JP2023068150A - セラミックス製の柱状ハニカム構造体の検査方法及び検査装置 - Google Patents

セラミックス製の柱状ハニカム構造体の検査方法及び検査装置 Download PDF

Info

Publication number
JP2023068150A
JP2023068150A JP2023047132A JP2023047132A JP2023068150A JP 2023068150 A JP2023068150 A JP 2023068150A JP 2023047132 A JP2023047132 A JP 2023047132A JP 2023047132 A JP2023047132 A JP 2023047132A JP 2023068150 A JP2023068150 A JP 2023068150A
Authority
JP
Japan
Prior art keywords
honeycomb structure
columnar honeycomb
area camera
strip
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023047132A
Other languages
English (en)
Inventor
貴史 寺拝
Takafumi TERAHAI
良太 倉橋
Ryota KURAHASHI
祥弘 佐藤
Sachihiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2023047132A priority Critical patent/JP2023068150A/ja
Publication of JP2023068150A publication Critical patent/JP2023068150A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0004Gripping heads and other end effectors with provision for adjusting the gripped object in the hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8877Proximity analysis, local statistics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39478Control force and posture of hand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】円柱状のみならず、円柱状以外の形状にも好適に使用可能な、セラミックス製の柱状ハニカム構造体の検査方法を提供する。【解決手段】柱状ハニカム構造体に対して側面用エリアカメラを相対移動させながら、側面用エリアカメラによって前記側面を一部ずつ繰り返し撮影して、複数の短冊状画像を生成する工程aと、工程aによって得られた複数の短冊状画像に基づいて、前記側面の欠陥の有無を判別する工程bとを含み、工程aによって生成される複数の短冊状画像の数は、前記側面全体を網羅するのに十分な数であり、側面用エリアカメラが一枚の短冊状画像を生成するために前記側面の一部を撮影する際のシャッター速度が10~1000μsecであり、一枚当たりの短冊状画像は、長手方向に前記柱状ハニカム構造体の高さ全体が含まれる長さを有し、短手方向に1~10mmの長さを有している、前記柱状ハニカム構造体の検査方法。【選択図】図5

Description

本発明はセラミックス製の柱状ハニカム構造体の検査方法及び検査装置に関する。
セラミックス製の柱状ハニカム構造体は、耐熱性、耐熱衝撃性、耐酸化性といった点で優れていることから、内燃機関、ボイラー等からの排ガス中に含まれる粒子状物質を捕集するフィルタや、排ガス浄化用触媒の触媒担体として広く用いられている。
一般に、セラミックス製の柱状ハニカム構造体は、側面と、当該側面の内周側に配置され、第一底面から第二底面に向かって高さ方向に延びる複数のセルを区画形成する複数の隔壁を備える。セラミックス製の柱状ハニカム構造体は、例えば、その構成材料となるセラミックス原料の粉体を有機バインダー、水等とともに混練することにより得られる粘土状の坏土を押出成形法によって成形して柱状ハニカム成形体を得る工程と、柱状ハニカム成形体を焼成する工程を経て製造される。
焼成後、柱状ハニカム構造体の側面にはクラックが発生していたり、異物が付着していたりする等の欠陥が生じることがある。クラックの発生及び異物の付着は、柱状ハニカム構造体の強度低下、柱状ハニカム構造体をフィルタに用いた場合の濾過性能の低下、及び、触媒担体に用いた場合の排ガス浄化性能の低下等を招来する可能性がある。そこで、柱状ハニカム構造体の側面における欠陥の有無を検査する必要がある。
柱状ハニカム構造体の側面の検査方法としては、ラインセンサカメラにより柱状ハニカム構造体を回転させながら側面を撮像し、欠陥の有無を検査する方法が知られている。特許文献1(国際公開第2017/061318号)には、照射方向及び波長帯域が異なる2つの照明光を用いた撮像と、当該撮像結果に基づいて生成される2つの判定用画像の対比という簡便な手法で、ハニカム構造体の側面に形成されるクラックの有無を判定することが可能な表面検査方法が開示されている。
国際公開第2017/061318号
特許文献1の表面検査方法によれば、照射方向及び波長帯域が異なる2つの照明光をハニカム構造体の側面に対して撮像を行い、当該撮像結果に基づいて生成される2つの判定用画像を対比することで、クラックと品質上問題のないうねり(表面起伏)を区別し、過剰検出を防止することができる。
柱状ハニカム構造体の形状が円柱状であれば、柱状ハニカム構造体をその中心軸を回転軸として回転させることにより、カメラとの距離を一定に保ちながら撮影することができる。しかしながら、柱状ハニカム構造体の中には、円柱状以外の形状を有するものも存在する。このような柱状ハニカム構造体をその中心軸を回転軸として回転させると、カメラと柱状ハニカム構造体の距離が変動するため、それに応じた検討が必要である。特許文献1には円柱状以外の柱状ハニカム構造体についての検査方法が十分に検討されていない。
本発明は上記事情に鑑みてなされたものであり、一実施形態において、円柱状のみならず、円柱状以外の形状にも好適に使用可能な、セラミックス製の柱状ハニカム構造体の検査方法を提供することを課題とする。また、本発明は別の一実施形態において、そのような検査方法の実施に好適な検査装置を提供することを課題とする。
円柱状以外の形状のセラミックス製の柱状ハニカム構造体を底面側から観察すると、底面の重心から外周側面までの距離が変動する。このため、特許文献1に教示されるように、柱状ハニカム構造体を回転させながら、固定カメラで柱状ハニカム構造体の側面を撮影すると、カメラと柱状ハニカム構造体の距離が変動するので、ピントが合わなくなってしまう。そこで、カメラと柱状ハニカム構造体の間の距離(ワーキングディスタンス)を一定にするためにカメラと柱状ハニカム構造体の一方又は両方を移動させながら撮影を行う必要があるが、検査を高速で行おうとすればするほど、移動時の振動等によって撮影される画像にブレが生じてしまう。
本発明者はこれに対して、露光時間を短くすることでブレを抑制することを検討した。しかしながら、露光時間を短く、換言すればシャッター速度を高くしても、特許文献1で教示されるラインセンサカメラでは画像のブレは十分に抑制できないことが分かった。そこで、本発明者は更に検討を重ねたところ、エリアカメラをラインセンサカメラのように用いて、高速でシャッターを切りながら短冊状の狭い撮影範囲を繰り返し撮像すると、ブレの抑制された画像が得られることを見出した。本発明は上記知見に基づき完成したものであり、以下に例示される。
[1]
第一底面、第二底面、及び側面を有するセラミックス製の柱状ハニカム構造体を用意する工程と、
前記柱状ハニカム構造体の側面を側面用エリアカメラが周回するように、前記柱状ハニカム構造体に対して側面用エリアカメラを相対移動させながら、側面用エリアカメラによって前記側面を一部ずつ繰り返し撮影して、複数の短冊状画像を生成する工程aと、
工程aによって得られた複数の短冊状画像に基づいて、前記側面の欠陥の有無を判別する工程bと、
を含み、
工程aによって生成される複数の短冊状画像の数は、前記側面全体を網羅するのに十分な数であり、
側面用エリアカメラが一枚の短冊状画像を生成するために前記側面の一部を撮影する際のシャッター速度が10~1000μsecであり、
一枚当たりの短冊状画像は、長手方向に前記柱状ハニカム構造体の高さ全体が含まれる長さを有し、短手方向に1~10mmの長さを有している、
前記柱状ハニカム構造体の検査方法。
[2]
側面用エリアカメラが前記柱状ハニカム構造体の側面を周回する際の平均周速度が50~300mm/秒である[1]に記載の検査方法。
[3]
側面用エリアカメラによって当該側面を一部ずつ繰り返し撮影する際のフレームレートが100~300Hzである[1]又は[2]に記載の検査方法。
[4]
工程aにおいて、側面用エリアカメラを挟んだ互いに異なる方向から第一の光及び第二の光を前記側面に対して交互に照射しながら、側面用エリアカメラによって前記側面を一部ずつ繰り返しストロボ撮影することにより、側面用エリアカメラは光の照射方向の異なる前記短冊状画像を交互に生成する[1]~[3]の何れか一項に記載の検査方法。
[5]
側面用エリアカメラがモノクロエリアカメラである[1]~[4]の何れか一項に記載の検査方法。
[6]
側面用エリアカメラの画素分解能が50μm/pix以下である[1]~[5]の何れか一項に記載の検査方法。
[7]
前記柱状ハニカム構造体は、前記第一底面及び前記第二底面がラウンド形状である[1]~[6]の何れか一項に記載の検査方法。
[8]
工程aにおいて、前記柱状ハニカム構造体の側面を側面用エリアカメラが周回する際、前記側面と側面用エリアカメラの間の撮影距離の変化が±2mm以内となるように、前記柱状ハニカム構造体に対して側面用エリアカメラを相対移動させる[1]~[7]の何れか一項に記載の検査方法。
[9]
工程aを実施する前に、前記第一底面の重心位置及び前記第二底面の重心位置を計測し、前記第一底面の重心位置と前記第二底面の重心位置を結ぶ直線が、側面用エリアカメラの撮影方向に対して垂直に近づくように、前記柱状ハニカム構造体の傾きを調整する工程を含む[1]~[8]の何れか一項に記載の検査方法。
[10]
工程aにおける前記撮影は、複数の短冊状画像がそれぞれ、撮影時刻が一枚前の光の照射方向が同じ短冊状画像及び撮影時刻が一枚後の光の照射方向が同じ短冊状画像と、前記柱状ハニカム構造体の側面の周方向に3mm以上重複する部分を有するように行われる[1]~[9]の何れか一項に記載の検査方法。
[11]
前記第一底面及び前記第二底面から前記柱状ハニカム構造体を把持可能な一対の把持面を有し、前記一対の把持面は、前記柱状ハニカム構造体を前記第一底面及び前記第二底面から把持しながら所定の回転速度で回転させることが可能に構成されているロボットハンドを先端に有するロボットアームと、
側面用エリアカメラと、
前記複数の短冊状画像を表示可能な画面と、
前記一対の把持面の回転速度、及び側面用エリアカメラのシャッター速度を少なくとも設定可能な制御装置と、
を備える[1]~[10]の何れか一項に記載の検査方法を実施するための検査装置。
[12]
前記側面に第一の光を照射するための第一光照射器と、第一の光とは側面用エリアカメラを挟んで異なる方向から前記側面に第二の光を照射するための第二光照射器を備えた[11]に記載の検査装置。
[13]
前記側面と側面用エリアカメラの間の撮影距離を測定するための変位計を備えており、変位計は、工程aにおいて前記柱状ハニカム構造体の側面を側面用エリアカメラが周回する間の当該距離の変化量を監視することが可能に構成されている[11]又は[12]に記載の検査装置。
[14]
前記第一底面を撮影するための第一底面用エリアカメラ、及び、第一底面用エリアカメラと対向する位置に配置された、前記第二底面を撮影するための第二底面用エリアカメラを更に備え、
前記ロボットハンドが前記柱状ハニカム構造体を把持している状態で、第一底面用エリアカメラによって撮影された前記第一底面の画像、及び第二底面用エリアカメラによって撮影された前記第二底面の画像に基づき、前記第一底面の重心位置及び前記第二底面の重心位置を計測し、前記第一底面の重心位置と前記第二底面の重心位置を結ぶ直線が、側面用エリアカメラの撮影方向に対して垂直に近づくように、ロボットアームの姿勢を補正することが可能に構成されている[11]~[13]の何れか一項に記載の検査装置。
[15]
前記第一底面を撮影するための第一底面用エリアカメラを更に備え、
前記ロボットハンドが前記柱状ハニカム構造体を把持している状態で、第一底面用エリアカメラによって撮影された前記第一底面の画像によって特定される前記第一底面の重心の位置、及び、前記第一底面側の把持面の回転軸の位置に基づき、前記第一底面の重心と前記第一底面側の把持面の回転軸との間のツール座標上のX軸方向及びY軸方向の位置ずれを計測し、計測結果に基づき、前記ロボットアームが位置ずれ分だけツール座標中心をX軸方向及びY軸方向に補正することが可能に構成されている[11]~[14]の何れか一項に記載の検査装置。
[16]
前記第一底面を撮影するための第一底面用エリアカメラを更に備え、
前記ロボットハンドが前記柱状ハニカム構造体を把持している状態で、第一底面用エリアカメラによって撮影された前記第一底面の画像に基づき、前記柱状ハニカム構造体の目標検査位置からのツール座標上のZ軸回転角度のずれを計測し、計測結果に基づき、前記ロボットアームが角度ずれ分だけ前記柱状ハニカム構造体をZ軸回転させることが可能に構成されている[11]~[15]の何れか一項に記載の検査装置。
本発明の一実施形態によれば、円柱状のみならず、円柱状以外の形状にも好適に使用可能な、セラミックス製の柱状ハニカム構造体の検査方法が提供される。当該検査方法によれば、柱状ハニカム構造体の底面形状によらず、柱状ハニカム構造体の側面における欠陥の有無の迅速な検査に資する。
ウォールスルー型の柱状ハニカム構造体を模式的に示す斜視図である。 ウォールスルー型の柱状ハニカム構造体をセルの延びる方向に平行な断面で観察したときの模式的な断面図である。 ウォールフロー型の柱状ハニカム構造体を模式的に示す斜視図である。 ウォールフロー型の柱状ハニカム構造体をセルの延びる方向に平行な断面で観察したときの模式的な断面図である。 本発明の一実施形態に係る検査装置の構成を説明するための模式的な側面図である。 本発明の一実施形態に係る検査装置における側面用エリアカメラ、柱状ハニカム構造体、第一光照射器、及び第二光照射器の位置関係を説明するための模式図である。 光の照射方向を変えずに、短冊状画像の周方向(短手方向)の長さを5mm、周方向に重複する部分を無しとして柱状ハニカム構造体の側面を繰り返し撮影したときの、N-1枚目、N枚目、及びN+1枚目の短冊状画像の撮影範囲を当該側面の展開図上に示した模式図である。 光の照射方向を変えずに、短冊状画像の周方向(短手方向)の長さを5mm、周方向に重複する部分を3mmとして柱状ハニカム構造体の側面を繰り返し撮影したときの、N-1枚目、N枚目、及びN+1枚目の短冊状画像の撮影範囲を当該側面の展開図上に示した模式図である。 光の照射方向を交互に切り替えながら、短冊状画像の周方向(短手方向)の長さを5mm、光の照射方向が同じ短冊状画像において周方向に重複する部分を3mmとして柱状ハニカム構造体の側面を繰り返し撮影したときの、第一の光を照射しながら撮影したN-1枚目とN枚目の短冊状画像の撮影範囲と、第二の光を照射しながら撮影したM-1枚目とM枚目の短冊状画像の撮影範囲を、当該側面の展開図上に示した模式図である。 直角度が大きな柱状ハニカム構造体の傾きを調整する工程を説明するための模式図である。
次に本発明の実施形態を、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
(1.柱状ハニカム構造体)
本発明に係る検査方法は一実施形態において、第一底面、第二底面、及び側面を有するセラミックス製の柱状ハニカム構造体を検査対象とする。柱状ハニカム構造体を構成するセラミックスとしては、限定的ではないが、例えば、コージェライト、ムライト、ジルコン、チタン酸アルミニウム、炭化珪素、珪素-炭化珪素複合材、窒化珪素、ジルコニア、スピネル、インディアライト、サフィリン、コランダム、チタニアからなる群から選ばれる少なくとも1種を含有するセラミックスであることが好ましい。そして、これらのセラミックスは、1種を単独で含有するものでもよいし、2種以上を同時に含有するものであってもよい。
図1及び図2には、ウォールスルー型の自動車用排ガスフィルタ及び/又は触媒担体として適用可能な柱状ハニカム構造体(100)の模式的な斜視図及び断面図がそれぞれ例示されている。この柱状ハニカム構造体(100)は、外周側壁(102)と、外周側壁(102)の内周側に配設され、第一底面(104)から第二底面(106)まで流体の流路を形成する複数のセル(108)を区画形成する隔壁(112)とを備える。外周側壁(102)の外表面が柱状ハニカム構造体(100)の側面(103)を形成する。この柱状ハニカム構造体(100)においては、各セル(108)の両端が開口しており、第一底面(104)から一つのセル(108)に流入した排ガスは、当該セルを通過する間に浄化され、第二底面(106)から流出する。なお、ここでは第一底面(104)を排ガスの上流側とし、第二底面(106)を排ガスの下流側としたが、第一底面及び第二底面の区別は便宜上のものであり、第二底面(106)を排ガスの上流側とし、第一底面(104)を排ガスの下流側としてもよい。
図3及び図4には、ウォールフロー型の自動車用排ガスフィルタ及び/又は触媒担体として適用可能な柱状ハニカム構造体(200)の模式的な斜視図及び断面図がそれぞれ例示されている。この柱状ハニカム構造体(200)は、外周側壁(202)と、外周側壁(202)の内周側に配設され、第一底面(204)から第二底面(206)まで流体の流路を形成する複数のセル(208a、208b)を区画形成する隔壁(212)とを備える。外周側壁(202)の外表面が柱状ハニカム構造体(200)の側面(203)を形成する。
柱状ハニカム構造体(200)において、複数のセル(208a、208b)は、第一底面(204)から第二底面(206)まで延び、第一底面(204)が開口して第二底面(206)が目封止された複数の第1セル(208a)と、外周側壁(202)の内側に配設され、第一底面(204)から第二底面(206)まで延び、第一底面(204)が目封止されて第二底面(206)が開口する複数の第2セル(208b)に分類することができる。そして、この柱状ハニカム構造体(200)においては、第1セル(208a)及び第2セル(208b)が隔壁(212)を挟んで交互に隣接配置されている。
柱状ハニカム構造体(200)の上流側の第一底面(204)にスス等の粒子状物質を含む排ガスが供給されると、排ガスは第1セル(208a)に導入されて第1セル(208a)内を下流に向かって進む。第1セル(208a)は下流側の第二底面(206)が目封止されているため、排ガスは第1セル(208a)と第2セル(208b)を区画する多孔質の隔壁(212)を透過して第2セル(208b)に流入する。粒子状物質は隔壁(212)を通過できないため、第1セル(208a)内に捕集され、堆積する。粒子状物質が除去された後、第2セル(208b)に流入した清浄な排ガスは第2セル(208b)内を下流に向かって進み、下流側の第二底面(206)から流出する。なお、ここでは第一底面(204)を排ガスの上流側とし、第二底面(206)を排ガスの下流側としたが、第一底面及び第二底面の区別は便宜上のものであり、第二底面(206)を排ガスの上流側とし、第一底面(204)を排ガスの下流側としてもよい。
柱状ハニカム構造体の各底面形状には特に制限はないが、例えば、外周輪郭が単純閉曲線で構成された底面形状とすることができる。そのような底面形状の典型例としては、円形状、長丸形状、楕円形状、オーバル形状、及び複数の異なる円弧成分からなる形状といったラウンド形状が挙げられる。ラウンド形状とは単純閉曲線の中でも、外周輪郭が内側へ凹んだ部分のない単純閉凸曲線で構成された形状を指す。本発明に係る検査方法によれば、円形状はもちろんのこと、円形状以外の形状、つまり底面の重心から外周輪郭に向かって延ばした線分の長さが変化する形状の底面を持つ柱状ハニカム構造体に対しても、好適に検査を行うことができる点で有利である。柱状ハニカム構造体の各底面の面積は特に制限はないが、例えば、1900~97000mm2とすることができ、典型的には6400~32000mm2とすることができる。なお、円形状とは設計上の形状が円形状であることを意味し、円形状以外の形状とは設計上の形状が円形状以外の形状であることを意味する。工業的には寸法誤差が避けられないため、数学的に厳密な円形を作製するのは実際上困難だからである。
セルの流路方向に垂直な断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせであることが好ましい。これらのなかでも、正方形及び六角形が好ましい。セル形状をこのようにすることにより、柱状ハニカム構造体に流体を流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。
セル密度(単位断面積当たりのセルの数)についても特に制限はなく、例えば6~2000セル/平方インチ(0.9~311セル/cm2)とすることができる。ここで、セル密度は、一方の底面におけるセルの数(目封止されたセルも算入する。)を、外周側壁を除く当該底面の面積で割ることにより算出される。
隔壁の厚みについても特に制限はないが、例えば50μm~330μmとすることができる。
柱状ハニカム構造体の高さ(第一底面から第二底面までの長さ)についても特に制限はないが、例えば40mm~300mmとすることができる。
柱状ハニカム構造体は、公知の作製方法によって作製可能であるが以下に例示的に説明する。まず、セラミックス原料、分散媒、造孔材及びバインダーを含有する原料組成物を混練して坏土を形成した後、坏土を押出成形することにより所望の柱状ハニカム成形体を作製する。その後、柱状ハニカム成形体に対して乾燥、脱脂及び焼成を実施することで柱状ハニカム構造体が作製される。目封止部を形成する場合は、柱状ハニカム成形体を乾燥した後、柱状ハニカム成形体の両底面に所定の目封止部を形成した上で目封止部を乾燥する。その後、目封止部を形成した柱状ハニカム成形体に対して脱脂及び焼成を実施することで柱状ハニカム構造体が作製される。
柱状ハニカム構造体の用途は特に制限はない。例示的には、ヒートシンク、フィルタ(例:GPF、DPF)、触媒担体、摺動部品、ノズル、熱交換器、電気絶縁用部材及び半導体製造装置用部品といった種々の産業用途に使用される。
(2.検査方法及び検査装置)
本発明の一実施形態によれば、第一底面、第二底面、及び側面を有するセラミックス製の柱状ハニカム構造体の検査方法が提供される。また、本発明の一実施形態によれば、当該検査方法を実施するのに好適な検査装置が提供される。
2-1.検査装置の概要
図5には、本発明の一実施形態に係る検査方法を実施するのに好適な検査装置(500)の構成を説明するための模式的な側面図が示されている。検査装置(500)は一実施形態において、第一底面(551)及び第二底面(552)から柱状ハニカム構造体(550)を把持可能な一対の把持面(512a、512b)を有し、前記一対の把持面(512a、512b)は、柱状ハニカム構造体(550)を第一底面(551)及び第二底面(552)から把持しながら所定の回転速度で回転させることが可能に構成されているロボットハンド(510)を先端に有するロボットアーム(520)と、
柱状ハニカム構造体(550)の側面(553)を撮影するための側面用エリアカメラ(530)と、
側面用エリアカメラ(530)による撮影の結果、生成される画像を表示可能な画面(540)と、
一対の把持面(512a、512b)の回転速度、及び側面用エリアカメラ(530)のシャッター速度を少なくとも設定可能な制御装置(570)と、
を備えることができる。
ロボットアーム(520)としては、例えば6軸垂直多関節ロボット又は7軸垂直多関節ロボット等の産業用ロボットを好適に使用可能である。一実施形態において、ロボットアーム(520)は、台座(523)と、台座(523)上に設置され、鉛直方向に延びる第一回転軸Sを中心に回動可能な基部(521)と、基部(521)に設置された水平方向に延びる第二回転軸Lを中心にして回動可能な下側アーム(522a)と、下側アーム(522a)の先端に設置された水平方向に延びる第三回転軸Uを中心にして回動可能な上側アーム(522b)と、上側アーム(522b)の先端側に設置された水平方向に延びる第四回転軸Bを中心にして回動可能なロボットハンド(510)とを有することができる。
上側アーム(522b)は、上側アーム(522b)の長手方向に延びる第五回転軸Rを中心にして回動可能に構成することができる。ロボットハンド(510)は、一対の把持面(512a、512b)に垂直な方向に延びる第六回転軸Tを中心にして回動可能に構成することができる。
ロボットハンド(510)は、柱状ハニカム構造体(550)を把持するためのチャック(512)を有することができる。チャック(512)は、一対の把持面(512a、512b)を有し、柱状ハニカム構造体(550)を第一底面(551)及び第二底面(552)から把持可能に構成されている。チャック(512)は、一対の把持面(512a、512b)の間隔を制御するための直動機構(513)を有することができる。直動機構(513)としては、例えば、電動シリンダーが挙げられる。
一対の把持面(512a、512b)は、一対の把持面(512a、512b)に垂直な方向に延びる第七回転軸Wを中心にして回動可能に構成することができる。一対の把持面(512a、512b)は、サーボモータ等の駆動手段によって所定の回転速度で回転可能に構成されている。サーボモータは、一対の把持面(512a、512b)の回転角度等の変位量を検出するためのエンコーダを搭載することができる。一対の把持面(512a、512b)は、柱状ハニカム構造体(550)の底面(551、552)のサイズよりも小さいことが好ましい。これは、エリアカメラ(530)による撮影の際に一対の把持面(512a、512b)の像が映り込まないようにするためである。
基部(521)、下側アーム(522a)、上側アーム(522b)、及びロボットハンド(510)はそれぞれ、例えばサーボモータ等のアクチュエータにより駆動可能に構成することができる。また、基部(521)、下側アーム(522a)、上側アーム(522b)、及びロボットハンド(510)はそれぞれ、減速機、エンコーダ、及び伝導機構を備えることができる。
検査装置(500)は一実施形態において、柱状ハニカム構造体(550)の側面(553)に対して第一の光を照射するための第一光照射器(590a)と、第一の光とは側面用エリアカメラ(530)を挟んで異なる方向から前記側面(553)に第二の光を照射するための第二光照射器(590b)を備えることができる。図6には、側面用エリアカメラ(530)、柱状ハニカム構造体(550)、第一光照射器(590a)、及び第二光照射器(590b)の位置関係を説明するための模式図が示されている。
検査装置(500)は一実施形態において、柱状ハニカム構造体(550)の第一底面(551)を撮影するための第一底面用エリアカメラ(561)、及び、第一底面用エリアカメラ(561)と対向する位置に配置された、柱状ハニカム構造体(550)の第二底面(552)を撮影するための第二底面用エリアカメラ(562)を備えることができる。
検査装置(500)は一実施形態において、柱状ハニカム構造体(550)の側面(553)と側面用エリアカメラ(530)の間の撮影距離を測定するための変位計(585)を備えることができる。
検査装置(500)は一実施形態において、エリアカメラ(530)をx方向(水平方向)に移動可能なXステージ(532)、及びエリアカメラ(530)をz方向(鉛直方向)に移動可能なZステージ(534)を有することができる。x方向は例えば、側面用エリアカメラ(530)による前記側面(553)の撮影方向Dに平行な方向とすることができる。
制御装置(570)は、検査装置(500)を構成する各機器の動作を制御することができるように構成されている。制御装置(570)が行うことのできる制御の内容を下記に例示する。
制御装置(570)は、側面用エリアカメラ(530)の操作条件(カメラのシャッター速度を含む各種条件設定、撮影の開始及び停止等)を制御するように構成可能である。
制御装置(570)は、側面用エリアカメラ(530)による撮影の結果、得られた画像を画面(540)に表示できるように構成可能である。
制御装置(570)は、エリアカメラ(530)により得られた画像に対して画像処理を行い、その処理結果に基づいて欠陥の有無を判定することができるように構成可能である。
制御装置(570)は、ロボットハンド(510)の動作、一対の把持面(512a、512b)の回転速度を含む動作、及び直動機構(513)の動作を含めてロボットアーム(520)全体の動作を制御することができるように構成可能である。従って、制御装置(570)は、例えば、ロボットアーム(520)の動作プログラム、ロボットアーム(520)を制御するための演算処理をするマイクロプロセッサー等のプロセッサー、メモリ及び記憶装置で構成される演算装置、モータを駆動する電流を制御する電流アンプ、並びに、周辺機器と情報をやり取りするインターフェイスを有することができる。
制御装置(570)は、光照射器(590a、590b、581、582)の各種操作条件(ON/OFF及び出力等)を制御することができるように構成可能である。
制御装置(570)は、変位計(585)の各種操作条件(ON/OFF等)を制御することができるように構成可能である。
制御装置(570)は、Xステージ(532)のx方向の移動、及びZステージ(534)のz方向の移動を制御することができるように構成可能である。Xステージ及びZステージはそれぞれ独立にモータ等の駆動手段により移動可能である。例示的には、Xステージ及びZステージはそれぞれロボシリンダー等の電動アクチュエータを用いて構成することができる。電動アクチュエータはリニアガイド、ボールねじ、及びサーボモータ等で構成することができる。サーボモータは、各ステージの変位量を検出するためのエンコーダを搭載することができる。
検査装置(500)は、制御装置(570)で実行される各種制御を行うための指示及び/又は条件を入力するための入力部(572)を有することができる。入力部(572)は、例えば、プログラミングペンダント、操作パネル、キーボード、タッチパネル、テンキー、及びマウス等で構成することができる。入力部(572)で入力される指示及び/又は条件は、画面(540)に表示されるように構成することもできる。
2-2.工程a(撮影及び画像生成工程)
本発明の一実施形態に係る検査方法においては、柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させながら、側面用エリアカメラ(530)によって前記側面(553)を一部ずつ繰り返し撮影して、複数の短冊状画像を生成する工程aが実施される。
工程aにおいては、柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)が相対移動している間に、側面用エリアカメラ(530)によって前記側面(553)を一部ずつ繰り返し撮影する。エリアカメラは、ラインセンサカメラよりも柱状ハニカム構造体(550)の周方向に大きな範囲を一括撮影することができるため、シャッター速度を上げることで一括撮影された大きな範囲でブレの抑制された画像を得られることができる。側面用エリアカメラ(530)としては、カラー及びモノクロの何れのカメラでもよいが、高い画素分解能を得られるという観点からは、モノクロカメラが好ましい。
柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させるというのは、以下の場合を含む。
・柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、側面用エリアカメラ(530)を固定して柱状ハニカム構造体(550)を移動させる場合。
・柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)を固定して、側面用エリアカメラ(530)を移動させる場合。
・柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、側面用エリアカメラ(530)及び柱状ハニカム構造体(550)を共に移動させる場合。
柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させる方法は、限定的ではないが、例えば、図5に示す検査装置(500)を用いて実施する方法が挙げられる。
まず、ロボットアーム(520)は、基部(521)、下側アーム(522a)、上側アーム(522b)、及びロボットハンド(510)を適宜駆動して、セット台(525)の上の所定位置に載置されている柱状ハニカム構造体(550)を、一対の把持面(512a、512b)で第一底面(551)及び第二底面(552)から把持する動作を行う。この際、ロボットハンド(510)に対して、一対の把持面(512a、512b)の一方の把持面(512a)の重心位置を教えておくことで、一対の把持面(512a、512b)の一方の把持面(512a)の重心位置が第一底面(551)の重心位置に一致するように柱状ハニカム構造体(550)を把持することができる。把持は、直動機構(513)によって一対の把持面(512a、512b)の間隔を短くすることで行うことが可能であり、また、把持力を設定することも可能である。
セルの延びる方向が水平方向となるように柱状ハニカム構造体(550)をセット台(525)に載置することで、ロボットアーム(520)は、一対の把持面(512a、512b)を用いて、柱状ハニカム構造体(550)を第一底面(551)及び第二底面(552)から把持可能である。この際、柱状ハニカム構造体(550)の位置が安定するように、例えばU字溝やV字溝を有するブロックをセット台上に設置し、当該溝が柱状ハニカム構造体(550)の側面に接触するように、柱状ハニカム構造体(550)を載置してもよい。また、セット台(525)の天板に切欠きを設け、ロボットアーム(520)の下側の把持面(512b)がアクセスできるようにしておくことで、セルの延びる方向が鉛直方向となるように柱状ハニカム構造体(550)がセット台(525)に載置されていても、ロボットアーム(520)は、一対の把持面(512a、512b)を用いて、柱状ハニカム構造体(550)を把持可能である。
次いで、柱状ハニカム構造体(550)を把持したロボットアーム(520)は、所定の検査位置に柱状ハニカム構造体(550)を移動させる。その後、検査装置(500)は、一対の把持面(512a、512b)を回転させながら柱状ハニカム構造体(550)を側面用エリアカメラ(530)で繰り返し撮影する。
工業的に生産される柱状ハニカム構造体(550)の中には寸法誤差により直角度が大きいものがある。直角度が0の柱状ハニカム構造体(550)であれば、第一底面(551)が水平になるように柱状ハニカム構造体(550)を把持すると、柱状ハニカム構造体(550)の中心軸は鉛直方向を向く。しかしながら、直角度が大きな柱状ハニカム構造体(550)の場合、第一底面(551)が水平になるように柱状ハニカム構造体(550)を把持すると、柱状ハニカム構造体(550)の中心軸は斜め方向を向く(図8の(A)参照)。そのため、柱状ハニカム構造体(550)の第一底面(551)近くの側面と、第二底面(552)の近くの側面ではワーキングディスタンス(WD)に誤差が生じ、撮影した画像に非合焦部分が発生しやすい。
そこで、工程aを実施する前に、第一底面(551)の重心位置及び第二底面(552)の重心位置を計測し、第一底面(551)の重心位置と第二底面(552)の重心位置を結ぶ直線Lが、側面用エリアカメラ(530)の撮影方向Dに対して垂直に近づくように、柱状ハニカム構造体の傾きを調整する工程を行うことが好ましい(図8の(B)参照)。柱状ハニカム構造体の傾きは、直線Lと撮影方向Dのなす角度αが89°~90°(但し、0°≦α≦90°)の範囲になるように調整することが好ましく、89.5°~90°になるように調整することがより好ましい。また、柱状ハニカム構造体の傾きは、ワーキングディスタンス(WD)の誤差に基づいて制御してもよい。例えば、ワーキングディスタンス(WD)の最大誤差が0.2mm以下となるように柱状ハニカム構造体の傾きを調整することができる。
再び図5を参照すると、柱状ハニカム構造体(550)の傾きを調整する工程を実施するため、検査装置(500)は一実施形態において、第一底面(551)を撮影するための第一底面用エリアカメラ(561)、及び、第一底面用エリアカメラ(561)と対向する位置に配置された、第二底面(552)を撮影するための第二底面用エリアカメラ(562)を更に備える。検査装置(500)は一実施形態において、ロボットハンド(510)が柱状ハニカム構造体(550)を把持している状態で、第一底面用エリアカメラ(561)によって撮影された第一底面(551)の画像、及び第二底面用エリアカメラ(562)によって撮影された第二底面(552)の画像に基づき、第一底面(551)の重心位置及び第二底面(552)の重心位置を計測し、第一底面(551)の重心位置と第二底面(552)の重心位置を結ぶ直線が、側面用エリアカメラ(530)の撮影方向に対して垂直に近づくように、ロボットアーム(520)の姿勢を補正することが可能に構成されている。当該補正により、非合焦部分の少ない画像を得ることができる。ロボットアーム(520)による当該補正は、ロボットアーム(520)が有する複数の回転軸(図示のロボットアームでは、S、L、U、R、B、T、W)の一つ又は二つ以上を回動させることで実現可能である。
また、ロボットハンド(510)が柱状ハニカム構造体(550)を把持する際、把持する位置にずれが生じる場合がある。そこで、検査装置(500)は一実施形態において当該ずれを補正するように構成することができる。例えば、検査装置(500)は、ロボットハンド(510)が柱状ハニカム構造体(550)を把持している状態で、第一底面用エリアカメラ(561)によって撮影された第一底面(551)の画像によって特定される第一底面(551)の重心の位置、及び、第一底面側の把持面(512a)の回転軸の位置に基づき、第一底面(551)の重心と第一底面側の把持面(512a)の回転軸との間のツール座標上のX軸及びY軸方向の位置ずれを計測し、計測結果に基づき、ロボットアーム(520)が位置ずれ分だけツール座標中心をX軸方向及びY軸方向に補正することが可能に構成されている。ロボットアーム(520)による当該補正は、ロボットアーム(520)が有する複数の回転軸(図示のロボットアームでは、S、L、U、R、B、T、W)の一つ又は二つ以上を回動させることで実現可能である。
例えば、柱状ハニカム構造体(550)の第一底面(551)における円弧中心(柱状ハニカム構造体の底面形状が複数の異なる円弧成分で構成されている形状の場合にはそれぞれの円弧中心である。回転させる円弧が切り替わるたびにツール座標中心の切り替えを行う。)をロボットハンド(510)のツール座標中心とし、当該円弧中心を回転軸にして一対の把持面(512a、512b)を回転させる場合、位置ずれ分だけツール座標中心に補正をかけることができる。当該補正により、柱状ハニカム構造体(550)がセット台(525)に正確に載置されていない場合や、把持をする際に把持位置がずれたときにでも、撮像距離及び柱状ハニカム構造体(550)の側面(553)の法線方向の関係が正しい状態で撮像できるという利点が得られる。なお、一般に、ツール座標上のX軸方向及びY軸方向は、一対の把持面(512a、512b)に平行な方向である。また、「円弧中心」というのは、当該円弧が描く円の中心を指す。
底面形状が円形以外、つまり底面の重心から外周輪郭に向かって延ばした線分の長さが変化する底面形状を持つ柱状ハニカム構造体の場合は、撮影を開始する際の側面の向きも検査精度を高める上で重要となる。そこで、検査装置(500)は一実施形態において側面の向きのずれを補正するように構成することができる。例えば、検査装置(500)は、ロボットハンド(510)が柱状ハニカム構造体(550)を把持している状態で、第一底面用エリアカメラ(561)によって撮影された第一底面(551)の画像に基づき、柱状ハニカム構造体(550)の目標検査位置からのツール座標上のZ軸回転角度のずれを計測し、計測結果に基づき、ロボットアーム(520)が角度ずれ分だけ柱状ハニカム構造体(550)をZ軸回転させることが可能に構成されている。ロボットアーム(520)によるZ軸回転は、ロボットアーム(520)が有する複数の回転軸(図示のロボットアームでは、S、L、U、R、B、T、W)の一つ又は二つ以上を回動させることで実現可能である。なお、一般に、Z軸回転の回転軸は、一対の把持面(512a、512b)の回転軸Wに等しい。
第一底面用エリアカメラ(561)は、計測精度を高めるため、第一底面(551)の法線方向が撮影方向と平行になるよう設置することが好ましい。同様に、第二底面用エリアカメラ(562)は、計測精度を高めるため、第二底面(552)の法線方向が撮影方向と平行になるよう設置することが好ましい。第一底面用エリアカメラ(561)及び第二底面用エリアカメラ(562)としては、限定的ではないが、例えば、200万~500万画素のカメラで、分解能は0.05~0.1mm/pixの性能をもつエリアカメラを使用することができる。エリアカメラとしてはカラーカメラ及びモノクロカメラの何れでもよいが、モノクロカメラで撮影すれば十分である。
計測精度を高めるため、第一底面用エリアカメラ(561)による第一底面(551)の撮影は、第一底面(551)の上方に設置される光照射器(581)から、第一底面(551)に対して光を照射しながら実施することが好ましい。更に、計測精度を高めるためには、光照射器(581)からの光は第一底面用エリアカメラ(561)で撮影される第一底面(551)に対して等方的に照射されることが好ましい。例えば、光照射器(581)としてリング照明又は同軸照明等を用いて、第一底面(551)の直上から光を照射する方法が好ましい。
同様に、計測精度を高めるため、第二底面用エリアカメラ(562)による第二底面(552)の撮影は、第二底面(552)の下方に設置される光照射器(582)から、第二底面(552)に対して光を照射しながら実施することが好ましい。更に、計測精度を高めるためには、光照射器(582)からの光は第二底面用エリアカメラ(562)で撮影される第二底面(552)に対して等方的に照射されることが好ましい。例えば、光照射器(582)としてリング照明又は同軸照明等を用いて、第二底面(552)の直下から光を照射する方法が好ましい。
光照射器(581、582)の光源としては、特に制限はないが、LED、白熱電球、ハロゲンランプ等が挙げられる。照射する光の波長についても、エリアカメラ(561、562)が受光感度を有する波長であれば特に制限はない。従って、白色光を照射することも可能である。照射する光の出力についても特に制限はないが、位置決め精度を高めるため、第一底面(551)及び第二底面(552)の照度が500lx以上、好ましくは1000lx以上となるような出力で光を照射することができる。
側面用エリアカメラ(530)による撮影方向Dは、限定的ではないが、検査精度を高めるという観点から、側面(553)のある地点の法線Nの方向又は法線Nの方向の近傍とすることが好ましい。例えば、一度のシャッター開閉で撮影される撮影範囲の中心に位置する側面地点の法線Nと撮影方向Dがなす角度は0°~5°とすることができ、0°~2°とすることが好ましい。
工程aにおいて、柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させる際、前記側面(553)と側面用エリアカメラ(530)の間の撮影距離の変化が±2mm以内、換言すれば、撮影開始から撮影終了までの時間において撮影距離の変化が4mm以内となるように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させることが、ピントの合っていない画像が生成されるのを防止する上で望ましい。撮影距離の変化は±3mm以内であることが好ましく、±2mm以内であることがより好ましい。撮影距離の変化量は、変位計(585)を用いて監視することが可能である。
検査対象となる柱状ハニカム構造体(550)の形状が円柱状の場合、柱状ハニカム構造体(550)をその中心軸を中心に回転させながら、固定した側面用エリアカメラ(530)で撮影すればよく、撮影距離の変化を上記範囲に抑えることは容易である。一方、検査対象となる柱状ハニカム構造体の形状が円柱状以外の場合は、撮影距離が上記範囲に収まるように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させるためには、柱状ハニカム構造体の形状に応じた複雑な操作が必要である。
そこで、例えば、図5に示す検査装置において、予め検査対象となる柱状ハニカム構造体(550)の形状等の動作条件を入力部(572)から入力して、撮影距離が所定の範囲に収まるように、側面用エリアカメラ(530)及びロボットアーム(520)に撮影中の動作を教示しておく方法が挙げられる。例えば、柱状ハニカム構造体(550)の底面形状が複数の異なる円弧成分からなる形状の場合、円弧成分毎にロボットツール座標(各円弧成分の中心座標、半径、開始角度、終了角度など)を設定し、ロボットハンド(510)に把持されながら回転する柱状ハニカム構造体(550)の回転角に応じて、撮影距離が所定の範囲に収まるように、ロボットアーム(520)の姿勢を変化させる方法が挙げられる。別法として、ロボットアーム(520)に代えて、ロボットハンド(510)に把持されながら回転する柱状ハニカム構造体の回転角に応じて、撮影距離が所定の範囲に収まるように、側面用エリアカメラ(530)を載置したXステージ(532)を撮影方向に平行な方向に移動させる方法も挙げられる。
また、工程aにおいて、前記側面(553)と側面用エリアカメラ(530)の間の撮影距離を測定するための変位計(585)を用いて、前記側面(553)を側面用エリアカメラ(530)が周回する間の当該距離を監視し、当該距離を所定範囲に保つために、ロボットアーム(520)の姿勢又はXステージ(532)の位置をフィードバック制御する方法も挙げられる。
検査を迅速に実施しながら、欠陥の有無を高い精度で検出するという観点からは、側面用エリアカメラ(530)が一枚の短冊状画像を生成するために前記側面(553)の一部を撮影する際のシャッター速度を10~1000μsecとすることが好ましい。シャッター速度を速めることで、ブレの少ない画像を得ることが可能となり、検査速度も向上することから、シャッター速度(露光時間)の上限は1000μsec以下であることが好ましく、100μsec以下であることがより好ましく、50μsec以下であることが更により好ましい。一方で、シャッター速度を高くするにも限界があり、また、検査に必要な輝度を確保するという観点から、シャッター速度(露光時間)の下限は10μsec以上であることが好ましく、20μsec以上であることがより好ましく、40μsec以上であることが更により好ましい。
側面用エリアカメラ(530)によって前記側面(553)を一部ずつ繰り返し撮影する際、それぞれの短冊状画像は、柱状ハニカム構造体(550)の高さ方向(セルの延びる方向)に平行な長手方向と、前記柱状ハニカム構造体の周方向に平行な短手方向を有する。
それぞれの短冊状画像は、長手方向に柱状ハニカム構造体(550)の高さ全体が含まれる長さを有していることが、検査の迅速性から好ましい。エリアカメラ(530)で一度に撮影する側面(553)の範囲が、柱状ハニカム構造体(550)の高さ全体であれば、柱状ハニカム構造体(550)を一回転させるだけで側面全体の検査画像を生成することが可能である。
それぞれの短冊状画像は、欠陥の検査精度を高めるという観点からは、短手方向に1~10mmの長さを有していることが好ましい。それぞれの短冊状画像は、短手方向の長さが短いほうがピントの合った画像が得られやすいことから、短手方向の長さが10mm以下であることが好ましく、8mm以下であることがより好ましく、6mm以下であることが更により好ましい。一方で、短手方向の長さが短すぎると、周方向に延びるクラック等の欠陥が一枚の画像内に収まりきらなくなるので、検出が困難となる場合がある。そこで、周方向に延びるクラック等の欠陥を検出しやすくするために、それぞれの短冊状画像は短手方向の長さが1mm以上であることが好ましく、3mm以上であることがより好ましく、6mm以上であることが更により好ましい。
側面用エリアカメラ(530)によって前記側面(553)を一部ずつ繰り返し撮影する際、検査画像にブレが生じないようにしながらも、迅速に検査ができるように、側面(553)の周速度を設定することが好ましい。限定的ではないが、当該繰り返し撮影は、柱状ハニカム構造体(550)の側面(553)を側面用エリアカメラ(530)が周回するように、柱状ハニカム構造体(550)に対して側面用エリアカメラ(530)を相対移動させるときの平均周速度を50~300mm/秒として行うことができる。一般的な柱状ハニカム構造体(550)の大きさであれば、平均周速度を当該範囲とすることで、前記側面(335)全体を検査するのに要する時間を概ね5秒以下とすることができる。検査の迅速性に鑑みれば、平均周速度の下限は50mm/秒以上であることが好ましく、100mm/秒以上であることがより好ましく、300mm/秒以上であることが更により好ましい。一方で、平均周速度が高すぎると、シャッター速度が周速度に対して遅くなり、検査画像にブレが生じやすくなる。このことから、平均周速度の上限は300mm/秒以下であることが好ましく、250mm/秒以下であることがより好ましく、200mm/秒以下であることが更により好ましい。
側面用エリアカメラ(530)によって前記側面(553)を一部ずつ繰り返し撮影する際のフレームレートは、迅速な検査が行える所望の周速度で漏れなく柱状ハニカム構造体(550)の側面(553)全体を撮影するという観点から、100~300Hzであることが好ましい。フレームレートは、高い方が撮影漏れを防止することができるため、100Hz以上であることが好ましく、200Hz以上であることがより好ましく、300Hz以上であることが更により好ましい。但し、フレームレートが高すぎると、カメラの価格が高くなったり、短冊状画像の長手方向に十分な視野を確保できなったりすることから、600Hz以下であることが好ましい。更に、ロボットアームの動作軌跡の精度を考慮すれば、400Hz以下であることがより好ましい。
微細な欠陥を高精度に検出するためには、画素分解能が細かいカメラを使用することが好ましい。具体的には、視野の縦方向及び横方向の画素分解能がそれぞれ50μm/pix以下(50μm/pixであるかそれよりも細かい)のエリアカメラを使用することが好ましい。これにより、例えば、品質検査で要求されるクラックの幅が50μm以上のクラックを検出することが可能となる。更に幅の短いクラック(例:25μm以上)を検出できるようにするという観点から、画素分解能は25μm/pix以下(25μm/pixであるかそれよりも細かい)であることがより好ましい。画素分解能の下限は特に設定されないが、ピントが合わせやすいという観点から、15μm/pix以上(15μm/pixであるかそれよりも粗い)であるのが好ましく、20μm/pix以上(20μm/pixであるかそれよりも粗い)であるのがより好ましい。
側面用エリアカメラ(530)による撮影は、欠陥を検出しやすくするという観点から、柱状ハニカム構造体(550)の側面(553)に光を照射しながら行うことが好ましい。具体的には、柱状ハニカム構造体(550)の側面(553)の照度が1万lx以上、好ましくは10万lx以上、より好ましくは50万lx以上となるように、照射する光の強度を調節することが望ましい。照射光が照射されている柱状ハニカム構造体(550)の側面(553)の照度には特段の上限はないが、経済性の観点からは、柱状ハニカム構造体(550)の側面(553)の照度は100万lx以下とすることが好ましい。
側面用エリアカメラ(530)が受光感度を有する限り、柱状ハニカム構造体(550)の側面(553)に対して照射する光の波長には、特に制限はないが、例えば、350~800nmの光を照射することができる。白色光を照射することも可能である。検査装置(500)が有する側面用の光照射器(590a、590b)の光源としては、特に制限はないが、LED、白熱電球、ハロゲンランプ等が挙げられる。
側面用エリアカメラ(530)によって柱状ハニカム構造体(550)の側面(553)を撮影する際、一回のシャッター開閉で撮影可能な範囲は、柱状ハニカム構造体(550)の高さ方向に直線状に延びる細長い範囲である。このため、光照射器(590a、590b)はライン照明とすることが照度を高くする上で効率的であり好ましい。具体的には、柱状ハニカム構造体(550)の側面(553)に対して照射される光は、長手方向が柱状ハニカム構造体(550)の高さ方向に平行な方向に延びるライン照明によって照射することが好ましい。そして、ライン照明は、側面用エリアカメラ(530)による撮影範囲を照らすように光の照射方向を設定することが好ましい。
光を照射する場合、側面用エリアカメラ(530)を挟んだ互いに異なる方向から第一の光及び第二の光を前記側面(553)に対して交互に照射しながら、側面用エリアカメラ(530)によって前記側面(553)を一部ずつ繰り返しストロボ撮影することが好ましい(図6参照)。これにより、光の照射方向の異なる短冊状画像が交互に生成されるので、前記側面(553)の一部が柱状ハニカム構造体(550)の高さ方向(セルの延びる方向)に沿って径方向へとずれることで生じた段差状のクラックを検出しやすくなる。段差状のクラックは光の照射方向によって影が出来る場合とできない場合があるところ、影が出来ることで検出が容易となるからである。
ストロボ撮影を行う際、制御装置(570)は、側面用エリアカメラ(530)に対して、所定のフレームレートでシャッターを開く指令を出すトリガー信号を送信する。また、制御装置(570)は、側面用エリアカメラ(530)のシャッターが開くタイミングに合わせて、一対の光照射器(590a、590b)のそれぞれに対して発光指令を出すトリガー信号を交互に送信する。例えば、側面用エリアカメラ(530)のフレームレートを300Hzとし、それぞれの光照射器(590a、590b)の発光周波数を150Hzとして、ストロボ撮影を行うことができる。
光照射器(590a、590b)は、図6に示すように、側面用エリアカメラ(530)によって柱状ハニカム構造体(550)の側面(553)を撮影する際の撮影範囲の中心に対して対称な位置(典型的には左右位置)に一対以上配置することが好ましい。つまり、各対の光照射器(590a、590b)は、照射角度θ1、θ2(撮影範囲の中心に位置する側面地点の法線Nに対する照明光の光軸中心の角度)が同じ角度(θ1=θ2)又は近傍(|θ1-θ2|=0°~10°)となるように側面(553)の法線Nに対称に配置することが好ましい。照射角度θ1、θ2は、限定的ではないが、例えば、5°~30°の範囲とすることができる。更に、各対の光照射器(590a、590b)は、照射距離及び光の強度も同程度(例:対を構成する一方の光照射器の照射距離に対する他方の光照射器の照射距離の比が0.9~1.1であり、対を構成する一方の光照射器の光の強度に対する他方の光照射器の光の強度の比が0.9~1.1である)であることが好ましい。
工程aにおける繰り返しの撮影は、複数の短冊状画像がそれぞれ、撮影時刻が一枚前の光の照射方向が同じ短冊状画像及び撮影時刻が一枚後の光の照射方向が同じ短冊状画像と、柱状ハニカム構造体の側面の周方向に重複する部分を有するように行われることが好ましい。具体的には、周方向に重複する部分は3mm以上とすることが好ましい。柱状ハニカム構造体の品質においては、周方向に3mm以上延びるクラック等の欠陥が検出できることが望ましいからである。周方向に重複する部分は4mm以上としてもよく、5mm以上としてもよい。しかしながら、周方向に重複する部分が長すぎると迅速な検査の妨げとなることから、周方向に重複する部分は3~5mmの範囲とすれば十分である。
図7Aに、光の照射方向を変えずに、短冊状画像の周方向(短手方向)の長さを5mm、周方向に重複する部分を無しとして繰り返し前記側面(553)を撮影したときの、N-1枚目、N枚目、及びN+1枚目の短冊状画像の撮影範囲を前記側面(553)の展開図上に模式的に示す。この例では、N-1枚目の撮影範囲を撮影する間に前記側面(553)は周方向に5mm相対移動し、N枚目の撮影範囲を撮影する間に前記側面(553)は周方向に5mm相対移動し、N+1枚目の撮影範囲を撮影する間に前記側面(553)は周方向に5mm相対移動する。
図7Bには、光の照射方向を変えずに、短冊状画像の周方向(短手方向)の長さを5mm、周方向に重複する部分を3mmとして繰り返し前記側面(553)を撮影したときの、N-1枚目、N枚目、及びN+1枚目の短冊状画像の撮影範囲を前記側面(553)の展開図上に模式的に示す。この例では、N-1枚目の撮影範囲を撮影する間に前記側面(553)は周方向に2mm相対移動し、N枚目の撮影範囲を撮影する間に前記側面(553)は周方向に2mm相対移動し、N+1枚目の撮影範囲を撮影する間に前記側面(553)は周方向に2mm相対移動する。
図7Cには、光の照射方向を交互に切り替えながら、短冊状画像の周方向(短手方向)の長さを5mm、光の照射方向が同じ短冊状画像において周方向に重複する部分を3mmとして繰り返し前記側面(553)を撮影したときの、第一の光を照射しながら撮影したN-1枚目とN枚目の短冊状画像の撮影範囲と、第二の光を照射しながら撮影したM-1枚目とM枚目の短冊状画像の撮影範囲を、前記側面(553)の展開図上に模式的に示す。この例では、第一の光を照射しながらN-1枚目の撮影範囲を撮影する間に前記側面(553)は周方向に1mm移動し、第二の光を照射しながらM-1枚目の撮影範囲を撮影する間に前記側面(553)は周方向に1mm移動し、第一の光を照射しながらN枚目の撮影範囲を撮影する間に前記側面(553)は周方向に1mm移動し、第二の光を照射しながらM枚目の撮影範囲を撮影する間に前記側面(553)は周方向に1mm移動する。
上記の図7A、図7B、及び図7Cに示す例において、周方向の長さが3mm以上のクラックを欠陥として検出することを考える。
図7Aに示す例の場合、N-1枚目の短冊状画像中に一部が撮影された周方向の長さが3mmのクラック(554)があると、当該クラック(554)はN枚目の短冊状画像中にも一部しか撮影されない。このため、各短冊状画像においてはクラック(554)の長さが3mm未満のため、短冊状画像をそれぞれ検査するときに当該クラック(554)を欠陥として検出することができない。
図7Bに示す例の場合、N-1枚目の短冊状画像中に一部が撮影された周方向の長さが3mmのクラック(554)があると、N-1枚目の短冊状画像からは当該クラック(554)を欠陥として検出することはできない。しかしながら、N枚目の短冊状画像は、N-1枚目の短冊状画像と周方向に重複する部分が3mmあるので、N枚目の短冊状画像で当該クラック(554)を欠陥として検出することができる。
図7Cに示す例の場合、N-1枚目の短冊状画像中に一部が撮影された周方向の長さが3mmのクラック(554)があると、N-1枚目の短冊状画像からは当該クラックを欠陥として検出することはできない。しかしながら、N枚目の短冊状画像は、N-1枚目の短冊状画像と周方向に重複する部分が3mmあるので、N枚目の短冊状画像で当該クラック(554)を欠陥として検出することができる。同様に、M-1枚目の短冊状画像中に一部が撮影された周方向の長さが3mmのクラック(554)があると、M-1枚目の短冊状画像からは当該クラック(554)を欠陥として検出することはできない。しかしながら、M枚目の短冊状画像は、M-1枚目の短冊状画像と周方向に重複する部分が3mmあるので、M枚目の短冊状画像で当該クラック(554)を欠陥として検出することができる。
側面用エリアカメラ(530)による繰り返しの撮影の結果、生成された複数の短冊状画像のデータは、当該短冊状画像が撮影された側面(553)の部分の位置データと関連付けて制御装置(570)内の記憶装置に格納することができる。例えば、側面用エリアカメラ(530)による撮影が開始され、一対の把持面(512a、512b)が回転し始めると、チャック(512)に搭載されたエンコーダが所定の時間間隔でパルス(エンコーダパルス)を発する。当該エンコーダパルスは、制御装置(570)に受け渡される。制御装置(570)は、このエンコーダパルスを受け取るタイミングと同期させて撮影を実行するよう、側面用エリアカメラ(530)に対し撮影指示を与える。このようにエンコーダパルスが発せられるタイミングにて撮影がなされることにより、個々の撮影時の画像データとエンコーダパルスのパルス値のデータセットを生成することが可能である。パルス値に基づき、画像データに対応する側面(553)の部分の位置を特定することが可能であるので、画像データと位置データを関連付けることが可能である。
また、側面用エリアカメラ(530)による繰り返しの撮影の結果、生成された複数の短冊状画像は、LCD、有機ELディスプレイ等の表示装置の画面(540)に表示するように構成することができる。短冊状画像に対しては、次工程における欠陥の判別を容易化するため、必要に応じてフィルタ処理等の画像処理を実行してもよい。フィルタ処理としては、二値化処理、シェーディング補正、収縮膨張処理などが例示される。画像処理は、制御装置(570)が行うように構成可能である。
工程aによって生成される複数の短冊状画像の数は、柱状ハニカム構造体の側面全体を網羅するのに十分な数とすることが望ましいが、柱状ハニカム構造体をエリアカメラによって一周分撮影することによって得られる画像データは容量が大きい。このため、撮影工程が終了してから画像処理を実施すると、画像処理に時間を要し、検査速度が低下する。そこで、一枚の短冊状画像が生成される度に、撮影工程と並行して、画像処理を実行してもよい。
2-3.工程b(欠陥判別工程)
本発明の一実施形態に係る検査方法においては、工程aによって得られた複数の短冊状画像に基づいて、前記側面(553)の欠陥の有無を判別する工程bが実施される。欠陥の有無を判別する工程は、目視により検査員が実施してもよいが、生成される短冊状画像の数は膨大となるので、予め設定した基準に基づいて制御装置(570)に行わせることが好ましい。一実施形態において、複数の短冊状画像に基づいて前記側面(553)の欠陥の有無を判別する工程は、幅が25μm以上のクラックの有無を判別することを含む。ここで、クラックの幅というのは、一つのクラックにおいて、クラックの長さ方向に直交する方向の長さの最大値を指す。
制御装置(570)によって、幅が25μm以上のクラックの有無を判別する場合、例えば、クラック等の欠陥が存在する部分とそれ以外の部分を区別可能なように、それぞれの短冊状画像を二値化処理し、二値化処理後の検査画像を用いて幅が25μm以上のクラックの有無を判別する方法が挙げられる。
100 柱状ハニカム構造体
102 外周側壁
103 側面
104 第一底面
106 第二底面
108 セル
112 隔壁
200 柱状ハニカム構造体
202 外周側壁
203 側面
204 第一底面
206 第二底面
208a 第1セル
208b 第2セル
212 隔壁
500 検査装置
510 ロボットハンド
512 チャック
512a、512b 把持面
513 直動機構
520 ロボットアーム
521 基部
522a 下側アーム
522b 上側アーム
523 台座
525 セット台
530 側面用エリアカメラ
532 Xステージ
534 Zステージ
540 画面
550 柱状ハニカム構造体
551 第一底面
552 第二底面
553 側面
561 第一底面用エリアカメラ
562 第二底面用エリアカメラ
570 制御装置
572 入力部
581 光照射器
582 光照射器
585 変位計
590a 第一光照射器
590b 第二光照射器

Claims (1)

  1. 本明細書に記載の発明。
JP2023047132A 2020-03-31 2023-03-23 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置 Pending JP2023068150A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023047132A JP2023068150A (ja) 2020-03-31 2023-03-23 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064970A JP7313310B2 (ja) 2020-03-31 2020-03-31 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置
JP2023047132A JP2023068150A (ja) 2020-03-31 2023-03-23 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020064970A Division JP7313310B2 (ja) 2020-03-31 2020-03-31 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置

Publications (1)

Publication Number Publication Date
JP2023068150A true JP2023068150A (ja) 2023-05-16

Family

ID=77659048

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020064970A Active JP7313310B2 (ja) 2020-03-31 2020-03-31 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置
JP2023047132A Pending JP2023068150A (ja) 2020-03-31 2023-03-23 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020064970A Active JP7313310B2 (ja) 2020-03-31 2020-03-31 セラミックス製の柱状ハニカム構造体の検査方法及び検査装置

Country Status (4)

Country Link
US (2) US11915409B2 (ja)
JP (2) JP7313310B2 (ja)
CN (1) CN113466234A (ja)
DE (1) DE102021000808A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220182529A1 (en) * 2020-12-08 2022-06-09 Williamsrdm, Inc. Remotely triggered infrared spotlight system and method of use
DE102022125197A1 (de) 2022-09-29 2024-04-04 B+M Surface Systems Gmbh Vorrichtung zur Untersuchung einer Oberfläche eines Bauteils
CN117647210B (zh) * 2024-01-29 2024-05-14 成都飞机工业(集团)有限责任公司 一种蜂窝芯构件复杂型面轮廓的检测方法
CN117739777A (zh) * 2024-02-21 2024-03-22 成都航利航空科技有限责任公司 一种航空发动机蜂窝组合件快速测量装置及其测量方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085574A (ja) * 1994-06-21 1996-01-12 Rohm Co Ltd 投入部品の良否検査装置、およびその検査方法
JP3928222B2 (ja) * 1997-09-09 2007-06-13 ソニー株式会社 画像信号撮像および記録装置および方法
JP3873724B2 (ja) * 2001-11-27 2007-01-24 松下電工株式会社 重心調整装置および方法
US9092841B2 (en) * 2004-06-09 2015-07-28 Cognex Technology And Investment Llc Method and apparatus for visual detection and inspection of objects
WO2005124317A2 (en) * 2004-06-09 2005-12-29 Cognex Technology And Investment Corporation Method and apparatus for visual detection and inspection of objects
US7489811B2 (en) * 2004-10-08 2009-02-10 Siemens Energy, Inc. Method of visually inspecting turbine blades and optical inspection system therefor
CA2485668A1 (en) * 2004-10-21 2006-04-21 Stuart G. Moore Method and system for detecting characteristics of lumber using end scanning
JP2006258663A (ja) * 2005-03-17 2006-09-28 Ricoh Co Ltd 表面欠陥検査装置
JP5403852B2 (ja) * 2005-08-12 2014-01-29 株式会社荏原製作所 検出装置及び検査装置
JP2007132753A (ja) * 2005-11-09 2007-05-31 Tsubakimoto Chain Co 外観検査機構
JP5038293B2 (ja) * 2006-03-16 2012-10-03 日本碍子株式会社 ハニカム構造体の外壁検査方法
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
WO2009007333A1 (de) * 2007-07-10 2009-01-15 Boehringer Ingelheim International Gmbh Optische befuellungskontrolle von pharmazeutischen kapseln auf kapselfuellmaschinen
US8285027B2 (en) * 2009-11-13 2012-10-09 Corning Incorporated High-resolution large-field scanning inspection system for extruded ceramic honeycomb structures
US8537215B2 (en) * 2009-11-30 2013-09-17 Corning Incorporated Multi-camera skin inspection system for extruded ceramic honeycomb structures
FI20106053A0 (fi) * 2010-10-13 2010-10-13 Metso Automation Oy Järjestelmä rainan tarkkailemiseksi ja vastaava menetelmä rainan tarkkailemiseksi
KR20140084612A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 주편 에지 모니터링 시스템 및 방법
JP5862621B2 (ja) 2013-07-26 2016-02-16 Jfeスチール株式会社 鋼板端面の欠陥検出方法及び欠陥検出装置
US9239296B2 (en) * 2014-03-18 2016-01-19 Corning Incorporated Skinning of ceramic honeycomb bodies
US10140705B2 (en) * 2014-06-10 2018-11-27 Siemens Healthcare Diagnostics Inc. Drawer vision system
JP6508763B2 (ja) 2014-10-17 2019-05-08 セイコーインスツル株式会社 表面検査装置
US9996766B2 (en) * 2015-05-01 2018-06-12 Corning Incorporated Imaging-based methods for detecting and measuring defects in extruded cellular ceramic articles
MX2017012962A (es) 2015-10-06 2018-05-22 Ngk Insulators Ltd Metodo de inspeccion de superficie de cuerpo ceramico.
CN105372262B (zh) * 2015-12-17 2018-03-06 大连实远科技发展有限公司 柱状物外表面缺陷检查系统
JP2018072252A (ja) 2016-11-01 2018-05-10 倉敷紡績株式会社 球体物の表面の検査装置および検査方法
JP6595708B2 (ja) * 2016-11-14 2019-10-23 日本碍子株式会社 目封止ハニカム構造体の欠陥検査装置および欠陥検査方法
JP6564428B2 (ja) * 2017-08-03 2019-08-21 ファナック株式会社 キャリブレーションシステムおよびキャリブレーション方法
JP6845180B2 (ja) * 2018-04-16 2021-03-17 ファナック株式会社 制御装置及び制御システム
CN112041668B (zh) * 2018-05-07 2023-08-04 日本碍子株式会社 陶瓷体的缺陷检查装置及缺陷检查方法
CN109967379A (zh) 2019-03-06 2019-07-05 东莞中科蓝海智能视觉科技有限公司 一种检测柱状体表面瑕疵的检测装置
CN110031403B (zh) * 2019-04-04 2020-03-31 山东大学 一种全自动岩石标本图像采集装置及方法
JP2020197611A (ja) * 2019-05-31 2020-12-10 パナソニックi−PROセンシングソリューションズ株式会社 カメラ装置および生産システム
WO2021040986A1 (en) * 2019-08-30 2021-03-04 Corning Incorporated Systems and methods for honeycomb body inspection
CN110570408B (zh) * 2019-09-04 2022-04-22 南京大学 一种对圆柱体外表面细微目标计数的系统和方法
CN114641796A (zh) * 2019-10-31 2022-06-17 康宁股份有限公司 对工件进行高分辨率测量的方法和设备
US11532168B2 (en) * 2019-11-15 2022-12-20 Nvidia Corporation Multi-view deep neural network for LiDAR perception
CN111239144A (zh) * 2020-03-20 2020-06-05 中建材(合肥)粉体科技装备有限公司 一种辊压机辊面自动检测装置及检测方法
JP6756939B1 (ja) * 2020-03-31 2020-09-16 日本碍子株式会社 柱状ハニカムフィルタの検査方法

Also Published As

Publication number Publication date
US20210304399A1 (en) 2021-09-30
CN113466234A (zh) 2021-10-01
US11915409B2 (en) 2024-02-27
US20240020820A1 (en) 2024-01-18
DE102021000808A1 (de) 2021-09-30
JP7313310B2 (ja) 2023-07-24
JP2021162487A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
JP7313310B2 (ja) セラミックス製の柱状ハニカム構造体の検査方法及び検査装置
US8537215B2 (en) Multi-camera skin inspection system for extruded ceramic honeycomb structures
US7520918B2 (en) Method and system for identifying and repairing defective cells in a plugged honeycomb structure
CN107110791B (zh) 陶瓷体的表面检查方法
JP6537610B2 (ja) セラミックハニカム体を検査する装置及び方法
JP6936995B2 (ja) 立体物の外観検査装置
WO2013008789A1 (ja) ハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置
JP7206234B2 (ja) セラミックス製の円柱状ハニカム構造体の検査方法及び検査装置
JP6937822B2 (ja) セラミックのハニカム体の位置合わせ、検査および製造装置並びに方法
TWI815913B (zh) 切晶晶片檢查裝置
JP5891323B2 (ja) 目封止ハニカム構造体の検査装置及び目封止ハニカム構造体の検査方法
CN216049667U (zh) 钻头刃面检测装置
JP7372952B2 (ja) 柱状ハニカム構造体の検査装置及び検査方法
CN113804103A (zh) 钻头刃面检测装置及钻头刃面检测方法
JP3513903B2 (ja) 検査装置及びその方法
JP2013024561A (ja) ハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置
JP6964534B2 (ja) 収容棚を構築又は解体する方法、セラミックス焼成体の製造方法、及び搬送システム
JP2013140073A (ja) ハニカム構造体の封口部の検査装置及び検査方法
JPH07286818A (ja) 検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240326