JP2023123536A - 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム - Google Patents

粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム Download PDF

Info

Publication number
JP2023123536A
JP2023123536A JP2023094279A JP2023094279A JP2023123536A JP 2023123536 A JP2023123536 A JP 2023123536A JP 2023094279 A JP2023094279 A JP 2023094279A JP 2023094279 A JP2023094279 A JP 2023094279A JP 2023123536 A JP2023123536 A JP 2023123536A
Authority
JP
Japan
Prior art keywords
grain size
crystal grain
fields
metal
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023094279A
Other languages
English (en)
Other versions
JP7542685B2 (ja
Inventor
洸太 福山
Kota Fukuyama
久典 秦
Hisanori Hata
貴行 池谷
Takayuki Iketani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Digital Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Digital Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Digital Solutions Corp filed Critical Toshiba Corp
Priority to JP2023094279A priority Critical patent/JP7542685B2/ja
Publication of JP2023123536A publication Critical patent/JP2023123536A/ja
Application granted granted Critical
Publication of JP7542685B2 publication Critical patent/JP7542685B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Geometry (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Image Analysis (AREA)

Abstract

【課題】検査の標準化が実現可能な技術を提供する。【解決手段】金属を含む対象物における表面部位の異なる位置のミクロ撮像画像を所定の視野数分取得する取得部と、前記金属と同一種類・同一組成の金属材料における表面部位のミクロ撮像画像と該表面部位の金属組織の結晶粒度とを教師データとした機械学習により生成される前記金属用の推定モデルに基づいて、前記取得された複数の撮像画像のそれぞれに示される前記対象物における表面部位の結晶粒度を推定することにより、推定された所定の視野数分の結晶粒度を得る推定部と、前記推定された所定の視野数分の結晶粒度に基づいて前記対象物を評価する評価部とを備えた。【選択図】図6

Description

本発明の実施形態は、鋼材等の金属材料の結晶粒度を推定する技術に関する。
鋼材メーカでは、出荷鋼材の品質保証のため金属組織検査が行われる。金属組織検査では、鋼材の一部を切出したサンプル片を対象に、検査員が顕微鏡を用いて非金属介在物の種類や量、鋼の結晶粒度の大きさなどを目視で確認している。結晶粒度はJIS(日本工業規格)で規定された標準図と見比べ、粒度番号の判定(等級判定)を行うのが一般的である。
関連する技術に、直線状の光を放出する投光手段と、前記直線状の光を反射し、金属材料の表面に照射する反射手段と、前記金属材料表面の、前記直線状の光が照射された部分を撮像する撮像手段とを備え、金属表面における傷等の欠陥を検査する金属表面欠陥検査装置が知られている(下記特許文献1参照)。
特開2018-017629号公報
金属組織検査は、極めてミクロな視野で観測された金属組織がどの程度の結晶粒度であるのかを目視で判定するため、その判定結果は検査者の知識や経験に大きく依存する。そのような知識、経験が豊富な検査者が退職となった場合、その技術を継承することは困難である。このことから検査者個人の技術によらず、検査の標準化が求められていた。
本発明は、上述した問題点を解決するためになされたものであり、検査の標準化が実現可能な技術を提供することを目的とする。
上述した課題を解決するため、本発明の実施形態は、金属を含む対象物における表面部位の異なる位置のミクロ撮像画像を所定の視野数分取得する取得部と、前記金属と同一種類・同一組成の金属材料における表面部位のミクロ撮像画像と該表面部位の金属組織の結晶粒度とを教師データとした機械学習により生成される前記金属用の推定モデルに基づいて、前記取得された複数の撮像画像のそれぞれに示される前記対象物における表面部位の結晶粒度を推定することにより、推定された所定の視野数分の結晶粒度を得る推定部と、前記推定された所定の視野数分の結晶粒度に基づいて前記対象物を評価する評価部とを備える。
実施形態に係る金属組織評価システムのハードウェア構成を示す概略図である。 測定評価装置のハードウェア構成を示すブロック図である。 撮像画像を示す図である。 結晶粒度推定装置のハードウェア構成を示すブロック図である。 測定評価装置の機能構成を示すブロック図である。 結晶粒度推定装置の機能構成を示すブロック図である。 実施形態に係る金属組織評価方法を示すフローチャートである。 評価処理を示すフローチャートである。 ログを示す図である。 表示受付処理を示すフローチャートである。 再学習処理を示すフローチャートである。 ディスプレイに表示される推定結果画面を示す図である。 ディスプレイに表示されるRev編集画面を示す図である。 ディスプレイに表示される粒度番号分布画面を示す図である。 ディスプレイに表示される確信度分布画面を示す図である。 変形例に係る金属組織評価システムのハードウェア構成を示す概略図である。 実施形態に係るプログラムを記憶する記憶媒体をコンピュータに読み込む概念を示す図である。
以下、本発明の実施形態について図面を参照しつつ説明する。
(全体構成)
本実施形態に係る金属組織評価システムの全体構成について説明する。図1は、本実施形態に係る金属組織評価システムの全体構成を示す概略図である。
本実施形態に係る金属組織評価システム1は、評価対象となる鋼材から切り出された所定形状のサンプル片の表面における金属組織の形状(状態)に基づいて、サンプル片の評価、延いては評価対象の評価を行う。具体的には、サンプル片の表面における複数箇所の金属組織を撮像し、得られた複数の撮像画像に示される金属組織の結晶粒度を推定し、これを評価する。
図1に示されるように、金属組織評価システム1は、測定評価装置10と、結晶粒度推定装置20と、顕微鏡30と、フォーカスコントローラ40と、カメラ50と、X-Yステージ60と、ステージコントローラ70と、を備える。
測定評価装置10は、顕微鏡30、フォーカスコントローラ40、及びカメラ50に通信可能に接続されており、オペレータの操作を受け付けてこれらを制御するPC(Personal Computer)等の情報処理装置である。測定評価装置10は、結晶粒度推定装置20とも通信可能に有線接続されており、サンプル片の撮像画像の取得及び画像処理、撮像画像の結晶粒度推定装置20への送信、当該装置による粒度推定結果を示す推定粒度の取得、推定粒度に基づくサンプル片の評価等を行う。
結晶粒度推定装置20は、保有する推定モデルに基づいて、測定評価装置10から取得した撮像画像に示される金属組織の結晶粒度を推定し、推定粒度を測定評価装置10へ送信する。推定モデルは、後述する教師データに基づく機械学習により生成される。本実施形態に係る機械学習は、例えば金属材料、好ましくは評価対象となる鋼材と同一種類(同一組成)の鋼材における表面部位の金属組織の画像と、当該画像に示される金属組織の結晶粒度とを含むデータセットを教師データとして与える教師有り機械学習である。
顕微鏡30は、X-Yステージ60上に設置されたサンプル片を所定の倍率で拡大しカメラ50により撮像させるためのものであり、オートフォーカス機能を有する光学顕微鏡を用いることが好ましい。顕微鏡30は、例えば5倍、10倍、20倍、40倍等の複数の対物レンズが着脱及び切り替え自在な電動レボルバと、対物レンズを経由した同軸落射方式でサンプル片に光を照射する照明とを有する。これら電動レボルバや照明は、測定評価装置10により制御可能となっている。
フォーカスコントローラ40は、測定評価装置10からの制御信号に基づいて、顕微鏡30の電動レボルバを駆動させ、対物レンズの切り替えや、ピント調節のための対物レンズの上下動などを行う。
カメラ50は、カラーのエリアセンサカメラであり、リレーレンズ内蔵アダプターを介して顕微鏡30と連結されると共に、測定評価装置10に画像送信可能に接続されている。測定評価装置10は、カメラ50によりX-Yステージ60上にセットされたサンプル片の画像を取り込み、撮像画像として取得する。
X-Yステージ60は、上面にサンプル片をセット可能なサンプルホールダが設けられる。X-Yステージ60は、サンプル片をホールダと共にX軸及びY軸の2方向に水平移動させ、カメラ50による撮像のためにサンプル片における複数の測定部位を、対物レンズ下方の視野位置に順次位置付ける。このX-Yステージ60による水平移動は、測定評価装置10により制御可能となっている。なお、アナログジョイスティックにより手動でサンプルホールダを移動可能に構成してもよい。また、X-Yステージ60は、サンプル片に対する埃等の付着を防止するため、内部のクリーン度を保つクリーンベンチ内に顕微鏡30と共に設置することが好ましい。
ステージコントローラ70は、測定評価装置10からの制御信号に基づいて、X-Yステージ60上のサンプルホールダの水平移動を制御する。
(ハードウェア構成)
測定評価装置10のハードウェア構成について説明する。図2は、測定評価装置のハードウェア構成を示すブロック図であり。図3は、撮像画像を示す図である。図2に示されるように、測定評価装置10は、ハードウェアとして、CPU(Central Processing Unit)11、RAM(Random Access Memory)12、記憶装置13、入出力I/F(Interface)14、ディスプレイ15を備える。
CPU11及びRAM12は協働して後述する各種機能を実行し、記憶装置13は各種機能により実行される処理に用いられる各種データを記憶する。入出力I/F14は、上述した顕微鏡30、フォーカスコントローラ40、カメラ50、及びステージコントローラ70とのデータおよび制御信号の入出力を行う。また、入出力I/F14は、後述する推定結果画面等を表示するためのディスプレイ15や、不図示のマウスやキーボード等の入力装置、外付けの記憶装置、ビデオハードコピーやプリンタ等の出力装置といった測定評価装置10に接続される外部装置とのデータの入出力、結晶粒度推定装置20とのデータの入出力も行う。
本実施形態においては記憶装置13には、後述する金属組織評価方法において取得される複数の撮像画像131と、これら複数の撮像画像131と対応付けられた推定結果情報132とが記憶されている。
撮像画像131は、図3に示されるように、サンプル片における所定の測定部位の表面が映されており、本実施形態においては金属組織のミクロ画像となっている。このような撮像画像131の金属組織の細かさから結晶粒度の値が推定される。
推定結果情報132は、金属組織評価方法により生成されるものであり、使用された推定モデルの情報や、1つの撮像画像131に対応する推定粒度、推定粒度に基づくサンプル片の合否判定の結果、推定粒度に基づく粒度番号分布及び確信度分布等の情報を含む。また、推定結果情報132は、ログとして推定結果情報132に対する変更履歴も含まれる。
結晶粒度推定装置20のハードウェア構成について説明する。図4は、結晶粒度推定装置20のハードウェア構成を示すブロック図である。
図4に示されるように、結晶粒度推定装置20は、ハードウェアとして、CPU(Central Processing Unit)21、RAM(Random Access Memory)22、記憶装置23、入出力I/F(Interface)24を備える。CPU21及びRAM22は協働して後述する各種機能を実行し、記憶装置23は各種機能により実行される金属組織評価方法に用いられる各種データを記憶する。入出力I/F24は、測定評価装置10とのデータの入出力を行う。なお、マウスやキーボード等の入力装置、ディスプレイや外付けの記憶装置、プリンタ等の出力装置といった外部装置とのデータの入出力を行うようにしてもよい。
本実施形態においては、記憶装置23に上述した推定モデル231が複数記憶されている。推定モデル231は、例えば金属材料の種類(鋼材の種類)毎に複数用意されてもよく、互いに全てまたは一部異なる教師データにより生成されることで複数用意されるようにしてもよい。複数の推定モデル231は、それぞれを一意に示すAIモデルIDが付され管理されている。
(機能構成)
測定評価装置10の機能構成について説明する。図5は、測定評価装置の機能構成を示すブロック図である。図5に示されるように、測定評価装置10は、動作制御部101と、情報取得部102と、画像送信部103と、等級決定部104と、判定処理部105と、情報管理部106とを機能として備える。
動作制御部101は、照明やカメラ50、フォーカスコントローラ40を介した電動レボルバ、ステージコントローラ70を介したX-Yステージ60の動作制御を行う。情報取得部102は、カメラ50からの撮像画像131の取得、結晶粒度推定装置20からの推定粒度の取得を行う。画像送信部103は、取得された撮像画像131やAIモデルID等を含む送信情報の結晶粒度推定装置20への送信を行う。なお、撮像画像131については、それぞれ固有の視野番号が予め付与されている。視野番号については後述する。
等級決定部104は、取得された推定粒度からサンプル片の等級を決定する。判定処理部105は、後述する金属組織評価方法における各種判定を行う。情報管理部106は、金属組織評価方法により生成される推定結果情報132やログを管理する。例えば、情報管理部106は、ディスプレイ15に推定結果情報132を示す推定結果画面を表示させてオペレータの操作を受け付け、オペレータによる編集が生じた場合にはそのログを生成、更新すると共に推定結果情報132を更新する。
次に、結晶粒度推定装置20の機能構成について説明する。図6は、結晶粒度推定装置の機能構成を示すブロック図である。図6に示されるように、結晶粒度推定装置20は、情報取得部201と、粒度推定部202と、粒度送信部203と、学習部204とを機能として備える。
情報取得部201は、送信情報や機械学習を行うための教師データを測定評価装置10から取得する。粒度推定部202は、取得された送信情報に含まれる撮像画像131に示される金属組織の結晶粒度を、AIモデルIDに示される推定モデル231に基づいて推定する。
粒度送信部203は、粒度推定部202により推定された粒度(推定粒度)を、推定対象となる撮像画像131に付与されている視野番号と対応付けて測定評価装置10へ送信する。学習部204は、情報取得部201が教師データを取得した場合に、当該教師データに基づいて機械学習を行い、教師データに対応する推定モデル231の更新を行う。また、新たな推定モデルを生成する指示が含まれている場合、当該教師データに基づいて新たな推定モデルを生成する。
(金属組織評価方法)
金属組織評価システム1により実行される金属組織評価方法について説明する。図7は、本実施形態に係る金属組織評価方法を示すフローチャートである。金属組織評価方法を行うにあたり、事前準備に、X-Yステージ60上のサンプルホールダへのサンプル片の設置、サンプルホールダの原点復帰、測定評価装置10に対してのサンプル片のロット番号(サンプル数)、子番、AIモデルID、及びオペレータ名の入力がなされたこととする。これらは以後入力情報と称する。
サンプルホールダの原点復帰は、測定評価装置10のディスプレイ15に表示される原点復帰ボタンをマウス等のポインティングデバイスで選択、クリックすることでステージコントローラ70を介してX-Yステージ60を駆動制御することによりなされる。また、本フローは、ディスプレイ15に表示される金属組織評価方法の開始ボタンがクリックされることをトリガとして実行される。
開始ボタンがクリックされると、測定評価装置10の動作制御部101がX-Yステージ60を駆動制御すると共に、情報取得部102がカメラ50により撮像されたサンプル片における表面部位の撮像画像131を取得する(S101)。本実施形態に係る金属組織評価方法では、後述するステップS110の判定処理においてYES判定がなされるまで予め設定されていた視野数分の撮像画像131が取得されるが、ここでは先ず1視野の撮像画像が取得される。ここでの視野数とは、1つのサンプル片において撮像される表面部位の数を示す。例えば視野数20である場合、サンプル片において2列10箇所の位置が異なる表面部位がそれぞれ撮像され、計20個の撮像画像131が取得されることとなる。視野数は適宜設定を変更してよいが、JIS規格に倣った数とすることが好ましい。
取得された撮像画像131は記憶装置13に記憶されるが、X-Yステージ60を駆動制御、即ちサンプルホールダの水平移動を行わせて撮像するため、撮像画像131とサンプル片の表面部位の位置とを対応付けて記憶する。この表面部位の位置(視野)は互いに異なるものであり、視野番号として管理される。したがって換言すれば、視野番号は各撮像画像131それぞれを一意に示す情報となる。
1視野の撮像画像を取得後、画像送信部103は、該当する視野番号の撮像画像131と、AIモデルIDとを対応付して送信情報を生成する(S102)。生成後、画像送信部103は送信情報を結晶粒度推定装置20へ送信する(S103)。送信後、結晶粒度推定装置20からの推定粒度の結果応答を待つ。
結晶粒度推定装置20の情報取得部201は、送信情報を取得する(S104)。取得後、粒度推定部202は、送信情報に含まれるAIモデルIDに示される推定モデル231を選定し(S105)、送信情報に含まれる1視野の撮像画像131を対象に、選定した推定モデルにより金属組織の結晶粒度を推定する(S106)。また、取得したAIモデルIDに該当する推定モデルが無い場合は、粒度送信部203からエラー通知が測定評価装置10へ返される。さらに、ここでの粒度の推定において、撮像画像131が不鮮明である等して推定不能である場合は推定粒度が不明として処理される。
推定後、粒度送信部203は、推定粒度を測定評価装置10へ送信する(S107)。送信後、測定評価装置10の情報取得部102が推定粒度を取得し(S108)、情報管理部106は、取得した推定粒度、該推定粒度に対応する1視野の撮像画像、該撮像画像に対応する視野番号等に基づいて、詳細は後述する推定結果情報132を生成し、ディスプレイ15に表示して(S109)、当該情報を管理する。なお、現サンプル片の推定結果情報132が予め生成されていた場合には当該情報を更新することとなる。
表示後、判定処理部105は、全視野数分の撮像画像を取得したか否かを判定する。当該判定の基準は適宜であるが、例えば取得した撮像画像の視野番号が予め設定された視野数に達したか否かにより判定するようにしてもよい。全視野数分の撮像画像を取得したと判定された場合(S110,YES)、詳細は後述する評価処理が実行される(S111)。評価処理後、情報管理部106は、推定結果情報132を示す推定結果画面をディスプレイ15に表示させると共に、オペレータからの入力を受け付ける表示受付処理が実行される(S112)。表示受付処理や、ディスプレイ15に表示される推定結果画面についての詳細は後述する。
一方、全視野数分の撮像画像を取得していないと判定された場合(S110,NO)、ステップS101の撮像画像を取得する処理へ移行する。この時、当該処理ではX-Yステージ60が駆動制御され、未撮像の表面部位における撮像画像が取得されることとなる。
(評価処理)
次に、評価処理について説明する。図8は評価処理を示すフローチャートである。図8に示されるように、先ず等級決定部104は、取得された複数の推定粒度に基づいて、サンプル片の等級を決定する(S201)。ここでの等級は、複数の推定粒度の平均値としてもよく、複数の推定粒度のうちの最低値としてもよい。本実施形態においては平均推定粒度とする。等級決定後、判定処理部105は、決定された等級が所定の閾値以上であるか否かを判定する(S202)。この閾値は鋼材の種類や用途に応じて適宜設定されるようにしてもよい。
等級が所定の閾値以上であると判定した場合(S202,YES)、判定処理部105は、現Revに合否判定結果として合格の評価を設定する(S203)。Rev(Revision)は、後述する表示受付処理において一部の推定粒度が除外または変更されて評価処理が再度実行される度に番号が増加するように生成されるものであり、初期値はRev0とされる。換言すれば、Revは推定結果情報132の識別情報と言える。なお、同一サンプル片に対しては評価処理毎にRevは増加するが、別サンプル片に対して初めて評価処理を行うと、つまり2度目の金属組織評価方法を実行するとRevは0となる。
合格が設定された後、情報管理部106は、合否判定結果、入力情報、及び複数の推定粒度に基づいて現Revのログを生成し(S204)、記憶装置13に記憶させる。
ログは、図9に示されるように、オペレータ名、ロット番号、子番、視野数、等級、各推定粒度における標準偏差σ、合否判定結果、及び等級の平均値が対応付けられたものであり、評価処理が実行される度に更新される。また、Rev毎にその変更内容が示される。Rev0の欄に示されるように、Rev0においては各種情報の編集は不可となっており、例えばRev0の推定結果情報132に対して変更がなされて評価処理が実行されると、Rev1、Rev2と増加して新たな推定結果情報132が生成されることとなる。ここでは、No.2のRev1において、視野番号xxxの粒度番号yyyをオペレータにてzzzへ変更されて再度評価処理が実行され、等級が0.5低下したものの合否判定では合格と判定されたことを示している。
このような合否判定が記載されているログは、レポートとしてプリンタ印刷等して活用することも可能であるが、Rev記載の変更内容は暗号化され、システム管理者のみが閲覧可能とすることが好ましい。このように評価処理が実行される度にログが更新され管理されることにより、データ改ざん等を防止することが可能となる。
なお、Revには、後述するRev確定ボタン(図13参照)の操作により、確定状態、未確定状態がある。推定結果情報132が変更されるRevが未確定状態である場合は、当該Revの推定結果情報132が編集されたとしてもRevは増加しない。
ログ生成後、情報管理部106は、入力情報、送信情報、推定粒度、及びログに基づいて推定結果情報132を更新し(S205)、本フローは終了となる。
一方、等級が所定の閾値未満であると判定した場合(S202,NO)、判定処理部105は、現Revに合否判定結果として不合格の評価を設定し(S206)、ステップS204のログの生成へ移行する。
(表示受付処理)
次に、表示受付処理について説明する。図10は、表示受付処理を示すフローチャートである。図10に示されるよう、先ず情報管理部106は、推定結果画面(図12参照)をディスプレイ15に表示させると共に、オペレータの操作を受け付ける(S301)。推定結果画面については後述する。ここでのオペレータの操作は、推定結果画面に対しての操作であり、例えば粒度番号分布、確信度分布、合否判定結果を含むレポート(ログ)の表示、任意の視野番号に紐付いた推定粒度の除外、変更等が挙げられる。
次に、判定処理部105は再評価が必要か否かを判定する(S302)。この判定では、所定の視野番号に対応付けられた推定粒度の番号(粒度の値)を除外、または変更された場合に再評価が必要であると判定される。推定結果画面は、各撮像画像131を閲覧可能に、及び各推定粒度を除外、または変更可能に表示されている。オペレータは、撮像画像131をチェックした際に推定粒度が違うと判断した際には、撮像画像131に対応する視野番号に紐付いた推定粒度を除外、変更することができる。
再評価が必要でないと判定された場合(S302,NO)、ステップS301へ移行して現状の推定結果画面の表示が維持される。一方、再評価が必要であると判定された(S302,YES)、再度評価処理が実行される(S303)。この時、推定粒度の除外であれば、当該推定粒度を除いての評価処理が実行され、推定粒度の変更であれば変更された推定粒度を含み評価処理が実行される。
評価処理実行後、判定処理部105は、結晶粒度推定装置20に再学習、即ち推定モデルの更新を実行させるか否かを判定する(S304)。この判定においては、例えば推定粒度の変更がなされた場合に再学習を実行させるように判定される。推定粒度の変更は、選定した推定モデル231による推定結果が適切ではないとオペレータが判断した結果としてなされる。したがって、この場合に再学習を行わせることにより、推定モデル231をより確度の高いものとすることができる。なお、このような自動判定ではなく、オペレータが手動で実行するか否かを決めるようにしてもよい。
再学習を実行すると判定された場合(S304,YES)、画像送信部103は、変更された推定粒度と、当該推定粒度に対応する撮像画像131と、選定したAIモデルIDとを対応付けて教師データを生成し(S305)、結晶粒度推定装置20に送信する(S306)。送信後、ステップS301へ移行して現状の推定結果画面の表示が維持される。教師データを取得した結晶粒度推定装置20は、次に説明する再学習処理を実行する。
なお、以上に説明した表示受付処理は、図7のフローにおけるステップS109の推定結果情報を表示する処理時にも行われるようにしてもよい。
(再学習処理)
再学習処理について説明する。図11は、再学習処理を示すフローチャートである。図11に示されるように、情報取得部201が教師データを取得すると(S401)、学習部204は教師データに含まれるAIモデルIDを取得し、これに対応する推定モデル231を選定する(S402)。選定後、推定モデル231を読み込むと共に取得された教師データにより機械学習を実行し(S403)、機械学習により推定モデル231が更新されると(S404)、本フローは終了となる。
(各種画面)
次に、評価処理後における推定結果情報132としてディスプレイ15に表示される各種画面について簡単に説明する。図12~図15は、ディスプレイに表示される推定結果画面、Rev編集画面、粒度番号分布画面、確信度分布画面をそれぞれ示す図である。
図12に示されるように、推定結果画面は、上部に「TP No」800、ロット番号欄801、子番欄802、Rev欄803、コメント欄804、Rev編集ボタン805が設けられ、その下方にはマップ種別806が設けられている。「TP No」800は、推定結果情報132を確認するサンプル番号を選択するものであり、現在サンプルホールダにセットされているサンプル片を含め、評価処理を完了したサンプル数分の選択が可能となっている。ロット番号欄801及び子番欄802には、指定された「TP No」800に示されるTP Noに該当する番号が示されている。Rev欄803には、選択されたサンプル片の現在のRev番号が示され、コメント欄804にはそのRev番号に紐付けられているコメントが示される。
Rev編集ボタン805は、クリックされると図13に示されるように、現在表示されているRev番号と、現Rev番号に紐付いているコメントを表示するコメント欄とを含むウィンドウが表示される。このコメント欄は、現Revに対するコメントをオペレータが手入力しコメント更新ボタンをクリックすることで編集、更新することができる。このコメントは、図12に示されるコメント欄804にも表示される。取消ボタンは、現在の編集内容を破棄してこのウィンドウを閉じるものである。
Rev確定ボタンは、未確定状態のRevを確定状態にしてこの画面を閉じるものであり、現コメント欄に入力されている内容もその際に反映される。本実施形態においては、Rev1以降の推定結果情報132に関し、初期状態で未確定状態として扱われ、オペレータが任意のタイミングでRev確定ボタンのクリックを行うことで現Revと共に推定結果情報132(特に推定結果や等級、合否判定結果)を確定状態とすることができる。
この際、未確定状態のRevn(n>0)の推定結果情報132について視野データを削除した場合、再度評価処理が行われて変更後の推定結果情報132をRevに反映させ、削除前のRevの推定結果情報132については削除される。一方、確定状態のRevn(n>0)の推定結果情報132について視野データを削除した場合、再度評価処理が行われて変更後の推定結果情報132をRevn+1に反映させ、変更後の推定結果情報132をRevn+1の未確定データとして扱われる。これは推定粒度を変更した場合も同様である。なお、不図示のメイン画面において、評価処理が実行された場合、全てのRevの推定結果情報132を破棄して新たにRev0から推定結果情報132を保持するようにしてもよい。
マップ種別806は、図12に示されるように、粒度番号マップと確信度マップとがあり、ここでは粒度番号マップが示されている。粒度番号マップは、視野番号の位置毎に推定粒度の値(粒度番号)が色分け表示されており、図中右側にはその色と粒度番号とが対応付けられた表が設けられる。これによりオペレータは現サンプル片の粒度番号の分布を一目で容易に視認することができる。一方、確信度マップは、視野番号の位置毎に確信度の値が所定の確信度閾値(例えば0.6)以上であるか否かを2色で示すものである。
マップ種別806の下方中央には、推定結果情報132のうちの所定情報を示す評価結果タブと、粒度番号分布を表示するタブと、確信度分布を表示するタブとを有する表示切替部807が設けられている。評価結果タブでは、AIモデルIDを示す欄、測定視野数を示す欄、有効視野数を示す欄、平均粒度番号(等級)を示す欄、測定ユーザ名(オペレータ名)を示す欄、測定日時(評価日時)を示す欄が設けられている。粒度番号分布及び確信度分布は、図14及び図15に示されるように、縦軸に視野数、横軸に粒度番号をとった棒グラフとして表示される。
表示切替部807の図12中右側には、視野番号毎の粒度番号及び確信度を選択可能に示す視野データ選択部808が設けられており、オペレータが選択した視野番号の列(以後、視野データと称する)をクリックすることにより、図中左側に選択された視野データに対応付けられた撮像画像欄809に撮像画像131が表示される。視野データ選択部808下方には、判定除外ボタン810、判定変更ボタン811が設けられている。
オペレータが視野データをクリックした後に判定除外ボタン810をクリックすると、オペレータに対して選択された視野データに紐付けられる推定粒度を除いて再度評価処理を実行するか否かを問うウィンドウが表示され、OKがクリックされると、上述した図10のステップS302の判定処理において、YESの判定がなされることとなる。一方、オペレータが視野データをクリックした後に判定変更ボタン811をクリックすると、オペレータに対して変更する推定粒度の値を入力するウィンドウと共に、変更した推定粒度を含み再度評価処理を実行するか否かを問うウィンドウが表示され、OKがクリックされると、上述した図10のステップS302の判定処理において、YESの判定がなされることとなる。
なお、図12に示される符号812はX-Yステージ60を符号806のマップ種別で選択した視野に移動し、再度、推論判定を実行するための選択欄であり、符号813は視野データ選択部808にて選択されている列の視野番号に関する詳細データを表示するための選択欄であり、符号814はその実行ボタン、符号815は現Revの推定結果画像を閉じるボタンである。
なお、評価処理後における推定結果情報132としてディスプレイ15に表示される各種画面について説明したが、本機能はサンプルホールダにセットされた全てのサンプル片の測定が完了した時点で閲覧が有効となることが好ましい。
以上に説明した本実施形態によれば、機械学習により高精度の粒度推定が可能な推定モデル231により撮像画像131に示される金属組織の粒度を推定することができるため、検査者個人の技術継承が必要なく、検査の標準化が実現できる。このような検査の標準化によれば、熟練の検査者と経験が浅い検査者とによる結晶粒度の判定の差異が生じることがないため、評価結果のばらつきも低減することができる。
また、本実施形態によれば、推定結果情報132と共にログが記憶装置13に記憶、管理させるため、検査作業の記録の自動管理が可能となる。さらに、人手での目視検査では、検査依頼が増加すれば当然長時間の検査となり、検査者の労務問題が生じる可能性があるが、本実施形態によればそのような問題が生じることはない。また、長期で見れば低コスト化も実現できる。
なお、測定評価装置10と結晶粒度推定装置20とを有線接続すると説明したが、これに限定するものではない。図16に示されるように、結晶粒度推定装置20を遠隔地の外部サーバである結晶粒度推定サーバ20Aとして構築し、インターネットやイントラネット等のネットワークを介して測定評価装置10から結晶粒度推定サーバ20Aにアクセスし相互通信するようにしてもよい。この場合、複数の測定評価装置10からアクセス可能にすることが好ましく、例えば結晶粒度推定サーバ20AにおいてユーザID及びパスワードを管理し、測定評価装置10においてユーザIDとパスワードを入力することで結晶粒度推定サーバ20Aにアクセスし、承認後に結晶粒度推定装置20に送信情報を送信する。このようにすることで、必ずしも顕微鏡30等と接続された測定評価装置10からではなく、他の情報処理装置10Aからでもネットワークを介して結晶粒度推定サーバ20Aに送信情報を送信でき、推定粒度を取得することができる。
また、測定評価装置10及び結晶粒度推定装置20の各種機能を備える1つの情報処理装置により上述した金属組織評価システムを実現するようにしてもよい。
本実施の形態において、測定評価装置10の各種機能を実現する測定評価プログラム、および結晶粒度推定装置20の各種機能を実現する結晶粒度推定プログラムは、予め測定評価装置10、結晶粒度推定装置20に予めインストールされているものとして記載したが、本発明における各種プログラムは、記憶媒体に記憶されたものも含まれる。ここで記憶媒体とは、磁気テープ、磁気ディスク(ハードディスクドライブ等)、光ディスク(CD-ROM、DVDディスク等)、光磁気ディスク(MO等)、フラッシュメモリ等、エピソード管理装置に対し脱着可能な媒体や、さらにネットワークを介することで伝送可能な媒体等、上述した測定評価装置10、結晶粒度推定装置20としてのコンピュータで読み取りや実行が可能な全ての媒体をいう。例えば図17では、測定評価プログラム及び/又は結晶粒度推定プログラムを記憶した光ディスク80をPCやサーバ等のコンピュータ1Aに読み込ませる概念が示されている。
発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 金属組織評価システム(粒度推定装置、粒度推定システム)
10 測定評価装置(撮像装置)
13 記憶装置(記憶部)
102 情報取得部(取得部)
103 画像送信部(送信部)
105 判定処理部(評価部)
106 情報管理部(提示部)
131 撮像画像
20 結晶粒度推定装置(粒度推定装置、サーバ)
202 粒度推定部(推定部)
201 情報取得部(取得部)
204 学習部
231 推定モデル
50 カメラ(撮像装置)

Claims (6)

  1. 金属を含む対象物における表面部位の異なる位置のミクロ撮像画像を所定の視野数分取得する取得部と、
    前記金属と同一種類・同一組成の金属材料における表面部位のミクロ撮像画像と該表面部位の金属組織の結晶粒度とを教師データとした機械学習により生成される前記金属用の推定モデルに基づいて、前記取得された複数の撮像画像のそれぞれに示される前記対象物における表面部位の結晶粒度を推定することにより、推定された所定の視野数分の結晶粒度を得る推定部と、
    前記推定された所定の視野数分の結晶粒度に基づいて前記対象物を評価する評価部と
    を備えることを特徴とする粒度推定装置。
  2. 前記推定された所定の視野数分の結晶粒度を含む結果情報をユーザに提示する提示部
    を更に備えることを特徴とする請求項1記載の粒度推定装置。
  3. 前記提示部は、前記結果情報の一部として、前記推定された所定の視野数分の結晶粒度を示す情報に基づいて、前記対象物における表面部位毎の結晶粒度を示す分布を提示する
    ことを特徴とする請求項2記載の粒度推定装置。
  4. コンピュータが
    金属を含む対象物における表面部位の異なる位置のミクロ撮像画像を所定の視野数分取得し、
    前記金属と同一種類・同一組成の金属材料における表面部位のミクロ撮像画像と該表面部位の金属組織の結晶粒度とを教師データとした機械学習により生成される前記金属用の推定モデルに基づいて、前記取得された複数の撮像画像のそれぞれに示される前記対象物における表面部位の結晶粒度を推定することにより、推定された所定の視野数分の結晶粒度を取得し、
    前記推定された所定の視野数分の結晶粒度に基づいて前記対象物を評価する
    ことを特徴とする粒度推定方法。
  5. コンピュータを
    金属を含む対象物における表面部位の異なる位置のミクロ撮像画像を所定の視野数分取得する取得部と、
    前記金属と同一種類・同一組成の金属材料における表面部位のミクロ撮像画像と該表面部位の金属組織の結晶粒度とを教師データとした機械学習により生成される前記金属用の推定モデルに基づいて、前記取得された複数の撮像画像のそれぞれに示される前記対象物における表面部位の結晶粒度を推定することにより、推定された所定の視野数分の結晶粒度を得る推定部と、
    前記推定された所定の視野数分の結晶粒度に基づいて前記対象物を評価する評価部
    として機能させることを特徴とする粒度推定プログラム。
  6. 金属を含む対象物における表面部位の異なる位置を撮像して異なる位置のミクロ撮像画像を所定の視野数分得る撮像装置と、
    前記撮像装置とネットワークを介して通信可能に接続されたサーバと
    を備え、
    前記撮像装置は、
    前記サーバへ前記所定の視野数分の複数のミクロ撮像画像を送信する送信部と、
    前記対象物を評価する評価部と
    を有し、
    前記サーバは、
    前記撮像装置から前記複数のミクロ撮像画像を取得する取得部と、
    前記金属と同一種類・同一組成の金属材料における表面部位のミクロ撮像画像と該表面部位の金属組織の結晶粒度とを教師データとした機械学習により生成される前記金属用の推定モデルに基づいて、前記取得された複数の撮像画像のそれぞれに示される前記対象物における表面部位の結晶粒度を推定することにより、推定された所定の視野数分の結晶粒度を得る推定部と
    を有し、
    前記評価部は、前記推定された所定の視野数分の結晶粒度に基づいて前記対象物を評価する
    ことを特徴とする粒度推定システム。
JP2023094279A 2020-09-18 2023-06-07 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム Active JP7542685B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023094279A JP7542685B2 (ja) 2020-09-18 2023-06-07 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021549294A JP7297083B2 (ja) 2020-09-18 2020-09-18 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム。
PCT/JP2020/035524 WO2022059186A1 (ja) 2020-09-18 2020-09-18 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム。
JP2023094279A JP7542685B2 (ja) 2020-09-18 2023-06-07 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021549294A Division JP7297083B2 (ja) 2020-09-18 2020-09-18 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム。

Publications (2)

Publication Number Publication Date
JP2023123536A true JP2023123536A (ja) 2023-09-05
JP7542685B2 JP7542685B2 (ja) 2024-08-30

Family

ID=80776106

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021549294A Active JP7297083B2 (ja) 2020-09-18 2020-09-18 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム。
JP2023094279A Active JP7542685B2 (ja) 2020-09-18 2023-06-07 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021549294A Active JP7297083B2 (ja) 2020-09-18 2020-09-18 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム。

Country Status (3)

Country Link
US (1) US12067703B2 (ja)
JP (2) JP7297083B2 (ja)
WO (1) WO2022059186A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023172383A (ja) * 2022-05-23 2023-12-06 Jfeスチール株式会社 組織写真評価方法、組織写真評価装置、撮影装置及びプログラム
JP2023172382A (ja) * 2022-05-23 2023-12-06 Jfeスチール株式会社 代表組織写真決定方法、代表組織写真決定装置、撮影装置及びプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315703A (ja) * 2004-04-28 2005-11-10 Nippon Steel Corp 鋼材の材質予測方法
RU2317540C2 (ru) * 2005-08-26 2008-02-20 Евгений Викторович Гулькин Способ определения величины зерна металлов и сплавов
JP5076347B2 (ja) * 2006-03-31 2012-11-21 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
JP5181432B2 (ja) * 2006-06-28 2013-04-10 株式会社豊田中央研究所 鋼材組織の予測方法、鋼材組織の予測装置、及びプログラム
IN2015DN01600A (ja) * 2012-08-31 2015-07-03 Toshiba Mitsubishi Elec Inc
CN103913416A (zh) 2012-12-31 2014-07-09 宁波江丰电子材料有限公司 靶材检测方法
JP6044556B2 (ja) * 2014-01-16 2016-12-14 株式会社デンソー 学習システム、車載装置、及び、サーバ
KR102172891B1 (ko) 2016-04-07 2020-11-02 닛폰세이테츠 가부시키가이샤 오스테나이트계 스테인리스 강재
JP2018072214A (ja) * 2016-10-31 2018-05-10 新日鐵住金株式会社 金属材料の結晶粒径評価方法
JP6747391B2 (ja) * 2017-06-30 2020-08-26 Jfeスチール株式会社 材料特性推定装置及び材料特性推定方法
JP2019168844A (ja) * 2018-03-22 2019-10-03 キヤノン株式会社 タスク管理システム、サーバ装置及びその制御方法、並びにプログラム
CN109034217A (zh) * 2018-07-10 2018-12-18 成都先进金属材料产业技术研究院有限公司 基于图像识别深度学习技术的晶粒度智能评级方法
EP3859304B1 (en) 2018-09-27 2024-09-18 HORIBA, Ltd. Method for generating data for particle analysis, program for generating data for particle analysis, and device for generating data for particle analysis
US11105754B2 (en) * 2018-10-08 2021-08-31 Araz Yacoubian Multi-parameter inspection apparatus for monitoring of manufacturing parts
JP7284575B2 (ja) 2018-12-17 2023-05-31 キヤノン株式会社 工程推定装置および方法
JP7273542B2 (ja) 2019-03-01 2023-05-15 富士レビオ株式会社 分析装置、検体前処理装置、訓練装置、プログラム、情報処理方法、学習モデルおよび学習モデルの生成方法

Also Published As

Publication number Publication date
JP7297083B2 (ja) 2023-06-23
JPWO2022059186A1 (ja) 2022-03-24
WO2022059186A1 (ja) 2022-03-24
US12067703B2 (en) 2024-08-20
US20220318983A1 (en) 2022-10-06
JP7542685B2 (ja) 2024-08-30

Similar Documents

Publication Publication Date Title
JP7542685B2 (ja) 粒度推定装置、粒度推定方法、粒度推定プログラム、粒度推定システム
US9013574B2 (en) Machine vision system program editing environment including synchronized user interface features
JP2021196363A (ja) 訓練用の欠陥画像の数を示すワークピース検査及び欠陥検出システム
JP5301232B2 (ja) 血球画像表示装置、検体分析システム、血球画像表示方法、及びコンピュータプログラム
US9360659B2 (en) Method for presenting and evaluation of images of micro-titer plate properties
US20100315502A1 (en) System and method for remote control of a microscope
US6553323B1 (en) Method and its apparatus for inspecting a specimen
JP6546230B2 (ja) 機械学習装置、機械学習システム及び機械学習方法
JP7386771B2 (ja) マルチモーダル極低温適合性guidグリッド
CN108475328A (zh) 用于实时化验监测的系统和方法
JP2004239728A (ja) パターン検査方法及び装置
JP4500752B2 (ja) 観察/検査作業支援システム及び観察/検査条件設定方法
WO2018158810A1 (ja) 細胞観察装置
JP4607157B2 (ja) 観察装置、観察装置のレシピ設定方法
JP4374381B2 (ja) 検査支援システム,データ処理装置、およびデータ処理方法
JPH1167136A (ja) 荷電粒子装置及び荷電粒子装置ネットワークシステム
JP2019216058A (ja) 電子顕微鏡および評価方法
JP5557994B2 (ja) 検体処理システムおよび血球画像分類装置
US20230055377A1 (en) Automated training of a machine-learned algorithm on the basis of the monitoring of a microscopy measurement
JP2939323B2 (ja) 非金属介在物検査方法並びに非金属介在物検査装置
JP2009169235A (ja) 顕微鏡システム
US20190147608A1 (en) Multipurpose digital rapid profile projector and methods of use
Richman et al. Adaptive characterization of laser damage from sparse defects
Martin et al. Large-area defect mapping for laser damage prediction
JP2023130870A (ja) 顕微鏡システム、重畳ユニット、及び、動作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240820

R150 Certificate of patent or registration of utility model

Ref document number: 7542685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150