JP2023104286A - 波長選択透過性アクリル系樹脂組成物 - Google Patents

波長選択透過性アクリル系樹脂組成物 Download PDF

Info

Publication number
JP2023104286A
JP2023104286A JP2022005176A JP2022005176A JP2023104286A JP 2023104286 A JP2023104286 A JP 2023104286A JP 2022005176 A JP2022005176 A JP 2022005176A JP 2022005176 A JP2022005176 A JP 2022005176A JP 2023104286 A JP2023104286 A JP 2023104286A
Authority
JP
Japan
Prior art keywords
mass
acrylic resin
group
less
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022005176A
Other languages
English (en)
Inventor
隆司 大西
Takashi Onishi
進悟 徳原
Shingo Tokuhara
晃丈 河野
Akitake Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2022005176A priority Critical patent/JP2023104286A/ja
Publication of JP2023104286A publication Critical patent/JP2023104286A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】高温条件下で使用可能な優れた耐熱性及び波長選択透過性を有する、アクリル樹脂組成物及びその成形品を提供する。【解決手段】ガラス転移温度110℃以上であるアクリル樹脂(A)と着色剤(B)を含み、厚さ2mmにおける波長380nm以上700nm以下での光線透過率が10%以下、800nm以上950nm以下での光線透過率が70%以上である、波長選択透過性アクリル樹脂組成物である。【選択図】なし

Description

本発明は、波長選択透過性アクリル樹脂組成物に関し、さらに詳しくは、可視光を透過しないが、赤外線を透過する、波長選択的な透過性を有するアクリル樹脂組成物に関する。
光を用いたリモートセンシング技術の一つに、パルス状に発光するレーザー照射に対する散乱光を測定し、遠距離にある対象までの距離やその対象の性質を分析する、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging、「光検出と測距」ないし「レーザー画像検出と測距」、「ライダー」ともいう)が、知られている。この技法はレーダーに類似しており、レーダーの電波を光に置き換えたものである。対象までの距離は、発光後反射光を受光するまでの時間から求まる。ライダーはレーダーよりも遥かに短い波長の電磁波、典型的には紫外線、可視光線、近赤外線を使用する。
また、LIDARの技法の1種であるTOF(Time of Flight)方式のセンサ(TOFセンサ)をスマートフォンやタブレットに搭載する例が、近年、増えている。TOFセンサーを搭載することで、例えば、カメラの撮影で、被写体との距離を測り、一眼レフカメラのように、きれいに背景をぼかせるようになる。さらに、近赤外光を使用することで、夜間や暗所での撮影にも強くなる。近年、TOFセンサーの精度をより高めることが求められており、より優れた性能を有する波長選択フィルターを開発することが求められている。
特許文献1は、極大吸収波長が900nm未満の色素を含む着色剤(例えば、アントラキノン系色素)と、リン酸又はリン酸エステル系化合物を含むポリカーボネート樹脂組成物は、高温で成形加工しても、光学特性に実質的な変化を生じず、波長選択透過性を有する、ポリカーボネート樹脂組成物及びその成形品を提供することを開示する。更に、特許文献1は、そのような樹脂組成物及び成形品は、Lidar用途に好適に使用できることを開示する。
特開2021-25029号公報
特許文献1は、ポリカーボネート樹脂組成物及びその成形品を開示するが、本発明者が検討を行ったところ、このような成形品は、ポリカーボネート樹脂組成物の高い固有複屈折に起因してか、高い位相差を有することがわかった。さらに、高温高湿環境下に長時間晒されることで、光学特性が変化することがわかった。今後のTOFセンサーの発展を考慮すると、より高品質な樹脂組成物及びその成形物を提供することが必要である。
本発明者らは、光学特性に優れる(高い透明性、低い固有複屈折)、アクリル樹脂の成形物に着目したが、アクリル樹脂は耐熱温度が低いので、アクリル樹脂組成物から得られた成形品は、TOFセンサーに要求される高温条件下では反りや収縮など外観変化が見られ、光学特性が変化し得ることに気付いた。光学特性の変化は、誤作動を生じるおそれがある。従って、本発明の目的は、高温条件下でも使用可能な、波長選択透過性を有する、アクリル樹脂組成物及びその成形品を提供することである。
本発明者らは、非晶性熱可塑性樹脂について種々検討したところ、ガラス転移温度が110℃以上であるアクリル樹脂が耐熱性を有することに着目し、吸収極大波長が700nm未満のアントラキノン系色素を含む着色剤を有すると、耐熱性及び波長選択透過性を有する、アクリル樹脂組成物及びその成形品を提供することを見出した。
すなわち、本発明は、以下の発明等に関する。
[1] ガラス転移温度110℃以上であるアクリル樹脂(A)と着色剤(B)を含み、厚さ2mmにおける波長380nm以上700nm以下での光線透過率が10%以下、800nm以上950nm以下での光線透過率が70%以上であることを特徴とする、波長選択透過性アクリル樹脂組成物である。
[2] アクリル樹脂(A)が、主鎖に環構造を有する、[1]記載の波長選択透過性アクリル樹脂組成物である。
[3] 着色剤(B)の含有量が、樹脂組成物全体の2重量%以下である、[1]又は[2]記載の波長選択透過性アクリル樹脂組成物である。
[4] 着色剤(B)が、吸収極大波長が700nm未満のアントラキノン系色素を含む、[1]~[3]のいずれかに記載の波長選択透過性アクリル樹脂組成物である。
[5] 着色剤(B)として、複数の染料を組合わせて用いる、[1]~[4]のいずれかに記載の波長選択透過性アクリル樹脂組成物である。
[6] [1]~[5]のいずれかに記載の波長選択透過性アクリル樹脂組成物を含有する波長選択透過性アクリル樹脂成形品である。
本発明のアクリル樹脂組成物は、優れた耐熱性を有するアクリル樹脂と特定の着色剤とを含む新規なアクリル樹脂組成物である。このようなアクリル樹脂組成物は、高温条件下でも使用することができ、光学特性に実質的な変化を生ずることがない。よって、本発明の実施形態のアクリル樹脂組成物は、適切に波長選択性を有し、光学特性に変化を実質的に生じない成形品を提供することができる。
本発明の波長選択透過性アクリル樹脂組成物は、アクリル樹脂(A)と、着色剤(B)を含む。
[アクリル樹脂(A)]
アクリル樹脂は、通常、熱可塑性(樹脂、ポリマー)である。なお、このようなアクリル樹脂の製造方法は、特に限定されないが、後述の方法により製造されたものであってもよい。
アクリル樹脂(A)は、通常、(メタ)アクリル酸エステル単位[(メタ)アクリル酸エステル由来の単位(構造単位)]を有していてもよい。
(メタ)アクリル酸エステル単位を構成する(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、脂肪族(メタ)アクリレート[例えば、(メタ)アクリル酸アルキルエステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸C1-18アルキル)等]、脂環族(メタ)アクリレート[例えば、(メタ)アクリル酸シクロアルキルエステル(例えば、(メタ)アクリル酸シクロプロピル、(メタ)アクリル酸シクロブチル等の(メタ)アクリル酸C3-20シクロアルキル)、架橋環式(メタ)アクリレート(例えば、(メタ)アクリル酸イソボルニル)等]、芳香族(メタ)アクリレート[例えば、(メタ)アクリル酸アリールエステル(例えば、(メタ)アクリル酸フェニル、(メタ)アクリル酸o-トリル等の(メタ)アクリル酸C6-20アリール)、(メタ)アクリル酸アラルキルエステル(例えば、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸C6-10アリールC1-4アルキル)、(メタ)アクリル酸フェノキシアルキル(例えば、(メタ)アクリル酸フェノキシエチル等の(メタ)アクリル酸フェノキシC1-4アルキル)等]等が挙げられる。
(メタ)アクリル酸エステルには、置換基(例えば、ヒドロキシ基、アルコキシ基、グリシジル基等)を有する(メタ)アクリル酸エステルも含まれる。このような(メタ)アクリル酸エステルとしては、例えば、ヒドロキシ基を有するメタクリル酸エステル[例えば、(メタ)アクリル酸ヒドロキシアルキルエステル(例えば、(メタ)アクリル酸2-ヒドロキシエチル等の(メタ)アクリル酸ヒドロキシC1-12アルキル)等]、アルコキシ基を有する(メタ)アクリル酸エステル[例えば、(メタ)アクリル酸アルコキシアルキルエステル(例えば、(メタ)アクリル酸2-メトキシエチル等のメタクリル酸C1-12アルコキシC1-12アルキル等)]、グリシジル基を有する(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸グリシジル等)等が挙げられる。
(メタ)アクリル酸エステルは、1種又は2種以上組み合わせて(メタ)アクリル酸エステル単位を構成してもよい。
(メタ)アクリル酸エステル単位は、所望の物性にもよるが、特に、メタクリル酸エステル単位を少なくとも含むことが好ましい。
(メタ)アクリル酸エステル単位を構成するメタクリル酸エステルとしては、例えば、脂肪族メタクリレート[例えば、メタクリル酸アルキルエステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸へプチル、メタクリル酸オクチル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸ペンタデシル、メタクリル酸ヘキサデシル、メタクリル酸ヘプタデシル、メタクリル酸オクタデシル等のメタクリル酸C1-18アルキル、好ましくはメタクリル酸C1-12アルキル)等]、脂環族メタクリレート[例えば、メタクリル酸シクロアルキルエステル(例えば、メタクリル酸シクロプロピル、メタクリル酸シクロブチル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル等のメタクリル酸C3-20シクロアルキル、好ましくはメタクリル酸C3-12シクロアルキル)、架橋環式メタクリレート(例えば、メタクリル酸イソボルニル等)等]、芳香族メタクリレート[例えば、メタクリル酸アリールエステル(例えば、メタクリル酸フェニル、メタクリル酸o-トリル、メタクリル酸m-トリル、メタクリル酸p-トリル、メタクリル酸2,3-キシリル、メタクリル酸2,4-キシリル、メタクリル酸2,5-キシリル、メタクリル酸2,6-キシリル、メタクリル酸3,4-キシリル、メタクリル酸3,5-キシリル、メタクリル酸1-ナフチル、メタクリル酸2-ナフチル、メタクリル酸ビナフチル、メタクリル酸アントリル等のメタクリル酸C6-20アリール、好ましくはメタクリル酸C6-10アリール)、メタクリル酸アラルキルエステル(例えば、メタクリル酸ベンジル等のメタクリル酸C6-10アリールC1-4アルキル)、メタクリル酸フェノキシアルキル(例えば、メタクリル酸フェノキシエチル等のメタクリル酸フェノキシC1-4アルキル)等]等を挙げることができる。
(メタ)アクリル酸エステル単位は、メタクリル酸エステル単位の中でも、透明性を向上させる等の観点から、メタクリル酸アルキルエステル単位(例えば、メタクリル酸C1-18アルキル単位)を少なくとも含むことが好ましく、特にメタクリル酸メチル単位を少なくとも含むことがさらに好ましい。
なお、アクリル樹脂は、必要に応じて、(メタ)アクリル酸エステル単位以外の他の重合性単量体(モノマー)由来の単位を含んでいてもよい。このような他のモノマーとしては、例えば、酸基含有モノマー(メタクリル酸、アクリル酸等)、スチレン系モノマー[例えば、スチレン、ビニルトルエン、置換基(例えば、ハロゲン基、アルコキシ基、アルキル基、ヒドロキシ基等)を有するスチレン(例えば、α―メチルスチレン、クロロスチレン等)、スチレンスルホン酸又はその塩等]、ビニルエステル(例えば、酢酸ビニル等)、不飽和ニトリル(例えば、アクリロニトリル、メタクリロニトリル等)、オレフィン系モノマー(例えば、エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテン等のC2-10アルケン)、アミド基含有ビニル系単量体[例えば、(メタ)アクリルアミド、N-置換(メタ)アクリルアミド(例えば、N-メチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N-シクロヘキシル(メタ)アクリルアミド等のN-シクロアルキル(メタ)アクリルアミド;N-フェニル(メタ)アクリルアミド等のN-アリール(メタ)アクリルアミド;N-ベンジル(メタ)アクリルアミド等のN-アラルキル(メタ)アクリルアミド等)等]、2-(ヒドロキシメチル)アクリル酸エステル(例えば、2-(ヒドロキシメチル)アクリル酸エチル等のアルキルエステル)等が挙げられる。
他のモノマーは、1種又は2種以上組み合わせて他のモノマー由来の単位を構成してもよい。
アクリル樹脂(又はアクリル樹脂の構成単位)中の(メタ)アクリル酸エステル単位の含有割合は、例えば、10質量%以上(例えば、20質量%以上)の範囲から選択でき、好ましくは30質量%以上(例えば、35質量%以上)、さらに好ましくは40質量%以上(例えば、45質量%以上)であってもよく、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、80質量%以上等であってもよい。
アクリル樹脂がメタクリル酸エステル単位を含む場合、アクリル樹脂(又はアクリル樹脂の構成単位)中のメタクリル酸エステル単位の含有割合は、例えば、10質量%以上の範囲から選択でき、20質量%以上、好ましくは30質量%以上(例えば、35質量%以上)、さらに好ましくは40質量%以上(例えば、45質量%以上)であってもよく、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、80質量%以上等であってもよい。
アクリル樹脂がメタクリル酸エステル単位を含む場合、(メタ)アクリル酸エステル単位中のメタクリル酸エステル単位の含有割合は、例えば、10質量%以上(例えば、20質量%以上)、好ましくは30質量%以上(例えば、40質量%以上)、さらに好ましくは50質量%以上(例えば、60質量%以上)であってもよく、70質量%以上、80質量%以上、90質量%以上等であってもよい。
アクリル樹脂がメタクリル酸アルキルエステル単位を含む場合、(メタ)アクリル酸エステル単位中のメタクリル酸アルキルエステル単位の含有割合は、例えば、10質量%以上(例えば、20質量%以上)、好ましくは30質量%以上(例えば、40質量%以上)、さらに好ましくは50質量%以上(例えば、60質量%以上)であってもよく、70質量%以上、80質量%以上、90質量%以上等であってもよい。
なお、アクリル樹脂がメタクリル酸メチル単位を含む場合、(メタ)アクリル酸エステル単位中のメタクリル酸メチル単位の含有割合は、例えば、10質量%以上(例えば、20質量%以上)、好ましくは30質量%以上(例えば、40質量%以上)、さらに好ましくは50質量%以上(例えば、60質量%以上)であってもよく、70質量%以上、80質量%以上、90質量%以上等であってもよい。
アクリル樹脂がアクリル酸エステル単位を含む場合、アクリル樹脂中のアクリル酸エステル単位の含有割合は、耐熱性の観点から比較的少なくてもよく、例えば、10質量%未満(例えば、8質量%以下)の範囲から選択でき、好ましくは5質量%以下(例えば、4質量%以下)、さらに好ましくは3質量%以下(例えば、2質量%以下)であってもよい。
アクリル樹脂が他の重合性単量体(モノマー)由来の単位を含む場合、アクリル樹脂中の当該単位の含有割合は、特に限定されず適宜選択できる。特に、他の重合性単量体として酸基含有モノマーを含む場合、酸基含有モノマー単位の含有割合は、透明性や着色等の観点から、比較的少なくてもよく、例えば、10質量%以下(例えば、5質量%以下)、好ましくは2質量%以下(例えば、1質量%以下)、さらに好ましくは0.5質量%以下等であってもよい。
アクリル樹脂(A)は、耐熱性の観点から環構造を有するのが好ましい。なお、この環構造は、通常、アクリル樹脂(ポリマー鎖、アクリル系ポリマー)の主鎖に有する。
なお、アクリル樹脂が環構造を有することにより、アクリル樹脂において種々の物性[例えば、耐熱性、耐湿熱性、耐黄変性、硬度(強度)、耐溶剤性、表面硬度、酸素や水蒸気のバリヤ性、光学特性、寸法安定性、形状安定性等]を、付与、改善又は向上しうる。
また、アクリル樹脂が環構造を有することにより、ポリメタクリル酸メチル等に比べて膜厚が薄い成形体(例えば、レンズ)を効率良く作成すること等も可能となる。
具体的な環構造としては、例えば、環状イミド構造(例えば、N-置換マレイミド単量体由来の構造、グルタルイミド構造等)、環状アミド構造(例えば、ラクタム構造等)、環状エステル構造(例えば、ラクトン環構造等)、無水酸構造(例えば、無水マレイン酸単量体由来の構造、無水グルタル酸構造)等が挙げられる。
環構造は、特に、非無水酸構造[例えば、無水マレイン酸単量体由来の構造、無水グルタル酸構造等でない環構造(例えば、環状イミド構造、環状アミド構造、環状エステル構造等)]であってもよい。
アクリル樹脂は、1種又は2種以上の環構造を有していてもよい。なお、2種以上の環構造を有する場合、2種以上の環構造は、同系統の環構造(例えば、2種以上の環状イミド構造等)であってもよく、異なる系統の環構造(例えば、環状イミド構造とラクトン構造との組み合わせ等)であってもよい。
グルタルイミド構造及び無水グルタル酸構造としては、例えば、以下の式(1)で表される構造が挙げられる。
Figure 2023104286000001
(式中、R1およびR2は、それぞれ独立して、水素原子またはアルキル基であり、Rは水素原子又は置換基であり、Xは酸素原子又は窒素原子である。Xが酸素原子のときn=0であり、Xが窒素原子のときn=1である。)
式(1)のR1及びR2において、アルキル基としては、例えば、C1-8アルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソへキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、2-エチルヘキシル基等)等が挙げられる。
1及びR2は、特に、水素原子又はC1-4アルキル基であるのが好ましい。
式(1)のRにおいて、置換基としては、例えば、炭化水素基等が挙げられる。
炭化水素基としては、例えば、脂肪族基、脂環族基、芳香族基等が挙げられる。なお、炭化水素基は、さらにハロゲン等の置換基を有していてもよい。
式(1)のRにおいて、脂肪族基としては、例えば、C1-10アルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソへキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、2-エチルヘキシル基等)等が挙げられる。これらのアルキル基のなかでも、C1-4アルキル基、特にメチル基が好ましい。
式(1)のRにおいて、脂環族基としては、例えば、C3-12シクロアルキル基(例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等)が挙げられる。これらのシクロアルキル基のなかでも、C3-7シクロアルキル基、特にシクロヘキシル基が好ましい。
式(1)のRにおいて、芳香族基としては、例えば、C6-20芳香族基[例えば、C6-20アリール基(例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基、2-ナフチル基、ビナフチル基、アントリル基等)、C7-20アラルキル基(例えば、ベンジル基等)等]が挙げられる。これらの芳香族基のなかでも、フェニル基及びトリル基が好ましい。
代表的には、式(1)において、R及びRがそれぞれ独立して水素原子又はメチル基、Rが、C1-10アルキル基、C3-12シクロアルキル基又はC6-20芳香族基であってもよく、好ましくは、R及びRがそれぞれ独立して水素原子又はメチル基、Rが、C1-4アルキル基、C3-7シクロアルキル基、C6-20アリール基又はC7-20アラルキル基であってもよく、さらに好ましくは、R及びRがそれぞれ独立して水素原子又はメチル基、Rが、メチル基、シクロヘキシル基、フェニル基又はトリル基であり、最も好ましくは、R及びRがそれぞれ独立して水素原子又はメチル基、Rがシクロヘキシル基又はフェニル基であってもよい。アクリル系ポリマーの着色を抑制する観点ではRが水素原子又はメチル基、シクロヘキシル基であってもよく、成形体の強度向上の観点からはRが水素原子又はメチル基であってもよい。
なお、環構造は、式(1)で表わされる構造を1種又は2種以上有していてもよい。
特に、環構造が、式(1)で表される構造を有する場合、環状非無水物構造であるグルタルイミド構造(すなわち、式(1)において、Xが窒素原子である構造)を有するのが好ましい。
なお、無水グルタル酸構造(すなわち、式(1)において、Xが酸素原子である構造)は、加水分解したり、酸価が大きくなって耐水性や耐熱水性を低下させたり光学特性を変動させる虞がある。そのため、環構造は、無水グルタル酸構造を実質的に有していないか、含んでいても少ないのが好ましい場合がある。
マレイミド単量体(特にN-置換マレイミド単量体)及び無水マレイン酸単量体由来の構造としては、例えば、以下の式(2)で表される構造が挙げられる。
Figure 2023104286000002
(式中、R、Rは互いに独立して水素原子またはメチル基であり、Rは水素原子又は置換基であり、Xは酸素原子または窒素原子である。Xが酸素原子のときn=0であり、Xが窒素原子のときn=1である。)
式(2)のRにおいて、置換基としては、例えば、炭化水素基等が挙げられる。
当該炭化水素基としては、例えば、脂肪族基{例えば、アルキル基[例えば、C1-6直鎖アルキル基(例えば、メチル基、エチル基等)、C1-6分岐アルキル基(例えば、イソプロピル基等)等のC1-6アルキル基等]等}、脂環族基(例えば、シクロペンチル基、シクロヘキシル基等のC3-20シクロアルキル基等)、芳香族基{例えば、C6-20芳香族基[例えば、C7-20アラルキル基(例えば、ベンジル基等)、C6-20アリール基(例えば、フェニル基等)]}等が挙げられる。なお、炭化水素基は、さらにハロゲン等の置換基を有していてもよい。
が酸素原子のとき、式(2)により示される環構造は無水マレイン酸単量体由来の構造となる。
一方、Xが窒素原子のとき、式(2)により示される環構造はN-置換マレイミド単量体由来の構造となる。
式(2)において、Xが窒素原子のとき、好ましくは、R及びRがそれぞれ独立して水素原子、RがC3-20シクロアルキル基又はC6-20芳香族基であってもよく、より好ましくはR及びRがそれぞれ独立して水素原子、Rがシクロヘキシル基、ベンジル基又はフェニル基であってもよい。アクリル系ポリマーの着色を抑制する観点ではRが水素原子又はメチル基、シクロヘキシル基であってもよく、成形体の強度向上の観点からはRが水素原子又はメチル基であってもよい。
環構造は、式(2)で表わされる構造を1種又は2種以上有していてもよい。
特に、環構造が、式(2)で表される構造を有する場合、環状非無水酸構造であるマレイミド単量体由来の構造(すなわち、式(2)において、Xが窒素原子である構造)を有するのが好ましい。
なお、上記式(2)において、Xが酸素原子(及びn=0)であるとき、上記式(2)は無水マレイン酸単量体由来の構造となる。このような無水マレイン酸単量体由来の構造は、加水分解したり、酸価が大きくなって耐水性や耐熱水性を低下させたり光学特性を変動させる虞がある。そのため、環構造は、無水マレイン酸単量体由来の構造を実質的に有していないか、含んでいても少ないのが好ましい場合がある。
ラクトン環(環状エステル)構造としては、特に限定されず、例えば、4から8員環であってもよいが、環構造の安定性に優れることから5員環又は6員環であることが好ましく、6員環であることがより好ましい。
ラクトン環構造は、例えば、特開2004-168882号公報等に開示される構造であってもよいが、例えば、以下の式(3)で表される構造等が挙げられる。
Figure 2023104286000003
(式中、R、R及びRは、互いに独立して、水素原子又は置換基である。)
式(3)において、置換基としては、例えば、炭化水素基等の有機残基等が挙げられる。
当該炭化水素基としては、例えば、脂肪族基(例えば、メチル基、エチル基、プロピル基等のC1-20アルキル基、エテニル基、プロペニル基等のC2-20不飽和脂肪族炭化水素基等)、芳香族基(例えば、フェニル基、ナフチル基等のC6-20芳香族炭化水素基等)等が挙げられる。
前記炭化水素基は、酸素原子を含んでいてもよく、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基及びエステル基から選ばれる少なくとも1種類の基により置換されていてもよい。
式(3)において、好ましくは、Rが水素原子又はメチル基、R及びRがそれぞれ独立して水素原子又はC1-20アルキル基であってもよく、より好ましくは、Rが水素原子又はメチル基、R及びRがそれぞれ独立して水素原子又はメチル基であってもよい。
環構造は、式(3)で表わされる構造を1種又は2種以上含んでいてもよい。
ラクタム環構造としては、特に限定されず、例えば、以下の式(4)で表されるピロリジノン環構造等が挙げられる。
ピロリジノン環構造は、基本骨格として5員環のアミド環構造(環状アミド構造)を有する。この環状アミド構造は、5員環のラクタム構造(γ-ラクタム構造)でもある。主鎖にピロリジノン環構造を有するとは、5員環であるピロリジノン環構造の基本骨格を構成する5つの原子のうち少なくとも1つの原子、典型的にはアミド結合(―N(R)CO-)を構成しない3つの炭素原子が当該重合体の主鎖に位置し、主鎖を構成することを意味する。
Figure 2023104286000004
(式中、R10~R12は、それぞれ独立して、水素原子又は置換基である。)
式(4)のR10において、置換基としては、例えば、炭化水素基又は-NHCOR13基(R13は、水素原子又は炭化水素基)等が挙げられる。
10又はR13における炭化水素基としては、例えば、脂肪族基、脂環族基、芳香族基等が挙げられる。
脂肪族基としては、例えば、C1-18アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等のC1-18直鎖又は分岐アルキル基等)等が挙げられる。
脂環族基としては、例えば、C3-18シクロアルキル基(例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等)等が挙げられる。
芳香族基としては、例えば、C6-20芳香族基[例えば、C6-20アリール基(例えば、フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等)、C7-20アラルキル基(例えば、ベンジル基等)等]が挙げられる。
10としては、特に、水素原子、C1-18直鎖アルキル基(例えば、メチル基等)等が好ましい。
また、R13としては、特に、水素原子、C1-18直鎖アルキル基(好ましくは、C1-12直鎖アルキル基、より好ましくは、C1-4直鎖アルキル基等)、C6-20アリール基(例えば、フェニル基等)、C3-18シクロアルキル基(好ましくは、C3-12シクロアルキル基、より好ましくは、C3-6シクロアルキル基等)等が好ましい。
式(4)のR11において、置換基としては、例えば、-COOR14基(R14は、水素原子又は炭化水素基)等が挙げられる。
14における炭化水素基としては、例えば、R10又はR13で例示の炭化水素基等が挙げられる。
また、R14の特に好ましい態様も、R13の特に好ましい態様と同じである。
式(4)のR12において、置換基としては、例えば、-COR15基(R15は、水素原子又は炭化水素基)等が挙げられる。
15における炭化水素基としては、例えば、R10又はR13で例示の炭化水素基等が挙げられる。
また、R15の特に好ましい態様も、R13の特に好ましい態様と同じである。
アクリル樹脂が有する環構造は、所望の物性(例えば、耐熱性、硬度(強度)、耐溶剤性、表面硬度、酸素や水蒸気のバリヤ性、光学特性、寸法安定性、形状安定性等)等に応じて適宜選択してもよい。例えば、耐熱性等の観点から、環構造は、ラクトン環構造、環状イミド構造(例えば、N-置換マレイミド単量体由来の構造、グルタルイミド構造等)を好適に含んでいてもよい。
また、耐水性や耐熱水性等の観点から、環構造は、環状非無水物構造[例えば、ラクトン環構造、環状イミド構造(特に、グルタルイミド構造、N-置換マレイミド単量体由来の構造)]を好適に含んでいてもよい。
さらに、表面硬度、耐溶剤性、バリヤ特性、光学特性等の観点から、環構造は、ラクトン環構造、グルタルイミド構造等を好適に含んでいてもよい。
特に、環構造は、環状イミド構造(特に、グルタルイミド構造、N-置換マレイミド単量体由来の構造)及びラクトン環構造から選択された少なくとも1種の環構造を含有していてもよく、なかでも、少なくともラクトン環構造を含有していてもよい。
ラクトン環(環状エステル)構造を有するアクリル樹脂は、耐熱性と800nm以上950nm以下での透過率のバランスに優れたアクリル樹脂組成物を得やすいため、本発明を好適に適用しうる。
環構造の含有割合は、用途や所望の物性等に応じて選択でき、特に限定されないが、例えば、アクリル樹脂中、0.1質量%以上(例えば、0.5質量%以上)程度の範囲から選択でき、1質量%以上、好ましくは3質量%以上、さらに好ましくは5質量%以上であってもよく、10質量%以上、15質量%以上、20質量%以上、22質量%以上、25質量%以上等であってもよい。
環構造の含有割合(又はその上限値)は、特に限定されず、例えば、アクリル樹脂中、90質量%以下、80質量%以下、70質量%以下、60質量%以下、55質量%以下、50質量%以下、45質量%以下、40質量%以下、35質量%以下等であってもよい。
環構造の含有割合が大きくなると、耐熱性、硬度(強度)、耐溶剤性、表面硬度、寸法安定性等の点で好ましい。
なお、これらの上限値と下限値とを適宜組み合わせて適当な範囲(例えば、1~70質量%、3~60質量%、5~60質量%、5~50質量%等)を設定してもよい(範囲の記載について他も同じ)。
特に、アクリル樹脂が、グルタルイミド構造を有する場合、グルタルイミド構造の含有割合は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上であってもよく、90質量%以下、好ましくは60質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下であってもよい。
アクリル樹脂が、N-置換マレイミド単量体由来の構造を有する場合、N-置換マレイミド単量体由来の構造の含有割合は、例えば5~90質量%、好ましくは5~60質量%、より好ましくは10~50質量%、さらに好ましくは10~30質量%であってもよい。
アクリル樹脂が、ラクトン環構造を有する場合、ラクトン環構造の含有割合は、例えば、1~80質量%、好ましくは3~70質量%、さらに好ましくは5~60質量%(例えば、10~50質量%)であってもよく、15質量%以上(例えば、18~55質量%)、20質量%以上(例えば、23~50質量%)、25質量%以上(例えば、26~45質量%、28~40質量%等)などとすることもできる。
アクリル樹脂が、ラクタム環構造を有する場合、ラクタム環構造の含有割合は、例えば、1~80質量%、好ましくは5~70質量%、さらに好ましくは10~50質量%程度であってもよい。
また、環構造の含有割合は、例えば、1~80質量%、好ましくは3~70質量%、さらに好ましくは5~60質量%(例えば、10~50質量%)であってもよく、比較的高割合、例えば、10質量%以上[例えば、13~60質量%、15質量%以上(例えば、18~55質量%)、20質量%以上(例えば、23~50質量%)、25質量%以上(例えば、26~45質量%、28~40質量%等)]とすることもできる。
なお、アクリル樹脂に導入する環構造の含有割合を比較的高割合とすることにより、非常に優れた耐熱性(例えば、高いガラス転移温度)や耐湿熱性を有する樹脂(成形体)を効率良く得やすい。
本発明では、アクリル樹脂に環構造(例えば、少なくともラクトン環構造を含む環構造)を高割合で含む場合であっても、着色(800nm以上950nm以下での透過率低下)を効率良く抑えうる。
なお、アクリル樹脂における環構造の割合は、環構造の種類等に応じて、慣用の方法を利用でき、例えば、環状エステル構造(ラクトン環構造)の割合は、脱アルコール反応率に基づいて求めてもよく、非環状エステル構造(例えば、環状イミド構造、環状アミド構造、無水酸構造等)の割合は、NMR(例えば、H-NMR、13C-NMR等)分析に基づいて求めてもよい。NMR分析(NMR測定)において、分析(測定)条件は、適宜選択できるが、例えば、所定の測定溶媒(例えば、CDCl、DMSO-d)を用い、所定の測定温度(例えば、40℃)で分析(測定)してもよい。
一例として、脱アルコール反応率に基づく方法を説明する。
まず、重合で得られた重合体組成からすべての水酸基がメタノールとして脱アルコールした際に起こる重量減少量を基準にし、ダイナミックTG測定において重量減少が始まる前の150℃から重合体の分解が始まる前の300℃までの脱アルコール反応による重量減少から、脱アルコール反応率を求めた。
すなわち、ラクトン環構造を有した重合体のダイナミックTG測定において150℃から300℃までの間の重量減少率の測定を行い、得られた実測重量減少率を(X)とする。他方、当該重合体の組成から、その重合体組成に含まれる全ての水酸基がラクトン環の形成に関与するためアルコールになり脱アルコールすると仮定した時の理論重量減少率(すなわち、その組成上において100%脱アルコール反応が起きたと仮定して算出した重量減少率)を(Y)とする。
なお、理論重量減少率(Y)は、より具体的には、重合体中の脱アルコール反応に関与する構造(水酸基)を有する原料単量体のモル比、すなわち当該重合体組成における前記原料単量体の含有率から算出することができる。
これらの値(X)、(Y)を脱アルコール計算式:
1-(実測重量減少率(X)/理論重量減少率(Y))
に代入してその値を求め、%で表記すると、脱アルコール反応率が得られる。
アクリル樹脂は、重合の際に使用する成分等に由来の原子や基を有していてもよい。
例えば、アクリル樹脂は、硫黄原子を含有してもよい。より具体的な態様では、硫黄含有基(硫黄含有骨格)を、少なくとも分子末端に有していてもよい。
このような硫黄原子や硫黄含有基を有するアクリル樹脂は、例えば、チオール化合物(例えば、後述のチオール化合物)を連鎖移動剤として使用することにより得られる。
なお、アクリル樹脂が、共重合体であるとき、共重合の形態は特に限定されず、ランダム共重合体であってもよく、ブロック共重合体、交互共重合体、グラフト共重合体等であってもよい。
例えば、アクリル樹脂は、環構造を有しているため、通常、共重合体と言えるが、環構造の導入形態は、特に限定されず、ランダムに導入されていてもよく、ブロック、交互、グラフト等のように導入されていてもよい。
アクリル樹脂(A)(又は樹脂)のメルトフローレート(MFR)は、温度230℃及び荷重3.8kgにおいて、例えば、0.1g/10分以上(例えば、0.2g/10分以上)、好ましくは0.3g/10分以上(例えば、0.4g/10分以上)、さらに好ましくは0.5g/10分以上(例えば、0.6g/10分以上、0.7g/10分以上、0.8g/10分以上、1g/10分以上、1.5g/10分以上、1.6g/10分以上)程度であってもよく、1.8g/10分以上(例えば、2g/10分以上、2.2g/10分以上、2.5g/10分以上、2.8g/10分以上、3g/10分以上、3.2g/10分以上、3.5g/10分以上、3.8g/10分以上、4g/10分以上)であってもよい。
アクリル樹脂(A)(又は樹脂)のメルトフローレートの上限値は、温度230℃及び荷重3.8kgにおいて、例えば、10g/10分以下、9.8g/10分以下、9.6g/10分以下、9.4g/10分以下、9.2g/10分以下、9g/10分以下、8.8g/10分以下、8.6g/10分以下、8.4g/10分以下、8.2g/10分以下、8g/10分以下、7.8g/10分以下、7.6g/10分以下、7.4g/10分以下、7.2g/10分以下、7g/10分以下、6.5g/10分以下、6g/10分以下、5.5g/10分以下、5.2g/10分以下、5g/10分以下などであってもよい。
アクリル樹脂(A)(又は樹脂)のメルトフローレートの具体的な範囲は、上記範囲を組み合わせた範囲が挙げられ、例えば、温度230℃及び荷重3.8kgにおいて、0.1~10g/10分、1.8~9g/10分、2~8g/10分等であってもよい。
なお、アクリル樹脂のメルトフローレートは、JIS K 7210に準拠して測定してもよい。
溶融流動性に優れる(高い溶融流動性を有する)ことにより、成形(例えば、射出成形等の溶融成形)時の着色を低減し、800nm以上950nm以下での透過率が高い成形体(射出成形体等の溶融成形体)を効率よく得やすい。
また、溶融流動性が高いことにより、より低温での成形加工が可能となり、成形工程における熱履歴を抑制することにより成形品の着色を低減しうると共に、射出装置の昇温降温工程に要する時間を短縮できること等から、生産性向上が期待できる。
一方で、溶融流動性が高い(例えば、MFRが1.8g/10分以上、2g/10分以上等の)アクリル樹脂(特に、環構造を有するアクリル樹脂)は、計量を不安定化しやすい(さらにはシルバーストリーク等を生じやすい)ようであるが、本発明の方法によれば、このような樹脂であっても効率よく計量を安定化(さらにはシルバーストリーク等を少ないものと)しうる。
アクリル樹脂(A)(又は樹脂)の重量平均分子量(Mw)は、5000以上(例えば、7000以上程度の範囲から選択してもよく、例えば、10000以上(例えば、12000以上)、好ましくは15000以上(例えば、18000以上)、さらに好ましくは20000以上(例えば、25000以上)であってもよく、30000以上(例えば、35000以上、38000以上、40000以上、42000以上、45000以上、48000以上、50000以上、52000以上、55000以上、58000以上、60000以上、62000以上、65000以上など)であってもよい。
また、アクリル樹脂(A)(又は樹脂)の重量平均分子量(Mw)は、例えば、500000以下、400000以下、300000以下、250000以下、200000以下、180000以下、150000以下、120000以下などであってもよく、11万以下(例えば、105000以下、100000以下、100000未満、98000以下、95000以下、90000以下等)であってもよい。
アクリル樹脂(A)(又は樹脂)の重量平均分子量(Mw)の具体的な範囲としては、成形性等の観点から、例えば、20000~200000、30000~150000、50000~100000などであってもよい。
アクリル樹脂(A)の分子量分布(Mw/Mn)は、例えば、1~10(例えば、1.1~7.0)、好ましくは1.2~5.0(例えば、1.5~4.0)程度であってもよく、1.5~3.0程度であってもよく、2.8以下、2.7以下、2.6以下、特に2.5以下(例えば、2.4以下、2.3以下、2.2以下)などであってもよい。
アクリル樹脂(A)(又は樹脂)は、溶融流動性や成形体の強度などの観点から、比較的狭い分子量分布(Mw/Mn)を有してもよい。
なお、分子量(及び分子量分布)は、例えば、GPCを用い、ポリスチレン換算により測定してもよい。
アクリル樹脂(A)のガラス転移温度(Tg)は、例えば、70℃以上(例えば、80~200℃)、好ましくは90℃以上(例えば、100~180℃)、さらに好ましくは110℃以上(例えば、112~170℃)程度であってもよく、115℃以上(例えば、118~160℃)程度であってもよく、120℃以上[例えば、120~160℃、125℃以上(例えば、126~155℃)、128℃以上(例えば、129~150℃)]等とすることもできる。
ガラス転移温度は、例えば、(メタ)アクリル系モノマーの種類やその割合、アクリル樹脂に環構造を含有させる場合にはその種類や割合等により効率よく調整しうる。通常、環構造を有するアクリル樹脂は、比較的高いガラス転移温度を有している場合が多く、環構造を有するアクリル樹脂の中でも、環構造の割合が大きいアクリル樹脂の方がガラス転移温度において高くなる場合が多い。
なお、Tgは、例えば、後述の方法により測定してもよい。
なお、アクリル樹脂は、市販品を用いてもよく、製造したものを用いてもよい。以下、アクリル樹脂の製法について説明する。
(アクリル樹脂の製造方法)
アクリル樹脂(アクリル系ポリマー)は、重合成分を重合する工程(重合工程)を少なくとも経て製造できる。
重合成分は、アクリル樹脂の原料となるモノマーであり、前記例示の(メタ)アクリル酸エステルや他のモノマーに相当する。モノマーの種類や好ましい態様などは前記と同様である。
なお、アクリル樹脂は、環構造を有していてもよいが、環構造の種類によっては、重合成分は、環構造を構成するモノマーや環構造の原料となるモノマーを含んでいてもよい。
例えば、マレイミド単量体や無水マレイン酸単量体由来の構造を有するアクリル樹脂を製造する場合、重合成分は、例えば、無水マレイン酸、マレイミド系モノマー[例えば、マレイミド;N-アルキルマレイミド(例えば、N-メチルマレイミド、N-エチルマレイミドなどのN-C1-10アルキルマレイミド)、N-シクロアルキルマレイミド(例えば、シクロヘキシルマレイミドなどのN-C3-20シクロアルキルマレイミド)、N-アリールマレイミド(例えば、N-フェニルマレイミドなどのN-C6-10アリールマレイミド)、N-アラルキルマレイミド(例えば、N-ベンジルマレイミドなどのN-C7-10アラルキルマレイミド)などのN-置換マレイミドなど]を含んでいてもよい。
ラクトン環構造を有するアクリル樹脂を製造する場合、重合成分は、ラクトン環の原料となるモノマー、例えば、2-(ヒドロキシメチル)アクリル酸エステル(例えば、2-(ヒドロキシメチル)アクリル酸エチル等のアルキルエステル)を含んでいてもよい。
ラクタム環構造を有するアクリル樹脂を製造する場合、重合成分は、ラクタム系単量体[例えば、N-ビニルピロリドン系単量体(例えば、N-ビニルピロリドン、N-ビニル-4-ブチルピロリドン、N-ビニル-4-プロピルピロリドン、N-ビニル-4-エチルピロリドン、N-ビニル-4-メチルピロリドン、N-ビニル-4-メチル-5-エチルピロリドン、N-ビニル-4-メチル-5-プロピルピロリドン、N-ビニル-5-メチル-5-エチルピロリドン、N-ビニル-5-プロピルビロリドン、N-ビニル-5-ブチルピロリドンなど)、N-ビニルカプロラクタム系単量体(例えば、N-ビニルカプロラクタム、N-ビニル-6-メチルカプロラクタム、N-ビニル-6-プロピルカプロラクタム、N-ビニル-7-ブチルカプロラクタムなど)など]などを含んでいてもよい。
重合は、通常、ラジカル重合であってもよい。
重合は、重合開始剤(特にラジカル重合開始剤)の存在下で行ってもよい。
重合開始剤(ラジカル重合開始剤)としては、特に限定されないが、例えば、有機過酸化物[例えば、パーオキシド(ジアルキルパーオキシド、ジアシルパーオキシドなど)、パーオキシモノカーボネート、パーオキシエステル、パーオキシケタールなど]、アゾ化合物などが含まれる。
具体的な重合開始剤としては、例えば、有機過酸化物[例えば、tert―アミルパーオキシイソノナノエート、t―アミルパーオキシ―2―エチルヘキサノエート、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシアセテート、1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、tert-ブチルパーオキシ2-エチルヘキサネート、tert-ブチルパーオキシイソブチレート、tert-ヘキシルパーオキシ2-エチルヘキサネート、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン等]、アゾ化合物[例えば、2-(カルバモイルアゾ)-イソブチロニトリル、1,1'-アゾビス(1-シクロヘキサンカルボニトリル)、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、ジメチル2,2'-アゾビスイソブチレート、2、2'-アゾビス(2,4,4-トリメチルペンタン)、2、2'-アゾビス(2-メチルプロパン)等]等が挙げられる。
重合開始剤は、単独で又は2種以上組み合わせて使用してもよい。
特に、重合開始剤として、少なくとも有機過酸化物(パーオキシエステルなど)を好適に使用してもよい。
重合開始剤の使用量(使用割合)は、重合開始剤の種類などにもよるが、例えば、重合成分100質量部に対して、0.01質量部以上、好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上、特に0.15質量部以上などであってもよく、0.2質量部以上(例えば、0.25質量部以上、0.28質量部以上、0.3質量部以上、0.32質量部以上、0.35質量部以上、0.38質量部以上、0.4質量部以上、0.42質量部以上、0.45質量部以上、0.48質量部以上、0.5質量部以上、0.52質量部以上)であってもよい。
重合開始剤の使用量の上限値は、特に限定されないが、例えば、重合成分100質量部に対して、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4.5質量部、4質量部、3.5質量部、3.2質量部、3質量部、2.8質量部、2.5質量部、2.2質量部、2質量部、1.8質量部、1.5質量部、1.2質量部、1質量部、0.9質量部、0.8質量部、0.7質量部などであってもよい。
特に、重合成分100質量部に対する重合開始剤の使用割合を比較的大きく[例えば、0.2質量部以上、0.3質量部以上、0.4質量部以上(例えば、0.4~0.8質量部)など]としてもよい。
このように重合開始剤を比較的多く使用することで、溶融流動性などの点で有利なアクリル樹脂を効率良く得やすい。また、連鎖移動剤を使用した場合であっても、十分な重合反応速度を担保しやすく、溶融流動性が良好なアクリル樹脂を効率良く得ることができる。
重合は、連鎖移動剤の存在下で行ってもよい。
連鎖移動剤としては、特に限定されないが、例えば、チオール化合物{例えば、第1級チオール[例えば、脂肪族第1級チオール(例えば、ブタンチオール、オクタンチオール、デカンチオール、ドデカンチオール(n―ドデシルメルカプタン)、ヘキサデカンチオール、オクタデカンチオール、デカントリチオール等の第1級アルキルメルカプタン、好ましくは第1級C3―30アルキルメルカプタン)等]、第2級チオール[例えば、脂肪族第2級チオール(例えば、2-プロパンチオール、2-ブタンチオール、2-メチル-1-プロパンチオール、3-メチル-2-ブタンチオール、3-ペンタンチオール、2-デカンチオール、3-デカンチオール、4-デカンチオール、5-デカンチオール、2-ヘキサデカンチオール、5-ヘキサデカンチオール、8-オクタデカンチオール等の第2級アルキルメルカプタン、好ましくは第2級C3―30アルキルメルカプタン)、脂環族第2級チオール(例えば、シクロヘキサンチオール、シクロペンタンチオール等のシクロアルキルメルカプタン、好ましくはC3―20シクロアルキルメルカプタン)、芳香族第2級チオール(例えば、チオフェノール等のアリールメルカプタン、好ましくはC6-20アリールメルカプタン)等]、第3級チオール[例えば、脂肪族第3級チオール(例えば、tert-ブチルメルカプタン、tert-ドデシルメルカプタン、tert-ノニルメルカプタン、tert-ヘキシルメルカプタン等のtert-アルキルメルカプタン、好ましくはC3―30tert-アルキルメルカプタン)等]}等が挙げられる。
なお、連鎖移動剤が多官能チオールを含む場合、連鎖移動剤中の多官能チオールの割合は少なくてもよい。連鎖移動剤中の多官能チオールの使用量(使用割合)は、例えば、20質量%以下(例えば、15質量%以下)、好ましくは10質量%以下(例えば、5質量%以下)、より好ましくは3質量%以下であってもよく、1質量%以下、0.5質量%以下などであってもよい。
連鎖移動剤は、1種又は2種以上使用することができる。
連鎖移動剤の使用量(使用割合)は、例えば、重合成分100質量部に対して、0.001質量部以上、好ましくは0.005質量部以上、さらに好ましくは0.01質量部以上、特に0.015質量部以上などであってもよく、0.02質量部以上であってもよい。
連鎖移動剤の使用量の上限値は、特に限定されないが、例えば、重合成分100質量部に対して、5質量部、4質量部、3質量部、2質量部、1.5質量部、1質量部、0.5質量部、0.25質量部、0.2質量部、0.15質量部、0.1質量部、0.08質量部、0.07質量部などであってもよい。
特に、連鎖移動剤を使用する場合でも、着色低減の観点などから重合成分100質量部に対する連鎖移動剤の使用割合を比較的小さく[例えば、0.5質量部以下、0.1質量部以下(例えば、0.001~0.1質量部)など]してもよく、連鎖移動剤を使用しなくてもよい。
このように、連鎖移動剤を使用しなくても、又は連鎖移動剤の使用量を比較的少なくしても、溶融流動性などの点で有利なアクリル樹脂を効率良く得やすい。
連鎖移動剤および重合開始剤の質量比は、アクリル樹脂の着色抑制や、溶融流動性などの観点から、好ましくは1/2以下、さらに好ましくは1/3以下、1/4以下、1/5以下であってよい。連鎖移動剤および重合開始剤の質量比は(連鎖移動剤の質量)/(重合開始剤の質量)より算出する。
重合は、必要に応じて、重合開始剤や連鎖移動剤の他、他の成分(例えば、pH調整剤、各種触媒など)の存在下で行ってもよい。
重合は、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれであってもよく、特に、不純物を含まず、流動性の安定したポリマーを得る等の観点から溶液重合であってもよい。溶液重合では、比較的均一に重合できるためか、塊状重合と比較して、著しく分子量が高いポリマーの生成などが抑えられるようであり、安定した流動性を有するポリマーを効率よく得やすい。また、懸濁重合、乳化重合と比較して乳化剤などの不純物を含まない為、透明度の高いポリマーを効率よく得やすい。
重合を溶媒中で行う場合(例えば、溶液重合である場合)、溶媒としては、重合成分の種類等に応じて適宜選択でき、特に限定されないが、例えば、有機溶媒[芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、エチルベンゼンなど)、脂肪族又は脂環族炭化水素類(例えば、シクロヘキサン、メチルシクロヘキサンなど)、ハロゲン系溶媒(例えば、クロロホルム、塩化メチレン、四塩化炭素など)など]、ケトン類(例えば、アセトン、メチルエチルケトンなど)、エステル類(例えば、酢酸エチル、酢酸ブチルなど)、エーテル類[例えば、鎖状エーテル類(例えば、ジエチルエーテルなど)、環状エーテル類(例えば、テトラヒドロフラン、ジオキサンなど)など]、アミド類[例えば、N-置換アミド(N,N-ジメチルホルムアミドなどのN-アルキル置換アルカンアミド)]、アルコール類(例えば、メタノール、エタノール、イソプロパノールなどのアルカノール)、グリコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのアルカンジオール又はポリアルカンジオールのモノアルキルエーテル)など]などが挙げられる。
溶媒は、単独で又は2種以上を組み合わせて使用してもよい。
重合において、重合系全体における重合成分の濃度は、分子量増加の抑制や生産性などの観点から例えば、20質量%以上(例えば、20~70質量%)、好ましくは35質量%以上(例えば、35~65質量%)、さらに好ましくは40質量%以上(例えば、40~60質量%)、特に45質量%以上(例えば、45~55質量%)であってもよい。
なお、各成分(例えば、重合成分、重合開始剤、連鎖移動剤、その他の成分、溶媒など)は、重合開始の段階ですべて反応系(反応器)に存在させて(仕込んで)もよく、重合の進行とともに添加(又は混合)してもよく、これらを組み合わせてもよい。このような場合、各成分の添加速度や添加時間は、適宜選択できる。
各成分は、複数回(2回以上、例えば、2~5回など)に分割して反応系に添加してもよい。
特に、重合成分(モノマー)を重合の進行とともに反応系に添加してもよく、その場合、重合成分を複数回に分割して添加してもよいし、重合成分を滴下させてもよい。重合成分を滴下によって反応系に添加すると、比較的分子量分布の狭いアクリル樹脂を得やすい。
また、重合開始剤を重合の進行とともに反応系に添加してもよい。特に、重合成分を滴下によって反応系に添加する場合、重合開始剤も滴下によって反応系に添加することが好ましい。重合開始剤を重合の進行とともに反応系に添加することにより、安全性の確保または比較的分子量分布の狭い重合体を得られることが期待できる。
なお、滴下によって重合成分や重合開始剤を添加する場合、滴下速度は、特に限定されないが、比較的分子量の小さいアクリル樹脂を得やすいなどの観点から、ゆっくりと添加することが好ましく、1時間以上(例えば、1~10時間など)かけて添加してもよい。
重合は、通常、所定の温度(又は加温下)で行われる。重合温度(反応温度)としては、重合成分、重合開始剤、溶媒の種類等に応じて適宜選択でき、例えば、20℃以上、好ましくは30℃以上(例えば、35~180℃)、さらに好ましくは40℃以上(例えば、45~170℃)、特に50℃以上(例えば、55~160℃)、特に好ましくは60℃以上(例えば、65~150℃)であってもよく、通常70~140℃(例えば、80~130℃)程度であってもよい。
なお、重合の経過とともに、重合温度を変化させてもよいが、このように変化させる場合であっても、通常、上記温度の範囲内で重合を行う場合が多い。
重合は、撹拌下で行ってもよい。また、重合は、空気中で行ってもよく、不活性雰囲気下(窒素、ヘリウム、アルゴン中など)で行ってもよい。
重合時間(熟成する場合)は、重合成分の量、重合温度などに応じて適宜選択でき、特に限定されないが、例えば、30分以上(例えば、40分~24時間)、好ましくは1時間以上(例えば、1.5~16時間)、さらに好ましくは2時間以上(例えば、2.5~12時間)であってもよい。
アクリル樹脂が環構造を有する場合、このような環構造は、環構造の種類に応じて、上記のような重合とともに形成されてもよく(例えば、マレイミド単量体や無水マレイン酸単量体由来の構造、ラクタム環構造などの場合)、重合後、さらに環構造を形成又は導入する工程を経てアクリル樹脂に形成又は導入できる。環構造の形成又は導入する方法としては、特に限定されず、公知の方法に従うことができる。
例えば、ラクトン環構造は、前記のように、ラクトン環の原料となるモノマー[例えば、2-(ヒドロキシメチル)アクリル酸エステル]由来の単位を含むアクリル樹脂を環化(環化縮合、環化処理)することで、形成又は導入できる。環化は、環化触媒[例えば、リン系触媒(例えば、リン酸ステアリルなどのリン酸エステル)]の存在下で行ってもよい。
グルタルイミド構造は、(メタ)アクリル酸エステル単位をイミド化する方法などの公知の方法(例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2007-009182号公報などに記載の方法)によりアクリル系ポリマーに形成又は導入できる。
無水グルタル酸構造は、例えば、隣接する(メタ)アクリル酸エステル単位及び(メタ)アクリル酸単位間で分子内脱アルコール反応させる方法(例えば、特開2006-283013号公報、特開2006-335902号公報、特開2006-274118号公報に記載の方法等)により、アクリル系ポリマーに形成又は導入することができる。
このような重合工程(及び必要に応じて環化工程)を経て、アクリル樹脂が得られる。
なお、重合工程を経て得られた樹脂は、適宜、慣用の手法にて精製、分離などしてもよい。
[他の樹脂]
樹脂(又はペレット)は、必要に応じて、他の樹脂(アクリル樹脂でない樹脂)を含んでいてもよい[他の樹脂ともに樹脂組成物(又はそのペレット)を構成してもよい]。
他の樹脂としては、所望の物性、用途等に応じて適宜選択でき、特に限定されず、熱可塑性樹脂であってもよく、硬化性樹脂であってもよく、これらを組み合わせてもよい。
他の樹脂は、単独で又は2種以上組み合わせて使用してもよい。
具体的な他の樹脂としては、例えば、オレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等)、ハロゲン系ポリマー(例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ塩化ビニル等のハロゲン化ビニル系ポリマー)、スチレン系ポリマー[例えば、ポリスチレン、スチレン系共重合体(例えば、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体(ABS樹脂)等)等]、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステル)、ポリアミド系樹脂(例えば、ポリアミド6、ポリアミド66、ポリアミド610等の脂肪族ポリアミド系樹脂)、ポリアセタール系樹脂、ポリフェニレンオキシド系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ゴム質重合体[例えば、ゴム(ポリブタジエン系ゴム、アクリル系ゴム等)を配合したスチレン系樹脂(例えば、ABS樹脂等のスチレン系共重合体)等]等が挙げられる。
他の樹脂には、セルロース系樹脂も含まれる。セルロース系樹脂(セルロース誘導体)としては、セルロースエステル[例えば、セルロースアセテート(セルロースジアセテート、セルローストリアセテート)、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースアシレート]、セルロースエーテル[例えば、アルキルセルロース(例えば、メチルセルロース、エチルセルロース等)、ヒドロキシアルキルセルロース(例えば、ヒドキシエチルセルロース、ヒドロキシアルキルセルロース等)、カルボキシアルキルセルロース(例えば、カルボキシメチルセルロース等)]、シアノエチルセルロース等が挙げられる。
他の樹脂には、熱可塑性エラストマーも含まれる。熱可塑性エラストマーとしては、特に限定されず、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、アミド系エラストマーが挙げられる。
[着色剤(B)]
着色剤(B)は、特に限定されず、組成物の用途等に応じて適宜選択でき、例えば、顔料(例えば、有機、無機)、染料(例えば、有機、無機)等から選択することができ、本発明が目的とするアクリル樹脂組成物を得ることができる限り特に制限されることはない。そのような色素として、染料でも顔料でも使用することができるが、通常、染料は粒子の表面で光を乱反射し難いので、染料を用いることがより好ましい。これらの色素を含む着色剤(B)は、単独で、または、二つ以上を組合せて用いることができる。
上記染料系色素としては、例えば、アントラキノン系色素、ペリノン系色素、ペリレン系色素、メチン系色素、アゾ系色素、キノリン系色素、フタロシアニン系色素、複素環系色素などが挙げられる。樹脂組成物に、より容易に均一に分散することができるので、油溶性の染料が好ましい。染料は、顔料より小さな粒子からできているので、染料は樹脂組成物により均一に混合することができるので、成形体の曇り度(ヘイズ値)をより小さくできるので好ましい。
上記顔料系の色素としては、例えば、アゾ系(溶性アゾ系,不溶性アゾ系)色素、縮合系色素、スレン系顔料、キナクリドン系色素、ジオキサジン系色素、イソインドリン系色素等の有機色素や、酸化チタン、酸化鉄、酸化クロム、カーボンブラック、群青(ウルトラマリン)、硫酸バリウム、炭酸カルシウム、亜鉛華、硫酸鉛、チタンブラック、合成鉄黒等の無機色素等があげられる。
着色剤(B)は、吸収極大波長が700nm未満の色素を含む着色剤を含むことが好ましい。
吸収極大波長が700nm未満の色素を含む着色剤は、アントラキノン系色素、ペリノン系色素、ペリレン系色素、メチン系色素から選択される少なくとも1種を含むことが好ましい。これらの中でも、耐熱性等の観点から、アントラキノン系色素を含むことが好ましい。
また、着色剤として、吸収極大波長が700nm未満の色素の他に、別の色素を複数組み合わせて用いることができる。例えば、顔料と顔料の組み合わせ、顔料と染料の組み合わせ、染料と染料の組み合わせであってよいが、染料と染料を組み合わせて用いることが好ましい。特に、アントラキノン系色素と他の色素とを組み合わせて用いることが、より確実に、幅広い波長の光を抑制または遮断することができ、かつ幅広い波長領域において良好な光透過性を備えることができることから好ましい。
本発明の樹脂組成物を得られる限り、上述の色素は、特に制限されないが、具体的には以下のようなものを使用できる。
アントラキノン系色素としては、Solvent Violet 13、Solvent Violet14、Solvent Violet31、Solvent Violet33、Solvent Violet36、Solvent Blue45、Solvent Blue87、Solvent Blue94、Solvent Blue 97、Solvent Yellow 163、Disperse Violet 28、Disperse Blue 60、Solvent Green 3、Solvent Green 28からなる群から選択される少なくとも1種を含むことが好ましい。
ペリノン系色素としては、Solvent Orange 60、Solvent Orange 78、Solvent Orange 90、Solvent Violet 29、Solvent Red 135、Solvent Red 162、Solvent Red 179等のカラーインデックスで市販されている色素が挙げられる。
ペリレン系色素としては、Solvent Green 5、Vat Red 15、Vat Orange7、F Orange 240、F Red 300、F Red 339、F Yellow 83、Solvent Red 179等のカラーインデックスで市販されている色素が挙げられる。
メチン系色素としては、Solvent Orange 80、Solvent Yellow 93、Disperse Yellow 201等のカラーインデックスで市販されている色素が挙げられる。
フタロシアニン系色素としては、山田化学工業から市販されているFDR-002、FDR-003等が挙げられる。
その他の市販品として入手可能な色素としては、例えば、「オプラス(登録商標)ブラック838」、「ヌビアン(登録商標)ブラックPC-0870」、「ヌビアン(登録商標)ブラックPC-5856」、「ヌビアン(登録商標)ブラックPC-5857」、「ヌビアン(登録商標)ブラックPC-8550」(オリヱント化学工業株式会社製)、「スミプラスト(登録商標)ブラックH3B」、「スミプラスト(登録商標)ブラックHLG」、「スミプラスト(登録商標)ブラックHB」(住化ケムテックス株式会社製)等が挙げられる。
本発明の樹脂組成物は、アクリル樹脂(A)に対して、極大吸収波長が700nm未満の色素を含む着色剤(B)を好ましくは0.01~5.0質量%、さらに好ましくは0.1~3.5質量%、特に好ましくは0.3~2.0質量%含んであってもよい。
[他の成分]
樹脂(又はペレット)は、必要に応じて、他の成分を含んでいてもよい[他の成分ともに樹脂組成物(又はそのペレット)を構成してもよい]。
このような他の成分としては、所望の用途や物性等に応じて選択できる。他の成分としては、特に限定されず、例えば、紫外線吸収剤、酸化防止剤(例えば、フェノール系酸化防止剤、チオエーテル系酸化防止剤、リン酸系酸化防止剤等)、安定剤、補強材、難燃剤、帯電防止剤、有機フィラー、無機フィラー、ブロッキング防止剤、樹脂改質剤、有機充填剤、無機充填剤、可塑剤、滑剤、位相差低減剤等が挙げられる。
他の成分は、単独で又は2種以上組み合わせて使用してもよい。
紫外線吸収剤(UVA)の紫外線吸収能は、波長300~380nmの範囲内にあってもよく、UVAによる吸収が最大となる波長の光に対するモル吸光係数(クロロホルム溶液)にして、10000(L・mol-1・cm-1)以上であってもよい。
紫外線吸収剤(UVA)としては、特に限定されないが、例えば、ベンゾフェノン系化合物、サリシケート系化合物、ベンゾエート系化合物、トリアゾール系化合物、トリアジン系化合物などが挙げられる。
トリアゾール系化合物は、例えば、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-ベンゾトリアゾール-2-イル-4,6-ジ-t-ブチルフェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(t-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール、メチル-3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖および側鎖ドデシル)-4-メチルフェノール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ-C7-9側鎖及び直鎖アルキルエステル等である。紫外線吸収能が高いことから、ハロゲン原子、例えば塩素原子、を有するトリアゾール化合物が好ましい。
トリアジン系化合物は、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシ)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン、2,4-ビス(2,4-ジメチルフェニル)-6-[2-ヒドロキシ-4-(3-アルキルオキシ-2-ヒドロキシプロピルオキシ)-5-α-クミルフェニル]-s-トリアジン骨格(アルキルオキシ;オクチルオキシ、ノニルオキシ、デシルオキシなどの長鎖アルキルオキシ基)を有するUVA等である。なかでも、紫外線吸収性能が優れていることから、2,4-ビス(2,4-ジメチルフェニル)-6-[2-ヒドロキシ-4-(3-アルキルオキシ-2-ヒドロキシプロピルオキシ)-5-α-クミルフェニル]-s-トリアジン骨格(アルキルオキシ;オクチルオキシ、ノニルオキシ、デシルオキシなどの長鎖アルキルオキシ基)を有するUVAが好ましい。
UVAの分子量は特に限定はされないが、600以上が好ましい。UVAの分子量の上限は、例えば、10000、8000、5000などであってもよい。
紫外線吸収剤は、単独で又は2種以上組み合わせて使用してもよい。
[各成分の割合]
樹脂(又はペレット)において、アクリル樹脂(A)の割合(又は樹脂成分に占めるアクリル樹脂(A)の割合)は、例えば、10質量%以上(例えば、20質量%)の範囲から選択してもよく、30質量%以上(例えば、40質量%以上)、好ましくは50質量%以上(例えば、60質量%以上)、さらに好ましくは70質量%以上(例えば、80質量%以上、90質量%以上)であってもよい。
樹脂(又はペレット)が、他の樹脂を含む場合、他の樹脂の含有割合は、樹脂(ペレット)[又は樹脂成分(アクリル樹脂(A)及び他の樹脂の総量)]全体に対して、例えば、70質量%以下(例えば、0.1~60質量%)程度の範囲から選択でき、50質量%以下(例えば、0.5~40質量%)、好ましくは30質量%以下(例えば、1~25質量%)程度であってもよく、20質量%以下(例えば、15質量%以下、10質量%以下、5質量%以下、3質量%以下、1~10質量%等)等であってもよい。
なお、アクリル樹脂(A)の物性等を効率よく発現するという観点から、他の樹脂を含む場合でも、他の樹脂の割合は大きすぎないのが好ましい。
樹脂(ペレット)が、他の成分(添加剤)を含む場合、他の成分の割合は、樹脂(ペレット)全体に対して、例えば、0.01~10質量%(例えば、0.05~5質量%)程度であってもよい。
本発明の樹脂組成物は、波長380nm以上700nm以下の範囲の光線透過率の最大値が10%以下であり、7%以下であることが好ましく、より好ましくは5%以下である。そして、波長800nm以上950nm以下の範囲の平均光線透過率が70%以上であり、75%以上あることが好ましく、80%以上あることがより好ましい。なかでも、波長800nm以上950nm以下のすべての範囲において、光線透過率が70%を超えることがより好ましい。なお、光透過率は、樹脂組成物の厚みが2mmの場合における値をいい、上記樹脂組成物の厚みの変動に伴い上記光透過率の範囲は変動するものである。
本発明の樹脂組成物は、波長800nmの光に対する面内位相差が200nm以下であることが好ましく、より好ましくは100nm以下である。なお、面内位相差は、樹脂組成物の厚みが2mmの場合における値をいい、上記樹脂組成物の厚みの変動に伴い上記面内位相差は変動するものである。
本発明の樹脂組成物の信頼性は、成形品を110℃または85℃、相対湿度85%の条件下で1000時間静置後の波長800nm以上950nm以下の範囲の平均光線透過率の変化が10%以下であることが好ましく、5%以下であることがより好ましい。樹脂組成物の信頼性は、実施例記載の方法で測定することができる。
本発明には、前記組成物を含む(で形成された)成形体(成形品)を含む。
このような成形体の形状は、特に限定されず、二次元的形状[例えば、フィルム(又はシート)など]、三次元的形状(例えば、ブロック状など)などのいずれであってもよい。
成形体(成形品)は、前記組成物と同様の物性を有していてもよい。このような物性値は、前記と同様の範囲から選択できる。
成形体の製造方法(成形方法)としては、成形体の形態などに応じて選択でき、公知の成形方法(例えば、押出成形、射出成形、注型成形、ブロー成形、発泡成形、流延法など)を利用できる。
特に、本発明の組成物によれば、溶融成形(射出成形等)を経ても、前記のような物性を備えた成形体を提供できる。
そのため、成形体は、特に、溶融成形体[射出成形体(射出成形品)]であってもよい。
成形体は、種々の用途に適用できるが、組成物に由来して優れた耐熱性や優れた光学特性を有する場合が多いため、例えば、光学用途に好適に用いても(光学部材であっても)よい。
具体的な用途の例を挙げると、例えば、フィルム用途[例えば、光学フィルム(光学シート)など]、レンズ(光学レンズなど)、カバー(センサーカバーなど)、内装材用途[例えば、車載ディスプレイの前面板、メーターカバー等といった乗り物(自動車等)の内装材用途]などの各種用途が挙げられる。
レンズ(光学レンズなど)としては、例えば、フレネルレンズ、リニアフレネルレンズ、レンチキュラーレンズ、平面プリズム、フライアイレンズ、非球面レンズ、コンデンサーレンズ、マイクロレンズ、コリメーターレンズ、凹レンズ、凸レンズ、回折レンズなどが挙げられる。
レンズ(レンズ部材)の用途としては、例えば、TOFセンサー用、ヘッドアップディスプレイ用、カメラ用(例えば、車載カメラ用)、LIDARセンサー用などが挙げられる。これらの中でも、TOFセンサー用に好適に用いられる。
本発明は上述した各実施形態に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明に含まれる。
以下に、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。
なお、以下では特にことわりのない場合、「%」は「質量(重量)%」を、「部」は「質量(重量)部」をそれぞれ示す。
各種物性の測定および評価は、以下の方法で行った。
[重量平均分子量(Mw)及び分子量分布(Mw/Mn)]
樹脂の重量平均分子量及び分子量分布は、ゲル浸透クロマトグラフィー(GPC)を用いて、ポリスチレン換算により求めた。測定に用いた装置および測定条件は以下の通りである。
システム:東ソー製GPCシステム HLC-8320
測定側カラム構成
・ガードカラム:東ソー製、TSKguardcolumn SuperHZ-L
・分離カラム:東ソー製、TSKgel SuperHZM-M 2本直列接続
リファレンス側カラム構成
・リファレンスカラム:東ソー製、TSKgel SuperH-RC
展開溶媒:クロロホルム(和光純薬工業製、特級)
展開溶媒の流量:0.6mL/分
標準試料:TSK標準ポリスチレン(東ソー製、PS-オリゴマーキット)
カラム温度:40℃
[ガラス転移温度(Tg)]
ガラス転移温度は、JIS K7121-1987の規定に準拠して測定した。具体的には、示差走査熱量計(リガク社製「Thermo plus EVO DSC-8230」)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により求めた。リファレンスには、α-アルミナを用いた。
[メルトフローレート(MFR)]
メルトフローレートは、JIS K 7210-1:2014 A法に準拠して、温度230℃、荷重3.8kg(37N)で測定した。
[光線透過率]
光線透過率は、分光光度計(島津製作所社製、UV-3600)を用い、波長380nm~950nmの範囲で1nmごとに測定した。成形体は、得られたペレットを100℃で12時間以上乾燥した後、射出成形機(日精樹脂社製、NS40-5A)を用い、成形温度230℃、金型温度100℃、金型サイズ100mm×100mm×厚さ2mmにて作製した。
[耐久性(110℃耐熱性、85℃85%RH耐湿熱性)]
得られたペレットを100℃で12時間以上乾燥した後、射出成形機(日精樹脂社製、NS40-5A)を用い、成形温度230℃、金型温度100℃、金型サイズ100mm×100mm×厚さ3mmにて成形体作製後、23℃60%RHの恒温室に24時間静置した。次に、前記成形体を所定の条件(110℃の熱風乾燥器内に1000時間、または85℃、相対湿度85%の恒温恒湿器内で1000時間)で保管してから取り出し、23℃、60%RHの恒温恒湿室に24時間静置した後に、成形体の外観を目視で判定した。
○:外観変化なし。
×:反り、収縮など外観変化あり。
また、成形体の光線透過率を前記の方法で測定し、耐久性試験前後の変化値を求めた。
(製造例1〔アクリル樹脂(A1)の製造〕)
撹拌装置、温度センサー、冷却管、窒素導入管および滴下ポンプを備えた反応容器に、2-(ヒドロキシメチル)アクリル酸メチル(RHMA)6.5質量部、メタクリル酸メチル(MMA)43.5質量部、トルエン90.7質量部、亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)0.05質量部を仕込み、窒素を通じつつ105℃まで昇温した。
初期開始剤として、トルエン4.3質量部、t-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.22質量部からなる溶液を8分かけて滴下しながら105℃~110℃で溶液重合を行った。そして、その22分後に、滴下開始剤としてトルエン5.0質量部、t-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.28質量部からなる溶液を180分かけて滴下した。また、初期開始剤投入から25分後に、2-(ヒドロキシメチル)アクリル酸メチル(RHMA)6.5質量部、メタクリル酸メチル(MMA)43.5質量部からなる溶液を180分かけて滴下しながら105℃~110℃で溶液重合を行い、さらに1.5時間かけて熟成を行った。
得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、トルエン1.25質量部、リン酸ステアリル(堺化学工業社製、Phoslex A-18)0.075質量部からなる溶液を加え、約90℃~110℃の還流下において1.5時間、ラクトン環構造を形成するための環化縮合反応を進行させた。
次に、得られた重合溶液を220℃に保持した多管式熱交換器に通して環化縮合反応を完結させた後、先端部にリーフディスク型のポリマーフィルター(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、樹脂量換算で90質量部/時の処理速度で導入して、重合溶液を脱揮した。用いたベントタイプスクリュー二軸押出機のリアベント数は1個、フォアベント数は4個(上流側から第1、第2、第3、第4ベントと称する)とし、バレル温度は220℃、減圧度は13.3~400hPa(10~300mmHg)とした。脱揮の際、イオン交換水を1.3質量部/時の投入速度で第1、第2、第3ベントの後ろから投入した。
得られた樹脂ペレット(A1)の重量平均分子量は8.8万、分子量分布は2.2、ガラス転移温度は123℃、メルトフローレートは4.5であった。
(製造例2〔アクリル樹脂(A2)の製造〕)
撹拌装置、温度センサー、冷却管、窒素導入管および滴下ポンプを備えた反応容器に、2-(ヒドロキシメチル)アクリル酸メチル(RHMA)6.5質量部、メタクリル酸メチル(MMA)41.1質量部、スチレン0.59質量部、トルエン90.5質量部、亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)0.05質量部を仕込み、窒素を通じつつ105℃まで昇温した。
初期開始剤として、トルエン1.1質量部、t-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.24質量部からなる溶液を8分かけて滴下しながら105℃~110℃で溶液重合を行った。そして、その22分後に、滴下開始剤としてトルエン1.0質量部、t-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.27質量部からなる溶液を180分かけて滴下した。また、初期開始剤投入から25分後に、2-(ヒドロキシメチル)アクリル酸メチル(RHMA)6.5質量部、メタクリル酸メチル(MMA)41.1質量部、スチレン4.26質量部からなる溶液を180分かけて滴下しながら105℃~110℃で溶液重合を行い、さらに1.5時間かけて熟成を行った。
得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、トルエン0.82質量部、リン酸ステアリル(堺化学工業社製、Phoslex A-18)0.075質量部からなる溶液を加え、約90℃~110℃の還流下において1.5時間、ラクトン環構造を形成するための環化縮合反応を進行させた。
次に、得られた重合溶液を220℃に保持した多管式熱交換器に通して環化縮合反応を完結させた後、先端部にリーフディスク型のポリマーフィルター(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、樹脂量換算で90質量部/時の処理速度で導入して、重合溶液を脱揮した。用いたベントタイプスクリュー二軸押出機のリアベント数は1個、フォアベント数は4個(上流側から第1、第2、第3、第4ベントと称する)とし、バレル温度は220℃、減圧度は13.3~400hPa(10~300mmHg)とした。脱揮の際、イオン交換水を1.3質量部/時の投入速度で第1、第2、第3ベントの後ろから投入した。
得られた樹脂ペレット(A2)の重量平均分子量は9.2万、分子量分布は2.1、ガラス転移温度は122℃、メルトフローレートは5.2であった。
(製造例3〔アクリル樹脂(A3)の製造〕)
撹拌装置、温度センサー、冷却管、窒素導入管および滴下ポンプを備えた反応容器に、2-(ヒドロキシメチル)アクリル酸メチル(RHMA)11.5質量部、メタクリル酸メチル(MMA)38.5質量部、トルエン90.7質量部仕込み、亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)0.05質量部、窒素を通じつつ105℃まで昇温した。
初期開始剤として、トルエン4.3質量部、t-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.22質量部からなる溶液を8分かけて滴下しながら105℃~110℃で溶液重合を行った。そして、その22分後に、滴下開始剤としてトルエン5.0質量部、t-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.22質量部からなる溶液を170分かけて滴下した。また、初期開始剤投入から25分後に、2-(ヒドロキシメチル)アクリル酸メチル(RHMA)11.5質量部、メタクリル酸メチル(MMA)38.5質量部からなる溶液を180分かけて滴下しながら105℃~110℃で溶液重合を行い、さらに1.5時間かけて熟成を行った。
得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、トルエン1.25質量部、リン酸ステアリル(堺化学工業社製、Phoslex A-18)0.30質量部からなる溶液を加え、約90℃~110℃の還流下において2時間、ラクトン環構造を形成するための環化縮合反応を進行させた。
次に、得られた重合溶液を240℃に保持した多管式熱交換器に通して環化縮合反応を完結させた後、先端部にリーフディスク型のポリマーフィルター(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、樹脂量換算で90質量部/時の処理速度で導入して、重合溶液を脱揮した。用いたベントタイプスクリュー二軸押出機のリアベント数は1個、フォアベント数は4個(上流側から第1、第2、第3、第4ベントと称する)とし、バレル温度は240℃、減圧度は13.3~400hPa(10~300mmHg)とした。脱揮の際、イオン交換水を1.3質量部/時の投入速度で第1、第3ベントの後ろから、別途準備しておいたブルーイング剤と酸化防止剤の混合溶液を0.30質量部/時の投入速度で第2ベントの後ろから投入した。ブルーイング剤と酸化防止剤の混合溶液として、1.0質量部のブルーイング剤(住化ケムテックス社製スミプラスト(登録商標)VioletB)をトルエン99質量部に溶解させた溶液0.27質量部、酸化防止剤2種類(BASFジャパン社製イルガノックス1010、ADEKA社製アデカスタブAO―412S)3.6質量部、トルエン112.5質量部からなる溶液を用いた。
得られた樹脂ペレット(A3)の重量平均分子量は8.5万、分子量分布は2.0、ガラス転移温度は132℃、メルトフローレートは3.1であった。
(製造例4〔アクリル樹脂(A4)の製造〕)
撹拌装置、温度センサー、冷却管、窒素導入管および滴下ポンプを備えた反応容器に、メタクリル酸メチル(MMA)73重量部、N-フェニルマレイミド(PMI)18重量部、N-シクロヘキシルマレイミド(CHMI)4重量部、酸化防止剤(ADEKA社製アデカスタブ2112)0.05重量部、連鎖移動剤としてドデシルメルカプタン(DM)0.1重量部、及び、重合溶媒としてトルエン100重量部を仕込んだ。反応釜内に、窒素ガスを導入しつつ、内容物を105℃まで昇温させた。昇温に伴って、還流が始まった。次に、重合開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)0.10重量部を反応釜内に添加するとともに、トルエン21重量部にt-アミルパーオキシイソノナノエート0.20重量部とスチレン5重量部とを溶解させた溶液を反応釜内に2時間かけて滴下した。これにより、溶液重合が進行した。溶液の滴下終了後、さらに4時間かけて熟成を行なった。
次に、得られた重合溶液を、先端部にリーフディスク型のポリマーフィルター(濾過精度5μm)が配置されたベントタイプスクリュー二軸押出機(L/D=52)に、樹脂量換算で90質量部/時の処理速度で導入して、重合溶液を脱揮した。用いたベントタイプスクリュー二軸押出機のリアベント数は1個、フォアベント数は4個(上流側から第1、第2、第3、第4ベントと称する)とし、バレル温度は270℃、減圧度は13.3~400hPa(10~300mmHg)とした。脱揮の際、イオン交換水を1.3質量部/時の投入速度で第1、第2、第3ベントの後ろから投入した。
得られた樹脂ペレット(A4)の重量平均分子量は20万、分子量分布は2.7、ガラス転移温度は139℃、メルトフローレートは0.5であった。
表1に、各製造例で得られたアクリル樹脂(A)についてまとめたものを示す。
Figure 2023104286000005
本実施例および比較例で使用した製造例1~4以外の成分を以下に示す。
(アクリル樹脂A5)主鎖にグルタルイミド構造を有するアクリル樹脂
プレキシイミド8813(ダイセルエボニック社製、重量平均分子量万、分子量分布、ガラス転移温度130℃、メルトフローレート)
(アクリル樹脂A6)
スミペックスMH(住友化学社製、重量平均分子量9.3万、分子量分布2.0、ガラス転移温度110℃、メルトフローレート2.0)
(ポリカーボネート樹脂C1)
ユーピロンHL4000(三菱エンジニアリングプラスチックス社製、ガラス転移温度145℃、メルトフローレート14.4)
(着色剤B1)アントラキノン系色素
Sumiplast GreenG(住化ケムテックス社製、最大吸収波長645nm)
(着色剤B2)有機系黒色染料
Sumiplast Black HB(住化ケムテックス社製、最大吸収波長599nm)
(着色剤B3)フタロシアニン系色素
FDR-003(山田化学工業社製、最大吸収波長699nm)
(実施例1~10、比較例1~2)
これらの成分を表2に示す質量比となるように二軸押出機(φ=30mm、L/D=40)を用いて240℃で混練し、アクリル樹脂組成物を得た。
Figure 2023104286000006
表1から明らかなように、実施例1~8の成形体は、いずれも波長380nm~700nmの範囲での光線透過率が0%であり、この範囲にある波長の光を確実に吸収していることがわかる。また、実施例1~10の成形体は、いずれも波長800~950nmの平均光線透過率が80%以上であるため、TOFセンサーで使用される波長800nm~950nmの近赤外線を適切に透過できることがわかる。そして、耐久性試験後においても外観および透過率に大きな変化は見られず、さらに、位相差も小さいことから、波長選択フィルターとして優れていることが明らかである。これに対し、比較例1および比較例2の成形体は、耐久性試験後に外観および透過率に大きな変化が見られるため、TOFセンサーの検出能力が低下する恐れがある。
本発明のアクリル樹脂組成物は、高温条件下でも使用することができ、光学特性に実質的な変化を生じない。よって、本発明のアクリル樹脂組成物は、適切に波長選択性を有し、光学特性に変化を実質的に生じない成形品を提供することができる。

Claims (6)

  1. ガラス転移温度110℃以上であるアクリル樹脂(A)と着色剤(B)を含み、厚さ2mmにおける波長380nm以上700nm以下での光線透過率が10%以下、800nm以上950nm以下での光線透過率が70%以上であることを特徴とする、波長選択透過性アクリル樹脂組成物。
  2. 前記アクリル樹脂(A)が、主鎖に環構造を有する、請求項1に記載の波長選択透過性アクリル樹脂組成物。
  3. 前記着色剤(B)の含有量が、樹脂組成物全体の2重量%以下である、請求項1又は2に記載の波長選択透過性アクリル樹脂組成物。
  4. 前記着色剤(B)が、吸収極大波長が700nm未満のアントラキノン系色素を含む、請求項1~3のいずれか一項に記載の波長選択透過性アクリル樹脂組成物。
  5. 前記着色剤(B)として、複数の染料を組合わせて用いる、請求項1~4のいずれか一項に記載の波長選択透過性アクリル樹脂組成物。
  6. 請求項1~5のいずれか1項に記載の波長選択透過性アクリル樹脂組成物を含有する波長選択透過性アクリル樹脂成形品。
JP2022005176A 2022-01-17 2022-01-17 波長選択透過性アクリル系樹脂組成物 Pending JP2023104286A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022005176A JP2023104286A (ja) 2022-01-17 2022-01-17 波長選択透過性アクリル系樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022005176A JP2023104286A (ja) 2022-01-17 2022-01-17 波長選択透過性アクリル系樹脂組成物

Publications (1)

Publication Number Publication Date
JP2023104286A true JP2023104286A (ja) 2023-07-28

Family

ID=87379501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022005176A Pending JP2023104286A (ja) 2022-01-17 2022-01-17 波長選択透過性アクリル系樹脂組成物

Country Status (1)

Country Link
JP (1) JP2023104286A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071052A1 (ja) * 2022-09-26 2024-04-04 株式会社クラレ センサー保護カバー用アクリル樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071052A1 (ja) * 2022-09-26 2024-04-04 株式会社クラレ センサー保護カバー用アクリル樹脂組成物

Similar Documents

Publication Publication Date Title
JP7129181B2 (ja) ヘッドマウントディスプレイ用部材
JP5230363B2 (ja) 熱可塑性樹脂組成物の製造方法
JP2018178095A (ja) メタクリル系樹脂成形体、光学部品又は自動車部品
JP6392516B2 (ja) 光学部材用熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、ならびに光学フィルム、偏光板および画像表示装置
JP5736214B2 (ja) (メタ)アクリル重合体を含む成形体の製造方法
JP6151423B1 (ja) メタクリル系樹脂組成物、光学フィルム、及び光学部品
JP7045820B2 (ja) 光学部材用メタクリル系樹脂組成物、成形体、及び光学部材
WO2009139353A1 (ja) 光学用延伸フィルムとそれを用いた偏光板および画像表示装置
JP7170382B2 (ja) マレイミド系ブロック共重合体の製造方法
JP6181840B1 (ja) メタクリル系樹脂組成物、光学フィルム、光学部品
JP7361043B2 (ja) アクリル系ポリマー
JP2023104286A (ja) 波長選択透過性アクリル系樹脂組成物
JP7421404B2 (ja) アクリル系樹脂組成物
JP7032885B2 (ja) メタクリル系樹脂組成物、成形体、及び光学部材
WO2015115659A1 (ja) 共重合体および成形体
JP6231839B2 (ja) 紫外線吸収剤を含む熱可塑性樹脂組成物の製造方法
JP6967913B2 (ja) メタクリル系樹脂の製造方法
JP6151422B1 (ja) メタクリル系樹脂組成物、及び光学部品
JP7280163B2 (ja) メタクリル系樹脂の製造方法
JP2022144324A (ja) ペレットの製造方法
JP7028545B2 (ja) ブロック共重合体及び樹脂組成物
JP5350640B2 (ja) 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルム
JP7437900B2 (ja) アクリル系ポリマー及びその製造方法
JP2022102940A (ja) 樹脂組成物
JP2023038989A (ja) 樹脂組成物