JP2023041762A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2023041762A
JP2023041762A JP2023008052A JP2023008052A JP2023041762A JP 2023041762 A JP2023041762 A JP 2023041762A JP 2023008052 A JP2023008052 A JP 2023008052A JP 2023008052 A JP2023008052 A JP 2023008052A JP 2023041762 A JP2023041762 A JP 2023041762A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
transistor
layer
film
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023008052A
Other languages
English (en)
Inventor
直人 楠本
Naoto Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2023041762A publication Critical patent/JP2023041762A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

【課題】撮像品質が高く、低コストで作製することのできる撮像装置を提供する。【解決手段】第1の層と、第2の層と、第3の層と、を有する撮像装置であって、第1の層は、第1のトランジスタを有し、第2の層は、第2のトランジスタを有し、第3の層は、フォトダイオードを有し、第1のトランジスタのチャネル形成領域は、シリコンを有し、第2のトランジスタのチャネル形成領域は、酸化物半導体を有し、フォトダイオードは、pin型の構造を有し、フォトダイオードは、非晶質シリコンを有する構成とする。【選択図】図1

Description

本発明の一態様は、酸化物半導体を用いた撮像装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の
一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明
の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・
オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明
の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装
置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を
一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、
表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が
注目されている。当該トランジスタは集積回路(IC)や表示装置のような電子デバイス
に広く応用されている。トランジスタに適用可能な半導体材料として、シリコン系半導体
が広く知られているが、その他の材料として酸化物半導体が注目されている。
例えば、酸化物半導体として酸化亜鉛、またはIn-Ga-Zn系酸化物半導体を用いて
トランジスタを作製する技術が開示されている(特許文献1および特許文献2参照)。
また、特許文献3では、酸化物半導体を有するオフ電流が極めて低いトランジスタを画素
回路の一部に用い、CMOS(Complementary Metal Oxide
Semiconductor)回路が作製可能なシリコンを有するトランジスタを周辺回
路に用いる構成の撮像装置が開示されている。
また、特許文献4では、シリコンを有するトランジスタと、酸化物半導体を有するトラン
ジスタと、結晶性シリコン層を有するフォトダイオードを積層する構成の撮像装置が開示
されている。
特開2007-123861号公報 特開2007-96055号公報 特開2011-119711号公報 特開2013-243355号公報
撮像装置においては、あらゆる環境下における用途が想定されるため、低照度環境や、動
体を被写体とした場合においても高い撮像品質などが求められる。また、それらの要求を
満たしつつ、より低コストで作製することのできる撮像装置が望まれている。
したがって、本発明の一態様では、低照度下で撮像することができる撮像装置を提供する
ことを目的の一つとする。または、ダイナミックレンジの広い撮像装置を提供することを
目的の一つとする。または、解像度の高い撮像装置を提供することを目的の一つとする。
または、集積度の高い撮像装置を提供することを目的の一つとする。または、広い温度範
囲において使用可能な撮像装置を提供することを目的の一つとする。または、高速動作に
適した撮像装置を提供することを目的の一つとする。または、低消費電力の撮像装置を提
供することを目的の一つとする。または、高開口率の撮像装置を提供することを目的の一
つとする。または、低コストの撮像装置を提供することを目的の一つとする。または、信
頼性の高い撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを
提供することを目的の一つとする。または、新規な半導体装置などを提供することを目的
の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、酸化物半導体を用いて形成されたトランジスタを有する画素回路と、
シリコンを用いて形成された光電変換素子と、シリコンを用いて形成されたトランジスタ
を有する周辺回路を含む撮像装置に関する。
本発明の一態様は、第1の層と、第2の層と、第3の層と、を有する撮像装置であって、
第2の層は、第1の層と第3の層との間に設けられ、第1の層は、第1のトランジスタを
有し、第2の層は、第2のトランジスタを有し、第3の層は、フォトダイオードを有し、
第1のトランジスタは、第1の回路の構成要素であり、第2のトランジスタおよびフォト
ダイオードは、第2の回路の構成要素であり、第1の回路は、第2の回路を駆動すること
ができる構成を有し、第1のトランジスタのチャネル形成領域は、シリコンを有し、第2
のトランジスタのチャネル形成領域は、酸化物半導体を有し、フォトダイオードは、pi
n型の構造を有し、フォトダイオードは、非晶質シリコンを有し、非晶質シリコンは、i
型である領域を有することを特徴とする撮像装置である。
第1の層と、第2の層と、第3の層と、を有する撮像装置であって、第2の層は、第1の
層と第3の層との間に設けられ、第1の層は、第1のトランジスタを有し、第2の層は、
第2のトランジスタ、第3のトランジスタおよび第4のトランジスタを有し、第3の層は
、フォトダイオードを有し、第1のトランジスタは、第1の回路の構成要素であり、第2
のトランジスタ、第3のトランジスタ、第4のトランジスタ、およびフォトダイオードは
、第2の回路の構成要素であり、第1の回路は、第2の回路を駆動することができる構成
を有し、第1のトランジスタのチャネル形成領域は、シリコンを有し、第2のトランジス
タ、第3のトランジスタ、および第4のトランジスタのチャネル形成領域は、酸化物半導
体を有し、フォトダイオードは、pin型の構造を有し、フォトダイオードは、非晶質シ
リコンを有し、非晶質シリコンは、i型である領域を有し、第2のトランジスタのソース
またはドレインの一方は、フォトダイオードと電気的に接続され、第2のトランジスタの
ソースまたはドレインの他方は、第3のトランジスタのソースまたはドレインの一方と電
気的に接続され、第3のトランジスタのソースまたはドレインの一方は、前記第4のトラ
ンジスタのゲートと電気的に接続されていることを特徴とする撮像装置である。
フォトダイオードのp型半導体層は、当該フォトダイオードを貫通して設けられる導電体
と電気的に接続する構成とすることができる。
第1の層が有するトランジスタのチャネル形成領域、第2の層が有するトランジスタのチ
ャネル形成領域、およびフォトダイオードのそれぞれは、互いに重なる領域を有すること
ができる。
第1の層が有するトランジスタは、シリコン基板に活性領域を有するトランジスタとする
ことができる。
また、第1の層が有するトランジスタは、シリコン層を活性層とするトランジスタとする
ことができる。
酸化物半導体は、InとZnと、M(MはAl、Ti、Ga、Sn、Y、Zr、La、C
e、NdまたはHf)とを有することが好ましい。
本発明の一態様により、低照度下で撮像することができる撮像装置を提供することができ
る。または、ダイナミックレンジの広い撮像装置を提供することができる。または、解像
度の高い撮像装置を提供することができる。または、集積度の高い撮像装置を提供するこ
とができる。または、広い温度範囲において使用可能な撮像装置を提供することができる
。または、高速動作に適した撮像装置を提供することができる。または、低消費電力の撮
像装置を提供することができる。または、高開口率の撮像装置を提供することができる。
または、低コストの撮像装置を提供することができる。または、信頼性の高い撮像装置を
提供することができる。または、新規な撮像装置などを提供することができる。または、
新規な半導体装置などを提供することができる。
なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態
様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合も
ある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、こ
れらの効果を有さない場合もある。
撮像装置を説明する断面図。 撮像装置の画素回路および駆動回路を説明する図。 撮像装置を説明する断面図。 フォトダイオードを説明する断面図。 撮像装置を説明する断面図。 撮像装置の構成を説明する図。 撮像装置の駆動回路を説明する図。 画素回路の構成を説明する図。 画素回路の動作を説明するタイミングチャート。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 積分回路を説明するための図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 グローバルシャッタ方式とローリングシャッタ方式の動作を説明するタイミングチャート。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタのチャネル幅方向の断面を説明する図。 トランジスタのチャネル長方向の断面を説明する図。 半導体層を説明する上面図および断面図。 半導体層を説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタのチャネル幅方向の断面を説明する図。 トランジスタのチャネル長方向の断面を説明する図。 トランジスタを説明する上面図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 酸化物半導体の断面TEM像および局所的なフーリエ変換像。 酸化物半導体膜のナノビーム電子回折パターンを示す図、および透過電子回折測定装置の一例を示す図。 電子照射による結晶部の変化を示す図。 透過電子回折測定による構造解析の一例を示す図、および平面TEM像。 電子機器を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変
更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施
の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成
において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通
して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハ
ッチングを異なる図面間で適宜省略または変更する場合もある。
なお、本明細書等において、XとYとが接続されている、と明示的に記載する場合は、X
とYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、X
とYとが直接接続されている場合とを含むものとする。ここで、X、Yは、対象物(例え
ば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。したがっ
て、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または
文章に示された接続関係以外のものも含むものとする。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが
可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイ
ッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか
流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択し
て切り替える機能を有している。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能
とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変
換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電
源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)
、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きくできる
回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成
回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能であ
る。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号
がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
なお、XとYとが接続されている、と明示的に記載する場合は、XとYとが電気的に接続
されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されてい
る場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路
を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり
、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とを含むもの
とする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続され
ている、とのみ明示的に記載されている場合と同じであるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されてい
る場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もあ
る。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、およ
び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における
電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている
場合も、その範疇に含める。
なお、例えば、トランジスタのソース(または第1の端子など)が、Z1を介して(また
は介さず)、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)
が、Z2を介して(または介さず)、Yと電気的に接続されている場合や、トランジスタ
のソース(または第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部
がXと直接的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2の
一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下
のように表現することができる。
例えば、「XとYとトランジスタのソース(または第1の端子など)とドレイン(または
第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(ま
たは第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yの順序で
電気的に接続されている。」と表現することができる。または、「トランジスタのソース
(または第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(または
第2の端子など)はYと電気的に接続され、X、トランジスタのソース(または第1の端
子など)、トランジスタのドレイン(または第2の端子など)、Yは、この順序で電気的
に接続されている」と表現することができる。または、「Xは、トランジスタのソース(
または第1の端子など)とドレイン(または第2の端子など)とを介して、Yと電気的に
接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイ
ン(または第2の端子など)、Yは、この接続順序で設けられている」と表現することが
できる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規
定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(また
は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これら
の表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、
Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)で
あるとする。
なお、本明細書等において、様々な基板を用いて、トランジスタを形成することができる
。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体
基板(例えば単結晶基板またはシリコン基板)、SOI基板、ガラス基板、石英基板、プ
ラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有
する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合
わせフィルム、繊維状の材料を含む紙、または基材フィルムなどがある。ガラス基板の一
例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、またはソーダライ
ムガラスなどがある。可撓性基板の一例としては、ポリエチレンテレフタレート(PET
)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表さ
れるプラスチック、またはアクリル等の可撓性を有する合成樹脂などがある。貼り合わせ
フィルムの一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポ
リ塩化ビニルなどがある。基材フィルムの一例としては、ポリエステル、ポリアミド、ポ
リイミド、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、
またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、ま
たは形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造
することができる。このようなトランジスタによって回路を構成すると、回路の低消費電
力化、または回路の高集積化を図ることができる。
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成しても
よい。または、基板とトランジスタの間に剥離層を設けてもよい。剥離層は、その上に半
導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために
用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の基板にも転載
できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜
の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成等を用いるこ
とができる。
つまり、ある基板を用いてトランジスタを形成し、その後、別の基板にトランジスタを転
置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一
例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロフ
ァン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基
板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若し
くは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮
革基板、またはゴム基板などがある。これらの基板を用いることにより、特性のよいトラ
ンジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性
の付与、軽量化、または薄型化を図ることができる。
(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置について、図面を参照して説明する。
図1(A)は、本発明の一態様の撮像装置の構成を示す断面図である。図1(A)に示す
撮像装置は、シリコン基板40に活性領域を有するトランジスタ51およびトランジスタ
53と、酸化物半導体層を活性層とするトランジスタ52と、非晶質シリコン層を光電変
換層とするフォトダイオード60を含む。各トランジスタおよびフォトダイオード60は
、絶縁層に埋め込まれた導電体70、および各配線と電気的な接続を有する。
なお、上記要素における電気的な接続の形態は一例である。また、同一面上に設けられる
、または同一工程で設けられる配線および電極等は符号を統一し、絶縁層に埋め込まれた
導電体については全体で符号を統一している。また、図面上では各配線、各電極、および
導電体70を個別の要素として図示しているが、それらが電気的に接続しているものにつ
いては、同一の要素として設けられる場合もある。
当該撮像装置は、シリコン基板40に設けられたトランジスタ51、トランジスタ53お
よび絶縁層を有する第1の層1100と、配線71および絶縁層を有する第2の層120
0と、トランジスタ52および絶縁層を有する第3の層1300と、配線72、配線73
および絶縁層を有する第4の層1400を備えている。第1の層1100、第2の層12
00、第3の層1300、第4の層1400は当該順序で積層されている。
なお、上記各配線等の一部が設けられない場合や、上記以外の配線等やトランジスタ等が
各層に含まれる場合もある。また、上記以外の層が当該積層構造に含まれる場合もある。
また、上記の一部の層が含まれない場合もある。また、上記絶縁層は層間絶縁膜としての
機能を有する。
また、シリコン基板40はバルクのシリコン基板に限らず、ゲルマニウム、シリコンゲル
マニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、
窒化ガリウム、有機半導体を材料とする基板を用いることもできる。
また、トランジスタ51およびトランジスタ53は、図1(B)に示すように、シリコン
薄膜の活性層59を有するトランジスタであってもよい。この場合、基板41は、ガラス
基板や半導体基板等を用いることができる。また、活性層59は、多結晶シリコンやSO
I(Silicon on Insulator)の単結晶シリコンとすることができる
上記積層において、トランジスタ51およびトランジスタ53を有する第1の層1100
と、トランジスタ52を有する第3の層1300との間には絶縁層80が設けられる。
トランジスタ51およびトランジスタ53の活性領域近傍に設けられる絶縁層中の水素は
シリコンのダングリングボンドを終端する。したがって、当該水素はトランジスタ51お
よびトランジスタ53の信頼性を向上させる効果がある。一方、トランジスタ52等の活
性層である酸化物半導体層の近傍に設けられる絶縁層中の水素は、酸化物半導体層中にキ
ャリアを生成する要因の一つとなる。そのため、当該水素はトランジスタ52等の信頼性
を低下させる要因となる場合がある。したがって、シリコン系半導体材料を用いたトラン
ジスタを有する一方の層と、酸化物半導体を用いたトランジスタを有する他方の層を積層
する場合、これらの間に水素の拡散を防止する機能を有する絶縁層80を設けることが好
ましい。絶縁層80により、一方の層に水素を閉じ込めることでトランジスタ51および
トランジスタ53の信頼性を向上させることができる。また、一方の層から他方の層への
水素の拡散が抑制されることでトランジスタ52等の信頼性も向上させることができる。
絶縁層80としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム
、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化
窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
トランジスタ52およびフォトダイオード60は回路91を形成している。また、トラン
ジスタ51およびトランジスタ53は回路92を形成している。回路91は、画素回路と
して機能させることができる。回路92は回路91を駆動するための駆動回路として機能
させることができる。
回路91は、例えば、図2(A)に示す回路図のような構成とすることができる。トラン
ジスタ52のソースまたはドレインの一方とフォトダイオード60のカソードは電気的に
接続される。また、トランジスタ52のソースまたはドレインの他方、トランジスタ54
(図1(A)に図示なし)のゲート、およびトランジスタ55(図1(A)に図示なし)
のソースまたはドレインの一方は、電荷蓄積部(FD)と電気的に接続される。
なお、電荷蓄積部は、具体的にはトランジスタ52およびトランジスタ53のソースまた
はドレインの空乏層容量、トランジスタ54のゲート容量、ならびに配線容量などで構成
される。
ここで、トランジスタ52は、フォトダイオード60の出力に応じて電荷蓄積部(FD)
の電位を制御するための転送トランジスタとして機能させることができる。また、トラン
ジスタ54は、電荷蓄積部(FD)の電位に応じた信号を出力する増幅トランジスタとし
て機能させることができる。また、トランジスタ55は、電荷蓄積部(FD)の電位を初
期化するリセットトランジスタとして機能させることができる。
回路92は、例えば、図2(B)に示す回路図のようなCMOSインバータを含む構成と
することができる。トランジスタ51およびトランジスタ53のゲートは電気的に接続さ
れる。また、一方のトランジスタのソースまたはドレインの一方は、他方のトランジスタ
のソースまたはドレインの一方と電気的に接続される。また、両方のトランジスタのソー
スまたはドレインの他方はそれぞれ別の配線に電気的に接続される。なお、図2(A)、
(B)において、活性層を酸化物半導体とすることが好ましいトランジスタには”OS”
の記号を付し、活性領域をシリコン基板に有する、または活性層をシリコンとすることが
好ましいトランジスタには”Si”の記号を付してある。
酸化物半導体を有するトランジスタは極めて低いオフ電流特性を有するため、撮像のダイ
ナミックレンジを拡大することができる。図2(A)に示す回路構成では、フォトダイオ
ード60に入射される光の強度が大きいときに電荷蓄積部(FD)の電位が小さくなる。
酸化物半導体を用いたトランジスタは極めてオフ電流が低いため、ゲート電位が極めて小
さい場合においても当該ゲート電位に応じた電流を正確に出力することができる。したが
って、検出することのできる照度のレンジ、すなわちダイナミックレンジを広げることが
できる。
また、トランジスタ52およびトランジスタ55の低いオフ電流特性によって電荷蓄積部
(FD)で電荷を保持できる期間を極めて長くすることができる。そのため、回路構成や
動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッ
タ方式を適用することができる。したがって、被写体が動体であっても歪の小さい画像を
容易に得ることができる。また、グローバルシャッタ方式により露光時間(電荷の蓄積動
作を行う期間)を長くすることもできることから、低照度環境における撮像にも適する。
また、酸化物半導体を用いたトランジスタは、シリコンを用いたトランジスタよりも電気
特性変動の温度依存性が小さいため、極めて広い温度範囲で使用することができる。した
がって、酸化物半導体を用いたトランジスタを有する撮像装置および半導体装置は、自動
車、航空機、宇宙機などへの搭載にも適している。
また、回路91において、フォトダイオード60と、第3の層1300に設けるトランジ
スタ52とを重なるように形成することができるため、画素の集積度を高めることができ
る。すなわち、撮像装置の解像度を高めることができる。
また、図1(A)に示す撮像装置は、シリコン基板40にはフォトダイオードを設けない
構成である。したがって、各種トランジスタや配線などの影響を受けずにフォトダイオー
ドに対する光路を確保することができ、高開口率の画素を形成することができる。
また、本発明の一態様の撮像装置は、図3(A)に示す構成であってもよい。図3(A)
に示す撮像装置は、トランジスタ53が酸化物半導体層を活性層とするトランジスタであ
る点、およびそれに伴う配線等の構成が図1(A)に示す撮像装置と異なる。なお、シリ
コン基板40に形成されるトランジスタ57は、駆動回路の一部を構成するトランジスタ
であり、第3の層に形成されるトランジスタおよび第4の層に形成されるフォトダイオー
ドと重なる位置に形成することができる。
また、トランジスタ51およびトランジスタ57は、図3(B)に示すように、シリコン
薄膜の活性層59を有するトランジスタであってもよい。
図3(A)に示す撮像装置の構成では、シリコン基板に活性領域を有するトランジスタと
酸化物半導体層を活性層とするトランジスタでCMOS回路を形成する。ここで、シリコ
ン基板40に活性領域を有するトランジスタ51はp-ch型とし、酸化物半導体層を活
性層とするトランジスタ53はn-ch型とする。
このような撮像装置の構成においては、シリコン基板40に活性領域を有するn-ch型
のトランジスタの工程が不要となる。そのため、ウェルおよびn型不純物領域などの形成
工程を省くことができ、工程を大幅に削減することができる。また、CMOS回路に必要
なn-ch型トランジスタは、前述した回路91に含まれるトランジスタと同時に作製す
ることができる。
図1(A)に示すフォトダイオード60は、pin型の薄膜フォトダイオードである。フ
ォトダイオード60は、n型の半導体層63、i型の半導体層62、およびp型の半導体
層61が順に積層された構成を有している。i型の半導体層62には非晶質シリコンを用
いることが好ましい。また、p型の半導体層61およびn型の半導体層63には、それぞ
れの導電型を付与するドーパントを含む非晶質シリコンまたは微結晶シリコンなどを用い
ることができる。非晶質シリコンを光電変換層とするフォトダイオードは可視光の波長領
域における感度が高く、微弱な可視光を検知しやすい。
また、薄膜フォトダイオードは成膜工程、リソグラフィ工程、エッチング工程などの一般
的な半導体作製工程を用いて作製するこができる。したがって、本発明の一態様の撮像装
置は、歩留りが高く、低コストで作製することができる。一方で、結晶性シリコンを光電
変換層とするフォトダイオードを形成する場合は、研磨工程や貼り合わせ工程などの難度
の高い工程が必要となる。
図1(A)に示すフォトダイオード60では、カソードとして作用するn型の半導体層6
3がトランジスタ52と電気的な接続を有する電極層と電気的な接続を有する。また、ア
ノードとして作用するp型の半導体層61が導電体70を介して配線73と電気的な接続
を有する。ここで、回路91に図2(A)に示す回路構成を適用した場合には、配線73
には低電位などが供給される。
なお、回路91では、フォトダイオード60の接続関係を図2(A)とは逆となる構成で
あってもよい。そのため、アノードおよびカソードと電極層および配線との接続関係が図
1(A)とは逆となる場合もある。この場合、配線73には高電位などが供給される。
なお、いずれの場合においても、p型の半導体層61が受光面となるようにフォトダイオ
ード60を形成する。p型の半導体層61を受光面とすることで、フォトダイオードの出
力電流を高めることができる。
また、フォトダイオード60の構成、ならびにフォトダイオード60とトランジスタおよ
び配線の接続形態は、図4(A)、(B)、(C)、(D)、(E)、(F)に示す例で
あってもよい。なお、フォトダイオード60の構成、フォトダイオード60と配線の接続
形態、およびトランジスタと配線の接続形態はこれらに限定されず、他の形態であっても
よい。
図4(A)は、フォトダイオード60のp型の半導体層61と接する透光性導電膜64を
設けた構成である。透光性導電膜64は電極として作用し、フォトダイオード60の出力
電流を高めることができる。
透光性導電膜64には、例えば、インジウム錫酸化物、シリコンを含むインジウム錫酸化
物、亜鉛を含む酸化インジウム、酸化亜鉛、ガリウムを含む酸化亜鉛、アルミニウムを含
む酸化亜鉛、酸化錫、フッ素を含む酸化錫、アンチモンを含む酸化錫、またはグラフェン
等を用いることができる。また、透光性導電膜64は単層に限らず、異なる膜の積層であ
っても良い。
図4(B)は、フォトダイオード60のp型の半導体層61と配線73が電気的な接続を
直接有する構成である。
図4(C)は、フォトダイオード60のp型の半導体層61と接する透光性導電膜64が
設けられ、配線73と透光性導電膜64が電気的な接続を有する構成である。
図4(D)は、フォトダイオード60を覆う絶縁層にp型の半導体層61が露出する開口
部が設けられ、当該開口部を覆う透光性導電膜64と配線73が電気的な接続を有する構
成である。
図4(E)は、フォトダイオード60を貫通する導電体70が設けられた構成である。当
該構成では、配線72は導電体70を介してp型の半導体層61と電気的に接続される。
なお、図面上では、配線72とトランジスタ52と電気的な接続を有する電極層とは、n
型の半導体層63を介して見かけ上導通してしまう形態を示している。しかしながら、n
型の半導体層63の横方向の抵抗が高いため、配線72と上記電極層との間に適切な間隔
を設ければ、両者間は極めて高抵抗となる。したがって、フォトダイオード60は、アノ
ードとカソードが短絡することなく、ダイオード特性を有することができる。なお、p型
の半導体層61と電気的に接続される導電体70は複数であってもよい。
図4(F)は、図4(E)のフォトダイオード60に対して、p型の半導体層61と接す
る透光性導電膜64を設けた構成である。
なお、図4(D)、図4(E)、および図4(F)に示すフォトダイオード60では、受
光領域と配線等が重ならないため、広い受光面積を確保できる利点を有する。
なお、本実施の形態における撮像装置が有するトランジスタおよびフォトダイオードの構
成は一例である。したがって、例えば、回路91を活性領域または活性層にシリコン等を
有するトランジスタで構成することもできる。また、回路92を活性層に酸化物半導体層
を有するトランジスタで構成することもできる。また、フォトダイオード60をシリコン
基板40を光電変換層として構成することもできる。
図5(A)は、図1(A)に示す撮像装置にカラーフィルタ等を付加した形態の一例の断
面図である。当該断面図は、3画素分の回路91を有する領域(領域91a、領域91b
、領域91c)、および回路92を有する領域92aを示している。第4の層1400に
形成されるフォトダイオード60上には絶縁層1500が形成される。絶縁層1500は
可視光に対して透光性の高い酸化シリコン膜などを用いることができる。また、パッシベ
ーション膜として窒化シリコン膜を積層する構成としてもよい。また、反射防止膜として
、酸化ハフニウムなどの誘電体膜を積層する構成としてもよい。
絶縁層1500上には、遮光層1510が形成される。遮光層1510は、上部のカラー
フィルタを通る光の混色を防止する機能を有する。遮光層1510には、アルミニウム、
タングステンなどの金属層や当該金属層と反射防止膜としての機能を有する誘電体膜を積
層する構成とすることができる。
絶縁層1500および遮光層1510上には平坦化膜として有機樹脂層1520が形成さ
れる。また、領域91a、領域91bおよび領域91c上に、カラーフィルタ1530a
、カラーフィルタ1530bおよびカラーフィルタ1530cがそれぞれ形成される。上
記それぞれのカラーフィルタに、R(赤)、G(緑)、B(青)などの色を割り当てるこ
とにより、カラー画像を得ることができる。
カラーフィルタ1530a、カラーフィルタ1530bおよびカラーフィルタ1530c
上には、マイクロレンズアレイ1540が設けられる。したがって、マイクロレンズアレ
イ1540が有する個々のレンズを通る光が直下のカラーフィルタを通り、フォトダイオ
ードに照射されるようになる。
上記撮像装置の構成において、カラーフィルタ1530a、カラーフィルタ1530bお
よびカラーフィルタ1530cの代わりに光学変換層1550(図5(B)参照)を用い
てもよい。このような構成とすることで、様々な波長領域における画像が得られる撮像装
置とすることができる。
例えば、光学変換層1550に可視光線の波長以下の光を遮るフィルタを用いれば赤外線
撮像装置とすることができる。また、光学変換層1550に近赤外線の波長以下の光を遮
るフィルタを用いれば遠赤外線撮像装置とすることができる。このとき、フォトダイオー
ド60のi型の半導体層62には結晶系のシリコンを用いてもよい。また、光学変換層1
550に可視光線の波長以上の光を遮るフィルタを用いれば紫外線撮像装置とすることが
できる。
また、光学変換層1550にシンチレータを用いれば、X線撮像装置などに用いる、放射
線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等
の放射線がシンチレータに入射されると、フォトルミネッセンスと呼ばれる現象により可
視光線や紫外光線などの光(蛍光)に変換される。そして、当該光をフォトダイオード6
0で検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮
像装置を用いてもよい。
シンチレータは、X線やガンマ線などの放射線が照射されると、そのエネルギーを吸収し
て可視光や紫外光を発する物質、または当該物質を含む材料からなる。例えば、Gd
S:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、C
sI、CaF、BaF、CeF、LiF、LiI、ZnOなどの材料や、それらを
樹脂やセラミクスに分散させたものが知られている。
図6(A)は撮像装置の構成を示す概念図である。回路91を有する画素マトリクス17
00に回路1730および回路1740が接続される。回路1730は、例えば、リセッ
トトランジスタの駆動回路として機能させることができる。この場合、回路1730と図
2(A)におけるトランジスタ55とが電気的に接続される。回路1740は、例えば、
転送トランジスタの駆動回路として機能させることができる。この場合、回路1740と
図2(A)におけるトランジスタ52とが電気的に接続される。なお、図6では回路17
30および回路1740を分割して配置する構成を図示しているが、一つの領域に回路1
730および回路1740がまとめて配置される構成としてもよい。
また、画素マトリクス1700には回路1750が接続される。回路1750は、例えば
、トランジスタ54と電気的に接続される垂直出力線を選択する駆動回路として機能させ
ることができる。
上記各回路の具体的な位置関係の一例を図6(B)に示す。例えば、回路1730、回路
1740および回路1750のそれぞれはシリコン基板40に分割して設けられる。なお
、それぞれの回路の位置および占有面積は図示した例に限られない。そしてこれらの回路
と重なるように画素マトリクス1700が設けられる。回路1730、回路1740、回
路1750、および画素マトリクス1700が有する画素回路のそれぞれと接続される信
号線および電源線等は、シリコン基板40に形成される配線と電気的に接続される。また
、当該配線はシリコン基板40の周囲に形成される端子1770と電気的に接続される。
端子1770はワイヤボンディング等で外部の回路と電気的に接続することができる。
回路1730および回路1740は、”Low”または”High”の2値出力の駆動回
路である。したがって、図7(A)で示す様にシフトレジスタ1800とバッファ回路1
900の組み合わせで駆動することができる。
また、回路1750は、図7(B)に示すようにシフトレジスタ1810とバッファ回路
1910とアナログスイッチ2100によって構成することができる。各垂直出力線21
10はアナログスイッチ2100によって選択され、選択された垂直出力線2110の電
位は出力線2200に出力される。アナログスイッチ2100はシフトレジスタ1810
とバッファ回路1910で順次選択するものとする。
本発明の一態様では、回路1730、回路1740および回路1750の全てまたは一部
に回路92を含んだ構成とする。
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形態
において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定さ
れない。例えば、本発明の一態様として、撮像装置に適用した場合の例を示したが、本発
明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の
一態様は、撮像装置に適用しなくてもよい。例えば、本発明の一態様は、別の機能を有す
る半導体装置に適用してもよい。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態2)
本実施の形態では、実施の形態1で説明した回路91について説明する。
図2(A)に示す回路91および各配線との接続形態の詳細を図8(A)に示す。図8(
A)に示す回路は、フォトダイオード60、トランジスタ52、トランジスタ54、トラ
ンジスタ55、およびトランジスタ56を含んだ構成となっている。
フォトダイオード60のアノードは配線316に接続され、カソードはトランジスタ52
のソースまたはドレインの一方と接続される。トランジスタ52のソースまたはドレイン
の他方は電荷蓄積部(FD)と接続され、ゲートは配線312(TX)と接続される。ト
ランジスタ54のソースまたはドレインの一方は配線314(GND)と接続され、ソー
スまたはドレインの他方はトランジスタ56のソースまたはドレインの一方と接続され、
ゲートは電荷蓄積部(FD)と接続される。トランジスタ55のソースまたはドレインの
一方は電荷蓄積部(FD)と接続され、ソースまたはドレインの他方は配線317と接続
され、ゲートは配線311(RS)と接続される。トランジスタ56のソースまたはドレ
インの他方は配線315(OUT)と接続され、ゲートは配線313(SE)に接続され
る。なお、上記接続は全て電気的な接続とする。
なお、配線314には、GND、VSS、VDDなどの電位が供給されていてもよい。こ
こで、電位や電圧は相対的なものである。そのため、GNDの電位の大きさは、必ずしも
、0ボルトであるとは限らないものとする。
フォトダイオード60は受光素子であり、画素回路に入射した光に応じた電流を生成する
機能を有する。トランジスタ52は、フォトダイオード60による電荷蓄積部(FD)へ
の電荷蓄積を制御する機能を有する。トランジスタ54は、電荷蓄積部(FD)の電位に
応じた信号を出力する機能を有する。トランジスタ55は、電荷蓄積部(FD)の電位の
リセットする機能を有する。トランジスタ56は、読み出し時に画素回路の選択を制御す
る機能を有する。
なお、電荷蓄積部(FD)は、電荷保持ノードであり、フォトダイオード60が受ける光
の量に応じて変化する電荷を保持する。
なお、トランジスタ54とトランジスタ56とは、配線315と配線314との間で、直
列接続されていればよい。したがって、配線314、トランジスタ54、トランジスタ5
6、配線315の順で並んでもよいし、配線314、トランジスタ56、トランジスタ5
4、配線315の順で並んでもよい。
配線311(RS)は、トランジスタ55を制御するための信号線としての機能を有する
。配線312(TX)は、トランジスタ52を制御するための信号線としての機能を有す
る。配線313(SE)は、トランジスタ56を制御するための信号線としての機能を有
する。配線314(GND)は、基準電位(例えばGND)を設定する信号線としての機
能を有する。配線315(OUT)は、トランジスタ54から出力される信号を読み出す
ための信号線としての機能を有する。配線316は電荷蓄積部(FD)からフォトダイオ
ード60を介して電荷を出力するための信号線としての機能を有し、図8(A)の回路に
おいては低電位線である。また、配線317は電荷蓄積部(FD)の電位をリセットする
ための信号線としての機能を有し、図8(A)の回路においては高電位線である。
また、回路91は、図8(B)に示す構成であってもよい。図8(B)に示す回路は、図
5(A)に示す回路と構成要素は同じであるが、フォトダイオード60のアノードがトラ
ンジスタ52のソースまたはドレインの一方と電気的に接続され、フォトダイオード60
のカソードが配線316と電気的に接続される点で異なる。この場合、配線316はフォ
トダイオード60を介して電荷蓄積部(FD)に電荷を供給するための信号線としての機
能を有し、図8(B)の回路においては高電位線となる。また、配線317は低電位線と
なる。
次に、図8(A)、(B)に示す各素子の構成について説明する。
フォトダイオード60には、シリコン層によってpin型の接合が形成された素子を用い
ることができる。
トランジスタ52、トランジスタ54、トランジスタ55、およびトランジスタ56は、
非晶質シリコン、微結晶シリコン、多結晶シリコン、単結晶シリコンなどのシリコン半導
体を用いて形成することも可能であるが、酸化物半導体を用いたトランジスタで形成する
ことが好ましい。酸化物半導体でチャネル形成領域を形成したトランジスタは、極めてオ
フ電流が低い特性を示す特徴を有している。
特に、電荷蓄積部(FD)と接続されているトランジスタ52およびトランジスタ55の
リーク電流が大きいと、電荷蓄積部(FD)に蓄積された電荷が保持できる時間が十分で
なくなる。したがって、少なくとも当該二つのトランジスタに酸化物半導体を用いたトラ
ンジスタを使用することで、電荷蓄積部(FD)からの不要な電荷の流出を防止すること
ができる。
また、トランジスタ54およびトランジスタ56においても、リーク電流が大きいと、配
線314または配線315に不必要な電荷の出力が起こるため、これらのトランジスタと
して、酸化物半導体でチャネル形成領域を形成したトランジスタを用いることが好ましい
図8(A)の回路の動作の一例について図9(A)に示すタイミングチャートを用いて説
明する。
図9(A)では簡易に説明するため、各配線の電位は、二値変化する信号として与える。
ただし、各電位はアナログ信号であるため、実際には状況に応じて二値に限らず種々の値
を取り得る。なお、図に示す信号701は配線311(RS)の電位、信号702は配線
312(TX)の電位、信号703は配線313(SE)の電位、信号704は電荷蓄積
部(FD)の電位、信号705は配線315(OUT)の電位に相当する。なお、配線3
16の電位は常時”Low”、配線317の電位は常時”High”とする。
時刻Aにおいて、配線311の電位(信号701)を”High”、配線312の電位(
信号702)を”High”とすると、電荷蓄積部(FD)の電位(信号704)は配線
317の電位(”High”)に初期化され、リセット動作が開始される。なお、配線3
15の電位(信号705)は、”High”にプリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”Low”とするとリセット動作が
終了し、蓄積動作が開始される。ここで、フォトダイオード60には逆方向バイアスが印
加されるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が低下し始
める。フォトダイオード60は、光が照射されると逆方向電流が増大するので、照射され
る光の量に応じて電荷蓄積部(FD)の電位(信号704)の低下速度は変化する。すな
わち、フォトダイオード60に照射する光の量に応じて、トランジスタ54のソースとド
レイン間のチャネル抵抗が変化する。
時刻Cにおいて、配線312の電位(信号702)を”Low”とすると蓄積動作が終了
し、電荷蓄積部(FD)の電位(信号704)は一定となる。ここで、当該電位は、蓄積
動作中にフォトダイオード60が生成した電荷量により決まる。すなわち、フォトダイオ
ード60に照射されていた光の量に応じて変化する。また、トランジスタ52およびトラ
ンジスタ55は、酸化膜半導体層でチャネル形成領域を形成したオフ電流が極めて低いト
ランジスタで構成されているため、後の選択動作(読み出し動作)を行うまで、電荷蓄積
部(FD)の電位を一定に保つことが可能である。
なお、配線312の電位(信号702)を”Low”とする際に、配線312と電荷蓄積
部(FD)との間における寄生容量により、電荷蓄積部(FD)の電位に変化が生じるこ
とがある。当該電位の変化量が大きい場合は、蓄積動作中にフォトダイオード60が生成
した電荷量を正確に取得できないことになる。当該電位の変化量を低減するには、トラン
ジスタ52のゲート-ソース(もしくはゲート-ドレイン)間容量を低減する、トランジ
スタ54のゲート容量を増大する、電荷蓄積部(FD)に保持容量を設ける、などの対策
が有効である。なお、本実施の形態では、これらの対策により当該電位の変化を無視でき
るものとしている。
時刻Dに、配線313の電位(信号703)を”High”にすると、トランジスタ56
が導通して選択動作が開始され、配線314と配線315が、トランジスタ54とトラン
ジスタ56とを介して導通する。そして、配線315の電位(信号705)は、低下して
いく。なお、配線315のプリチャージは、時刻D以前に終了しておけばよい。ここで、
配線315の電位(信号705)が低下する速さは、トランジスタ54のソースとドレイ
ン間の電流に依存する。すなわち、蓄積動作中にフォトダイオード60に照射されている
光の量に応じて変化する。
時刻Eにおいて、配線313の電位(信号703)を”Low”にすると、トランジスタ
56が遮断されて選択動作は終了し、配線315の電位(信号705)は、一定値となる
。ここで、一定値となる値は、フォトダイオード60に照射されていた光の量に応じて変
化する。したがって、配線315の電位を取得することで、蓄積動作中にフォトダイオー
ド60に照射されていた光の量を知ることができる。
より具体的には、フォトダイオード60に照射されている光が強いと、電荷蓄積部(FD
)の電位、すなわちトランジスタ54のゲート電圧は低下する。そのため、トランジスタ
54のソース-ドレイン間に流れる電流は小さくなり、配線315の電位(信号705)
はゆっくりと低下する。したがって、配線315からは比較的高い電位を読み出すことが
できる。
逆に、フォトダイオード60に照射されている光が弱いと、電荷蓄積部(FD)の電位、
すなわち、トランジスタ54のゲート電圧は高くなる。そのため、トランジスタ54のソ
ース-ドレイン間に流れる電流は大きくなり、配線315の電位(信号705)は速く低
下する。したがって、配線315からは比較的低い電位を読み出すことができる。
次に、図8(B)の回路の動作の例について図9(B)に示すタイミングチャートを用い
て説明する。なお、配線316の電位は常時”High”、配線317の電位は常時”L
ow”とする。
時刻Aにおいて、配線311の電位(信号701)を”High”、配線312の電位(
信号702)を”High”とすると、電荷蓄積部(FD)の電位(信号704)は配線
317の電位(”Low”)に初期化され、リセット動作が開始される。なお、配線31
5の電位(信号705)は、”High”にプリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”Low”とするとリセット動作が
終了し、蓄積動作が開始される。ここで、フォトダイオード60には逆方向バイアスが印
加されるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が上昇し始
める。
時刻C以降の動作は、図9(A)のタイミングチャートの説明を参照することができ、時
刻Eにおいて、配線315の電位を取得することで、蓄積動作中にフォトダイオード60
に照射されていた光の量を知ることができる。
また、回路91は、図10(A)、(B)に示す構成であってもよい。
図10(A)に示す回路は、図8(A)に示す回路の構成からトランジスタ55、配線3
16および配線317を省いた構成であり、配線311(RS)はフォトダイオード60
のアノードに電気的に接続される。その他の構成は、図8(A)に示す回路と同じである
図10(B)に示す回路は、図10(A)に示す回路と構成要素は同じであるが、フォト
ダイオード60のアノードがトランジスタ52のソースまたはドレインの一方と電気的に
接続され、フォトダイオード60のカソードが配線311(RS)と電気的に接続される
点で異なる。
図10(A)の回路は図8(A)の回路と同様に、図9(A)に示すタイミングチャート
で動作させることができる。
時刻Aにおいて、配線311の電位(信号701)を”High”、配線312の電位(
信号702)を”High”とすると、フォトダイオード60に順方向バイアスが印加さ
れ、電荷蓄積部(FD)の電位(信号704)が”High”となる。すなわち、電荷蓄
積部(FD)の電位は配線311(RS)の電位(”High”)に初期化され、リセッ
ト状態となる。以上がリセット動作の開始である。なお、配線315の電位(信号705
)は、”High”にプリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”Low”とするとリセット動作が
終了し、蓄積動作が開始される。ここで、フォトダイオード60には逆方向バイアスが印
加されるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が低下し始
める。
時刻C以降の動作は、図8(A)の回路動作の説明を参照することができ、時刻Eにおい
て、配線315の電位を取得することで、蓄積動作中にフォトダイオード60に照射され
ていた光の量を知ることができる。
図10(B)の回路は、図9(C)に示すタイミングチャートで動作させることができる
時刻Aにおいて、配線311の電位(信号701)を”Low”、配線312の電位(信
号702)を”High”とすると、フォトダイオード60に順方向バイアスが印加され
、電荷蓄積部(FD)の電位(信号704)が”Low”のリセット状態となる。以上が
リセット動作の開始である。なお、配線315の電位(信号705)は、”High”に
プリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”High”とするとリセット動作
が終了し、蓄積動作が開始される。ここで、フォトダイオード60には逆方向バイアスが
印加されるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が上昇し
始める。
時刻C以降の動作は、図8(A)の回路動作の説明を参照することができ、時刻Eにおい
て、配線315の電位を取得することで、蓄積動作中にフォトダイオード60に照射され
ていた光の量を知ることができる。
なお、図8(A)、(B)および図10(A)、(B)では、トランジスタ52が設けら
れている場合の例を示したが、本発明の一態様は、これに限定されない。図11(A)、
(B)に示すように、トランジスタ52を省くことも可能である。
また、回路91に用いるトランジスタは、図12(A)または図12(B)に示すように
、トランジスタ52、トランジスタ54、およびトランジスタ56にバックゲートを設け
た構成であってもよい。図12(A)はバックゲートに定電位を印加する構成であり、し
きい値電圧を制御することができる。また、図12(B)はフロントゲートと同じ電位が
バックゲートに印加される構成であり、オン電流を増加させることができる。なお、図1
2(A)においては、バックゲートが配線314(GND)と電気的に接続される構成を
例示したが、定電位が供給される別の配線と電気的に接続されていてもよい。なお、図1
2(A)、(B)は図10(A)に示す回路においてトランジスタにバックゲートを設け
た例を示したが、同様の構成を図8(A)、(B)、図10(B)、図11(A)、(B
)に示す回路にも適用することもできる。また、一つの回路に含まれるトランジスタに対
し、フロントゲートと同じ電位がバックゲートに印加される構成、バックゲートに定電位
を印加する構成、またはバックゲートを設けない構成を必要に応じて任意に組み合わせた
回路構成としてもよい。
なお、上述した回路例において、配線315(OUT)には、図13(A)、(B)、(
C)に示すような積分回路が接続されていてもよい。当該回路によって、読み出し信号の
S/N比を高めることができ、より微弱な光を検出することができる。すなわち、撮像装
置の感度を高めることができる。
図13(A)は、演算増幅回路(OPアンプともいう)を用いた積分回路である。演算増
幅回路の反転入力端子は、抵抗素子Rを介して配線315(OUT)に接続される。演算
増幅回路の非反転入力端子は、接地電位に接続される。演算増幅回路の出力端子は、容量
素子Cを介して演算増幅回路の反転入力端子に接続される。
図13(B)は、図13(A)とは異なる構成の演算増幅回路を用いた積分回路である。
演算増幅回路の反転入力端子は、抵抗素子Rと容量素子C1を介して配線315(OUT
)に接続される。演算増幅回路の非反転入力端子は、接地電位に接続される。演算増幅回
路の出力端子は、容量素子C2を介して演算増幅回路の反転入力端子に接続される。
図13(C)は、図13(A)および図13(B)とは異なる構成の演算増幅回路を用い
た積分回路である。演算増幅回路の非反転入力端子は、抵抗素子Rを介して配線315(
OUT)に接続される。演算増幅回路の出力端子は、演算増幅回路の反転入力端子に接続
される。なお、抵抗素子Rと容量素子Cは、CR積分回路を構成する。また、演算増幅回
路はユニティゲインバッファを構成する。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態3)
本実施の形態では、電荷蓄積部(FD)の電位を初期化するトランジスタ、電荷蓄積部(
FD)の電位に応じた信号を出力するトランジスタ、および各配線(信号線)を画素間(
回路91間)で兼用する場合の回路構成について説明する。
図14に示す画素回路は、図8(A)に示す回路と同様にトランジスタ52(転送トラン
ジスタとして機能)、トランジスタ54(増幅トランジスタとして機能)、トランジスタ
55(リセットトランジスタとして機能)、トランジスタ56(選択トランジスタとして
機能)、およびフォトダイオード60を各画素に一つずつ有する。また、配線311(ト
ランジスタ55を制御するための信号線として機能)、配線312(トランジスタ52を
制御するための信号線として機能)、配線313(トランジスタ56を制御するための信
号線として機能)、配線314(高電位線として機能)、配線315(トランジスタ54
から出力される信号を読み出すための信号線として機能)、配線316(基準電位線(G
ND)として機能)が当該画素回路と電気的に接続される。
なお、図8(A)に示す回路では、配線314をGND、配線317を高電位線とする一
例を示したが、当該画素回路では、配線314を高電位線(例えば、VDD)とし、配線
314にトランジスタ56のソースまたはドレインの他方を接続することで配線317を
省いている。また、配線315(OUT)は低電位にリセットされる。
1ライン目の画素回路と2ライン目の画素回路間においては、配線314、配線315、
配線316をそれぞれ共用できるほか、動作方法によっては配線311を共用することも
できる。
図15は、垂直方向に隣接する4個の画素について、トランジスタ54、トランジスタ5
5、トランジスタ56、および配線311を兼用する垂直4画素共有型の構成を示してい
る。トランジスタおよび配線を削減することで画素面積の縮小による微細化や、歩留りを
向上させることができる。垂直方向に隣接する4個の各画素におけるトランジスタ52の
ソースまたはドレインの他方、トランジスタ55のソースまたはドレインの一方、および
トランジスタ54のゲートが電荷蓄積部(FD)に電気的に接続されている。各画素のト
ランジスタ52を順次動作させ、蓄積動作と読み出し動作を繰り返すことで全ての画素か
らデータを取得することができる。
図16は、水平および垂直方向に隣接する4個の画素について、トランジスタ54、トラ
ンジスタ55、トランジスタ56、および配線311を兼用する垂直水平4画素共有型の
構成を示している。垂直4画素共有型と同じく、トランジスタおよび配線を削減すること
で画素面積の縮小による微細化や、歩留りを向上させることができる。水平および垂直方
向に隣接する4個の画素におけるトランジスタ52のソースまたはドレインの他方、トラ
ンジスタ55のソースまたはドレインの一方、およびトランジスタ54のゲートが電荷蓄
積部(FD)に電気的に接続されている。各画素のトランジスタ52を順次動作させ、蓄
積動作と読み出し動作を繰り返すことで全ての画素からデータを取得することができる。
図17は、水平および垂直方向に隣接する4個の画素について、トランジスタ54、トラ
ンジスタ55、トランジスタ56、配線311、および配線312を兼用する構成を示し
ている。前述した垂直水平4画素共有型に更に配線312を共有させた回路である。水平
および垂直方向に隣接する4個の画素(一行目は水平方向に隣接する2個の画素)におけ
るトランジスタ52のソースまたはドレインの他方、トランジスタ55のソースまたはド
レインの一方、およびトランジスタ54のゲートが電荷蓄積部(FD)に電気的に接続さ
れている。また、この回路構成は、垂直方向に位置する2つの転送トランジスタ(トラン
ジスタ52)が配線312を共有していることで、水平方向だけでなく、垂直方向にも同
時に動くトランジスタがあることを特徴としている。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態4)
本実施の形態では、画素回路の駆動方法の一例について説明する。
実施の形態2で説明したように、画素回路の動作は、リセット動作、蓄積動作、および選
択動作の繰り返しである。画素マトリクス全体を制御する撮像方法としては、グローバル
シャッタ方式とローリングシャッタ方式が知られている。
図18(A)は、グローバルシャッタ方式におけるタイミングチャートである。なお、図
18(A)は、マトリクス状に複数の画素回路を有し、当該画素回路に図8(A)の回路
を有する撮像装置を例として、第1行目から第n行目(nは3以上の自然数)の画素回路
の動作を説明するものである。なお、下記の動作説明は、図8(B)、図10(A)、(
B)、および図11(A)、(B)に示す回路にも適用することができる。
図18(A)において、信号501、信号502、信号503は、第1行目、第2行目、
第n行目の各画素回路に接続された配線311(RS)に入力される信号である。また、
信号504、信号505、信号506は、第1行目、第2行目、第n行目の各画素回路に
接続された配線312(TX)に入力される信号である。また、信号507、信号508
、信号509は、第1行目、第2行目、第n行目の各画素回路に接続された配線313(
SE)に入力される信号である。
また、期間510は、1回の撮像に要する期間である。また、期間511は、各行の画素
回路がリセット動作を同時に行っている期間である。また、期間520は、各行の画素回
路が蓄積動作を同時に行っている期間である。なお、選択動作は各行の画素回路で順次行
われる。一例として、期間531は、第1行目の画素回路が選択動作を行っている期間で
ある。このように、グローバルシャッタ方式では、全画素回路で略同時にリセット動作が
行われた後、全画素回路で略同時に蓄積動作が行われ、1行毎に順次読み出し動作が行わ
れる。
つまり、グローバルシャッタ方式では、全ての画素回路において蓄積動作が略同時に行わ
れているため、各行の画素回路における撮像の同時性が確保される。したがって、被写体
が動体であっても歪の小さい画像を取得することができる。
一方、図18(B)は、ローリングシャッタ方式を用いた場合のタイミングチャートであ
る。なお、信号501乃至509は図18(A)の説明を参照することができる。期間6
10は1回の撮像に要する期間である。また、期間611、期間612、期間613は、
それぞれ第1行目、第2行目、第n行目のリセット期間である。また、期間621、期間
622、期間623は、それぞれ第1行目、第2行目、第n行目の蓄積動作期間である。
また、期間631は、1行目の画素回路が選択動作を行っている期間である。このように
、ローリングシャッタ方式では、蓄積動作が全ての画素回路では同時に行われず、行毎に
順次行われるため、各行の画素回路における撮像の同時性が確保されない。したがって、
一行目と最終行目では撮像のタイミングが異なるため、動体が被写体である場合は歪の大
きい画像となってしまう。
グローバルシャッタ方式を実現するためには、各画素からの信号の読み出しが順次終了す
るまで、電荷蓄積部(FD)の電位を長時間保つ必要がある。電荷蓄積部(FD)の電位
の長時間の保持は、トランジスタ52などにチャネル形成領域を酸化物半導体で形成した
極めてオフ電流の低いトランジスタを用いることで実現できる。一方、トランジスタ52
などにチャネル形成領域をシリコンなどで形成したトランジスタを適用した場合は、オフ
電流が高いために電荷蓄積部(FD)の電位を長時間保持できず、グローバルシャッタ方
式を用いることが困難となる。
以上のように、画素回路にチャネル形成領域を酸化物半導体で形成したトランジスタを用
いることでグローバルシャッタ方式を容易に実現することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態5)
本実施の形態では、本発明の一態様に用いることのできる酸化物半導体を有するトランジ
スタについて図面を用いて説明する。なお、本実施の形態における図面では、明瞭化のた
めに一部の要素を拡大、縮小、または省略して図示している。
図19(A)、(B)は、本発明の一態様のトランジスタ101の上面図および断面図で
ある。図19(A)は上面図であり、図19(A)に示す一点鎖線B1-B2方向の断面
が図19(B)に相当する。また、図19(A)に示す一点鎖線B3-B4方向の断面が
図25(A)に相当する。また、一点鎖線B1-B2方向をチャネル長方向、一点鎖線B
3-B4方向をチャネル幅方向と呼称する場合がある。
トランジスタ101は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と電気的に接続する導電層140および導電
層150と、酸化物半導体層130、導電層140および導電層150と接する絶縁層1
60と、絶縁層160と接する導電層170と、導電層140、導電層150、絶縁層1
60および導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と
、を有する。また、必要に応じて絶縁層180に接する絶縁層190(平坦化膜)などを
有していてもよい。
ここで、導電層140はソース電極層、導電層150はドレイン電極層、絶縁層160は
ゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
また、図19(B)に示す領域231はソース領域、領域232はドレイン領域、領域2
33はチャネル形成領域として機能することができる。領域231および領域232は導
電層140および導電層150とそれぞれ接しており、例えば導電層140および導電層
150として酸素と結合しやすい導電材料を用いれば領域231および領域232を低抵
抗化することができる。
具体的には、酸化物半導体層130と導電層140および導電層150とが接することで
酸化物半導体層130内に酸素欠損が生じ、当該酸素欠損と酸化物半導体層130内に残
留または外部から拡散する水素との相互作用により、領域231および領域232は低抵
抗のn型となる。
なお、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを
採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることが
ある。このため、本明細書においては、「ソース」や「ドレイン」という用語は、入れ替
えて用いることができるものとする。また、「電極層」は、「配線」と言い換えることも
できる。
また、導電層170は、導電層171および導電層172の二層で形成される例を図示し
ているが、一層または三層以上の積層であってもよい。当該構成は本実施の形態で説明す
る他のトランジスタにも適用できる。
また、導電層140および導電層150は単層で形成される例を図示しているが、二層以
上の積層であってもよい。当該構成は本実施の形態で説明する他のトランジスタにも適用
できる。
また、本発明の一態様のトランジスタは、図20(A)、(B)に示す構成であってもよ
い。図20(A)はトランジスタ102の上面図であり、図20(A)に示す一点鎖線C
1-C2方向の断面が図20(B)に相当する。また、図20(A)に示す一点鎖線C3
-C4方向の断面は、図25(B)に相当する。また、一点鎖線C1-C2方向をチャネ
ル長方向、一点鎖線C3-C4方向をチャネル幅方向と呼称する場合がある。
トランジスタ102は、ゲート絶縁膜として作用する絶縁層160の端部とゲート電極層
として作用する導電層170の端部とを一致させない点を除き、トランジスタ101と同
様の構成を有する。トランジスタ102の構造は、導電層140および導電層150が絶
縁層160で広く覆われているため、導電層140および導電層150と導電層170と
の間の抵抗が高く、ゲートリーク電流の少ない特徴を有している。
トランジスタ101およびトランジスタ102は、導電層170と導電層140および導
電層150が重なる領域を有するトップゲート構造である。当該領域のチャネル長方向の
幅は、寄生容量を小さくするために3nm以上300nm未満とすることが好ましい。一
方で、酸化物半導体層130にオフセット領域が形成されないため、オン電流の高いトラ
ンジスタを形成しやすい。
また、本発明の一態様のトランジスタは、図21(A)、(B)に示す構成であってもよ
い。図21(A)はトランジスタ103の上面図であり、図21(A)に示す一点鎖線D
1-D2方向の断面が図21(B)に相当する。また、図21(A)に示す一点鎖線D3
-D4方向の断面は、図25(A)に相当する。また、一点鎖線D1-D2方向をチャネ
ル長方向、一点鎖線D3-D4方向をチャネル幅方向と呼称する場合がある。
トランジスタ103は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接
する導電層170と、酸化物半導体層130、絶縁層160および導電層170を覆う絶
縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180
に設けられた開口部を通じて酸化物半導体層130と電気的に接続する導電層140およ
び導電層150を有する。また、必要に応じて絶縁層180、導電層140および導電層
150に接する絶縁層190(平坦化膜)などを有していてもよい。
ここで、導電層140はソース電極層、導電層150はドレイン電極層、絶縁層160は
ゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
また、図21(B)に示す領域231はソース領域、領域232はドレイン領域、領域2
33はチャネル形成領域として機能することができる。領域231および領域232は絶
縁層175と接しており、例えば絶縁層175として水素を含む絶縁材料を用いれば領域
231および領域232を低抵抗化することができる。
具体的には、絶縁層175を形成するまでの工程により領域231および領域232に生
じる酸素欠損と、絶縁層175から領域231および領域232に拡散する水素との相互
作用により、領域231および領域232は低抵抗のn型となる。なお、水素を含む絶縁
材料としては、例えば窒化シリコン膜や窒化アルミニウム膜などを用いることができる。
また、本発明の一態様のトランジスタは、図22(A)、(B)に示す構成であってもよ
い。図22(A)はトランジスタ104の上面図であり、図22(A)に示す一点鎖線E
1-E2方向の断面が図22(B)に相当する。また、図22(A)に示す一点鎖線E3
-E4方向の断面は、図25(A)に相当する。また、一点鎖線E1-E2方向をチャネ
ル長方向、一点鎖線E3-E4方向をチャネル幅方向と呼称する場合がある。
トランジスタ104は、導電層140および導電層150が酸化物半導体層130の端部
を覆うように接している点を除き、トランジスタ103と同様の構成を有する。
また、図22(B)に示す領域331および領域334はソース領域、領域332および
領域335はドレイン領域、領域333はチャネル形成領域として機能することができる
。領域331および領域332はトランジスタ101における領域231および領域23
2と同様に低抵抗化することができる。また、領域334および領域335はトランジス
タ103における領域231および領域232と同様に低抵抗化することができる。なお
、チャネル長方向における領域334および領域335の幅が100nm以下、好ましく
は50nm以下の場合には、ゲート電界の寄与によりオン電流は大きく低下しないため、
上述したような低抵抗化を行わない構成とすることもできる。
トランジスタ103およびトランジスタ104は、導電層170と導電層140および導
電層150が重なる領域を有さないセルフアライン構造である。セルフアライン構造のト
ランジスタはゲート電極層とソース電極層およびドレイン電極層間の寄生容量が極めて小
さいため、高速動作用途に適している。
また、本発明の一態様のトランジスタは、図23(A)、(B)に示す構成であってもよ
い。図23(A)はトランジスタ105の上面図であり、図23(A)に示す一点鎖線F
1-F2方向の断面が図23(B)に相当する。また、図23(A)に示す一点鎖線F3
-F4方向の断面は、図25(A)に相当。また、一点鎖線F1-F2方向をチャネル長
方向、一点鎖線F3-F4方向をチャネル幅方向と呼称する場合がある。
トランジスタ105は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と電気的に接続する導電層141および導電
層151と、酸化物半導体層130、導電層141、導電層151と接する絶縁層160
と、絶縁層160と接する導電層170と、酸化物半導体層130、導電層141、導電
層151、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接
する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて導電
層141および導電層151とそれぞれ電気的に接続する導電層142および導電層15
2を有する。また、必要に応じて絶縁層180、導電層142および導電層152に接す
る絶縁層190(平坦化膜)などを有していてもよい。
ここで、導電層141および導電層151は、酸化物半導体層130の上面と接し、側面
には接しない構成となっている。
トランジスタ105は、導電層141および導電層151を有する点、絶縁層175およ
び絶縁層180に設けられた開口部を有する点、ならびに当該開口部を通じて導電層14
1および導電層151とそれぞれ電気的に接続する導電層142および導電層152を有
する点を除き、トランジスタ101と同様の構成を有する。導電層140(導電層141
および導電層142)はソース電極層として作用させることができ、導電層150(導電
層151および導電層152)はドレイン電極層として作用させることができる。
また、本発明の一態様のトランジスタは、図24(A)、(B)に示す構成であってもよ
い。図24(A)はトランジスタ106の上面図であり、図24(A)に示す一点鎖線G
1-G2方向の断面が図24(B)に相当する。また、図24(A)に示す一点鎖線G3
-G4方向の断面は、図25(A)に相当する。また、一点鎖線G1-G2方向をチャネ
ル長方向、一点鎖線G3-G4方向をチャネル幅方向と呼称する場合がある。
トランジスタ106は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と電気的に接続する導電層141および導電
層151と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接する導電
層170と、絶縁層120、酸化物半導体層130、導電層141、導電層151、絶縁
層160、導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と
、絶縁層175および絶縁層180に設けられた開口部を通じて導電層141および導電
層151とそれぞれ電気的に接続する導電層142および導電層152を有する。また、
必要に応じて絶縁層180、導電層142および導電層152に接する絶縁層190(平
坦化膜)などを有していてもよい。
ここで、導電層141および導電層151は、酸化物半導体層130の上面と接し、側面
には接しない構成となっている。
トランジスタ106は、導電層141および導電層151を有する点を除き、トランジス
タ103と同様の構成を有する。導電層140(導電層141および導電層142)はソ
ース電極層として作用させることができ、導電層150(導電層151および導電層15
2)はドレイン電極層として作用させることができる。
トランジスタ105およびトランジスタ106の構成では、導電層140および導電層1
50が絶縁層120と接しない構成であるため、絶縁層120中の酸素が導電層140お
よび導電層150に奪われにくくなり、絶縁層120から酸化物半導体層130中への酸
素の供給を容易とすることができる。
なお、トランジスタ103における領域231および領域232、トランジスタ104お
よびトランジスタ106における領域334および領域335には、酸素欠損を形成し導
電率を高めるための不純物を添加してもよい。酸化物半導体層に酸素欠損を形成する不純
物としては、例えば、リン、砒素、アンチモン、ホウ素、アルミニウム、シリコン、窒素
、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、インジウム、フッ素、塩素、チ
タン、亜鉛、および炭素のいずれかから選択される一つ以上を用いることができる。当該
不純物の添加方法としては、プラズマ処理法、イオン注入法、イオンドーピング法、プラ
ズマイマージョンイオンインプランテーション法などを用いることができる。
不純物元素として、上記元素が酸化物半導体層に添加されると、酸化物半導体層中の金属
元素および酸素の結合が切断され、酸素欠損が形成される。酸化物半導体層に含まれる酸
素欠損と酸化物半導体層中に残存または後から添加される水素の相互作用により、酸化物
半導体層の導電率を高くすることができる。
なお、不純物元素の添加により酸素欠損が形成された酸化物半導体に水素を添加すると、
酸素欠損サイトに水素が入り伝導帯近傍にドナー準位が形成される。その結果、酸化物導
電体を形成することができる。なお、ここでは、導電体化された酸化物半導体を酸化物導
電体という。
酸化物導電体は、縮退半導体であり、伝導帯端とフェルミ準位とが一致または略一致して
いると推定される。このため、酸化物導電体層とソース電極層およびドレイン電極層とし
て機能する導電層との接触はオーミック接触であり、酸化物導電体層とソース電極層およ
びドレイン電極層として機能する導電層との接触抵抗を低減することができる。
また、本発明の一態様のトランジスタは、図26(A)、(B)、(C)、(D)、(E
)、(F)に示すチャネル長方向の断面図、ならびに図25(C)、(D)に示すチャネ
ル幅方向の断面図のように、酸化物半導体層130と基板115との間に導電層173を
備えていてもよい。当該導電層を第2のゲート電極層(バックゲート)として用いること
で、更なるオン電流の増加や、しきい値電圧の制御を行うことができる。なお、図26(
A)、(B)、(C)、(D)、(E)、(F)に示す断面図において、導電層173の
幅を酸化物半導体層130よりも短くしてもよい。さらに、導電層173の幅を導電層1
70の幅よりも短くしてもよい。
オン電流を増加させるには、例えば、導電層170と導電層173を同電位とし、ダブル
ゲートトランジスタとして駆動させればよい。また、しきい値電圧の制御を行うには、導
電層170とは異なる定電位を導電層173に供給すればよい。導電層170と導電層1
73を同電位とするには、例えば、図25(D)に示すように、導電層170と導電層1
73とをコンタクトホールを介して電気的に接続すればよい。
また、図19乃至図24におけるトランジスタ101乃至トランジスタ106では、酸化
物半導体層130が単層である例を図示したが、酸化物半導体層130は積層であっても
よい。トランジスタ101乃至トランジスタ106の酸化物半導体層130は、図27ま
たは図28に示す酸化物半導体層130と入れ替えることができる。
図27(A)、(B)、(C)は、二層構造である酸化物半導体層130の上面図および
断面図である。図27(A)は上面図であり、図27(A)に示す一点鎖線A1-A2方
向の断面が図27(B)に相当する。また、図27(A)に示す一点鎖線A3-A4方向
の断面が図27(C)に相当する。
また、図28(A)、(B)、(C)は、三層構造である酸化物半導体層130の上面図
および断面図である。図28(A)は上面図であり、図28(A)に示す一点鎖線A1-
A2方向の断面が図28(B)に相当する。また、図28(A)に示す一点鎖線A3-A
4方向の断面が図28(C)に相当する。
酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cには、それ
ぞれ組成の異なる酸化物半導体層などを用いることができる。
また、本発明の一態様のトランジスタは、図29(A)、(B)に示す構成であってもよ
い。図29(A)はトランジスタ107の上面図であり、図29(A)に示す一点鎖線H
1-H2方向の断面が図29(B)に相当する。また、図29(A)に示す一点鎖線H3
-H4方向の断面が図35(A)に相当する。また、一点鎖線H1-H2方向をチャネル
長方向、一点鎖線H3-H4方向をチャネル幅方向と呼称する場合がある。
トランジスタ107は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と電気的に
接続する導電層140および導電層150と、当該積層、導電層140および導電層15
0と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と
、絶縁層160と接する導電層170と、導電層140、導電層150、酸化物半導体層
130c、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接
する絶縁層180と、を有する。また、必要に応じて絶縁層180に接する絶縁層190
(平坦化膜)などを有していてもよい。
トランジスタ107は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点、ならびに導電層140および導電層150と絶縁層16
0との間に酸化物半導体層の一部(酸化物半導体層130c)が介在している点を除き、
トランジスタ101と同様の構成を有する。
また、本発明の一態様のトランジスタは、図30(A)、(B)に示す構成であってもよ
い。図30(A)はトランジスタ108の上面図であり、図30(A)に示す一点鎖線I
1-I2方向の断面が図30(B)に相当する。また、図30(A)に示す一点鎖線I3
-I4方向の断面が図35(B)に相当する。また、一点鎖線I1-I2方向をチャネル
長方向、一点鎖線I3-I4方向をチャネル幅方向と呼称する場合がある。
トランジスタ108は、絶縁層160および酸化物半導体層130cの端部が導電層17
0の端部と一致しない点がトランジスタ107と異なる。
また、本発明の一態様のトランジスタは、図31(A)、(B)に示す構成であってもよ
い。図31(A)はトランジスタ109の上面図であり、図31(A)に示す一点鎖線J
1-J2方向の断面が図31(B)に相当する。また、図31(A)に示す一点鎖線J3
-J4方向の断面が図35(A)に相当する。また、一点鎖線J1-J2方向をチャネル
長方向、一点鎖線J3-J4方向をチャネル幅方向と呼称する場合がある。
トランジスタ109は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と接する酸
化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と、絶縁層16
0と接する導電層170と、当該積層、酸化物半導体層130c、絶縁層160および導
電層170を覆う絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175
および絶縁層180に設けられた開口部を通じて当該積層と電気的に接続する導電層14
0および導電層150を有する。また、必要に応じて絶縁層180、導電層140および
導電層150に接する絶縁層190(平坦化膜)などを有していてもよい。
トランジスタ109は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点を除き、トランジスタ103と同様の構成を有する。
また、本発明の一態様のトランジスタは、図32(A)、(B)に示す構成であってもよ
い。図32(A)はトランジスタ110の上面図であり、図32(A)に示す一点鎖線K
1-K2方向の断面が図32(B)に相当する。また、図32(A)に示す一点鎖線K3
-K4方向の断面が図35(A)に相当する。また、一点鎖線K1-K2方向をチャネル
長方向、一点鎖線K3-K4方向をチャネル幅方向と呼称する場合がある。
トランジスタ110は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点を除き、トランジスタ104と同様の構成を有する。
また、本発明の一態様のトランジスタは、図33(A)、(B)に示す構成であってもよ
い。図33(A)はトランジスタ111の上面図であり、図33(A)に示す一点鎖線L
1-L2方向の断面が図33(B)に相当する。また、図33(A)に示す一点鎖線L3
-L4方向の断面が図35(A)に相当する。また、一点鎖線L1-L2方向をチャネル
長方向、一点鎖線L3-L4方向をチャネル幅方向と呼称する場合がある。
トランジスタ111は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と電気的に
接続する導電層141および導電層151と、当該積層、導電層141および導電層15
1と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と
、絶縁層160と接する導電層170と、当該積層、導電層141、導電層151、酸化
物半導体層130c、絶縁層160および導電層170と接する絶縁層175と、絶縁層
175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を
通じて導電層141および導電層151とそれぞれ電気的に接続する導電層142および
導電層152を有する。また、必要に応じて絶縁層180、導電層142および導電層1
52に接する絶縁層190(平坦化膜)などを有していてもよい。
トランジスタ111は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点、ならびに導電層141および導電層151と絶縁層16
0との間に酸化物半導体層の一部(酸化物半導体層130c)が介在している点を除き、
トランジスタ105と同様の構成を有する。
また、本発明の一態様のトランジスタは、図34(A)、(B)に示す構成であってもよ
い。図34(A)はトランジスタ112の上面図であり、図34(A)に示す一点鎖線M
1-M2方向の断面が図34(B)に相当する。また、図34(A)に示す一点鎖線M3
-M4方向の断面が図35(A)に相当する。また、一点鎖線M1-M2方向をチャネル
長方向、一点鎖線M3-M4方向をチャネル幅方向と呼称する場合がある。
トランジスタ112は、領域331、領域332、領域334および領域335において
酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)であ
る点、領域333において酸化物半導体層130が三層(酸化物半導体層130a、酸化
物半導体層130b、酸化物半導体層130c)である点を除き、トランジスタ106と
同様の構成を有する。
また、本発明の一態様のトランジスタは、図36(A)、(B)、(C)、(D)、(E
)、(F)に示すチャネル長方向の断面図、ならびに図35(C)、(D)に示すチャネ
ル幅方向の断面図のように、酸化物半導体層130と基板115との間に導電層173を
備えていてもよい。当該導電層を第2のゲート電極層(バックゲート)として用いること
で、更なるオン電流の増加や、しきい値電圧の制御を行うことができる。なお、図36(
A)、(B)、(C)、(D)、(E)、(F)に示す断面図において、導電層173の
幅を酸化物半導体層130よりも短くしてもよい。さらに、導電層173の幅を導電層1
70の幅よりも短くしてもよい。
また、本発明の一態様のトランジスタにおける導電層140(ソース電極層)および導電
層150(ドレイン電極層)は、図37(A)、(B)に示す上面図のような構成とする
ことができる。なお、図37(A)、(B)では、酸化物半導体層130、導電層140
および導電層150のみを図示している。図37(A)に示すように、導電層140およ
び導電層150の幅(WSD)は、酸化物半導体層130の幅(WOS)よりも長く形成
されていてもよい。また、図37(B)に示すように、WSDはWOSよりも短く形成さ
れていてもよい。WOS≧WSD(WSDはWOS以下)とすることで、ゲート電界が酸
化物半導体層130全体にかかりやすくなり、トランジスタの電気特性を向上させること
ができる。
本発明の一態様のトランジスタ(トランジスタ101乃至トランジスタ112)では、い
ずれの構成においても、ゲート電極層である導電層170は、ゲート絶縁膜である絶縁層
160を介して酸化物半導体層130のチャネル幅方向を電気的に取り囲み、オン電流が
高められる。このようなトランジスタの構造を、surrounded channel
(s-channel)構造とよぶ。
また、酸化物半導体層130bおよび酸化物半導体層130cを有するトランジスタ、な
らびに酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130c
を有するトランジスタにおいては、酸化物半導体層130を構成する二層または三層の材
料を適切に選択することで酸化物半導体層130bに電流を流すことができる。酸化物半
導体層130bに電流が流れることで、界面散乱の影響を受けにくく、高いオン電流を得
ることができる。なお、酸化物半導体層130bを厚くすると、オン電流を向上させるこ
とができる。例えば、酸化物半導体層130bの膜厚を100nm乃至200nmとして
もよい。
以上の構成のトランジスタを用いることにより、半導体装置に良好な電気特性を付与する
ことができる。
なお、本明細書において、チャネル長とは、例えば、トランジスタの上面図において、半
導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート
電極とが重なる領域、またはチャネルが形成される領域における、ソース(ソース領域ま
たはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。
なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らな
い。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。その
ため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の
値、最大値、最小値または平均値とする。
また、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体
の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領
域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのト
ランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一
つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細
書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、
最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネ
ル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示される
チャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、
立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図
において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる
場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面に
形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割合
が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よ
りも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測
による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積
もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状
が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが重なる
領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上のチャ
ネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel W
idth)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合に
は、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細
書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。な
お、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチ
ャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、
値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求め
る場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャ
ネル幅を用いて計算する場合とは異なる値をとる場合がある。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態6)
本実施の形態では、実施の形態5に示したトランジスタの構成要素について詳細を説明す
る。
基板115は、トランジスタが形成されたシリコン基板、および当該シリコン基板上に絶
縁層、配線等が形成されたものであり、図1(A)における第1の層1100および第2
の層1200に相当する。なお、シリコン基板はSOI基板であってもよい。シリコン基
板にp-ch型のトランジスタのみを形成する場合は、トランジスタを形成する面の面方
位が(110)面である単結晶シリコン基板を用いることが好ましい。(110)面にp
-ch型トランジスタを形成することで、移動度を高くすることができる。
絶縁層120は、基板115に含まれる要素からの不純物の拡散を防止する役割を有する
ほか、酸化物半導体層130に酸素を供給する役割を担うことができる。したがって、絶
縁層120は酸素を含む絶縁膜であることが好ましく、化学量論組成よりも多い酸素を含
む絶縁膜であることがより好ましい。例えば、膜の表面温度が100℃以上700℃以下
、好ましくは100℃以上500℃以下の加熱処理で行われるTDS法にて、酸素原子に
換算しての酸素の放出量が1.0×1019atoms/cm以上である膜とする。ま
た、基板115が他のデバイスが形成された基板である場合、絶縁層120は、層間絶縁
膜としての機能も有する。その場合は、表面が平坦になるようにCMP(Chemica
l Mechanical Polishing)法等で平坦化処理を行うことが好まし
い。
例えば、絶縁層120には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化
窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム
、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルなどの酸化物絶縁膜
、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒
化物絶縁膜、またはこれらの混合材料を用いることができる。また、上記材料の積層であ
ってもよい。
なお、本実施の形態では、トランジスタが有する酸化物半導体層130が酸化物半導体層
130a、酸化物半導体層130bおよび酸化物半導体層130cを絶縁層120側から
順に積んだ三層構造である場合を主として詳細を説明する。
なお、酸化物半導体層130が単層の場合は、本実施の形態に示す、酸化物半導体層13
0bに相当する層を用いればよい。
また、酸化物半導体層130が二層の場合は、本実施の形態に示す、酸化物半導体層13
0bに相当する層および酸化物半導体層130cに相当する層を絶縁層120側から順に
積んだ積層を用いればよい。この構成の場合、酸化物半導体層130bと酸化物半導体層
130cとを入れ替えることもできる。
また、酸化物半導体層130が四層以上である場合は、例えば、本実施の形態で説明する
三層構造の酸化物半導体層130に対して他の酸化物半導体層を付加する構成とすること
ができる。
一例としては、酸化物半導体層130bには、酸化物半導体層130aおよび酸化物半導
体層130cよりも電子親和力(真空準位から伝導帯下端までのエネルギー)が大きい酸
化物半導体を用いる。電子親和力は、真空準位と価電子帯上端とのエネルギー差(イオン
化ポテンシャル)から、伝導帯下端と価電子帯上端とのエネルギー差(エネルギーギャッ
プ)を差し引いた値として求めることができる。
酸化物半導体層130aおよび酸化物半導体層130cは、酸化物半導体層130bを構
成する金属元素を一種以上含み、例えば、伝導帯下端のエネルギーが酸化物半導体層13
0bよりも、0.05eV、0.07eV、0.1eV、0.15eVのいずれか以上で
あって、2eV、1eV、0.5eV、0.4eVのいずれか以下の範囲で真空準位に近
い酸化物半導体で形成することが好ましい。
このような構造において、導電層170に電界を印加すると、酸化物半導体層130のう
ち、伝導帯下端のエネルギーが最も小さい酸化物半導体層130bにチャネルが形成され
る。
また、酸化物半導体層130aは、酸化物半導体層130bを構成する金属元素を一種以
上含んで構成されるため、酸化物半導体層130bと絶縁層120が接した場合の界面と
比較して、酸化物半導体層130bと酸化物半導体層130aとの界面には界面準位が形
成されにくくなる。該界面準位はチャネルを形成することがあるため、トランジスタのし
きい値電圧が変動することがある。したがって、酸化物半導体層130aを設けることに
より、トランジスタのしきい値電圧などの電気特性のばらつきを低減することができる。
また、当該トランジスタの信頼性を向上させることができる。
また、酸化物半導体層130cは、酸化物半導体層130bを構成する金属元素を一種以
上含んで構成されるため、酸化物半導体層130bとゲート絶縁膜(絶縁層160)が接
した場合の界面と比較して、酸化物半導体層130bと酸化物半導体層130cとの界面
ではキャリアの散乱が起こりにくくなる。したがって、酸化物半導体層130cを設ける
ことにより、トランジスタの電界効果移動度を高くすることができる。
酸化物半導体層130aおよび酸化物半導体層130cには、例えば、Al、Ti、Ga
、Ge、Y、Zr、Sn、La、CeまたはHfを酸化物半導体層130bよりも高い原
子数比で含む材料を用いることができる。具体的には、当該原子数比を1.5倍以上、好
ましくは2倍以上、さらに好ましくは3倍以上とする。前述の元素は酸素と強く結合する
ため、酸素欠損が酸化物半導体層に生じることを抑制する機能を有する。すなわち、酸化
物半導体層130aおよび酸化物半導体層130cは、酸化物半導体層130bよりも酸
素欠損が生じにくいということができる。
また、酸化物半導体層130a、酸化物半導体層130b、および酸化物半導体層130
cとして用いることのできる酸化物半導体は、少なくともインジウム(In)もしくは亜
鉛(Zn)を含むことが好ましい。または、InとZnの双方を含むことが好ましい。ま
た、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと
共に、スタビライザーを含むことが好ましい。
スタビライザーとしては、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、アル
ミニウム(Al)、またはジルコニウム(Zr)等がある。また、他のスタビライザーと
しては、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(P
r)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(
Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウ
ム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等がある
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化ガリウム、酸化亜鉛、I
n-Zn酸化物、Sn-Zn酸化物、Al-Zn酸化物、Zn-Mg酸化物、Sn-Mg
酸化物、In-Mg酸化物、In-Ga酸化物、In-Ga-Zn酸化物、In-Al-
Zn酸化物、In-Sn-Zn酸化物、Sn-Ga-Zn酸化物、Al-Ga-Zn酸化
物、Sn-Al-Zn酸化物、In-Hf-Zn酸化物、In-La-Zn酸化物、In
-Ce-Zn酸化物、In-Pr-Zn酸化物、In-Nd-Zn酸化物、In-Sm-
Zn酸化物、In-Eu-Zn酸化物、In-Gd-Zn酸化物、In-Tb-Zn酸化
物、In-Dy-Zn酸化物、In-Ho-Zn酸化物、In-Er-Zn酸化物、In
-Tm-Zn酸化物、In-Yb-Zn酸化物、In-Lu-Zn酸化物、In-Sn-
Ga-Zn酸化物、In-Hf-Ga-Zn酸化物、In-Al-Ga-Zn酸化物、I
n-Sn-Al-Zn酸化物、In-Sn-Hf-Zn酸化物、In-Hf-Al-Zn
酸化物を用いることができる。
なお、ここで、例えば、In-Ga-Zn酸化物とは、InとGaとZnを主成分として
有する酸化物という意味である。また、InとGaとZn以外の金属元素が入っていても
よい。また、本明細書においては、In-Ga-Zn酸化物で構成した膜をIGZO膜と
も呼ぶ。
また、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される材料を用
いてもよい。なお、Mは、Ga、Y、Zr、La、Ce、またはNdから選ばれた一つの
金属元素または複数の金属元素を示す。また、InSnO(ZnO)(n>0、且
つ、nは整数)で表記される材料を用いてもよい。
なお、酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cが、
少なくともインジウム、亜鉛およびM(Al、Ti、Ga、Ge、Y、Zr、Sn、La
、CeまたはHf等の金属)を含むIn-M-Zn酸化物であるとき、酸化物半導体層1
30aをIn:M:Zn=x:y:z[原子数比]、酸化物半導体層130bをI
n:M:Zn=x:y:z[原子数比]、酸化物半導体層130cをIn:M:Z
n=x:y:z[原子数比]とすると、y/xおよびy/xがy/x
よりも大きくなることが好ましい。y/xおよびy/xはy/xよりも1.
5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上とする。このとき、酸化物半
導体層130bにおいて、yがx以上であるとトランジスタの電気特性を安定させる
ことができる。ただし、yがxの3倍以上になると、トランジスタの電界効果移動度
が低下してしまうため、yはxの3倍未満であることが好ましい。
酸化物半導体層130aおよび酸化物半導体層130cにおけるZnおよびOを除いた場
合において、InおよびMの原子数比率は、好ましくはInが50atomic%未満、
Mが50atomic%以上、さらに好ましくはInが25atomic%未満、Mが7
5atomic%以上とする。また、酸化物半導体層130bのZnおよびOを除いての
InおよびMの原子数比率は、好ましくはInが25atomic%以上、Mが75at
omic%未満、さらに好ましくはInが34atomic%以上、Mが66atomi
c%未満とする。
また、酸化物半導体層130bは、酸化物半導体層130aおよび酸化物半導体層130
cよりもインジウムの含有量を多くするとよい。酸化物半導体では主として重金属のs軌
道がキャリア伝導に寄与しており、Inの含有率を多くすることにより、より多くのs軌
道が重なるため、InがMよりも多い組成となる酸化物はInがMと同等または少ない組
成となる酸化物と比較して移動度が高くなる。そのため、酸化物半導体層130bにイン
ジウムの含有量が多い酸化物を用いることで、高い電界効果移動度のトランジスタを実現
することができる。
酸化物半導体層130aの厚さは、3nm以上100nm以下、好ましくは5nm以上5
0nm以下、さらに好ましくは5nm以上25nm以下とする。また、酸化物半導体層1
30bの厚さは、3nm以上200nm以下、好ましくは10nm以上150nm以下、
さらに好ましくは15nm以上100nm以下とする。また、酸化物半導体層130cの
厚さは、1nm以上50nm以下、好ましくは2nm以上30nm以下、さらに好ましく
は3nm以上15nm以下とする。また、酸化物半導体層130bは、酸化物半導体層1
30aおよび酸化物半導体層130cより厚い方が好ましい。
なお、酸化物半導体層をチャネルとするトランジスタに安定した電気特性を付与するため
には、酸化物半導体層中の不純物濃度を低減し、酸化物半導体層を真性(i型)または実
質的に真性にすることが有効である。ここで、実質的に真性とは、酸化物半導体層のキャ
リア密度が、1×1015/cm未満であること、好ましくは1×1013/cm
満であること、さらに好ましくは8×1011/cm未満であること、さらに好適には
1×10/cm未満1×10-9/cm以上であることとする。
また、酸化物半導体層において、水素、窒素、炭素、シリコン、および主成分以外の金属
元素は不純物となる。例えば、水素および窒素はドナー準位の形成に寄与し、キャリア密
度を増大させてしまう。また、シリコンは酸化物半導体層中で不純物準位の形成に寄与す
る。当該不純物準位はトラップとなり、トランジスタの電気特性を劣化させることがある
。したがって、酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層
130cの層中や、それぞれの界面において不純物濃度を低減させることが好ましい。
酸化物半導体層を真性または実質的に真性とするためには、SIMS(Secondar
y Ion Mass Spectrometry)分析において、例えば、酸化物半導
体層のある深さにおいて、または、酸化物半導体層のある領域において、シリコン濃度を
1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満
、さらに好ましくは1×1018atoms/cm未満とする。また、水素濃度は、例
えば、酸化物半導体層のある深さにおいて、または、酸化物半導体層のある領域において
、2×1020atoms/cm以下、好ましくは5×1019atoms/cm
下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×10
atoms/cm以下とする。また、窒素濃度は、例えば、酸化物半導体層のある深
さにおいて、または、酸化物半導体層のある領域において、5×1019atoms/c
未満、好ましくは5×1018atoms/cm以下、より好ましくは1×10
atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とす
る。
また、酸化物半導体層が結晶を含む場合、シリコンや炭素が高濃度で含まれると、酸化物
半導体層の結晶性を低下させることがある。酸化物半導体層の結晶性を低下させないため
には、例えば、酸化物半導体層のある深さにおいて、または、酸化物半導体層のある領域
において、シリコン濃度を1×1019atoms/cm未満、好ましくは5×10
atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とす
る部分を有していればよい。また、例えば、酸化物半導体層のある深さにおいて、または
、酸化物半導体層のある領域において、炭素濃度を1×1019atoms/cm未満
、好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018at
oms/cm未満とする部分を有していればよい。
また、上述のように高純度化された酸化物半導体膜をチャネル形成領域に用いたトランジ
スタのオフ電流は極めて小さい。例えば、ソースとドレインとの間の電圧を0.1V、5
V、または、10V程度とした場合に、トランジスタのチャネル幅で規格化したオフ電流
を数yA/μm乃至数zA/μmにまで低減することが可能となる。
なお、トランジスタのゲート絶縁膜としては、シリコンを含む絶縁膜が多く用いられるた
め、上記理由により酸化物半導体層のチャネルとなる領域は、本発明の一態様のトランジ
スタのようにゲート絶縁膜と接しない構造が好ましいということができる。また、ゲート
絶縁膜と酸化物半導体層との界面にチャネルが形成される場合、該界面でキャリアの散乱
が起こり、トランジスタの電界効果移動度が低くなることがある。このような観点からも
、酸化物半導体層のチャネルとなる領域はゲート絶縁膜から離すことが好ましいといえる
したがって、酸化物半導体層130を酸化物半導体層130a、酸化物半導体層130b
、酸化物半導体層130cの積層構造とすることで、酸化物半導体層130bにチャネル
を形成することができ、高い電界効果移動度および安定した電気特性を有したトランジス
タを形成することができる。
酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cのバンド構
造においては、伝導帯下端のエネルギーが連続的に変化する。これは、酸化物半導体層1
30a、酸化物半導体層130b、酸化物半導体層130cの組成が近似することにより
、酸素が相互に拡散しやすい点からも理解される。したがって、酸化物半導体層130a
、酸化物半導体層130b、酸化物半導体層130cは組成が異なる層の積層体ではある
が、物性的に連続であるということもでき、図面において、当該積層体のそれぞれの界面
は点線で表している。
主成分を共通として積層された酸化物半導体層130は、各層を単に積層するのではなく
連続接合(ここでは特に伝導帯下端のエネルギーが各層の間で連続的に変化するU字型の
井戸構造(U Shape Well))が形成されるように作製する。すなわち、各層
の界面にトラップ中心や再結合中心のような欠陥準位を形成するような不純物が存在しな
いように積層構造を形成する。仮に、積層された酸化物半導体層の層間に不純物が混在し
ていると、エネルギーバンドの連続性が失われ、界面でキャリアがトラップあるいは再結
合により消滅してしまう。
例えば、酸化物半導体層130aおよび酸化物半導体層130cにはIn:Ga:Zn=
1:3:2、1:3:3、1:3:4、1:3:6、1:4:5、1:6:4または1:
9:6(原子数比)などのIn-Ga-Zn酸化物などを用いることができる。また、酸
化物半導体層130bにはIn:Ga:Zn=1:1:1、2:1:3、5:5:6、ま
たは3:1:2(原子数比)などのIn-Ga-Zn酸化物などを用いることができる。
なお、酸化物半導体層130a、酸化物半導体層130b、および酸化物半導体層130
cの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含
む。
酸化物半導体層130における酸化物半導体層130bはウェル(井戸)となり、酸化物
半導体層130を用いたトランジスタにおいて、チャネルは酸化物半導体層130bに形
成される。なお、酸化物半導体層130は伝導帯下端のエネルギーが連続的に変化してい
るため、U字型井戸とも呼ぶことができる。また、このような構成で形成されたチャネル
を埋め込みチャネルということもできる。
また、酸化物半導体層130aおよび酸化物半導体層130cと、酸化シリコン膜などの
絶縁層との界面近傍には、不純物や欠陥に起因したトラップ準位が形成され得る。酸化物
半導体層130aおよび酸化物半導体層130cがあることにより、酸化物半導体層13
0bと当該トラップ準位とを遠ざけることができる。
ただし、酸化物半導体層130aおよび酸化物半導体層130cの伝導帯下端のエネルギ
ーと、酸化物半導体層130bの伝導帯下端のエネルギーとの差が小さい場合、酸化物半
導体層130bの電子が該エネルギー差を越えてトラップ準位に達することがある。電子
がトラップ準位に捕獲されることで、絶縁層界面にマイナスの電荷が生じ、トランジスタ
のしきい値電圧はプラス方向にシフトしてしまう。
したがって、トランジスタのしきい値電圧の変動を低減するには、酸化物半導体層130
aおよび酸化物半導体層130cの伝導帯下端のエネルギーと、酸化物半導体層130b
の伝導帯下端のエネルギーとの間に一定以上の差を設けることが必要となる。それぞれの
当該エネルギー差は、0.1eV以上が好ましく、0.15eV以上がより好ましい。
酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cには、
結晶部が含まれることが好ましい。特にc軸に配向した結晶を用いることでトランジスタ
に安定した電気特性を付与することができる。また、c軸に配向した結晶は歪曲に強く、
フレキシブル基板を用いた半導体装置の信頼性を向上させることができる。
ソース電極層として作用する導電層140およびドレイン電極層として作用する導電層1
50には、例えば、Al、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc
、および当該金属材料の合金から選ばれた材料の単層、または積層を用いることができる
。代表的には、特に酸素と結合しやすいTiや、後のプロセス温度が比較的高くできるこ
となどから、融点の高いWを用いることがより好ましい。また、低抵抗のCuやCu-M
nなどの合金と上記材料との積層を用いてもよい。なお、トランジスタ105、トランジ
スタ106、トランジスタ111、トランジスタ112においては、例えば、導電層14
1および導電層151にW、導電層142および導電層152にTiとAlとの積層膜な
どを用いることができる。
上記材料は酸化物半導体膜から酸素を引き抜く性質を有する。そのため、上記材料と接し
た酸化物半導体膜の一部の領域では酸化物半導体膜中の酸素が脱離し、酸素欠損が形成さ
れる。膜中に僅かに含まれる水素と当該酸素欠損が結合することにより当該領域は顕著に
n型化する。したがって、n型化した当該領域はトランジスタのソースまたはドレインと
して作用させることができる。
ゲート絶縁膜として作用する絶縁層160には、酸化アルミニウム、酸化マグネシウム、
酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸
化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、
酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、
絶縁層160は上記材料の積層であってもよい。なお、絶縁層160に、ランタン(La
)、窒素、ジルコニウム(Zr)などを、不純物として含んでいてもよい。
また、絶縁層160の積層構造の一例について説明する。絶縁層160は、例えば、酸素
、窒素、シリコン、ハフニウムなどを有する。具体的には、酸化ハフニウム、および酸化
シリコンまたは酸化窒化シリコンを含むと好ましい。
酸化ハフニウムおよび酸化アルミニウムは、酸化シリコンや酸化窒化シリコンと比べて比
誘電率が高い。したがって、等価酸化膜厚に対して物理的な膜厚を大きくできるため、等
価酸化膜厚を10nm以下または5nm以下とした場合でも、トンネル電流によるリーク
電流を小さくすることができる。即ち、オフ電流の小さいトランジスタを実現することが
できる。
また、酸化物半導体層130と接する絶縁層120および絶縁層160においては、窒素
酸化物の準位密度が低い領域を有していてもよい。窒素酸化物の準位密度が低い酸化物絶
縁層として、窒素酸化物の放出量の少ない酸化窒化シリコン膜、または窒素酸化物の放出
量の少ない酸化窒化アルミニウム膜等を用いることができる。
なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS
(Thermal Desorption Spectroscopy))において、窒
素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出
量が1×1018個/cm以上5×1019個/cm以下である。なお、アンモニア
の放出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以
下の加熱処理による放出量とする。
絶縁層120および絶縁層160として、上記酸化物絶縁層を用いることで、トランジス
タのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動
を低減することができる。
ゲート電極層として作用する導電層170には、例えば、Al、Ti、Cr、Co、Ni
、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、TaおよびWなどの導電膜を
用いることができる。また、上記材料の合金や上記材料の導電性窒化物を用いてもよい。
また、上記材料、上記材料の合金、および上記材料の導電性窒化物から選ばれた複数の材
料の積層であってもよい。代表的には、タングステン、タングステンと窒化チタンの積層
、タングステンと窒化タンタルの積層などを用いることができる。また、低抵抗のCuま
たはCu-Mn等の合金や上記材料とCuまたはCu-Mn等の合金との積層を用いても
よい。本実施の形態では、導電層171に窒化タンタル、導電層172にタングステンを
用いて導電層170を形成する。
絶縁層175には、水素を含む窒化シリコン膜または窒化アルミニウム膜などを用いるこ
とができる。実施の形態5に示したトランジスタ103、トランジスタ104、トランジ
スタ106、トランジスタ109、トランジスタ110、およびトランジスタ112では
、絶縁層175として水素を含む絶縁膜を用いることで酸化物半導体層の一部をn型化す
ることができる。また、窒化絶縁膜は水分などのブロッキング膜としての作用も有し、ト
ランジスタの信頼性を向上させることができる。
また、絶縁層175としては酸化アルミニウム膜を用いることもできる。特に、実施の形
態5に示したトランジスタ101、トランジスタ102、トランジスタ105、トランジ
スタ107、トランジスタ108、およびトランジスタ111では絶縁層175に酸化ア
ルミニウム膜を用いることが好ましい。酸化アルミニウム膜は、水素、水分などの不純物
、および酸素の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミ
ニウム膜は、トランジスタの作製工程中および作製後において、水素、水分などの不純物
の酸化物半導体層130への混入防止、酸素の酸化物半導体層からの放出防止、絶縁層1
20からの酸素の不必要な放出防止の効果を有する保護膜として用いることに適している
。また、酸化アルミニウム膜に含まれる酸素を酸化物半導体層中に拡散させることもでき
る。
また、絶縁層175上には絶縁層180が形成されていることが好ましい。当該絶縁層に
は、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリ
コン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ラ
ンタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用い
ることができる。また、当該絶縁層は上記材料の積層であってもよい。
ここで、絶縁層180は絶縁層120と同様に化学量論組成よりも多くの酸素を有するこ
とが好ましい。絶縁層180から放出される酸素は絶縁層160を経由して酸化物半導体
層130のチャネル形成領域に拡散させることができることから、チャネル形成領域に形
成された酸素欠損に酸素を補填することができる。したがって、安定したトランジスタの
電気特性を得ることができる。
半導体装置を高集積化するにはトランジスタの微細化が必須である。一方、トランジスタ
の微細化によりトランジスタの電気特性が悪化することが知られており、チャネル幅が縮
小するとオン電流は低下する。
本発明の一態様のトランジスタ107乃至トランジスタ112では、チャネルが形成され
る酸化物半導体層130bを覆うように酸化物半導体層130cが形成されており、チャ
ネル形成層とゲート絶縁膜が接しない構成となっている。そのため、チャネル形成層とゲ
ート絶縁膜との界面で生じるキャリアの散乱を抑えることができ、トランジスタのオン電
流を大きくすることができる。
また、本発明の一態様のトランジスタでは、前述したように酸化物半導体層130のチャ
ネル幅方向を電気的に取り囲むようにゲート電極層(導電層170)が形成されているた
め、酸化物半導体層130に対しては垂直方向からのゲート電界に加えて、側面方向から
のゲート電界が印加される。すなわち、チャネル形成層に対して全体的にゲート電界が印
加されることになり実効チャネル幅が拡大するため、さらにオン電流を高められる。
また、本発明の一態様における酸化物半導体層130が二層または三層のトランジスタで
は、チャネルが形成される酸化物半導体層130bを酸化物半導体層130a上に形成す
ることで界面準位を形成しにくくする効果を有する。また、本発明の一態様における酸化
物半導体層130が三層のトランジスタでは、酸化物半導体層130bを三層構造の中間
に位置する層とすることで上下からの不純物混入の影響を排除できる効果などを併せて有
する。そのため、上述したトランジスタのオン電流の向上に加えて、しきい値電圧の安定
化や、S値(サブスレッショルド値)を小さくすることができる。したがって、ゲート電
圧VGが0V時の電流を下げることができ、消費電力を低減させることができる。また、
トランジスタのしきい値電圧が安定化することから、半導体装置の長期信頼性を向上させ
ることができる。また、本発明の一態様のトランジスタは、微細化にともなう電気特性の
劣化が抑えられることから、集積度の高い半導体装置の形成に適しているといえる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態7)
本実施の形態では、実施の形態5で説明したトランジスタ102、およびトランジスタ1
07の作製方法を説明する。
まず、基板115に含まれるシリコントランジスタの作製方法の一例を説明する。シリコ
ン基板としては、単結晶シリコン基板を用い、表面に絶縁層(フィールド酸化膜とも言う
)で分離した素子形成領域を形成する。素子形成領域の形成は、LOCOS法(Loca
l Oxidation of Silicon)やSTI法(Shallow Tre
nch Isolation)等を用いることができる。
ここで、基板は単結晶シリコン基板に限らず、SOI(Silicon on Insu
lator)基板等を用いることもできる。
次に、素子形成領域にCMOS回路を形成するためのウェルを形成する。
次に、素子形成領域にゲート絶縁膜を形成する。例えば、熱処理を行い素子形成領域の表
面を酸化させることにより酸化シリコン膜を形成する。また、酸化シリコン膜を形成した
後に窒化処理を行うことによって酸化シリコン膜の表面を窒化させてもよい。
次に、ゲート絶縁膜を覆うように導電膜を形成する。導電膜としては、タンタル(Ta)
、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、
銅(Cu)、クロム(Cr)、ニオブ(Nb)等から選択された元素またはこれらの元素
を主成分とする合金材料若しくは化合物材料で形成することができる。また、これらの元
素を窒化した金属窒化膜で形成することもできる。他にも、リン等の不純物元素をドーピ
ングした多結晶シリコンに代表される半導体材料により形成することもできる。
次に、導電膜を選択的にエッチングすることによって、ゲート絶縁膜上にゲート電極層を
形成する。
次に、ゲート電極層を覆うように酸化シリコン膜または窒化シリコン膜等の絶縁膜を形成
し、エッチバックを行ってゲート電極層の側面にサイドウォールを形成する。
次に、n-ch型トランジスタの形成領域を覆うようにレジストマスクを選択的に形成し
、不純物元素を導入することによってp型の不純物領域を形成する。ここでは、p-c
h型のトランジスタを形成するため、不純物元素としては、p型を付与する不純物元素で
あるホウ素(B)やガリウム(Ga)等を用いることができる。
また、p-ch型トランジスタの形成領域を覆うようにレジストマスクを選択的に形成し
、不純物元素を導入することによってn型の不純物領域を形成する。ここでは、n-c
h型のトランジスタを形成するため、不純物元素としては、n型を付与する不純物元素で
あるリン(P)やヒ素(As)等を用いることができる。
以上でシリコン基板に活性領域を有するp-ch型トランジスタおよびn-ch型トラン
ジスタが完成する。なお、これらのトランジスタ上には窒化シリコン膜などのパッシベー
ション膜を形成することが好ましい。
次に、トランジスタを形成したシリコン基板上に酸化シリコン膜等で層間絶縁膜を形成し
、各種配線等を形成する。また、実施の形態1で説明したように水素の拡散を防止する酸
化アルミニウム等の絶縁層を形成する。基板115には、上述した、トランジスタが形成
されたシリコン基板、当該シリコン基板上に形成された層間絶縁層、配線等が含まれる。
続いて、図38および図39を用いてトランジスタ102の作製方法を説明する。なお、
図面の左側にはトランジスタのチャネル長方向の断面を示し、右側にはチャネル幅方向の
断面を示す。また、チャネル幅方向の図面は拡大図のため、各要素の見かけ上の膜厚は左
右の図面で異なる。
酸化物半導体層130は、酸化物半導体層130a、酸化物半導体層130bおよび酸化
物半導体層130cの三層構造である場合を例示する。酸化物半導体層130が二層構造
の場合は、酸化物半導体層130aおよび酸化物半導体層130bの二層とすればよい。
また、酸化物半導体層130が単層構造の場合は、酸化物半導体層130bの一層とすれ
ばよい。
まず、基板115上に絶縁層120を形成する。基板115の種類および絶縁層120の
材質は実施の形態6の説明を参照することができる。なお、絶縁層120は、スパッタ法
、CVD(Chemical Vapor Deposition)法、MBE(Mol
ecular Beam Epitaxy)法などを用いて形成することができる。
また、絶縁層120にイオン注入法、イオンドーピング法、プラズマイマージョンイオン
インプランテーション法、プラズマ処理法などを用いて酸素を添加してもよい。酸素を添
加することによって、絶縁層120から酸化物半導体層130への酸素の供給をさらに容
易にすることができる。
なお、基板115の表面が絶縁体であり、後に設ける酸化物半導体層130への不純物拡
散の影響が無い場合は、絶縁層120を設けない構成とすることができる。
次に、絶縁層120上に酸化物半導体層130aとなる酸化物半導体膜130A、酸化物
半導体層130bとなる酸化物半導体膜130B、および酸化物半導体層130cとなる
酸化物半導体膜130Cをスパッタ法、CVD法、MBE法などを用いて成膜する(図3
8(A)参照)。
酸化物半導体層130が積層構造である場合、酸化物半導体膜はロードロック室を備えた
マルチチャンバー方式の成膜装置(例えばスパッタ装置)を用いて各層を大気に触れさせ
ることなく連続して積層することが好ましい。スパッタ装置における各チャンバーは、酸
化物半導体にとって不純物となる水等を可能な限り除去すべく、クライオポンプのような
吸着式の真空排気ポンプを用いて高真空排気(5×10-7Pa乃至1×10-4Pa程
度まで)できること、かつ、成膜される基板を100℃以上、好ましくは500℃以上に
加熱できることが好ましい。または、ターボ分子ポンプとコールドトラップを組み合わせ
て排気系からチャンバー内に炭素成分や水分等を含む気体が逆流しないようにしておくこ
とが好ましい。また、ターボ分子ポンプとクライオポンプを組み合わせた排気系を用いて
もよい。
高純度真性酸化物半導体を得るためには、チャンバー内を高真空排気するのみならずスパ
ッタガスの高純度化も必要である。スパッタガスとして用いる酸素ガスやアルゴンガスは
、露点が-40℃以下、好ましくは-80℃以下、より好ましくは-100℃以下にまで
高純度化したガスを用いることで酸化物半導体膜に水分等が取り込まれることを可能な限
り防ぐことができる。
酸化物半導体膜130A、酸化物半導体膜130B、および酸化物半導体膜130Cには
、実施の形態6で説明した材料を用いることができる。例えば、酸化物半導体膜130A
には、In:Ga:Zn=1:3:6、1:3:4、1:3:3または1:3:2[原子
数比]のIn-Ga-Zn酸化物を用いることができる。また、酸化物半導体膜130B
には、In:Ga:Zn=1:1:1、3:1:2または5:5:6[原子数比]のIn
-Ga-Zn酸化物を用いることができる。また、酸化物半導体膜130Cには、In:
Ga:Zn=1:3:6、1:3:4、1:3:3または1:3:2[原子数比]のIn
-Ga-Zn酸化物を用いることができる。また、酸化物半導体膜130A、および酸化
物半導体膜130Cには、酸化ガリウムのような酸化物半導体を用いてもよい。なお、酸
化物半導体膜130A、酸化物半導体膜130B、および酸化物半導体膜130Cの原子
数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含む。また
、成膜法にスパッタ法を用いる場合は、上記材料をターゲットとして成膜することができ
る。
ただし、実施の形態6に詳細を記したように、酸化物半導体膜130Bには酸化物半導体
膜130Aおよび酸化物半導体膜130Cよりも電子親和力が大きい材料を用いる。
なお、酸化物半導体膜の成膜には、スパッタ法を用いることが好ましい。スパッタ法とし
ては、RFスパッタ法、DCスパッタ法、ACスパッタ法等を用いることができる。
酸化物半導体膜130Cの形成後に、第1の加熱処理を行ってもよい。第1の加熱処理は
、250℃以上650℃以下、好ましくは300℃以上500℃以下の温度で、不活性ガ
ス雰囲気、酸化性ガスを10ppm以上含む雰囲気、または減圧状態で行えばよい。また
、第1の加熱処理の雰囲気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補
うために酸化性ガスを10ppm以上含む雰囲気で行ってもよい。第1の加熱処理によっ
て、酸化物半導体膜130A、酸化物半導体膜130B、および酸化物半導体膜130C
の結晶性を高め、さらに絶縁層120、酸化物半導体膜130A、酸化物半導体膜130
B、および酸化物半導体膜130Cから水素や水などの不純物を除去することができる。
なお、第1の加熱処理は、後述する酸化物半導体層130a、酸化物半導体層130b、
および酸化物半導体層130cを形成するエッチングの後に行ってもよい。
次に、酸化物半導体膜130A上に第1の導電層を形成する。第1の導電層は、例えば、
次の方法を用いて形成することができる。
まず、酸化物半導体膜130A上に第1の導電膜を形成する。第1の導電膜としては、A
l、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc、および当該金属材料
の合金から選ばれた材料の単層、または積層を用いることができる。
次に、第1の導電膜上にレジスト膜を形成し、当該レジスト膜に対して電子ビーム露光、
液浸露光、EUV露光などの方法を用いて露光し、現像処理を行うことで第1のレジスト
マスクを形成する。なお、第1の導電膜とレジスト膜の間には密着剤として有機塗布膜を
形成することが好ましい。また、ナノインプリントリソグラフィ法を用いて第1のレジス
トマスクを形成してもよい。
次に、第1のレジストマスクを用いて、第1の導電膜を選択的にエッチングし、第1のレ
ジストマスクをアッシングすることにより導電層を形成する。
次に、上記導電層をハードマスクとして用い、酸化物半導体膜130A、酸化物半導体膜
130B、および酸化物半導体膜130Cを選択的にエッチングして上記導電層を取り除
き、酸化物半導体層130a、酸化物半導体層130b、および酸化物半導体層130c
の積層からなる酸化物半導体層130を形成する(図38(B)参照)。なお、上記導電
層を形成せずに、第1のレジストマスクを用いて酸化物半導体層130を形成してもよい
。ここで、酸化物半導体層130に対して酸素イオンを注入してもよい。
次に、酸化物半導体層130を覆うように第2の導電膜を形成する。第2の導電膜として
は、実施の形態6で説明した導電層140および導電層150に用いることのできる材料
で形成すればよい。第2の導電膜の形成には、スパッタ法、CVD法、MBE法などを用
いることができる。
次に、ソース領域およびドレイン領域となる部分の上に第2のレジストマスクを形成する
。そして、第2の導電膜の一部をエッチングし、導電層140および導電層150を形成
する(図38(C)参照)。
次に、酸化物半導体層130、導電層140および導電層150上にゲート絶縁膜となる
絶縁膜160Aを形成する。絶縁膜160Aは、実施の形態6で説明した絶縁層160に
用いることのできる材料で形成すればよい。絶縁膜160Aの形成には、スパッタ法、C
VD法、MBE法などを用いることができる。
次に、第2の加熱処理を行ってもよい。第2の加熱処理は、第1の加熱処理と同様の条件
で行うことができる。第2の加熱処理により、酸化物半導体層130に注入した酸素を酸
化物半導体層130の全体に拡散させることができる。なお、第2の加熱処理を行わずに
、第3の加熱処理で上記効果を得てもよい。
次に、絶縁膜160A上に導電層170となる第3の導電膜171Aおよび第4の導電膜
172Aを形成する。第3の導電膜171Aおよび第4の導電膜172Aは、実施の形態
6で説明した導電層171および導電層172に用いることのできる材料で形成すればよ
い。第3の導電膜171Aおよび第4の導電膜172Aの形成には、スパッタ法、CVD
法、MBE法などを用いることができる。
次に、第4の導電膜172A上に第3のレジストマスク156を形成する(図39(A)
参照)。そして、当該レジストマスクを用いて、第3の導電膜171A、第4の導電膜1
72Aおよび絶縁膜160Aを選択的にエッチングし、導電層171および導電層172
からなる導電層170、および絶縁層160を形成する(図39(B)参照)。
次に、酸化物半導体層130、導電層140、導電層150、絶縁層160および導電層
170上に絶縁層175を形成する。絶縁層175の材質は、実施の形態6の説明を参照
することができる。トランジスタ101の場合は、酸化アルミニウム膜を用いることが好
ましい。絶縁層175は、スパッタ法、CVD法、MBE法などで形成することができる
次に、絶縁層175上に絶縁層180を形成する(図39(C)参照)。絶縁層180の
材質は、実施の形態6の説明を参照することができる。また、絶縁層180は、スパッタ
法、CVD法、MBE法などで形成することができる。
また、絶縁層175および/または絶縁層180にイオン注入法、イオンドーピング法、
プラズマイマージョンイオンインプランテーション法、プラズマ処理法などを用いて酸素
を添加してもよい。酸素を添加することによって、絶縁層175および/または絶縁層1
80から酸化物半導体層130への酸素の供給をさらに容易にすることができる。
次に、第3の加熱処理を行ってもよい。第3の加熱処理は、第1の加熱処理と同様の条件
で行うことができる。第3の加熱処理により、絶縁層120、絶縁層175、絶縁層18
0から過剰酸素が放出されやすくなり、酸化物半導体層130の酸素欠損を低減すること
ができる。
次に、トランジスタ107の作製方法について説明する。なお、上述したトランジスタ1
02の作製方法と重複する工程の詳細な説明は省略する。
基板115上に絶縁層120を形成し、当該絶縁層上に酸化物半導体層130aとなる酸
化物半導体膜130A、および酸化物半導体層130bとなる酸化物半導体膜130Bを
スパッタ法、CVD法、MBE法などを用いて成膜する(図40(A)参照)。
次に、第1の導電膜を酸化物半導体膜130B上に形成し、前述した方法と同様に第1の
レジストマスクを用いて導電層を形成する。そして、当該導電層をハードマスクとして酸
化物半導体膜130Aおよび酸化物半導体膜130Bを選択的にエッチングし、上記導電
層を取り除いて酸化物半導体層130aおよび酸化物半導体層130bからなる積層を形
成する(図40(B)参照)。なお、ハードマスクを形成せずに、第1のレジストマスク
を用いて当該積層を形成してもよい。ここで、酸化物半導体層130に対して酸素イオン
を注入してもよい。
次に、上記積層を覆うように第2の導電膜を形成する。そして、ソース領域およびドレイ
ン領域となる部分の上に第2のレジストマスクを形成し、当該第2のレジストマスクを用
いて第2の導電膜の一部をエッチングし、導電層140および導電層150を形成する(
図40(C)参照)。
次に、酸化物半導体層130aおよび酸化物半導体層130bの積層上、ならびに導電層
140および導電層150上に酸化物半導体層130cとなる酸化物半導体膜130Cを
形成する。さらに、酸化物半導体膜130C上にゲート絶縁膜となる絶縁膜160A、お
よび導電層170となる第3の導電膜171Aおよび第4の導電膜172Aを形成する。
次に、第4の導電膜172A上に第3のレジストマスク156を形成する(図41(A)
参照)。そして、当該レジストマスクを用いて、第3の導電膜171A、第4の導電膜1
72A、絶縁膜160A、および酸化物半導体膜130Cを選択的にエッチングし、導電
層171および導電層172からなる導電層170、絶縁層160、および酸化物半導体
層130cを形成する(図41(B)参照)。なお、絶縁膜160Aおよび酸化物半導体
膜130Cを第4のレジストマスクを用いてエッチングすることで、トランジスタ108
を作製することができる。
次に、絶縁層120、酸化物半導体層130(酸化物半導体層130a、酸化物半導体層
130b、酸化物半導体層130c)、導電層140、導電層150、絶縁層160およ
び導電層170上に絶縁層175および絶縁層180を形成する(図41(C)参照)。
以上の工程において、トランジスタ107を作製することができる。
なお、本実施の形態で説明した金属膜、半導体膜、無機絶縁膜など様々な膜は、代表的に
はスパッタ法やプラズマCVD法により形成することができるが、他の方法、例えば、熱
CVD法により形成してもよい。熱CVD法の例としては、MOCVD(Metal O
rganic Chemical Vapor Deposition)法やALD(A
tomic Layer Deposition)法などがある。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成
されることが無いという利点を有する。
また、熱CVD法では、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を
大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで
成膜を行ってもよい。
ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順次にチ
ャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。例えば
、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以上の原料
ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガス
と同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原
料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリア
ガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。ま
た、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2
の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層を成膜し
、後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層されて薄膜
が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すこと
で、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰
り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なF
ETを作製する場合に適している。
MOCVD法やALD法などの熱CVD法は、これまでに記載した実施形態に開示された
金属膜、半導体膜、無機絶縁膜など様々な膜を形成することができ、例えば、In-Ga
-Zn酸化物膜を成膜する場合には、トリメチルインジウム、トリメチルガリウム、およ
びジメチル亜鉛を用いることができる。なお、トリメチルインジウムの化学式は、In(
CHである。また、トリメチルガリウムの化学式は、Ga(CHである。ま
た、ジメチル亜鉛の化学式は、Zn(CHである。また、これらの組み合わせに限
定されず、トリメチルガリウムに代えてトリエチルガリウム(化学式Ga(C
)を用いることもでき、ジメチル亜鉛に代えてジエチル亜鉛(化学式Zn(C
)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒と
ハフニウム前駆体化合物を含む液体(ハフニウムアルコキシドや、テトラキスジメチルア
ミドハフニウム(TDMAH)などのハフニウムアミド)を気化させた原料ガスと、酸化
剤としてオゾン(O)の2種類のガスを用いる。なお、テトラキスジメチルアミドハフ
ニウムの化学式はHf[N(CHである。また、他の材料液としては、テトラ
キス(エチルメチルアミド)ハフニウムなどがある。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶媒
とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA)など)を気
化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチルア
ルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(ジ
メチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2,
2,6,6-テトラメチル-3,5-ヘプタンジオナート)などがある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサク
ロロジシランを被成膜面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O
、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
スとBガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WF
ガスとHガスを同時に導入してタングステン膜を形成する。なお、Bガスに代え
てSiHガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn-Ga-ZnO
(X>0)膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入
してIn-O層を形成し、その後、Ga(CHガスとOガスを同時に導入してG
aO層を形成し、更にその後Zn(CHとOガスを同時に導入してZnO層を形
成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてIn
-Ga-O層やIn-Zn-O層、Ga-Zn-O層などの混合化合物層を形成しても良
い。なお、Oガスに変えてAr等の不活性ガスでバブリングして得られたたHOガス
を用いても良いが、Hを含まないOガスを用いる方が好ましい。また、In(CH
ガスにかえて、In(Cガスを用いても良い。また、Ga(CHガス
にかえて、Ga(Cガスを用いても良い。また、Zn(CHガスを用い
ても良い。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態8)
本実施の形態では、本発明の一態様であるトランジスタに使用することができる酸化物半
導体膜について説明する。
なお、本明細書において、「平行」とは、二つの直線が-10°以上10°以下の角度で
配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、
「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう
。したがって、85°以上95°以下の場合も含まれる。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す
酸化物半導体膜は、非単結晶酸化物半導体膜と単結晶酸化物半導体膜とに大別される。非
単結晶酸化物半導体膜とは、CAAC-OS(C Axis Aligned Crys
talline Oxide Semiconductor)膜、多結晶酸化物半導体膜
、微結晶酸化物半導体膜、非晶質酸化物半導体膜などをいう。
まずは、CAAC-OS膜について説明する。
CAAC-OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micro
scope)によって、CAAC-OS膜の明視野像および回折パターンの複合解析像(
高分解能TEM像ともいう。)を観察することで複数の結晶部を確認することができる。
一方、高分解能TEM像によっても明確な結晶部同士の境界、即ち結晶粒界(グレインバ
ウンダリーともいう。)を確認することができない。そのため、CAAC-OS膜は、結
晶粒界に起因する電子移動度の低下が起こりにくいといえる。
試料面と概略平行な方向から、CAAC-OS膜の断面の高分解能TEM像を観察すると
、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は
、CAAC-OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映し
た形状であり、CAAC-OS膜の被形成面または上面と平行に配列する。
一方、試料面と概略垂直な方向から、CAAC-OS膜の平面の高分解能TEM像を観察
すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認
できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
図42(a)は、CAAC-OS膜の断面の高分解能TEM像である。また、図42(b
)は、図42(a)をさらに拡大した断面の高分解能TEM像であり、理解を容易にする
ために原子配列を強調表示している。
図42(c)は、図42(a)のA-O-A’間において、丸で囲んだ領域(直径約4n
m)の局所的なフーリエ変換像である。図42(c)より、各領域においてc軸配向性が
確認できる。また、A-O間とO-A’間とでは、c軸の向きが異なるため、異なるグレ
インであることが示唆される。また、A-O間では、c軸の角度が14.3°、16.6
°、26.4°のように少しずつ連続的に変化していることがわかる。同様に、O-A’
間では、c軸の角度が-18.3°、-17.6°、-15.9°と少しずつ連続的に変
化していることがわかる。
なお、CAAC-OS膜に対し、電子回折を行うと、配向性を示すスポット(輝点)が観
測される。例えば、CAAC-OS膜の上面に対し、例えば1nm以上30nm以下の電
子線を用いる電子回折(ナノビーム電子回折ともいう。)を行うと、スポットが観測され
る(図43(A)参照。)。
断面の高分解能TEM像および平面の高分解能TEM像より、CAAC-OS膜の結晶部
は配向性を有していることがわかる。
なお、CAAC-OS膜に含まれるほとんどの結晶部は、一辺が100nm未満の立方体
内に収まる大きさである。したがって、CAAC-OS膜に含まれる結晶部は、一辺が1
0nm未満、5nm未満または3nm未満の立方体内に収まる大きさの場合も含まれる。
ただし、CAAC-OS膜に含まれる複数の結晶部が連結することで、一つの大きな結晶
領域を形成する場合がある。例えば、平面の高分解能TEM像において、2500nm
以上、5μm以上または1000μm以上となる結晶領域が観察される場合がある。
CAAC-OS膜に対し、X線回折(XRD:X-Ray Diffraction)装
置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC-OS膜
のout-of-plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属される
ことから、CAAC-OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概
略垂直な方向を向いていることが確認できる。
一方、CAAC-OS膜に対し、c軸に概略垂直な方向からX線を入射させるin-pl
ane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは
、InGaZnOの結晶の(110)面に帰属される。InGaZnOの単結晶酸化
物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)と
して試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に
帰属されるピークが6本観察される。これに対し、CAAC-OS膜の場合は、2θを5
6°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
以上のことから、CAAC-OS膜では、異なる結晶部間ではa軸およびb軸の配向は不
規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行
な方向を向いていることがわかる。したがって、前述の断面の高分解能TEM観察で確認
された層状に配列した金属原子の各層は、結晶のab面に平行な面である。
なお、結晶部は、CAAC-OS膜を成膜した際、または加熱処理などの結晶化処理を行
った際に形成される。上述したように、結晶のc軸は、CAAC-OS膜の被形成面また
は上面の法線ベクトルに平行な方向に配向する。したがって、例えば、CAAC-OS膜
の形状をエッチングなどによって変化させた場合、結晶のc軸がCAAC-OS膜の被形
成面または上面の法線ベクトルと平行にならないこともある。
また、CAAC-OS膜中において、c軸配向した結晶部の分布が均一でなくてもよい。
例えば、CAAC-OS膜の結晶部が、CAAC-OS膜の上面近傍からの結晶成長によ
って形成される場合、上面近傍の領域は、被形成面近傍の領域よりもc軸配向した結晶部
の割合が高くなることがある。また、不純物の添加されたCAAC-OS膜は、不純物が
添加された領域が変質し、部分的にc軸配向した結晶部の割合の異なる領域が形成される
こともある。
なお、InGaZnOの結晶を有するCAAC-OS膜のout-of-plane法
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC-OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC-OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC-OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、
シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコ
ンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化
物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる
要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径
(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の
原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純
物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC-OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物
半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによって
キャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または
実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜
は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって、
当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(
ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純
度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導
体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとな
る。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要す
る時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が
高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定と
なる場合がある。
また、CAAC-OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性
の変動が小さい。
次に、微結晶酸化物半導体膜について説明する。
微結晶酸化物半導体膜は、高分解能TEM像において、結晶部を確認することのできる領
域と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体膜
に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大き
さであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微
結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc
-OS(nanocrystalline Oxide Semiconductor)
膜と呼ぶ。また、nc-OS膜は、例えば、高分解能TEM像では、結晶粒界を明確に確
認できない場合がある。
nc-OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上
3nm以下の領域)において原子配列に周期性を有する。また、nc-OS膜は、異なる
結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。し
たがって、nc-OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かな
い場合がある。例えば、nc-OS膜に対し、結晶部よりも大きい径のX線を用いるXR
D装置を用いて構造解析を行うと、out-of-plane法による解析では、結晶面
を示すピークが検出されない。また、nc-OS膜に対し、結晶部よりも大きいプローブ
径(例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を
行うと、ハローパターンのような回折パターンが観測される。一方、nc-OS膜に対し
、結晶部の大きさと近いか結晶部より小さいプローブ径の電子線を用いるナノビーム電子
回折を行うと、スポットが観測される。また、nc-OS膜に対しナノビーム電子回折を
行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、
nc-OS膜に対しナノビーム電子回折を行うと、リング状の領域内に複数のスポットが
観測される場合がある(図43(B)参照。)。
nc-OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。その
ため、nc-OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、
nc-OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc-O
S膜は、CAAC-OS膜と比べて欠陥準位密度が高くなる。
次に、非晶質酸化物半導体膜について説明する。
非晶質酸化物半導体膜は、膜中における原子配列が不規則であり、結晶部を有さない酸化
物半導体膜である。石英のような無定形状態を有する酸化物半導体膜が一例である。
非晶質酸化物半導体膜は、高分解能TEM像において結晶部を確認することができない。
非晶質酸化物半導体膜に対し、XRD装置を用いた構造解析を行うと、out-of-p
lane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半
導体膜に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半
導体膜に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンが
観測される。
なお、酸化物半導体膜は、nc-OS膜と非晶質酸化物半導体膜との間の物性を示す構造
を有する場合がある。そのような構造を有する酸化物半導体膜を、特に非晶質ライク酸化
物半導体(amorphous-like OS:amorphous-like Ox
ide Semiconductor)膜と呼ぶ。
amorphous-like OS膜は、高分解能TEM像において鬆(ボイドともい
う。)が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認
することのできる領域と、結晶部を確認することのできない領域と、を有する。amor
phous-like OS膜は、TEMによる観察程度の微量な電子照射によって、結
晶化が起こり、結晶部の成長が見られる場合がある。一方、良質なnc-OS膜であれば
、TEMによる観察程度の微量な電子照射による結晶化はほとんど見られない。
なお、amorphous-like OS膜およびnc-OS膜の結晶部の大きさの計
測は、高分解能TEM像を用いて行うことができる。例えば、InGaZnOの結晶は
層状構造を有し、In-O層の間に、Ga-Zn-O層を2層有する。InGaZnO
の結晶の単位格子は、In-O層を3層有し、またGa-Zn-O層を6層有する、計9
層がc軸方向に層状に重なった構造を有する。よって、これらの近接する層同士の間隔は
、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその
値は0.29nmと求められている。そのため、高分解能TEM像における格子縞に着目
し、格子縞の間隔が0.28nm以上0.30nm以下である箇所においては、それぞれ
の格子縞がInGaZnOの結晶のa-b面に対応すると見なした。その格子縞の観察
される領域のおける最大長を、amorphous-like OS膜およびnc-OS
膜の結晶部の大きさとする。なお、結晶部の大きさは、0.8nm以上のものを選択的に
評価する。
図44は、高分解能TEM像により、amorphous-like OS膜およびnc
-OS膜の結晶部(20箇所から40箇所)の平均の大きさの変化を調査した例である。
図44より、amorphous-like OS膜は、電子の累積照射量に応じて結晶
部が大きくなっていくことがわかる。具体的には、TEMによる観察初期においては1.
2nm程度の大きさだった結晶部が、累積照射量が4.2×10/nmにおいて
は2.6nm程度の大きさまで成長していることがわかる。一方、良質なnc-OS膜は
、電子照射開始時から電子の累積照射量が4.2×10/nmになるまでの範囲
で、電子の累積照射量によらず結晶部の大きさに変化が見られないことがわかる。
また、図44に示す、amorphous-like OS膜およびnc-OS膜の結晶
部の大きさの変化を線形近似して、電子の累積照射量0e/nmまで外挿すると、結
晶部の平均の大きさが正の値をとることがわかる。そのため、amorphous-li
ke OS膜およびnc-OS膜の結晶部が、TEMによる観察前から存在していること
がわかる。
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、微結晶酸化物半導体膜、CA
AC-OS膜のうち、二種以上を有する積層膜であってもよい。
酸化物半導体膜が複数の構造を有する場合、ナノビーム電子回折を用いることで構造解析
が可能となる場合がある。
図43(C)に、電子銃室10と、電子銃室10の下の光学系12と、光学系12の下の
試料室14と、試料室14の下の光学系16と、光学系16の下の観察室20と、観察室
20に設置されたカメラ18と、観察室20の下のフィルム室22と、を有する透過電子
回折測定装置を示す。カメラ18は、観察室20内部に向けて設置される。なお、フィル
ム室22を有さなくても構わない。
また、図43(D)に、図43(C)で示した透過電子回折測定装置内部の構造を示す。
透過電子回折測定装置内部では、電子銃室10に設置された電子銃から放出された電子が
、光学系12を介して試料室14に配置された物質28に照射される。物質28を通過し
た電子は、光学系16を介して観察室20内部に設置された蛍光板32に入射する。蛍光
板32では、入射した電子の強度に応じたパターンが現れることで透過電子回折パターン
を測定することができる。
カメラ18は、蛍光板32を向いて設置されており、蛍光板32に現れたパターンを撮影
することが可能である。カメラ18のレンズの中央、および蛍光板32の中央を通る直線
と、蛍光板32の上面と、の為す角度は、例えば、15°以上80°以下、30°以上7
5°以下、または45°以上70°以下とする。該角度が小さいほど、カメラ18で撮影
される透過電子回折パターンは歪みが大きくなる。ただし、あらかじめ該角度がわかって
いれば、得られた透過電子回折パターンの歪みを補正することも可能である。なお、カメ
ラ18をフィルム室22に設置しても構わない場合がある。例えば、カメラ18をフィル
ム室22に、電子24の入射方向と対向するように設置してもよい。この場合、蛍光板3
2の裏面から歪みの少ない透過電子回折パターンを撮影することができる。
試料室14には、試料である物質28を固定するためのホルダが設置されている。ホルダ
は、物質28を通過する電子を透過するような構造をしている。ホルダは、例えば、物質
28をX軸、Y軸、Z軸などに移動させる機能を有していてもよい。ホルダの移動機能は
、例えば、1nm以上10nm以下、5nm以上50nm以下、10nm以上100nm
以下、50nm以上500nm以下、100nm以上1μm以下などの範囲で移動させる
精度を有すればよい。これらの範囲は、物質28の構造によって最適な範囲を設定すれば
よい。
次に、上述した透過電子回折測定装置を用いて、物質の透過電子回折パターンを測定する
方法について説明する。
例えば、図43(D)に示すように物質におけるナノビームである電子24の照射位置を
変化させる(スキャンする)ことで、物質の構造が変化していく様子を確認することがで
きる。このとき、物質28がCAAC-OS膜であれば、図43(A)に示したような回
折パターンが観測される。または、物質28がnc-OS膜であれば、図43(B)に示
したような回折パターンが観測される。
ところで、物質28がCAAC-OS膜であったとしても、部分的にnc-OS膜などと
同様の回折パターンが観測される場合がある。したがって、CAAC-OS膜の良否は、
一定の範囲におけるCAAC-OS膜の回折パターンが観測される領域の割合(CAAC
化率ともいう。)で表すことができる場合がある。例えば、良質なCAAC-OS膜であ
れば、CAAC化率は、50%以上、好ましくは80%以上、さらに好ましくは90%以
上、より好ましくは95%以上となる。なお、CAAC-OS膜と異なる回折パターンが
観測される領域の割合を非CAAC化率と表記する。
一例として、成膜直後(as-sputteredと表記。)、または酸素を含む雰囲気
における450℃加熱処理後のCAAC-OS膜を有する各試料の上面に対し、スキャン
しながら透過電子回折パターンを取得した。ここでは、5nm/秒の速度で60秒間スキ
ャンしながら回折パターンを観測し、観測された回折パターンを0.5秒ごとに静止画に
変換することで、CAAC化率を導出した。なお、電子線としては、プローブ径が1nm
のナノビーム電子線を用いた。なお、同様の測定は6試料に対して行った。そしてCAA
C化率の算出には、6試料における平均値を用いた。
各試料におけるCAAC化率を図45(A)に示す。成膜直後のCAAC-OS膜のCA
AC化率は75.7%(非CAAC化率は24.3%)であった。また、450℃加熱処
理後のCAAC-OS膜のCAAC化率は85.3%(非CAAC化率は14.7%)で
あった。成膜直後と比べて、450℃加熱処理後のCAAC化率が高いことがわかる。即
ち、高い温度(例えば400℃以上)における加熱処理によって、非CAAC化率が低く
なる(CAAC化率が高くなる)ことがわかる。また、500℃未満の加熱処理において
も高いCAAC化率を有するCAAC-OS膜が得られることがわかる。
ここで、CAAC-OS膜と異なる回折パターンのほとんどはnc-OS膜と同様の回折
パターンであった。また、測定領域において非晶質酸化物半導体膜は、確認することがで
きなかった。したがって、加熱処理によって、nc-OS膜と同様の構造を有する領域が
、隣接する領域の構造の影響を受けて再配列し、CAAC化していることが示唆される。
図45(B)および図45(C)は、成膜直後および450℃加熱処理後のCAAC-O
S膜の平面の高分解能TEM像である。図45(B)と図45(C)とを比較することに
より、450℃加熱処理後のCAAC-OS膜は、膜質がより均質であることがわかる。
即ち、高い温度における加熱処理によって、CAAC-OS膜の膜質が向上することがわ
かる。
このような測定方法を用いれば、複数の構造を有する酸化物半導体膜の構造解析が可能と
なる場合がある。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態9)
本発明の一態様に係る撮像装置および当該撮像装置を含む半導体装置は、表示機器、パー
ソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digita
l Versatile Disc等の記録媒体を再生し、その画像を表示しうるディス
プレイを有する装置)に用いることができる。その他に、本発明の一態様に係る撮像装置
および当該撮像装置を含む半導体装置を用いることができる電子機器として、携帯電話、
携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチル
カメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲー
ションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、
複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)
、自動販売機などが挙げられる。これら電子機器の具体例を図46に示す。
図46(A)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部
904、マイク905、スピーカー906、操作キー907、スタイラス908、カメラ
909等を有する。なお、図46(A)に示した携帯型ゲーム機は、2つの表示部903
と表示部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定さ
れない。カメラ909には本発明の一態様の撮像装置を用いることができる。
図46(B)は携帯データ端末であり、第1筐体911、表示部912、カメラ919等
を有する。表示部912が有するタッチパネル機能により情報の入力を行うことができる
。カメラ919には本発明の一態様の撮像装置を用いることができる。
図46(C)は腕時計型の情報端末であり、筐体921、表示部922、リストバンド9
23、カメラ929等を有する。表示部922はタッチパネルとなっていてもよい。カメ
ラ929には本発明の一態様の撮像装置を用いることができる。
図46(D)はデジタルカメラであり、筐体931、シャッターボタン932、マイク9
33、発光部937、レンズ935等を有する。レンズ935の焦点となる位置には本発
明の一態様の撮像装置を備えることができる。
図46(E)はビデオカメラであり、第1筐体941、第2筐体942、表示部943、
操作キー944、レンズ945、接続部946等を有する。操作キー944およびレンズ
945は第1筐体941に設けられており、表示部943は第2筐体942に設けられて
いる。そして、第1筐体941と第2筐体942とは、接続部946により接続されてお
り、第1筐体941と第2筐体942の間の角度は、接続部946により変更が可能であ
る。表示部943における映像を、接続部946における第1筐体941と第2筐体94
2との間の角度に従って切り替える構成としても良い。レンズ945の焦点となる位置に
は本発明の一態様の撮像装置を備えることができる。
図46(F)は携帯電話であり、筐体951に、表示部952、マイク957、スピーカ
ー954、カメラ959、入出力端子956、操作用のボタン955等を有する。カメラ
959には本発明の一態様の撮像装置を用いることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
10 電子銃室
12 光学系
14 試料室
16 光学系
18 カメラ
20 観察室
22 フィルム室
24 電子
28 物質
32 蛍光板
40 シリコン基板
41 基板
51 トランジスタ
52 トランジスタ
53 トランジスタ
54 トランジスタ
55 トランジスタ
56 トランジスタ
57 トランジスタ
59 活性層
60 フォトダイオード
61 半導体層
62 半導体層
63 半導体層
64 透光性導電膜
70 導電体
71 配線
72 配線
73 配線
80 絶縁層
91 回路
91a 領域
91b 領域
91c 領域
92 回路
92a 領域
101 トランジスタ
102 トランジスタ
103 トランジスタ
104 トランジスタ
105 トランジスタ
106 トランジスタ
107 トランジスタ
108 トランジスタ
109 トランジスタ
110 トランジスタ
111 トランジスタ
112 トランジスタ
115 基板
120 絶縁層
130 酸化物半導体層
130a 酸化物半導体層
130A 酸化物半導体膜
130b 酸化物半導体層
130B 酸化物半導体膜
130c 酸化物半導体層
130C 酸化物半導体膜
140 導電層
141 導電層
142 導電層
150 導電層
151 導電層
152 導電層
156 レジストマスク
160 絶縁層
160A 絶縁膜
170 導電層
171 導電層
171A 導電膜
172 導電層
172A 導電膜
173 導電層
175 絶縁層
180 絶縁層
190 絶縁層
231 領域
232 領域
233 領域
311 配線
312 配線
313 配線
314 配線
315 配線
316 配線
317 配線
331 領域
332 領域
333 領域
334 領域
335 領域
501 信号
502 信号
503 信号
504 信号
505 信号
506 信号
507 信号
508 信号
509 信号
510 期間
511 期間
520 期間
531 期間
610 期間
611 期間
612 期間
613 期間
621 期間
622 期間
623 期間
631 期間
701 信号
702 信号
703 信号
704 信号
705 信号
901 筐体
902 筐体
903 表示部
904 表示部
905 マイク
906 スピーカー
907 操作キー
908 スタイラス
909 カメラ
911 筐体
912 表示部
919 カメラ
921 筐体
922 表示部
923 リストバンド
929 カメラ
931 筐体
932 シャッターボタン
933 マイク
935 レンズ
937 発光部
941 筐体
942 筐体
943 表示部
944 操作キー
945 レンズ
946 接続部
951 筐体
952 表示部
954 スピーカー
955 ボタン
956 入出力端子
957 マイク
959 カメラ
1100 第1の層
1200 第2の層
1300 第3の層
1400 第4の層
1500 絶縁層
1510 遮光層
1520 有機樹脂層
1530a カラーフィルタ
1530b カラーフィルタ
1530c カラーフィルタ
1540 マイクロレンズアレイ
1550 光学変換層
1700 画素マトリクス
1730 回路
1740 回路
1750 回路
1770 端子
1800 シフトレジスタ
1810 シフトレジスタ
1900 バッファ回路
1910 バッファ回路
2100 アナログスイッチ
2110 垂直出力線
2200 出力線

Claims (1)

  1. 第1の層と、第2の層と、第3の層と、を有する撮像装置であって、
    前記第2の層は、前記第1の層と前記第3の層との間に設けられ、
    前記第1の層は、第1のトランジスタを有し、
    前記第2の層は、第2のトランジスタを有し、
    前記第3の層は、フォトダイオードを有し、
    前記第1のトランジスタは、第1の回路の構成要素であり、
    前記第2のトランジスタおよび前記フォトダイオードは、第2の回路の構成要素であり、
    前記第1の回路は、前記第2の回路を駆動することができる構成を有し、
    前記第1のトランジスタのチャネル形成領域は、シリコンを有し、
    前記第2のトランジスタのチャネル形成領域は、酸化物半導体を有し、
    前記フォトダイオードは、pin型の構造を有し、
    前記フォトダイオードは、非晶質シリコンを有し、
    前記非晶質シリコンは、i型である領域を有する撮像装置。
JP2023008052A 2014-03-28 2023-01-23 撮像装置 Pending JP2023041762A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014068220 2014-03-28
JP2014068220 2014-03-28
JP2020042762A JP2020109994A (ja) 2014-03-28 2020-03-12 電子機器および撮像装置
JP2021073160A JP2021122048A (ja) 2014-03-28 2021-04-23 撮像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021073160A Division JP2021122048A (ja) 2014-03-28 2021-04-23 撮像装置

Publications (1)

Publication Number Publication Date
JP2023041762A true JP2023041762A (ja) 2023-03-24

Family

ID=54191496

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015066560A Withdrawn JP2015195378A (ja) 2014-03-28 2015-03-27 撮像装置
JP2020042762A Withdrawn JP2020109994A (ja) 2014-03-28 2020-03-12 電子機器および撮像装置
JP2021073160A Withdrawn JP2021122048A (ja) 2014-03-28 2021-04-23 撮像装置
JP2023008052A Pending JP2023041762A (ja) 2014-03-28 2023-01-23 撮像装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2015066560A Withdrawn JP2015195378A (ja) 2014-03-28 2015-03-27 撮像装置
JP2020042762A Withdrawn JP2020109994A (ja) 2014-03-28 2020-03-12 電子機器および撮像装置
JP2021073160A Withdrawn JP2021122048A (ja) 2014-03-28 2021-04-23 撮像装置

Country Status (4)

Country Link
US (1) US20150279884A1 (ja)
JP (4) JP2015195378A (ja)
TW (1) TWI656631B (ja)
WO (1) WO2015145306A1 (ja)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042024B2 (en) * 2001-11-09 2006-05-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method for manufacturing the same
US9891102B2 (en) * 2010-04-22 2018-02-13 Samsung Electronics Co., Ltd. Simplified light sensing circuit, light sensing apparatus including the light sensing circuit, method of driving the light sensing apparatus, and image acquisition apparatus and optical touch screen apparatus including the light sensing apparatus
US9881954B2 (en) 2014-06-11 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Imaging device
WO2016046685A1 (en) 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US10050076B2 (en) * 2014-10-07 2018-08-14 Terapede Systems Inc. 3D high resolution X-ray sensor with integrated scintillator grid
JP6570417B2 (ja) 2014-10-24 2019-09-04 株式会社半導体エネルギー研究所 撮像装置および電子機器
US10522693B2 (en) 2015-01-16 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
US9837412B2 (en) * 2015-12-09 2017-12-05 Peregrine Semiconductor Corporation S-contact for SOI
US10020336B2 (en) * 2015-12-28 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device using three dimentional (3D) integration
WO2017125795A1 (ja) * 2016-01-22 2017-07-27 株式会社半導体エネルギー研究所 トランジスタ、撮像装置
US9947700B2 (en) * 2016-02-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10573621B2 (en) * 2016-02-25 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Imaging system and manufacturing apparatus
US10589660B2 (en) 2016-04-01 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Mobile unit and system for mobile unit
KR102467872B1 (ko) * 2016-05-17 2022-11-16 에스케이하이닉스 주식회사 수직 채널을 갖는 전달 트랜지스터 및 박막 채널을 갖는 픽셀 트랜지스터들을 포함하는 이미지 센서
KR102582394B1 (ko) 2016-08-30 2023-09-26 삼성디스플레이 주식회사 반도체 장치
US10917625B1 (en) 2016-10-20 2021-02-09 Facebook Technologies, Llc Time multiplexed dual-band sensor
US10419701B2 (en) 2017-06-26 2019-09-17 Facebook Technologies, Llc Digital pixel image sensor
US10686996B2 (en) 2017-06-26 2020-06-16 Facebook Technologies, Llc Digital pixel with extended dynamic range
US10917589B2 (en) * 2017-06-26 2021-02-09 Facebook Technologies, Llc Digital pixel with extended dynamic range
WO2019003037A1 (ja) 2017-06-27 2019-01-03 株式会社半導体エネルギー研究所 半導体装置および電子部品
CN110945861B (zh) 2017-07-07 2022-11-29 株式会社半导体能源研究所 显示系统及显示系统的工作方法
DE112018003617T5 (de) 2017-07-14 2020-06-04 Semiconductor Energy Laboratory Co., Ltd. Abbildungsvorrichtung und elektronisches Gerät
US11568609B1 (en) 2017-07-25 2023-01-31 Meta Platforms Technologies, Llc Image sensor having on-chip compute circuit
US10726627B2 (en) 2017-07-25 2020-07-28 Facebook Technologies, Llc Sensor system based on stacked sensor layers
US10825854B2 (en) 2017-08-16 2020-11-03 Facebook Technologies, Llc Stacked photo sensor assembly with pixel level interconnect
US10598546B2 (en) 2017-08-17 2020-03-24 Facebook Technologies, Llc Detecting high intensity light in photo sensor
US11393867B2 (en) 2017-12-06 2022-07-19 Facebook Technologies, Llc Multi-photodiode pixel cell
US11057581B2 (en) 2018-01-24 2021-07-06 Facebook Technologies, Llc Digital pixel array with multi-stage readouts
US10827142B2 (en) 2018-03-02 2020-11-03 Facebook Technologies, Llc Digital pixel array with adaptive exposure
US10969273B2 (en) 2018-03-19 2021-04-06 Facebook Technologies, Llc Analog-to-digital converter having programmable quantization resolution
US11054632B1 (en) 2018-03-21 2021-07-06 Facebook Technologies, Llc Liquid filled pixelated film
US10553180B1 (en) 2018-03-21 2020-02-04 Facebook Technologies, Llc Dynamically structured protective film for maximum display resolution
US11004881B2 (en) 2018-04-03 2021-05-11 Facebook Technologies, Llc Global shutter image sensor
US10923523B2 (en) 2018-04-16 2021-02-16 Facebook Technologies, Llc Multi-photodiode pixel cell
US10848681B2 (en) 2018-04-17 2020-11-24 Facebook Technologies, Llc Image reconstruction from image sensor output
US10685594B2 (en) 2018-05-08 2020-06-16 Facebook Technologies, Llc Calibrating brightness variation in a display
US11233085B2 (en) 2018-05-09 2022-01-25 Facebook Technologies, Llc Multi-photo pixel cell having vertical gate structure
CN108766989B (zh) * 2018-06-01 2021-09-03 京东方科技集团股份有限公司 一种光学传感器件及其制作方法、显示器件、显示设备
US10804926B2 (en) 2018-06-08 2020-10-13 Facebook Technologies, Llc Charge leakage compensation in analog-to-digital converter
US11089241B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Pixel cell with multiple photodiodes
US11089210B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Configurable image sensor
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
KR20210021463A (ko) 2018-06-21 2021-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 장치 및 그 동작 방법, 및 전자 기기
US11463636B2 (en) 2018-06-27 2022-10-04 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US10897586B2 (en) 2018-06-28 2021-01-19 Facebook Technologies, Llc Global shutter image sensor
US10931884B2 (en) 2018-08-20 2021-02-23 Facebook Technologies, Llc Pixel sensor having adaptive exposure time
US11956413B2 (en) 2018-08-27 2024-04-09 Meta Platforms Technologies, Llc Pixel sensor having multiple photodiodes and shared comparator
CN109346498B (zh) * 2018-09-18 2020-06-16 京东方科技集团股份有限公司 一种阵列基板及显示面板
WO2020070590A1 (ja) * 2018-10-05 2020-04-09 株式会社半導体エネルギー研究所 認証システム、認証システムを用いた解錠履歴の記録方法
US11595602B2 (en) 2018-11-05 2023-02-28 Meta Platforms Technologies, Llc Image sensor post processing
US11102430B2 (en) 2018-12-10 2021-08-24 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US11962928B2 (en) 2018-12-17 2024-04-16 Meta Platforms Technologies, Llc Programmable pixel array
US11888002B2 (en) 2018-12-17 2024-01-30 Meta Platforms Technologies, Llc Dynamically programmable image sensor
US11218660B1 (en) 2019-03-26 2022-01-04 Facebook Technologies, Llc Pixel sensor having shared readout structure
CN113646905A (zh) 2019-04-18 2021-11-12 株式会社半导体能源研究所 固态继电器以及半导体装置
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
CN110286796B (zh) 2019-06-27 2023-10-27 京东方科技集团股份有限公司 电子基板及其制作方法、显示面板
US11842002B2 (en) 2019-10-04 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI831995B (zh) * 2019-10-04 2024-02-11 日商索尼半導體解決方案公司 固體攝像元件及電子機器
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11935291B2 (en) 2019-10-30 2024-03-19 Meta Platforms Technologies, Llc Distributed sensor system
US11948089B2 (en) 2019-11-07 2024-04-02 Meta Platforms Technologies, Llc Sparse image sensing and processing
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
US11825228B2 (en) 2020-05-20 2023-11-21 Meta Platforms Technologies, Llc Programmable pixel array having multiple power domains
JP2021190483A (ja) * 2020-05-26 2021-12-13 株式会社ジャパンディスプレイ 検出装置
US11910114B2 (en) 2020-07-17 2024-02-20 Meta Platforms Technologies, Llc Multi-mode image sensor
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation
US11935575B1 (en) 2020-12-23 2024-03-19 Meta Platforms Technologies, Llc Heterogeneous memory system
CN112909056B (zh) * 2021-01-26 2023-08-08 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682821B2 (ja) * 1988-04-13 1994-10-19 工業技術院長 固体撮像装置
JPH03192765A (ja) * 1989-12-21 1991-08-22 Kyocera Corp イメージセンサ
JP3393842B2 (ja) * 1992-09-11 2003-04-07 株式会社半導体エネルギー研究所 光電変換装置の作製方法
JP3408045B2 (ja) * 1996-01-19 2003-05-19 キヤノン株式会社 光電変換装置
JP4271268B2 (ja) * 1997-09-20 2009-06-03 株式会社半導体エネルギー研究所 イメージセンサおよびイメージセンサ一体型アクティブマトリクス型表示装置
JP3728260B2 (ja) * 2002-02-27 2005-12-21 キヤノン株式会社 光電変換装置及び撮像装置
JP4304927B2 (ja) * 2002-07-16 2009-07-29 ソニー株式会社 固体撮像素子及びその製造方法
JP4414646B2 (ja) * 2002-11-18 2010-02-10 浜松ホトニクス株式会社 光検出装置
JP4247017B2 (ja) * 2003-03-10 2009-04-02 浜松ホトニクス株式会社 放射線検出器の製造方法
JP4481135B2 (ja) * 2003-10-06 2010-06-16 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP4647404B2 (ja) * 2004-07-07 2011-03-09 三星電子株式会社 転送ゲート電極に重畳しながら自己整列されたフォトダイオードを有するイメージセンサの製造方法
DE102004055674A1 (de) * 2004-11-18 2006-05-24 Infineon Technologies Ag Vorrichtung und Verfahren zum Beschreiben und/oder Lesen einer Speicherzelle eines Halbleiterspeicher
JP4532418B2 (ja) * 2005-02-18 2010-08-25 株式会社半導体エネルギー研究所 光センサ及びその作製方法
US20070081371A1 (en) * 2005-04-25 2007-04-12 Wittenbreder Ernest H Jr Synchronous Rectifier Control Circuits
JP4809715B2 (ja) * 2005-05-20 2011-11-09 株式会社半導体エネルギー研究所 光電変換装置及びその作製方法、並びに半導体装置
FR2888989B1 (fr) * 2005-07-21 2008-06-06 St Microelectronics Sa Capteur d'images
KR100775058B1 (ko) * 2005-09-29 2007-11-08 삼성전자주식회사 픽셀 및 이를 이용한 이미지 센서, 그리고 상기 이미지센서를 포함하는 이미지 처리 시스템
TWI442368B (zh) * 2006-10-26 2014-06-21 Semiconductor Energy Lab 電子裝置,顯示裝置,和半導體裝置,以及其驅動方法
JP2008134625A (ja) * 2006-10-26 2008-06-12 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置及び電子機器
US8618876B2 (en) * 2008-05-30 2013-12-31 Qualcomm Incorporated Reduced power-consumption transmitters
JP2010003910A (ja) * 2008-06-20 2010-01-07 Toshiba Mobile Display Co Ltd 表示素子
TWI585955B (zh) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 光感測器及顯示裝置
US7876618B2 (en) * 2009-03-23 2011-01-25 Sandisk Corporation Non-volatile memory with reduced leakage current for unselected blocks and method for operating same
WO2011002030A1 (ja) * 2009-06-30 2011-01-06 株式会社 東芝 携帯可能電子装置、及び携帯可能電子装置の制御方法
KR101065407B1 (ko) * 2009-08-25 2011-09-16 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101952065B1 (ko) * 2009-11-06 2019-02-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작 방법
CN104485341A (zh) * 2009-11-06 2015-04-01 株式会社半导体能源研究所 半导体装置
US20120320307A1 (en) * 2010-02-18 2012-12-20 Sharp Kabushiki Kaisha Active matrix substrate, glass substrate, liquid crystal panel and liquid crystal display device
KR101832119B1 (ko) * 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011111549A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
DE112011100886T5 (de) * 2010-03-12 2012-12-27 Semiconductor Energy Laboratory Co., Ltd. Ansteuerverfahren für Anzeigeeinrichtung
TWI438868B (zh) * 2010-07-30 2014-05-21 Au Optronics Corp 互補金氧半電晶體及其製作方法
CN105931967B (zh) * 2011-04-27 2019-05-03 株式会社半导体能源研究所 半导体装置的制造方法
CN107340509B (zh) * 2012-03-09 2020-04-14 株式会社半导体能源研究所 半导体装置的驱动方法
US9236408B2 (en) * 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
US8860022B2 (en) * 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8872120B2 (en) * 2012-08-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and method for driving the same
JP6013084B2 (ja) * 2012-08-24 2016-10-25 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
DE102014208859B4 (de) * 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
JP6322503B2 (ja) * 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 半導体装置
KR102380829B1 (ko) * 2014-04-23 2022-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 장치

Also Published As

Publication number Publication date
JP2020109994A (ja) 2020-07-16
US20150279884A1 (en) 2015-10-01
TW201537741A (zh) 2015-10-01
JP2021122048A (ja) 2021-08-26
WO2015145306A1 (en) 2015-10-01
TWI656631B (zh) 2019-04-11
JP2015195378A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
JP2023041762A (ja) 撮像装置
JP7153762B2 (ja) 撮像装置および電子機器
JP7153765B2 (ja) 撮像装置
JP7200340B2 (ja) 撮像装置
JP7142120B2 (ja) 撮像装置
JP7432644B2 (ja) 撮像装置
JP7118213B2 (ja) 撮像装置
JP6745955B2 (ja) 撮像装置
JP6845299B2 (ja) 撮像装置
JP6604729B2 (ja) 撮像装置及び電子機器
JP2022065052A (ja) 撮像装置
JP6674901B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240328