは、内部電流IINTと高圧電源10の出力電流(帯電電流:Iout)の和で表すことができる。以上より、電流帰還信号の電圧FBVは、(2-1)式から、(2-2)、(2-3)式を用いて、(2-4)式のように導出することができる。従って、帯電電流Ioutは、(2-4)式より、(2-5)式で導出される。
Figure 2023137443000003
ここで、FBVは、電流帰還信号の電圧、Rdetは電流検出抵抗106の抵抗値、Idetは電流検出抵抗106に流れる電流(検出電流)、Ioutは高圧電源10の出力電流(帯電電流または除電電流)、IINTは内部電流、Voutは高圧電源10の出力DC電圧、RINTはブリーダ抵抗105の抵抗値である。
例えば、Rdet=5kΩ、Vout=-700V、Iout=-30uA、RINT=2MΩとすると、電流帰還信号の電圧FBVは、(3-1)式のように計算できる。
Figure 2023137443000004
この時、Voutは帯電DC出力設定値、RINTは抵抗定数から見積もって式に代入するが、実際には個体、温湿度、負荷条件等によってばらつくため、FBVの計算上の誤差となる。例えば、上記の例で、Voutが+3%ばらつき(Vout=-721V)、RINTが-1%ばらつく(RINT=1.98MΩ)場合、FBVは1.97Vとなる。これらのばらつきを持った値で(2-5)式からIoutを逆算すると、(3-2)式に示すように、-44uAと計算され、真値(-30uA)に対して約47%と大きなばらつきとなる。
図6は、第1の実施形態において、帯電DC制御信号、帯電DC電圧V、感光体ドラム6の表面電位Vd0、帯電電流Iout、電流帰還信号の電圧FBVの関係の一例を示すタイミングチャートである。図6において、横軸は時間である。なお、本実施形態にかかる画像形成装置1には、帯電前に除電する除電ランプ等の除電器を備えない構成とする。
帯電DC制御信号が制御基板30から入力されると帯電DC電圧Vが出力し、それに伴い感光体ドラム6が帯電DC電圧Vに帯電する。(1-1)式に従って、電流検出抵抗106には感光体ドラム6が1周、すなわち1回回転する時間(tOPC)分の帯電電流Ioutと内部電流IINTが流れ、(4-1)式に従って第1の電流帰還信号の電圧FBV_1が発生する。
ここで、感光体ドラム6の径をΦ、線速をλとすると、tOPC =Φ×π/λである。
Figure 2023137443000005
帯電DC制御信号がオンとなってから、感光体ドラム6の1周分の時間(tOPC)経過後、Vに帯電された感光体ドラム6が帯電ローラ21と接するため、(1-1)式のVd0=Vとなり、帯電電流Iout=0となる。このため、(2-4)式のうちIout=0となるがIINTは流れるため、その分の電流帰還信号の電圧FBVが発生する。これを第2の電流帰還信号の電圧FBV_2と称する。従って、第2の電流帰還信号の電圧FBV_2は、(4-2)式で算出される。
制御基板30の演算処理部302は、第1の電流帰還信号の電圧FBV_1と第2の電流帰還信号の電圧FBN_2との差分(ΔFBV)を算出することで、当該差分(ΔFBV)は、(4-3)式に示されるように、帯電電圧Vout、ブリーダ抵抗105の抵抗値RINTに依存しない式となり、これらのばらつきの影響を無視できるため、帯電電流Ioutの検出精度を向上させることができる。
この時、帯電DC電圧Voutは、帯電DC出力設定値、ブリーダ抵抗105の抵抗値RINTは、抵抗定数から見積もって式に代入するが、実際には個体、温湿度、負荷条件等によってばらつくため、電流帰還信号の電圧FBVの計算上の誤差となる。例えば、上記の例で、帯電DC電圧Voutはが+3%ばらつき(Vout=-721V)、ブリーダ抵抗105の抵抗値RINTが-1%ばらつく(RINT=1.98MΩ)場合、電流帰還信号の電圧FBVは1.97Vとなる。これらのばらつきを有する値で(2-5)式から帯電電流Ioutを逆算すると、(5)式に示されるとおり、-44uAと計算され、真値(-30uA)に対して約47%と大きなばらつきとなる。
Figure 2023137443000006
上記の帯電電流Ioutを用いて、感光体ドラム6の表面電位Vを予測することができる。感光体ドラム6は、表層に電荷を蓄積することで帯電するため、感光体ドラム6を帯電させることはコンデンサに充電することと等価的に考えられる。このため、感光体ドラム6に蓄積された電荷Q帯電電位の間には(6-1)式が成立する。ここで、Cは感光体ドラム6の静電容量である。
ここで、この電荷Qは、(6-2)式で表されるため、(6-3)式が成立する。(6-3)式の両辺を微分すると、(6-4)式が得られる。帯電前の感光体ドラム6の表面電位Vd0、帯電印加電圧Vは一定とし、AC帯電ではV=Vとなるので、(6-5)式が成立する。
また、(6-6)式が成立することから、(6-7)式のとおり、帯電電流Ioutと感光体ドラム6の表面電位Vの関係式を導くことができる。
Figure 2023137443000007
本実施形態の演算処理部302は、上記の(2-5)式で算出した帯電電流Ioutを(6-7)式に適用して、感光体ドラム6の表面電位Vを予測し、適正なVとなるように帯電印加電圧Vを調整する。これにより、本実施形態では、地汚れや薄い画像等の帯電不良による異常画像を抑制することができる。
次に、第1の実施形態にかかる画像形成装置1による帯電電流Ioutおよび帯電印加電圧Vの算出処理について説明する。図7は、第1の実施形態にかかる画像形成装置1による帯電電流Ioutおよび帯電印加電圧Vの算出処理の一例を示すフローチャートである。
まず、高圧電源10により、帯電ローラ21への帯電DC電圧の印加が開始される(S101)。次に、演算処理部302は、帯電DC電圧の印加開始直後に、(4-1)式により、第1の電流帰還信号の電圧FBV_1を取得する(S102)。そして、演算処理部302は、帯電DC電圧の印加開始から感光体ドラム6が一周分回転する時間tOPCの経過を待つ(S103)。
感光体ドラム6が一周分回転する時間tOPCが経過したら、(4-2)式により演算処理部302は、帯電DC電圧の印加開始直後に、第2の電流帰還信号の電圧FBV_2を取得する(S104)。そして、演算処理部302は、(4-3)式により、第1の電流帰還信号の電圧FBV_1と第2の電流帰還信号の電圧FBV_2との差分を算出する(S105)。
次に、演算処理部302は、(2-5)式から帯電電流Ioutを算出し、算出されたIoutから、(6-7)式を用いて、感光体ドラム6の表面電位Vを算出する(S106)。そして、演算処理部302は、所望の表面電位Vとなるように、次回の帯電印加電圧Vを算出する(S107)。
このように本実施形態では、演算処理部302が、高圧電源10から出力開始直後に発生する第1の電流帰還信号と、高圧電源10からの出力開始から所定時間経過後に発生する第2の電流帰還信号と、に基づいて出力電流である帯電電流Ioutを算出する。より具体的には、演算処理部302が、高圧電源10から出力開始直後に発生する第1の電流帰還信号の電圧FBV_1と、高圧電源10からの出力開始から所定時間経過後に発生する第2の電流帰還信号の電圧FBV_1と、の差に基づいて出力電流である帯電電流Ioutを算出する。さらに具体的には、演算処理部302は、第1の電流帰還信号の電圧FBV_1と、出力開始から所定時間として感光体ドラム6が一回回転した時間の経過後に発生する第2の電流帰還信号の電圧FBV_2と、の差に基づいて出力電流である帯電電流Ioutを算出する。
このため、本実施形態によれば、上記差分は、帯電電圧Vout、ブリーダ抵抗105の抵抗値RINTに依存せず、これらのばらつきの影響を無視できるため、帯電電流Ioutの検出精度を向上させることができる。この結果、本実施形態によれば、単純な回路構成で、高精度に感光体ドラム6表面電位を所望の電位に制御することができる。
また、本実施形態では、演算処理部302は、算出した出力電流から感光体ドラム6の表面電位を検知しているので、検出された電流から、所望の感光体表面電位を得られ、異常画像の発生を防止することができる。
なお、感光体ドラム6と帯電ローラ21と間に空隙を設け、感光体ドラム6が帯電ローラ21と非接触で帯電される用に構成しても良い。
(第2の実施形態)
第1の実施形態では、帯電DC電圧の印加開始直後の第1の電流帰還信号の電圧FBV_1と、帯電DC電圧の印加開始から感光体ドラム6が1回転する時間が経過後の第1の電流帰還信号の電圧FBV_2との差分を求め、当該差分に基づいて出力電流である帯電電流Ioutを算出していた。
この第2の実施形態では、高圧電源10から出力開始直後に発生する第1の電流帰還信号の電圧PBV_1と、高圧電源10からの出力開始から、感光体ドラム6が複数周回転した場合の複数周ごとの時間経過後に発生する複数の第2の電流帰還信号の電圧と、に基づいて出力電流である帯電電流Ioutを算出している。
第2の実施形態に係る画像形成装置1の構成、高圧電源10の構成および回路構成、制御基板30の構成は、第1の実施形態と同様である。
図8は、第2の実施形態において、帯電DC制御信号、帯電DC電圧V、感光体ドラム6の表面電位Vd0、帯電電流Iout、電流帰還信号の電圧FBVの関係の一例を示すタイミングチャートである。図8において、横軸は時間である。
第2の実施形態では、感光体ドラム6や帯電ローラ21の劣化等により、感光体ドラム6の一周分の時間tOPCで十分に帯電しきれない(すなわち、感光体ドラム6の表面電位Vが収束しない)場合を考慮し、感光体ドラム6の2周分の時間(2×tOPC)で十分帯電したものと仮定している。
帯電DC制御信号が制御基板30から入力されると、帯電DC電圧Vが出力し、これに伴い感光体ドラム6がVに帯電する。(1-1)式に従って。電流検出抵抗106には、感光体ドラム6の一周分の時間tOPCの帯電電流Iout_1’と、内部電流IINTが流れ、(7-1)式に従って、第1の電流帰還信号の電圧FBV_1’が発生する。
Figure 2023137443000008
帯電DC制御信号のオンから感光体ドラム6の一周分の時間tOPC経過後、帯電された感光体ドラム6が帯電ローラ21と接するが、感光体ドラム6および帯電ローラ21の劣化により、Vd0<Vとなるため、(1-1)式のIout=Iout_2’(≠0)となり、その分の電流帰還信号の電圧FBVが発生する。当該電圧を、FBV_2’とすると、FBV_2’は(7-2)式で示される。
帯電DC制御信号のオンから感光体ドラム6の二周分の時間(2×tOPC)経過後、Vに帯電された感光体ドラム6が帯電ローラ21と接するため、(1-1)式のVd0=Vとなり、Iout=0となる。(2-4)式のうち、Iout=0となるが、内部電流IINTは流れるため、その分の電流帰還信号の電圧FBVが発生する。当該電圧を、FBV_3’とすると、FBV_3’は(7-3)式で示される。
上記の例の場合、感光体ドラム6をVに帯電させるのに必要な電流はIout_1+Iout_2と言える。このため、演算処理部302は、(7-4)式に示すように、「FBV_1’+FBV_2’-2×FBV_3’」(ΔFBV)を算出することで、帯電電圧Vout、ブリーダ抵抗の抵抗値RINTに依存しないでΔFBVを算出することができる。このため、帯電電圧Vout、ブリーダ抵抗の抵抗値RINTのばらつきの影響を無視することができ、帯電電流Ioutの検出精度を向上させることができる。
上記を一般化すると、感光体ドラム6を十分帯電させるのにN周分必要な場合、感光体ドラム6のN周目の電流帰還信号の電圧をFBVとすると、演算処理部302は、ΔFBVを、(8-1)式により算出することができる。
Figure 2023137443000009
そして、演算処理部302は、(2-5)式により、ΔFBVから帯電電流Ioutを算出すれば、感光体ドラム6を十分帯電させるのに必要な帯電電流Ioutを算出することができる。
N周の決定方法は、例えば、N周目の電流帰還信号の電圧(FBV)とN-1周目の電流帰還信号の電圧(FBVN-1)の差(ΔFBVN_N-1)が、所定の閾値(Vth)以下になった場合、すなわち、(8-2)式が成立する場合に、感光体ドラム6が十分帯電したと判断する等が考えられる。ただし、N周の決定方法はこれに限定されるものではない。
本実施形態では、帯電DCバイアスのみの場合及びAC+DC重畳バイアスの場合、いずれの帯電方式でも実現可能であるが、一般的にAC+DC重畳バイアスの方が感光体ドラム6の表面電位を十分に帯電させることができるため、AC+DC重畳バイアスの方がNは小さくなる。
感光体ドラム6の一周分の印加電圧平均値を使って制御すると低温低湿下だと1周では感光体ドラム6の表面電位が目標の電位にならずに制御誤差が発生する場合がある。
このため、本実施形態では、高圧電源10から出力開始直後に発生する第1の電流帰還信号の電圧PBV_1と、高圧電源10からの出力開始から、感光体ドラム6が複数周回転した場合の複数周ごとの時間経過後に発生する複数の第2の電流帰還信号の電圧と、に基づいて出力電流である帯電電流Ioutを算出している。
従って、本実施形態によれば、低温低湿下における帯電ローラ21の劣化時(経時ローラ使用時等)等、感光体ドラム6に電位が乗りにくい状態下でも、高精度に出力電流を算出することができる。このため、この結果、本実施形態によれば、低温低湿下においても、単純な回路構成で、高精度に感光体ドラム6表面電位を所望の電位に制御することができる。
なお、上記実施の形態では、本発明の画像形成装置を、コピー機能、プリンタ機能、スキャナ機能およびファクシミリ機能のうち少なくとも2つの機能を有する複合機に適用した例を挙げて説明するが、複写機、プリンタ、ファクシミリ装置等の画像形成装置であればいずれにも適用することができる。
1 画像形成装置
6 感光体ドラム
10 高圧電源
21 帯電ローラ
30 制御基板
101 帯電DCバイアス生成部
102 帯電ACバイアス生成部
103 帯電DC電流検知部
105 ブリーダ抵抗
106 電流検出抵抗
107 電圧モニタ
108 制御部
109 駆動回路
特開2000-81773号公報

Claims (6)

  1. 像担持体と、
    定電圧制御された電圧を生成する電源と、
    前記電源により生成された電圧が印加される電圧印加部材と、
    前記電源から前記電圧印加部材に流れる電流を検出する電流検出部と、
    前記電源の出力電圧を制御する制御部と、を備え、
    前記制御部は、前記電流検出部から、前記電源から出力開始直後に発生する第1の電流帰還信号と、前記電源からの出力開始から所定時間経過後に発生する第2の電流帰還信号とを取得し、前記第1の電流帰還信号と前記第2の電流帰還信号とに基づいて出力電流を算出する、
    画像形成装置。
  2. 前記制御部は、前記第1の電流帰還信号の電圧と、前記電源からの出力開始から、前記所定時間として前記像担持体が一周回転した時間の経過後に発生する前記第2の電流帰還信号の電圧と、の差に基づいて前記出力電流を算出する、
    請求項1に記載の画像形成装置。
  3. 前記制御部は、前記第1の電流帰還信号の電圧と、前記電源からの出力開始から、前記所定時間として前記像担持体が複数周回転した場合の前記複数周ごとの時間経過後に発生する複数の前記第2の電流帰還信号の電圧と、に基づいて前記出力電流を算出する、
    請求項1に記載の画像形成装置。
  4. 前記制御部は、算出した出力電流から前記像担持体の表面電位を検知する、
    請求項1~3のいずれか一つに記載の画像形成装置。
  5. 前記電源は、直流と交流の重畳バイアスを出力する、
    請求項1~4のいずれか一つに記載の画像形成装置。
  6. 前記像担持体と前記電圧印加部材と間に空隙が設けられ、前記像担持体が前記電圧印加部材と非接触で帯電される、
    請求項1~5のいずれか一つに記載の画像形成装置。
JP2022043661A 2022-03-18 2022-03-18 画像形成装置 Pending JP2023137443A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022043661A JP2023137443A (ja) 2022-03-18 2022-03-18 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022043661A JP2023137443A (ja) 2022-03-18 2022-03-18 画像形成装置

Publications (1)

Publication Number Publication Date
JP2023137443A true JP2023137443A (ja) 2023-09-29

Family

ID=88146122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022043661A Pending JP2023137443A (ja) 2022-03-18 2022-03-18 画像形成装置

Country Status (1)

Country Link
JP (1) JP2023137443A (ja)

Similar Documents

Publication Publication Date Title
US9454109B2 (en) Image forming apparatus controlling transfer conditions based on resistance of transfer member
JP2008186013A (ja) 画像形成装置
JP2016177278A (ja) 画像形成装置及び画像形成方法
JP5164738B2 (ja) 画像形成装置
US5737663A (en) System for altering a charge applied to a photosensitive drum by a contact charger
JP2014238457A (ja) 画像形成装置
US7907854B2 (en) Image forming apparatus and image forming method
JP2006259305A (ja) 画像形成装置
JP6445871B2 (ja) 画像形成装置
JP4183149B2 (ja) 印刷装置
JP2017102376A (ja) 画像形成装置
JP2023137443A (ja) 画像形成装置
JP6525644B2 (ja) 画像形成装置
JP2019049635A (ja) 画像形成装置
JP3309306B2 (ja) デジタル画像形成装置
JP2007304184A (ja) 画像形成装置および画像形成装置の帯電電圧更新方法
JP2019219487A (ja) 画像形成装置および画像形成方法
US11106152B2 (en) Image forming apparatus
JP2006064955A (ja) 画像形成装置
JP2019159208A (ja) 画像形成装置および制御方法
JP6589889B2 (ja) 画像形成装置
JPH05107835A (ja) 画像形成装置
JP6516568B2 (ja) 画像形成装置
JP2024024465A (ja) 画像形成装置、制御方法、及びプログラム
JP6614780B2 (ja) 画像形成装置