JP2024024465A - 画像形成装置、制御方法、及びプログラム - Google Patents
画像形成装置、制御方法、及びプログラム Download PDFInfo
- Publication number
- JP2024024465A JP2024024465A JP2022127304A JP2022127304A JP2024024465A JP 2024024465 A JP2024024465 A JP 2024024465A JP 2022127304 A JP2022127304 A JP 2022127304A JP 2022127304 A JP2022127304 A JP 2022127304A JP 2024024465 A JP2024024465 A JP 2024024465A
- Authority
- JP
- Japan
- Prior art keywords
- bias
- charging
- voltage
- image carrier
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000002344 surface layer Substances 0.000 claims description 29
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 108091008695 photoreceptors Proteins 0.000 description 111
- 230000003068 static effect Effects 0.000 description 60
- 238000001514 detection method Methods 0.000 description 59
- 230000008030 elimination Effects 0.000 description 55
- 238000003379 elimination reaction Methods 0.000 description 55
- 238000010586 diagram Methods 0.000 description 35
- 230000006870 function Effects 0.000 description 13
- 239000010410 layer Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101100228149 Drosophila melanogaster Trl gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/02—Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
- G03G15/0266—Arrangements for controlling the amount of charge
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Control Or Security For Electrophotography (AREA)
Abstract
【課題】像担持体の表面電位の検出精度を高める。【解決手段】画像形成装置は、像担持体と、電圧を生成する電源と、像担持体に隣接して配置されていて電圧を印加される電圧印加部材と、電源の電圧を制御する制御部と、を備え、制御部は、電圧を第1DCバイアスと第1DCバイアスとは異なる第2DCバイアスとの間で切替え、第2DCバイアスの印加中に電源と像担持体との間に流れる電流のDC成分に基づき、像担持体の速度に応じて第1DCバイアスを変更する。【選択図】図3
Description
本開示は、画像形成装置、制御方法、及びプログラムに関する。
電子写真方式の画像形成装置では、経時変化による帯電ローラの汚れ等により感光体の表面電位が狙いから逸れ、異常画像が発生することがある。これを防止するため、感光体の表面電位を検知し、適正な表面電位になるように帯電DC(直流)バイアスを調整すればよいが、表面電位センサは高価であり、メカ的なレイアウトにも影響する。
そこで、表面電位センサを用いずに、感光体と導電性部材(帯電手段、転写手段、又は現像剤帯電部材等)との間に流れる直流電流を検出することにより、感光体の表面電位を検出する画像形成装置がある(例えば特許文献1)。
しかし、特許文献1の画像形成装置において、感光体等の像担持体の全ての速度(例えば回転速度)で像担持体の表面電位を検出しようとすると、速度によって検出電流が変化することにより、狙いの表面電位検出精度を達成できない問題がある。
開示の技術は、像担持体の表面電位の検出精度を高めることを目的とする。
本開示の一態様は、像担持体と、電圧を生成する電源と、前記像担持体に隣接して配置されていて前記電圧を印加される電圧印加部材と、前記電源の前記電圧を制御する制御部と、を備え、前記制御部は、前記電圧を第1DCバイアスと前記第1DCデバイスとは異なる第2DCバイアスとの間で切替え、前記第2DCバイアスの印加中に前記電源と前記像担持体との間に流れる電流のDC成分に基づき、前記像担持体の速度に応じて前記第1DCバイアスを変更する、画像形成装置である。
本開示の一態様によれば、像担持体の表面電位の検出精度を高めることができる。
以下、図面を参照して本開示の実施形態について詳細に説明する。各図面において、同一構成要素には同一符号を付与し、重複した説明を適宜省略する。
<<画像形成装置の全体構成>>
図1は、一実施形態の画像形成装置1の全体構成を示す図である。画像形成装置1は、例えばデジタル複合機であり、コピー機能、プリンタ機能、及びファクシミリ機能等を有している。画像形成装置1は、自動原稿送り装置(ADF:Auto Document Feeder)2と、イメージスキャナ等の画像読取装置3と、レーザスキャナ等の書込装置4と、プリンタ等の印刷装置5と、を備えている。印刷装置5は、感光体ドラム6と、現像装置7と、搬送ベルト8と、定着装置9と、を備えている。
図1は、一実施形態の画像形成装置1の全体構成を示す図である。画像形成装置1は、例えばデジタル複合機であり、コピー機能、プリンタ機能、及びファクシミリ機能等を有している。画像形成装置1は、自動原稿送り装置(ADF:Auto Document Feeder)2と、イメージスキャナ等の画像読取装置3と、レーザスキャナ等の書込装置4と、プリンタ等の印刷装置5と、を備えている。印刷装置5は、感光体ドラム6と、現像装置7と、搬送ベルト8と、定着装置9と、を備えている。
画像形成装置1は、操作部のアプリケーション切替キーにより、コピー機能、プリンタ機能、及びファクシミリ機能を順次に切替えて選択することが可能である。画像形成装置1は、コピー機能の選択時にはコピーモードとなり、プリンタ機能の選択時にはプリンタモードとなり、ファクシミリモードの選択時にはファクシミリモードとなる。
以下では、コピーモードを例に挙げ、画像形成装置1での画像形成の流れを簡単に説明する。コピーモードでは、原稿束がADF2により順に画像読取装置3に給送され、画像読取装置3により原稿の画像情報が順に読み取られる。そして、読み取られた画像情報は、画像処理手段を介して書込装置4により光情報に変換される。
印刷装置5では、感光体ドラム6が後述の帯電ローラ(後述の図2を参照)により一様に帯電される。感光体ドラム6は、ドラム状導電性支持体上に感光層等を設けたものである。感光体ドラム6は、帯電後に書込装置4からの光情報により露光されて静電潜像を形成する。感光体ドラム6上の静電潜像は、現像装置7により現像されてトナー像となる。トナー像は、搬送ベルト8により記録媒体に転写される。記録媒体は、定着装置9によりトナー像が定着され、トレイに排出される。
<<電子写真プロセスの構成>>
図2は、本実施形態の画像形成装置1が有する作像部10の構成を示す図である。作像部10は、電子写真プロセスを実行する。作像部10は、作像用の高圧電源11(電源の一例)と、帯電ローラ12(電圧印加部材の一例)と、感光体13(像担持体の一例)と、露光器14と、現像器15と、転写用の高圧電源16と、1次転写ローラ17と、中間転写ベルト18と、を備えている。また、作像部10は、必須ではないが、除電器19を備えていてもよい。
図2は、本実施形態の画像形成装置1が有する作像部10の構成を示す図である。作像部10は、電子写真プロセスを実行する。作像部10は、作像用の高圧電源11(電源の一例)と、帯電ローラ12(電圧印加部材の一例)と、感光体13(像担持体の一例)と、露光器14と、現像器15と、転写用の高圧電源16と、1次転写ローラ17と、中間転写ベルト18と、を備えている。また、作像部10は、必須ではないが、除電器19を備えていてもよい。
なお、他の実施形態において、転写用の高圧電源16も「電源」の一例である。この場合、1次転写ローラ17が「電圧印加部材」の一例であり、中間転写ベルト18が「像担持体」の一例である。
作像用の高圧電源11は、高電圧を生成して帯電ローラ12に印加する。帯電ローラ12は、感光体13を一様に帯電させる。感光体13は、例えば負帯電性の有機感光体である。感光体13は、絶縁層である下引き層と、感光層としての電荷発生層及び電荷輸送層と、保護層(表層)とを順次積層したものである。感光体13は、露光器14により画像信号に応じた露光がなされ、感光体13に静電潜像が形成される。
そして、現像器15によってトナー像が感光体13上に現像される。転写用の高圧電源16は、高電圧を生成して1次転写ローラ17に印加する。1次転写ローラ17は、感光体13上のトナー像を中間転写ベルト18に転写させる。中間転写ベルト18に転写されたトナー像は、図示しない2次転写ローラ等の2次転写ユニットによって記録媒体に転写される。トナー像が転写された記録媒体は、定着装置9によって定着されることにより画像を得る。
除電器19がある場合には、除電器19により感光体13の表面電荷を除去した後に帯電処理を行う。また、カラー印刷の場合、同様の作像部10が4個設けられ、色毎に中間転写ベルト18にトナー像を転写し、その後に2次転写ユニット及び定着装置9に至る。
<<画像形成装置の要部構成>>
図3は、本実施形態の画像形成装置1の要部構成を示す図である。以下の説明では、電源の一例として作像用の高圧電源11について説明するが、本開示の技術は、作像用の高圧電源11に限らず、転写用の高圧電源16等の他の高圧電源に適用してもよい。
図3は、本実施形態の画像形成装置1の要部構成を示す図である。以下の説明では、電源の一例として作像用の高圧電源11について説明するが、本開示の技術は、作像用の高圧電源11に限らず、転写用の高圧電源16等の他の高圧電源に適用してもよい。
画像形成装置1は、高圧電源11と、制御基板20(制御部の一例)と、を備えている。高圧電源11は、帯電ローラ12に印加する帯電バイアスを生成する。高圧電源11は、電圧印加方式としてAC(交流)帯電方式を用いる。つまり高圧電源11は、帯電DCバイアスと帯電ACバイアスとを重畳させた帯電バイアス(振動電圧)を生成して帯電ローラ12に印加する。但し、高圧電源11は、DC(直流)帯電方式等の他の帯電方式を用いてもよい。
高圧電源11は、帯電DCバイアス生成部21と、帯電ACバイアス生成部22と、帯電DC電流検知部23と、を備えている。但し、DC帯電方式を用いる場合は、帯電ACバイアス生成部22がなくてもよい。
帯電DCバイアス生成部21は、帯電DCバイアスを生成する帯電DCバイアス生成回路である。帯電ACバイアス生成部22は、帯電ACバイアスを生成する帯電DCバイアス生成回路である。
帯電DCバイアス生成部21は、制御基板20から制御信号C1を受取り、制御信号C1に応じた大きさとタイミングの帯電DCバイアスを生成する。帯電ACバイアス生成部22は、制御基板20から制御信号C2を受取り、制御信号C2に応じた大きさとタイミングの帯電ACバイアスを出力する。制御信号C1、C2には、例えばPWM(Pulse Width Modulation)信号が用いられる。
帯電DCバイアス生成部21は、感光体13を帯電させるため、第1帯電DCバイアスV1(第1DCバイアスの一例)を帯電ローラ12に印加する。その後、感光体13を除電するため、第1帯電DCバイアスV1から第2帯電DCバイアスV0(第2DCバイアスの一例)へと切替え、帯電DCバイアス生成部21は、第2帯電DCバイアスV0を帯電ローラ12に印加する。ここで、第1帯電DCバイアスV1の絶対値は、第2帯電DCバイアスV0の絶対値より大きい(|V1|>|V0|)。
帯電DCバイアス生成部21が第1帯電DCバイアスV1から第2帯電DCバイアスV0へ切替えた後、帯電ACバイアス生成部22により生成された帯電ACバイアスにより感光体13が除電する。
帯電DC電流検知部23は、第2帯電DCバイアスV0の印加中に、帯電ローラ12を介して高圧電源11と感光体13との間で流れる出力電流Iout(電流の一例)のDC成分(帯電DC電流)を検知する。帯電DC電流検知部23は、電圧に変換した電流帰還信号FBを生成し、制御基板20へ送出する。帯電DC電流検知部23の詳細については後述する。
以下の説明では、感光体13の除電時に、帯電DC電流検知部23が帯電ローラ12を介して高圧電源11から感光体13へ流れる正極性の出力電流Iout(図3でいうと右向きに流れる除電電流)を検知する例について説明する。但し、本開示の技術は、除電電流に限らず、感光体13の作像時に、帯電ローラ12を介して感光体13から高圧電源11へ流れる負極性の出力電流Iout(図3でいうと左向きに流れる帯電電流)を検知してもよい。
制御基板20は、高圧電源11を制御する。制御基板20は、MPU(Micro Processor Unit)等の集積回路を備えている。制御基板20は、メモリ24と、演算処理部25と、を備えている。
図4は、本実施形態の制御基板20のハードウェア構成を示す図である。図4に示すように、メモリ24は、ROM(Read Only Memory)41と、RAM(Random Access Memory)42とを備えている。メモリ24は、NVRAM(Non Volatile Random Access Memory)43を備えていてもよい。
演算処理部25は、CPU(Central Processing Unit)44等のプロセッサを備えている。演算処理部25は、CPU44の代わりに又はCPU44に加えて、FPGA(Field Programmable Gate Array)を備えていてもよい。或いは、演算処理部25は、CPU44の代わりに又はCPU44に加えて、ASIC(Application Specific Integrated Circuit)等を備えていてもよい。
CPU44は、制御基板20全体を制御すると共に、各種演算処理を実行する。ROM41は、IPL(Initial Program Loader)等のCPU44の駆動に用いるプログラムを記憶する。RAM42は、プログラムをロードする記憶領域として又はロードしたプログラムのワークエリアとして使用する。NVRAM43は、CPU44により実行される各種プログラム及びデータを記憶する。
制御基板20は、A/D(Analog to Digital)コンバータ45と、D/A(Digital to Analog)コンバータ46とを備えた入出力回路47を備えている。CPU44、ROM41、RAM42、NVRAM43、及び入出力回路47等の各構成要素は、バス48を介して接続される。
図3を再び参照すると、制御基板20は、高圧電源11から帰還した電流帰還信号FBをA/Dコンバータ45で受取り、A/Dコンバータ45は、電流帰還信号電圧FBVにAD変換する。
演算処理部25は、電流帰還信号FBのA/D変換値(電圧値)に基づき高圧電源11の出力電流IoutのDC成分(帯電DC電流)を算出し、メモリ24に格納する。演算処理部25は、メモリ24に格納された各種情報を元に各種処理を実行する。
<<線速と除電電流との関係>>
以下、感光体13の線速λ(速度の一例)と高圧電源11の出力電流Iout(帯電電流又は除電電流)との関係について説明する。図5は、本実施形態の感光体13の線速λと高圧電源11の出力電流Ioutとの関係を示す図である。なお、線速λとは、感光体ドラム6の回転速度である。但し、像担持体が中間転写ベルト18の場合は、中間転写ベルト18の移動速度が「速度」の一例である。
以下、感光体13の線速λ(速度の一例)と高圧電源11の出力電流Iout(帯電電流又は除電電流)との関係について説明する。図5は、本実施形態の感光体13の線速λと高圧電源11の出力電流Ioutとの関係を示す図である。なお、線速λとは、感光体ドラム6の回転速度である。但し、像担持体が中間転写ベルト18の場合は、中間転写ベルト18の移動速度が「速度」の一例である。
感光体13は表層に電荷を溜めることにより帯電するため、感光体13を帯電させることはコンデンサに充電することと等価的に考えられる。感光体13に溜まった電荷Qと、帯電後の感光体13の表面電位Vdと、帯電前の感光体13の表面電位Vd0との間には以下の式1が成り立つ。ここで、Cは感光体13の静電容量を表す。
また、電荷Qは、以下の式2でも表せられ、高圧電源11の出力電流Iout(高圧電源11から帯電ローラ12を介して感光体13へ流れる除電電流)に変換することができる。
式3の両辺を微分して感光体13の静電容量Cを別の変数により置換すると、高圧電源11の出力電流Ioutの式4を導ける。
ここで、εは感光体13の表層の誘電率、Sは帯電に寄与する感光体13の表面積、dは感光体13の表層の膜厚、Lは帯電に寄与する感光体13の長さ、λは感光体13の線速(1秒当たりに回転する感光体13の周方向長さ[mm])である。ε・L・λ/dは帯電のインピーダンスを表すが、高圧電源11の出力電流Ioutは感光体13の線速λに依存することが分かる。
例えば、帯電前の感光体13の表面電位Vd0と、帯電後の感光体13の表面電位Vdとを負極性の電圧とし、第1帯電DCバイアスV1から第2帯電DCバイアスV0へと切替えた時に流れる正極性の出力電流Iout(除電電流)は、次のように算出される。
つまり第1帯電DCバイアスV1を-700Vとし、第2帯電DCバイアスV0を-150Vとした場合に、-700Vに帯電した感光体13を-150Vへ除電する時に流れる除電電流について考える。
この時、前述の式4のうち、帯電ローラ12の使用初期では、帯電前の感光体13の表面電位Vd0が第1帯電DCバイアスV1と等しく、帯電後の感光体13の表面電位Vdが第2帯電DCバイアスV0と等しくなる。なお、帯電ローラ12の使用初期とは、例えば市場着荷後に電源を最初に投入した直後、又は帯電ローラ12の交換後に電源を最初に投入した直後等を意味する。また、帯電ローラ12の使用初期は、画像形成装置1の使用初期の一例である。
ここで、感光体13の表層の誘電率εを4.0×10-11F/mとし、帯電に寄与する感光体13の長さLを300mmとし、感光体13の線速λを200mm/sとし、感光体13の表層の膜厚dを30μmとする。また、帯電前の感光体13の表面電位Vd0(=V1)は-700Vであり、帯電後の感光体13の表面電位Vd(=V0)は-150Vであるため、前述の式4から除電電流(正極性の出力電流Iout)は次のように算出される。
また、同様に線速λが300mm/sの場合、前述の式4から除電電流(正極性の出力電流Iout)は次のように算出される。
したがって、感光体13の線速λに応じて除電電流(正極性の出力電流Iout)が変化することが分かる。
<<高圧電源の回路構成>>
図6は、本実施形態の高圧電源11の回路構成を示す図である。説明を簡略化するため、本例の高圧電源11は直流高圧電源とする。つまり高圧電源11は、帯電DCバイアス生成部21と、帯電DC電流検知部23と、を備えているが、帯電ACバイアス生成部22がないものとする。
図6は、本実施形態の高圧電源11の回路構成を示す図である。説明を簡略化するため、本例の高圧電源11は直流高圧電源とする。つまり高圧電源11は、帯電DCバイアス生成部21と、帯電DC電流検知部23と、を備えているが、帯電ACバイアス生成部22がないものとする。
高圧電源11は、駆動回路31と、トランス32と、電流検出回路33と、電圧検出回路34と、電圧モニタ35と、制御部36と、を備えている。なお、電圧モニタ35と制御部36の機能は、前述の制御基板20が担当してもよい。
駆動回路31は、トランジスタ等のスイッチング素子を備えており、トランス32の動作を制御する。トランス32は、駆動回路31の制御に応じて動作することにより、24V等の入力電圧Vinから、入力電圧Vinよりも高電圧の直流電圧を生成する。
電流検出回路33は、帯電DC電流検知部23に相当する。電流検出回路33は、検出抵抗値Rdetの電流検出抵抗R1を備えている。電流検出回路33は、a点において出力電流Ioutを検出し、電流帰還信号FBを上位の制御基板20へ出力する。
電圧検出回路34は、内部抵抗値Rintのブリーダ抵抗R2~R3を備えている。電圧検出回路34は、b点において出力電圧Voutを分圧し、電圧検出信号を電圧モニタ35へ出力する。電圧モニタ35は、上位の制御基板20から入力される目標電圧と検出電圧との偏差を制御部36へ送出する。
制御部36は、上位の制御基板20からPWM信号等の制御信号C1を入力し、制御信号C1に応じて駆動回路31のスイッチング素子のオンオフ間隔を調整する。
また、制御部36は、目標電圧と検出電圧との偏差がゼロに近づくように第1帯電DCバイアスを調整する。この調整には、P(Proportional:比例)制御、PI(Proportional-Integral:比例積分)制御、又はPID(Proportional-Integral-Differential:比例積分微分)制御等が用いられる。
<<出力電流の検出方法>>
ここで、電流帰還信号電圧FBVと出力電流Ioutとの関係について説明する。電流帰還信号電圧FBVは、次の式7に示すように、電流検出抵抗R1の検出抵抗値Rdetと、電流検出抵抗R1に流れる検出電流Idetとの積で表せる。
ここで、電流帰還信号電圧FBVと出力電流Ioutとの関係について説明する。電流帰還信号電圧FBVは、次の式7に示すように、電流検出抵抗R1の検出抵抗値Rdetと、電流検出抵抗R1に流れる検出電流Idetとの積で表せる。
また、第1帯電DCバイアスの印加時は、高圧電源11の出力電圧Voutが負極性であるため、高圧電源11の出力電流Iout(帯電電流)が負極性(図5でいうと左向き)に流れる。この時、高圧電源11の内部に内部電流Iintが流れ、内部電流Iintは、次の式8に示すように、高圧電源11の出力電圧Voutと、ブリーダ抵抗R2~R3の内部抵抗値Rintとの商で表せる。なお、高圧電源11の内部電流Iintも負極性である。
ここで、図5から分かるように、検出電流Idetは、次の式9に示すように、高圧電源11の内部電流Iintと、高圧電源11の出力電流Iout(帯電電流)との和で表せる。
以上をまとめると、電流帰還信号電圧FBVは次の式10から導出することができる。
例えば、電流検出抵抗R1の検出抵抗値Rdetを5kΩとし、高圧電源11の出力電圧Voutを-700Vとし、高圧電源11の負極性の出力電流Iout(帯電電流)を-30μAとし、ブリーダ抵抗R2~R3の内部抵抗値Rintを2MΩとする。この場合、電流帰還信号電圧FBVは、次の式11のように計算できる。
一方、第2帯電DCバイアスの印加時(除電電流の発生時)は、高圧電源11の出力電流Ioutが正極性(図5でいうと右向き)に流れることになる。例えば、電流検出抵抗R1の検出抵抗値Rdetを5kΩとし、高圧電源11の出力電圧Voutを-700Vとし、高圧電源11の正極性の出力電流Iout(除電電流)を+30μAとし、ブリーダ抵抗R2~R3の内部抵抗値Rintを2MΩとする。この場合、電流帰還信号電圧FBVは、次の式12のように計算できる。
換言すれば、制御基板20の演算処理部25は、式10により、電流帰還信号電圧FBVから出力電流Iout(帯電電流又は除電電流)を検出することができる。
次に、感光体13の表面電位Vdの検出方法について説明する。
前述の式4に示す通り、出力電流Ioutと、帯電後の感光体13の表面電位Vdと帯電前の感光体13の表面電位Vd0との差分(Vd-Vd0)とは、比例関係にある。また、帯電ローラ12の使用初期では、帯電後の感光体13の表面電位Vdが作像時の第1帯電DCバイアスV1と概ね同じになる。
帯電ローラ12の使用初期において、除電時の第2帯電DCバイアスV0を-150Vとし、作像時の第1帯電DCバイアスV1を数ポイント取ると、図7のような関係となる。
図7は、本実施形態の第1帯電DCバイアス(V1)と除電電流(Iout)との初期関係を示す図である。ここで、感光体13の表層の誘電率εを4.0×10-11F/mとし、帯電に寄与する感光体13の長さLを300mmとし、感光体13の線速λを200mm/sとし、感光体13の表層の膜厚dを30μmとする。
帯電ローラ12の使用初期において、演算処理部25は、図7に示すように第1帯電DCバイアスV1と除電電流(正極性の出力電流Iout)との関係をプロットする。そして、演算処理部25は、V1-Iout特性関係式(前述の式4の近似式)を算出し、メモリ24へ格納しておく。図7の例では、V1-Iout特性関係式は、次の式13のようになる。
一方、帯電ローラ12の経時変化後においては、帯電後の感光体13の表面電位Vdが作像時の第1帯電DCバイアスV1と等しくならず、誤差電位ΔVdだけ低下した状態となる(Vd=V1-ΔVd、つまりV1=Vd+ΔVd)。
したがって、帯電ローラ12の経時変化後において、演算処理部25は、電流帰還信号電圧FBVから除電電流(正極性の出力電流Iout)を検出し、図7で求めたV1-Iout特性関係式へ代入する。これにより、実際の感光体13の表面電位Vd(すなわち誤差電位ΔVd)を検出することができる。
例えば、帯電ローラ12の経時変化後において、感光体13を帯電させる第1帯電DCバイアスV1を-700Vとし、感光体13の除電時の第2帯電DCバイアスV0を-150Vとする。この時、除電電流(正極性の出力電流Iout)を検出した結果が40μAであった場合、式13のV1-Iout特性関係式から、実際の感光体13の表面電位Vdは-650V(すなわち誤差電位Δdが-50V)であると検出することができる。
図8は、本実施形態の第1帯電DCバイアス(V1)と除電電流(Iout)との経時関係を示す図である。図8に示すように、作像時の第1帯電DCバイアスV1(-700V)に対し、感光体13の表面電位Vdが誤差電位ΔVd(-50V)だけ低下していることが分かる(-650V)。
したがって、所望の感光体13の表面電位Vd(-700V)に対し、第1帯電DCバイアスV1を誤差電位ΔVd(-50V)だけ高く設定することにより(-750V)、所望の電位に感光体13を帯電させることができる。ひいては、地汚れ又はキャリア付着等の異常画像の発生を抑制することができる。
<<実施例1>>
以下、感光体13の線速λに応じて第1帯電DCバイアスV1を設定する実施例1について説明する。
以下、感光体13の線速λに応じて第1帯電DCバイアスV1を設定する実施例1について説明する。
まず、除電電流(正極性の出力電流Iout)と電流帰還信号電圧FBVとの関係について説明する。電流帰還信号電圧FBVは、前述の式10を用いて導出できる。例えば、電流検出抵抗R1の検出抵抗値Rdetを50kΩとし、高圧電源11の出力電圧Voutを-150Vとし、ブリーダ抵抗R2~R3の内部抵抗値Rintを2MΩとする。この時、図7に示す例における除電電流(正極性の出力電流Iout)と電流帰還信号電圧FBVとの関係は、図9に示すようになる。
図9は、実施例1の除電電流(Iout)と電流帰還信号電圧(FBV)との初期関係を示す図である。実使用上は、マシンのスペックとして線速λに幾つかの種類があるが、前述の式4で示した通り、感光体13の線速λによって流れる除電電流は変化する。感光体13の線速λを、100mm/s,200mm/s,300mm/sとした時の除電電流(正極性の出力電流Iout)と電流帰還信号電圧FBVの関係を図10に示す。
図10は、実施例1の線速変化時の除電電流(Iout)と電流帰還信号電圧(FBV)との関係を示す図である。例えば、制御基板20のA/Dコンバータ45の電源電圧が3.3Vの場合、電流帰還信号電圧FBVが3.3V以上となるとA/Dコンバータ45が電圧を検出できず、耐圧を超えるとA/Dコンバータ45の破損にも繋がる。同様に、電流帰還信号電圧FBVが0V以下の場合も、A/Dコンバータ45が電圧を検出できないか、又はA/Dコンバータ45の破損に繋がる。
感光体13の全ての線速λを網羅するような電流検出抵抗R1の検出抵抗値Rdetを選定する(つまり検出抵抗値Rdetを下げる)ことにより、A/Dコンバータ45の制約の問題は解決できる。しかし、各線速λで使われる電流帰還信号電圧FBVの電圧範囲が狭くなり、電圧検出分解能が低下してしまう。
そこで、本開示の技術では、A/Dコンバータ45又は電流検出抵抗R1等の電子部品の制約に起因する課題を解決するため、感光体13の線速λに応じて感光体13を帯電させる第1帯電DCバイアスV1を最適化する。
図11は、実施例1の線速λに応じた第1帯電DCバイアスV1の設定を示す図である。第1帯電DCバイアスV1の絶対値は、線速λが速いほど小さく、線速λが遅いほど大きい。演算処理部25は、線速λに応じて作像時の第1帯電DCバイアスV1を設定する。これにより、線速変化時の除電電流(正極性の出力電流Iout)と電流帰還信号電圧FBVとの関係は、図12に示すようになる。
図12は、実施例1の線速変化時の除電電流(Iout)と電流帰還信号電圧(FBV)との関係を示す図である。なお、第1帯電DCバイアスV1と線速λ以外の各パラメータは、図7又は図9の例で使用したものと同じである。
線速λに応じた第1帯電DCバイアスV1を印加することにより、いずれの線速λであっても電流検出抵抗R1の検出抵抗値Rdetを下げることなく、0V~3.3Vの電流帰還信号電圧FBVを発生させることができる。つまり高い分解能で除電電流を検出することができ、ひいては感光体13の表面電位Vdの検出精度を高めることができる。
以下、実施例1の画像形成装置1の制御方法について説明する。図13は実施例1のV1-Iout特性関係式を算出するフローチャートであり、図14は実施例1の第1帯電DCバイアスを決定するフローチャートである。
これらフローチャートの機能は、演算処理部25のCPU44等のプロセッサ又はコンピュータに実行させるプログラムによって実現される。
図13に示すフローチャートは、帯電ローラ12の使用初期において、感光体13の線速λに応じた複数種類の第1帯電DCバイアスV1を印加して複数種類の出力電流Ioutを検出し、V1-Iout特性関係式を算出してメモリ24に格納する処理である。
図14に示すフローチャートは、帯電ローラ12の経時変化後において、検出した出力電流IoutとV1-Iout特性関係式から感光体13の表面電位Vd(すなわち誤差電位Δd)を検出し、誤差電位Δdに基づいて帯電DCバイアスを決定する処理である。
まず図13を参照して帯電ローラ12の使用初期における画像形成装置の動作について説明する。
ステップS11では、制御基板20の演算処理部25が感光体13の線速λに応じて適正な第1帯電DCバイアスV1を決定する。本例では、図11に示すV1_1~V1_6の6種類の第1帯電DCバイアスV1を予め設定した例について説明するが、第1帯電DCバイアスV1の種類の数は2種類以上であれば幾つでもよい。
このとき、演算処理部25は、第1帯電DCバイアスV1が線速λに適した適正値である場合は第1帯電DCバイアスV1を変更せず、第1帯電DCバイアスV1が線速λに適した適正値でない場合は第1帯電DCバイアスを変更する。
ステップS12~ステップS18は、6種類の第1帯電DCバイアスV1(V1_N,Nは1~6の整数)について、演算処理部25が除電電流(I_N,Nは1~6の整数)をそれぞれ算出するループ処理である。ステップS12では、演算処理部25が変数Nに1を代入する。
ステップS13において、演算処理部25が制御信号C1を帯電DCバイアス生成部21に送出することにより、帯電DCバイアス生成部21が第1帯電DCバイアスV1(V1_N)の印加を開始する。
ステップS14では、感光体13の表面を一様に帯電させるため、演算処理部25は感光体13が一周以上回転するまで待機し、帯電DCバイアス生成部21が第1帯電DCバイアスV1を印加し続ける。なお、本実施例では、感光体13が一周以上回転する時間だけ待機するとしているが、1周以下の時間だけ待機しても問題ない。
ステップS15では、演算処理部25が第1帯電DCバイアスV1(V_N)から第2帯電DCバイアスV0へ切替える制御信号C1を帯電DCバイアス生成部21に送出する。これにより、帯電DCバイアス生成部21が第2帯電DCバイアスV0(-150V)の印加を開始する。第1帯電DCバイアスV1から第2帯電DCバイアスV0へ切替えることにより、感光体13を除電する。なお、第2帯電DCバイアスV0を印加する時間は、感光体13の1周分の時間でもよいし、或いは1周分以上の時間又は1周分以下の時間でもよい。
ステップS16では、演算処理部25は、第2帯電DCバイアスV0の印加中に帯電DC電流検知部23により検知された電流帰還信号FBを受取り、前述の式10から電流帰還信号電圧FBVを除電電流(正極性の出力電流Iout)に換算する。
なお、演算処理部25での電流帰還信号FBの受取り方と、除電電流への換算の仕方については限定されない。例えば、除電電流の発生中に複数回サンプリングしてサンプリングの平均値から除電電流に換算してもよいし、又は特定のタイミングの1ポイントから除電電流に換算してもよい。
ステップS17では、演算処理部25が変数Nをインクリメントし(N=N+1)、ステップS18では、演算処理部25がループ処理の終了条件(N=6?)を判定する。
ステップS19では、図7に示すように演算処理部25が第1帯電DCバイアスV1(V1_N)と除電電流(I_N)の関係をプロットし、V1-Iout特性関係式をメモリ24に格納する。
次に図14を参照して帯電ローラ12の経時変化後における画像形成装置1の動作について説明する。
ステップS21において、演算処理部25は制御信号C1を帯電DCバイアス生成部21に送出することにより、帯電DCバイアス生成部21が第1帯電DCバイアスV1の印加を開始する。
ステップS22では、感光体13の表面を一様に帯電させるため、演算処理部25は感光体13が一周以上回転するまで待機し、帯電DCバイアス生成部21が第1帯電DCバイアスV1を印加し続ける。なお、本実施例では、感光体13が一周以上回転する時間だけ待機としているが、1周以下の時間だけ待機しても問題ない。
第1帯電DCバイアスV1は、画像形成装置1内の他の調整動作によって補正された帯電DCバイアスでもよいし、或いは温湿度又は経時劣化等から補正された帯電DCバイアスでもよいし、或いは特定の固定値でもよい。
ステップS23では、演算処理部25が第1帯電DCバイアスV1から第2帯電DCバイアスV0へ切替える制御信号C1を帯電DCバイアス生成部21に送出する。これにより、帯電DCバイアス生成部21が第2帯電DCバイアスV0(-150V)の印加を開始する。第1帯電DCバイアスV1から第2帯電DCバイアスV0へ切替えることにより、感光体13を除電する。なお、第2帯電DCバイアスV0を印加する時間は、感光体13の1周分の時間でもよいし、或いは1周分以上の時間又は1周分以下の時間でもよい。
ステップS24では、演算処理部25は、帯電DC電流検知部23により検知された電流帰還信号FBを受取り、前述の式10から電流帰還信号電圧FBVを除電電流(正極性の出力電流Iout)に換算する。
なお、演算処理部25での電流帰還信号FBの受取り方と、除電電流への換算の仕方については限定されない。例えば、除電電流の発生中に複数回サンプリングしてサンプリングの平均値から除電電流に換算してもよいし、又は特定のタイミングの1ポイントから除電電流に換算してもよい。
ステップS25において、演算処理部25は、ステップS19にてメモリ24に格納しておいたV1-Iout特性関係式から、本フローチャート実行時に印加した第1帯電DCバイアスV1により感光体13の表面電位Vdを検出する。すなわち、演算処理部25は、誤差電位ΔVd(第1帯電DCバイアスV1と感光体13の表面電位Vdとの差分)を検出する。
ステップS26では、演算処理部25が、誤差電位ΔVdに基づき、所望の表面電位Vdに感光体13を帯電させるのに必要な第1帯電DCバイアスV1を決定する。つまり、演算処理部25は、第1帯電DCバイアスV1を誤差電位ΔVdの分だけ高めるように作像時の第1帯電DCバイアスV1を補正する。演算処理部25は、決定した第1帯電DCバイアスV1を、次回以降の印刷動作時に使用する。
<<実施例1の作用効果>>
実施例1によれば、感光体13の線速λに応じて第1帯電DCバイアスV1を変更する。したがって、A/Dコンバータ45又は電流検出抵抗R1等の電子部品の制約に関わらず、電流検出精度を向上させ、ひいては感光体13の表面電位Vdの検出精度を高めることができる。
実施例1によれば、感光体13の線速λに応じて第1帯電DCバイアスV1を変更する。したがって、A/Dコンバータ45又は電流検出抵抗R1等の電子部品の制約に関わらず、電流検出精度を向上させ、ひいては感光体13の表面電位Vdの検出精度を高めることができる。
また、画像形成装置1の使用初期(例えば帯電ローラ12の使用初期)において、線速λに応じた複数種類の第1帯電DCバイアスV1(V1_1~V1_6)を印加し、複数種類の出力電流Iout(I_N)を検出してプロットする。これにより、V1-Iout特性関係式をメモリ24に格納しておく。
そして、画像形成装置1の経時変化後(例えば帯電ローラ12の経時変化後)において、第1帯電DCバイアスから第2帯電DCバイアスへ切替え、第2帯電DCバイアスの印加中に正極性の出力電流Iout(除電電流)を検出する。或いは、第2帯電DCバイアスから第1帯電DCバイアスへ切替え、第1帯電DCバイアスの印加中に負極性の出力電流Iout(帯電電流)を検出する。そして、感光体13の表面電位Vd(すなわち誤差電位ΔVd)を検出する。
以降の印刷動作時において、第1帯電DCバイアスV1を誤差電位ΔVdの分だけ高く設定することにより、所望の表面電位Vdに感光体13を帯電させることができる。ひいては、地汚れ又はキャリア付着等の異常画像の発生を抑制することができる。
<<実施例2>>
以下、感光体13の表層の膜厚dに応じた第1帯電DCバイアスV1の設定例について説明する。
以下、感光体13の表層の膜厚dに応じた第1帯電DCバイアスV1の設定例について説明する。
前述の式4から出力電流Iout(除電電流又は帯電電流)は、感光体13の表層の膜厚dにも依存することが分かる。膜厚dは、感光体13によってばらつくため、出力電流Ioutの検出の誤差因子となる。
感光体13の表層の膜厚が20μm,30μm,40μmとなった場合の第1帯電DCバイアスV1と除電電流(正極性の出力電流Iout)との関係を図15に示す。図15は、実施例2の膜厚変化時の第1帯電DCバイアス(V1)と除電電流(Iout)との関係を示す図である。図15に示すように、膜厚dが薄くなるにつれて除電電流(Iout)が大きくなることが分かる。
図16~図17は、実施例2の膜厚変化時の除電電流(Iout)と電流帰還信号電圧(FBV)との関係を示す図である。なお、膜厚d以外の各パラメータは、図7又は図9の例で使用したものと同じである。
図16に示すように、感光体13の線速λが100mm/sの場合は、電流帰還信号電圧FBVが1.8V~3.525Vの範囲となっている。電圧範囲がA/Dコンバータ45の電源電圧3.3Vを超えており、且つ、1.8V以下の電圧範囲は使われないため、電流検出分解能が低い。
逆に、図17に示すように、感光体13の線速λが300mm/sの場合は、電流帰還信号電圧FBVが-2.1V~3.075Vの範囲となっており、0V以下の電圧が印加されることにより、A/Dコンバータ45を破損させる恐れがある。
感光体13の表層の膜厚dのバラツキ、及び感光体13の線速λ等の誤差因子を含めて全てを網羅した電流検出抵抗R1の検出抵抗値Rdetを選定することにより、A/Dコンバータ45の制約の問題は解決できる。しかし、実施例1以上に電流検出分解能が低下してしまう。
そこで、本開示の技術では、A/Dコンバータ45又は電流検出抵抗R1等の電子部品の制約に起因する課題を解決するため、感光体13の表層の膜厚dに応じて感光体13を帯電させる第1帯電DCバイアスV1を最適化する。
前述の式4及び図15から分かるように、感光体13の表層の膜厚dによってV1-Iout特性の傾き(第1帯電DCバイアスV1と出力電流Ioutの関係式の傾き)が変化し、V1-Iout特性の傾きは感光体13の表層の膜厚dに比例する。図18は、実施例2の膜厚dとV1-Iout特性の傾きとの関係を示す図である。図18には、感光体13の表層の膜厚が20μm~40μmの時のV1-Iout特性の傾きが示されている。
したがって、帯電ローラ12の使用初期において、導出したV1-Iout特性の傾きから感光体13の表層の膜厚dを検出し、検出した膜厚dに応じて第1帯電DCバイアスV1を最適化する。そして、帯電ローラ12の経時変化後において、感光体13の表面電位Vdの検出を実行することにより、最適な範囲で電流を検出でき、ひいては感光体13の表面電位Vdの検出精度を高めることができるようになる。
図19は、実施例2の膜厚dに応じた第1帯電DCバイアスV1の設定を示す図である。例えば、図19に示すように感光体13の表層の膜厚dに応じて第1帯電DCバイアスV1を設定することにより、除電電流(Iout)と電流帰還信号電圧(FBV)との関係は図20のようになる。図20は、実施例2の膜厚変化時の除電電流(Iout)と電流帰還信号電圧(FBV)との関係を示す図である。
つまり、いずれの膜厚dであっても電流検出抵抗R1の検出抵抗値Rdetを下げることなく、0V~3.3Vの電流帰還信号電圧FBVを発生させることができるため、高い分解能で除電電流を検出することができる。なお、第1帯電DCバイアスV1と膜厚d以外の各パラメータは、図7又は図9の例で使用したものと同じである。
また、実施例1の感光体13の線速λと、実施例2の感光体13の表層の膜厚dとに応じた第1帯電DCバイアスV1の設定は、両者を組み合わせたものでもよい。
実施例2において、演算処理部25は、実施例1で説明した図13のステップS19においてプロットした第1帯電DCバイアスV1(V1_N)と除電電流(I_N)との関係(すなわちV1-Iout特性の傾き)から、感光体13の表層の膜厚dを検出する。
そして、演算処理部25は、検出した感光体13の表層の膜厚dの値に基づき、図13のステップS11において、膜厚dに応じた適正な第1帯電DCバイアスV1を決定する。本例においても、図19に示すV1_1~V1_6の6種類の第1帯電DCバイアスV1を予め設定した例について説明するが、第1帯電DCバイアスV1の種類の数は2種類以上であれば幾つでもよい。
このとき、演算処理部25は、第1帯電DCバイアスV1が膜厚dに適した適正値である場合は第1帯電DCバイアスV1を変更せず、第1帯電DCバイアスV1が膜厚dに適した適正値でない場合は第1帯電DCバイアスを変更する。
演算処理部25は、検出した膜厚dをメモリ24に格納しておき、図14のフローチャートの実行時に、検出した膜厚d又は検出した出力電流Ioutと膜厚dの双方に応じて感光体13の表面電位Vd(すなわち誤差電位ΔVd)を検出する。他の動作は、実施例1で説明した図13及び図14のフローチャートと同様のため、説明を省略する。
<<実施例2の作用効果>>
実施例2によれば、V1-Iout特性の傾きから感光体13の表層の膜厚dを検出し、検出した膜厚dに応じて第1帯電DCバイアスV1を変更する。したがって、A/Dコンバータ45又は電流検出抵抗R1等の電子部品の制約に関わらず、電流検出精度を向上させ、ひいては感光体13の表面電位Vdの検出精度を高めることができる。
実施例2によれば、V1-Iout特性の傾きから感光体13の表層の膜厚dを検出し、検出した膜厚dに応じて第1帯電DCバイアスV1を変更する。したがって、A/Dコンバータ45又は電流検出抵抗R1等の電子部品の制約に関わらず、電流検出精度を向上させ、ひいては感光体13の表面電位Vdの検出精度を高めることができる。
また、画像形成装置1の使用初期(例えば帯電ローラ12の使用初期)において、膜厚dに対応する複数種類の第1帯電DCバイアスV1(V1_1~V1_6)を印加し、複数種類の出力電流Iout(I_N)を検出してプロットする。これにより、V1-Iout特性関係式をメモリ24に格納しておく。
そして、画像形成装置1の経時変化後(例えば帯電ローラ12の経時変化後)において、第1帯電DCバイアスから第2帯電DCバイアスへ切替え、第2帯電DCバイアスの印加中に正極性の出力電流Iout(除電電流)を検出する。或いは、第2帯電DCバイアスから第1帯電DCバイアスへ切替え、第1帯電DCバイアスの印加中に負極性の出力電流Iout(除電電流)を検出する。そして、感光体13の表面電位Vd(すなわち誤差電位ΔVd)を検出する。
以降の印刷動作時において、第1帯電DCバイアスV1を誤差電位ΔVdの分だけ高く設定することにより、所望の表面電位Vdに感光体13を帯電させることができる。ひいては、地汚れ又はキャリア付着等の異常画像の発生を抑制することができる。
上記で説明した実施形態の各種機能は、一又は複数の処理回路によって実現することが可能である。ここで、本明細書における「処理回路」は、電子回路で実装するプロセッサのようにソフトウェアで各機能を実行するようにプログラミングしたプロセッサを含む。或いは、「処理回路」は、各機能を実行するように設計したASIC(Application Specific Integrated Circuit)、又はDSP(Digital Signal Processor)等のデバイスを含む。また、「処理回路」は、FPGA(Field Programmable Gate Array)又は従来の回路モジュール等のデバイスを含む。
本開示の態様は、例えば以下の通りである。
<1> 像担持体と、電圧を生成する電源と、前記像担持体に隣接して配置されていて前記電圧を印加される電圧印加部材と、前記電源の前記電圧を制御する制御部と、を備え、前記制御部は、前記電圧を第1DCバイアスと前記第1DCバイアスとは異なる第2DCバイアスとの間で切替え、前記第2DCバイアスの印加中に前記電源と前記像担持体との間に流れる電流のDC成分に基づき、前記像担持体の速度に応じて前記第1DCバイアスを変更する、画像形成装置である。
<2> 前記第1DCバイアスの絶対値は、前記速度が速いほど小さく、前記速度が遅いほど大きい、前記<1>に記載の画像形成装置である。
<3> 前記第1DCバイアスの絶対値は、前記第2DCバイアスの絶対値より大きい、前記<1>又は<2>に記載の画像形成装置である。
<4> 前記制御部は、検出した前記電流に応じて前記像担持体の表層の膜厚を検出する、前記<1>~<3>のいずれか一つに記載の画像形成装置である。
<5> 前記制御部は、前記像担持体の表層の膜厚に応じて前記第1DCバイアスを変更する、前記<1>~<4>のいずれか一つに記載の画像形成装置である。
<6> 前記制御部は、前記第1DCバイアスが前記像担持体の前記速度又は前記像担持体の表層の膜厚に適した適正値である場合は前記第1DCバイアスを変更せず、前記第1DCバイアスが前記像担持体の前記速度又は前記膜厚に適した適正値でない場合は前記第1DCバイアスを変更する、前記<1>~<5>のいずれか一項に記載の画像形成装置である。
<7> 前記制御部は、検出した前記電流、又は検出した前記像担持体の表層の膜厚、又は検出した前記電流と前記膜厚の双方に応じて前記像担持体の表面電位を検出する、前記<1>~<6>のいずれか一つに記載の画像形成装置である。
<8> 前記制御部は、検出した前記像担持体の表面電位に基づき、作像時のDCバイアスを補正する、前記<7>に記載の画像形成装置である。
<9> 前記電源は、DCバイアスとACバイアスを重畳した振動電圧を前記電圧印加部材に印加する、前記<1>~<8>のいずれか一つに記載の画像形成装置である。
<10>画像形成装置の制御方法であって、前記画像形成装置が、
像担持体に隣接して配置された電圧印加部材に印加する電圧を第1DCバイアスと前記第1DCデバイスとは異なる第2DCバイアスとの間で切替えるステップと、
前記第2DCバイアスの印加中に前記電圧を生成する電源と前記像担持体との間に流れる電流のDC成分を検出するステップと、
前記像担持体の速度に応じて前記第1DCバイアスを変更するステップと、
を実行する、制御方法である。
<11>画像形成装置を制御するコンピュータに、
像担持体に隣接して配置された電圧印加部材に印加する電圧を第1DCバイアスと前記第1DCデバイスとは異なる第2DCバイアスとの間で切替えるステップと、
前記第2DCバイアスの印加中に前記電圧を生成する電源と前記像担持体との間に流れる電流のDC成分を検出するステップと、
前記像担持体の速度に応じて前記第1DCバイアスを変更するステップと、
を実行させる、プログラムである。
<1> 像担持体と、電圧を生成する電源と、前記像担持体に隣接して配置されていて前記電圧を印加される電圧印加部材と、前記電源の前記電圧を制御する制御部と、を備え、前記制御部は、前記電圧を第1DCバイアスと前記第1DCバイアスとは異なる第2DCバイアスとの間で切替え、前記第2DCバイアスの印加中に前記電源と前記像担持体との間に流れる電流のDC成分に基づき、前記像担持体の速度に応じて前記第1DCバイアスを変更する、画像形成装置である。
<2> 前記第1DCバイアスの絶対値は、前記速度が速いほど小さく、前記速度が遅いほど大きい、前記<1>に記載の画像形成装置である。
<3> 前記第1DCバイアスの絶対値は、前記第2DCバイアスの絶対値より大きい、前記<1>又は<2>に記載の画像形成装置である。
<4> 前記制御部は、検出した前記電流に応じて前記像担持体の表層の膜厚を検出する、前記<1>~<3>のいずれか一つに記載の画像形成装置である。
<5> 前記制御部は、前記像担持体の表層の膜厚に応じて前記第1DCバイアスを変更する、前記<1>~<4>のいずれか一つに記載の画像形成装置である。
<6> 前記制御部は、前記第1DCバイアスが前記像担持体の前記速度又は前記像担持体の表層の膜厚に適した適正値である場合は前記第1DCバイアスを変更せず、前記第1DCバイアスが前記像担持体の前記速度又は前記膜厚に適した適正値でない場合は前記第1DCバイアスを変更する、前記<1>~<5>のいずれか一項に記載の画像形成装置である。
<7> 前記制御部は、検出した前記電流、又は検出した前記像担持体の表層の膜厚、又は検出した前記電流と前記膜厚の双方に応じて前記像担持体の表面電位を検出する、前記<1>~<6>のいずれか一つに記載の画像形成装置である。
<8> 前記制御部は、検出した前記像担持体の表面電位に基づき、作像時のDCバイアスを補正する、前記<7>に記載の画像形成装置である。
<9> 前記電源は、DCバイアスとACバイアスを重畳した振動電圧を前記電圧印加部材に印加する、前記<1>~<8>のいずれか一つに記載の画像形成装置である。
<10>画像形成装置の制御方法であって、前記画像形成装置が、
像担持体に隣接して配置された電圧印加部材に印加する電圧を第1DCバイアスと前記第1DCデバイスとは異なる第2DCバイアスとの間で切替えるステップと、
前記第2DCバイアスの印加中に前記電圧を生成する電源と前記像担持体との間に流れる電流のDC成分を検出するステップと、
前記像担持体の速度に応じて前記第1DCバイアスを変更するステップと、
を実行する、制御方法である。
<11>画像形成装置を制御するコンピュータに、
像担持体に隣接して配置された電圧印加部材に印加する電圧を第1DCバイアスと前記第1DCデバイスとは異なる第2DCバイアスとの間で切替えるステップと、
前記第2DCバイアスの印加中に前記電圧を生成する電源と前記像担持体との間に流れる電流のDC成分を検出するステップと、
前記像担持体の速度に応じて前記第1DCバイアスを変更するステップと、
を実行させる、プログラムである。
1 画像形成装置
2 自動原稿送り装置
3 画像読取装置
4 書込装置
5 印刷装置
6 感光体ドラム
7 現像装置
8 搬送ベルト
9 定着装置
10 作像部
11 高圧電源
12 帯電ローラ
13 感光体
14 露光器
15 現像器
16 高圧電源
17 1次転写ローラ
18 中間転写ベルト
19 除電器
20 制御基板
21 帯電DCバイアス生成部
22 帯電ACバイアス生成部
23 帯電DC電流検知部
24 メモリ
25 演算処理部
31 駆動回路
32 トランス
33 電流検出回路
34 電圧検出回路
35 電圧モニタ
36 制御部
41 ROM
42 RAM
43 NVRAM
44 CPU
45 A/Dコンバータ
46 D/Aコンバータ
47 入出力回路
48 バス
C1 制御信号
C2 制御信号
d 膜厚
FB 電流帰還信号
FBV 電流帰還信号電圧
Iout 出力電流(帯電電流又は除電電流)
Iint 内部電流
R1 電流検出抵抗
R2 ブリーダ抵抗
R3 ブリーダ抵抗
Rdet 検出抵抗値
Rint 内部抵抗値
Vin 入力電圧
Vout 出力電圧
V1 第1帯電DCバイアス
V0 第2帯電DCバイアス
Vd0 帯電前の表面電位
Vd 帯電後の表面電位
λ 線速
2 自動原稿送り装置
3 画像読取装置
4 書込装置
5 印刷装置
6 感光体ドラム
7 現像装置
8 搬送ベルト
9 定着装置
10 作像部
11 高圧電源
12 帯電ローラ
13 感光体
14 露光器
15 現像器
16 高圧電源
17 1次転写ローラ
18 中間転写ベルト
19 除電器
20 制御基板
21 帯電DCバイアス生成部
22 帯電ACバイアス生成部
23 帯電DC電流検知部
24 メモリ
25 演算処理部
31 駆動回路
32 トランス
33 電流検出回路
34 電圧検出回路
35 電圧モニタ
36 制御部
41 ROM
42 RAM
43 NVRAM
44 CPU
45 A/Dコンバータ
46 D/Aコンバータ
47 入出力回路
48 バス
C1 制御信号
C2 制御信号
d 膜厚
FB 電流帰還信号
FBV 電流帰還信号電圧
Iout 出力電流(帯電電流又は除電電流)
Iint 内部電流
R1 電流検出抵抗
R2 ブリーダ抵抗
R3 ブリーダ抵抗
Rdet 検出抵抗値
Rint 内部抵抗値
Vin 入力電圧
Vout 出力電圧
V1 第1帯電DCバイアス
V0 第2帯電DCバイアス
Vd0 帯電前の表面電位
Vd 帯電後の表面電位
λ 線速
Claims (11)
- 像担持体と、
電圧を生成する電源と、
前記像担持体に隣接して配置されていて前記電圧を印加される電圧印加部材と、
前記電源の前記電圧を制御する制御部と、
を備え、
前記制御部は、前記電圧を第1DCバイアスと前記第1DCバイアスとは異なる第2DCバイアスとの間で切替え、前記第2DCバイアスの印加中に前記電源と前記像担持体との間に流れる電流のDC成分に基づき、前記像担持体の速度に応じて前記第1DCバイアスを変更する、画像形成装置。 - 前記第1DCバイアスの絶対値は、前記速度が速いほど小さく、前記速度が遅いほど大きい、請求項1に記載の画像形成装置。
- 前記第1DCバイアスの絶対値は、前記第2DCバイアスの絶対値より大きい、請求項1又は2に記載の画像形成装置。
- 前記制御部は、検出した前記電流に応じて前記像担持体の表層の膜厚を検出する、請求項1又は2に記載の画像形成装置。
- 前記制御部は、前記像担持体の表層の膜厚に応じて前記第1DCバイアスを変更する、請求項1又は2に記載の画像形成装置。
- 前記制御部は、前記第1DCバイアスが前記像担持体の前記速度又は前記像担持体の表層の膜厚に適した適正値である場合は前記第1DCバイアスを変更せず、前記第1DCバイアスが前記像担持体の前記速度又は前記膜厚に適した適正値でない場合は前記第1DCバイアスを変更する、請求項1又は2に記載の画像形成装置。
- 前記制御部は、検出した前記電流、又は検出した前記像担持体の表層の膜厚、又は検出した前記電流と前記膜厚の双方に応じて前記像担持体の表面電位を検出する、請求項1又は2に記載の画像形成装置。
- 前記制御部は、検出した前記像担持体の表面電位に基づき、作像時のDCバイアスを補正する、請求項7に記載の画像形成装置。
- 前記電源は、DCバイアスとACバイアスを重畳した振動電圧を前記電圧印加部材に印加する、請求項1又は2に記載の画像形成装置。
- 画像形成装置の制御方法であって、前記画像形成装置が、
像担持体に隣接して配置された電圧印加部材に印加する電圧を第1DCバイアスと前記第1DCバイアスとは異なる第2DCバイアスとの間で切替えるステップと、
前記第2DCバイアスの印加中に前記電圧を生成する電源と前記像担持体との間に流れる電流のDC成分を検出するステップと、
前記像担持体の速度に応じて前記第1DCバイアスを変更するステップと、
を実行する、制御方法。 - 画像形成装置を制御するコンピュータに、
像担持体に隣接して配置された電圧印加部材に印加する電圧を第1DCバイアスと前記第1DCバイアスとは異なる第2DCバイアスとの間で切替えるステップと、
前記第2DCバイアスの印加中に前記電圧を生成する電源と前記像担持体との間に流れる電流のDC成分を検出するステップと、
前記像担持体の速度に応じて前記第1DCバイアスを変更するステップと、
を実行させる、プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022127304A JP2024024465A (ja) | 2022-08-09 | 2022-08-09 | 画像形成装置、制御方法、及びプログラム |
US18/355,492 US20240069459A1 (en) | 2022-08-09 | 2023-07-20 | Image forming apparatus, control method, and non-transitory recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022127304A JP2024024465A (ja) | 2022-08-09 | 2022-08-09 | 画像形成装置、制御方法、及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024024465A true JP2024024465A (ja) | 2024-02-22 |
Family
ID=89940079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022127304A Pending JP2024024465A (ja) | 2022-08-09 | 2022-08-09 | 画像形成装置、制御方法、及びプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240069459A1 (ja) |
JP (1) | JP2024024465A (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6035771B2 (ja) * | 2012-02-20 | 2016-11-30 | 株式会社リコー | 転写装置及び画像形成装置 |
JP6422299B2 (ja) * | 2013-12-19 | 2018-11-14 | キヤノン株式会社 | 画像形成装置及び画像形成システム |
-
2022
- 2022-08-09 JP JP2022127304A patent/JP2024024465A/ja active Pending
-
2023
- 2023-07-20 US US18/355,492 patent/US20240069459A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240069459A1 (en) | 2024-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5982403A (en) | Potential estimating apparatus using a plurality of neural networks for carrying out an electrographic process | |
US8543021B2 (en) | Image forming apparatus | |
US6058275A (en) | Image forming apparatus with controller for controlling image forming conditions according to electrostatic capacitance of standard toner image | |
US6498907B2 (en) | Image forming apparatus including transfer means with transfer bias output controlled by calculated impedance at predetermined voltage/current | |
US20110110677A1 (en) | Image forming apparatus | |
US9354540B2 (en) | Image forming apparatus which uses electrostatic latent image for color misregistration correction | |
JP5903082B2 (ja) | 電源装置及び画像形成装置 | |
JP2024024465A (ja) | 画像形成装置、制御方法、及びプログラム | |
JP3965357B2 (ja) | 駆動制御方法及びその装置、ベルト装置、画像形成装置、画像読み取り装置、プログラム及び記録媒体 | |
JP6658245B2 (ja) | 電源制御装置、電源装置、画像形成装置及び電源制御方法 | |
JP3610216B2 (ja) | 画像形成装置 | |
US20200192269A1 (en) | Image forming apparatus | |
JP4215321B2 (ja) | 画像形成装置 | |
JP7501330B2 (ja) | 制御装置および画像形成装置 | |
JP2023137443A (ja) | 画像形成装置 | |
JP2006235577A (ja) | 画像形成装置 | |
JP6614781B2 (ja) | 画像形成装置 | |
JPH10142954A (ja) | 画像形成装置 | |
US11500311B2 (en) | Image forming apparatus including techniques and mechanisms to suppress occurrence of an image defect caused by a transfer step | |
JP7484743B2 (ja) | 画像形成装置、画像形成方法、および画像形成プログラム | |
JP7310464B2 (ja) | 電源装置および画像形成装置 | |
JP2008052128A (ja) | 画像形成装置 | |
JP2005115903A (ja) | 回転体の位置制御方法・回転体の位置制御装置・画像形成装置・画像読み取り装置・記録媒体 | |
JP2020118915A (ja) | 画像形成装置、紙分離方法及び紙分離制御プログラム | |
JP4294443B2 (ja) | 駆動制御装置、駆動制御方法、画像形成装置、画像読取装置及びプログラム |