JP2023035105A - 炭酸カルシウム生成方法及びシステム - Google Patents

炭酸カルシウム生成方法及びシステム Download PDF

Info

Publication number
JP2023035105A
JP2023035105A JP2021141723A JP2021141723A JP2023035105A JP 2023035105 A JP2023035105 A JP 2023035105A JP 2021141723 A JP2021141723 A JP 2021141723A JP 2021141723 A JP2021141723 A JP 2021141723A JP 2023035105 A JP2023035105 A JP 2023035105A
Authority
JP
Japan
Prior art keywords
aqueous solution
calcium
calcium carbonate
carbonate
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021141723A
Other languages
English (en)
Inventor
定人 菊池
Sadato Kikuchi
丞吾 中村
Shogo Nakamura
理紗 大泉
Risa OIZUMI
正芳 小西
Masayoshi Konishi
充 比嘉
Mitsuru Higa
育雄 谷口
Ikuo Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Sumitomo Osaka Cement Co Ltd
Yamaguchi University NUC
Original Assignee
Kyushu University NUC
Sumitomo Osaka Cement Co Ltd
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Sumitomo Osaka Cement Co Ltd, Yamaguchi University NUC filed Critical Kyushu University NUC
Priority to JP2021141723A priority Critical patent/JP2023035105A/ja
Priority to PCT/JP2022/032756 priority patent/WO2023033039A1/ja
Priority to AU2022340139A priority patent/AU2022340139A1/en
Priority to CA3230476A priority patent/CA3230476A1/en
Priority to CN202280059220.4A priority patent/CN117897359A/zh
Publication of JP2023035105A publication Critical patent/JP2023035105A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • C01D7/32Purification by dialysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components

Abstract

【課題】カルシウム含有廃棄物を利用し、純度の高い炭酸カルシウムを生成することが可能な炭酸カルシウム生成方法及びシステムを提供すること。【解決手段】カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成方法において、カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解工程と、前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離工程と、該分離工程を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収工程とを有することを特徴とする。【選択図】図1

Description

本発明は、炭酸カルシウム生成方法及びシステム、特に、カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウムの生成方法及び生成システムに関する。
炭酸カルシウムは、プラスチック、紙、塗料などの充填材、また農薬・肥料などの土壌改良剤、食品添加物や化粧品原料など、幅広い産業分野で利用されている。
炭酸カルシウムは、水酸化カルシウム水溶液に二酸化炭素を吹き込むことで合成したり、塩化カルシウム等のカルシウムイオンを含む水溶液と炭酸ナトリウム水溶液を混合させることで合成される。
近年では、特許文献1に示すように、温室効果ガスである二酸化炭素を削減するため、二酸化炭素を固定化するプロセスの中で炭酸カルシウムを生成する場合がある。特許文献1では、大量のカルシウム等を供給するため、廃コンクリートや鉄鋼スラグ等の廃材や岩石などカルシウム含有廃棄物が利用されている。
特許文献1では、カルシウム含有廃棄物からカルシウムを溶解させる方法として硝酸が利用されるが、この段階でカルシウムのみが溶出されるだけでなくマグネシウムなどの他の元素も水溶液中に溶解する。特許文献1では、硝酸カルシウムや硝酸マグネシウムなどを含む水溶液に、水酸化ナトリウムと二酸化炭素とを接触して生成される炭酸ナトリウムの水溶液を導入し、炭酸カルシウムや炭酸マグネシウムを析出させている。
また、特許文献1では、硝酸や水酸化ナトリウムの生成には、炭酸カルシウム等の析出工程で発生する硝酸ナトリウムを利用し、この硝酸ナトリウムをバイポーラ膜電気透析処理を行うことも開示している。
しかしながら、カルシウム含有廃棄物を用いる場合には、廃棄物自体がカルシウム以外の多くの不純物を含んでおり、生成する炭酸カルシウム自体の純度が低くなるという課題があった。
しかも、プラスチックなどの充填材などでは、高い純度の炭酸カルシウムの生産が求められていた。
特開2012-96975号公報
本発明が解決しようとする課題は、上述したような問題を解決し、カルシウム含有廃棄物を利用し、純度の高い炭酸カルシウムを生成することが可能な炭酸カルシウム生成方法及びシステムを提供することである。
上記課題を解決するため、本発明の炭酸カルシウム生成方法及びシステムは、以下の技術的特徴を有する。
(1) カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成方法において、カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解工程と、前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離工程と、該分離工程を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収工程とを有することを特徴とする。
(2) 上記(1)に記載の炭酸カルシウム生成方法において、該塩酸水は、塩化カリウム及び/又は塩化ナトリウムを含む水溶液をバイポーラ膜電気透析処理により生成され、前記塩化カリウム及び/又は塩化ナトリウムは、該炭酸カルシウム回収工程で生成される塩化カリウム及び/又は塩化ナトリウムを含む水溶液の少なくとも一部を使用することを特徴とする。
(3) 上記(2)に記載の炭酸カルシウム生成方法において、該バイポーラ膜電気透析処理により水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液を生成し、前記水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液に二酸化炭素を接触させ、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を生成し、前記炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を該炭酸カルシウム回収工程に用いることを特徴とする。
(4) 上記(3)に記載の炭酸カルシウム生成方法において、該二酸化炭素は、セメント製造設備から排出される二酸化炭素を使用することを特徴とする。
(5) 上記(1)乃至(4)のいずれかに記載の炭酸カルシウム生成方法において、該カルシウム含有廃棄物には、セメント製造設備の脱塩バイパス部分から得られる脱塩ダストを含むことを特徴とする。
(6) カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成システムにおいて、カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解手段と、前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離手段と、該分離手段を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収手段とを有することを特徴とする。
(7) 上記(6)に記載の炭酸カルシウム生成システムにおいて、該塩酸水は、塩化カリウム及び/又は塩化ナトリウムを含む水溶液からバイポーラ膜電気透析処理手段により生成され、前記塩化カリウム及び/又は塩化ナトリウムは、該炭酸カルシウム回収手段で生成される塩化カリウム及び/又は塩化ナトリウムを含む水溶液の少なくとも一部を使用することを特徴とする。
(8) 上記(7)に記載の炭酸カルシウム生成システムにおいて、該バイポーラ膜電気透析処理手段により水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液を生成し、前記水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液に二酸化炭素を接触させ、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を生成し、前記炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を該炭酸カルシウム回収手段に用いることを特徴とする。
(9) 上記(8)に記載の炭酸カルシウム生成システムにおいて、該二酸化炭素は、セメント製造設備から排出される二酸化炭素を使用することを特徴とする。
(10) 上記(6)乃至(9)のいずれかに記載の炭酸カルシウム生成システムにおいて、該カルシウム含有廃棄物には、セメント製造設備の脱塩バイパス部分から得られる脱塩ダストを含むことを特徴とする。
本発明は、カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成方法(生成システム)において、カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解工程(カルシウム溶解手段)と、前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離工程(分離手段)と、該分離工程(分離手段)を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収工程(炭酸カルシウム回収手段)とを有するため、純度の高い炭酸カルシウムを容易に得ることができる。
特に、水素イオン濃度指数を調整するだけで、様々な不純物を容易に除去することができるため、炭酸カルシウムの生成工程を複雑化させることもない。
また、得られた残渣物は、セメント製造に利用することも可能である。
本発明の炭酸カルシウム生成方法のフロー図である。 本発明の炭酸カルシウム生成方法を用いた二酸化炭素固定化方法を示す図である。 一般ごみ焼却施設Aで採取したフライアッシュ(FA1)におけるCa抽出率の時間変化を示すグラフである。 FA1におけるK抽出率の時間変化を示すグラフである。 FA1におけるCr抽出率の時間変化を示すグラフである。 FA1におけるPb抽出率の時間変化を示すグラフである。 FA1におけるSi抽出率の時間変化を示すグラフである。 FA1におけるAl抽出率の時間変化を示すグラフである。 FA1におけるMg抽出率の時間変化を示すグラフである。 一般ごみ焼却施設Bで採取したフライアッシュ(FA2)におけるCa抽出率の時間変化を示すグラフである。 生コン工場Aの排水工程で採取した生コンスラッジ(CS1)におけるCa抽出率の時間変化を示すグラフである。 生コン工場Bの排水工程で採取した生コンスラッジ(CS2)におけるCa抽出率の時間変化を示すグラフである。
以下、本発明の炭酸カルシウム生成方法及びシステムについて、図面を参照しながら、好適例を用いて詳細に説明する。
本発明は、図1に示すように、カルシウム(Ca)含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成方法(炭酸カルシム生成システム)において、カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解工程(カルシウム溶解手段)と、前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離工程(分離手段)と、該分離工程(分離手段)を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収工程(炭酸カルシウム回収手段)とを有することを特徴とする。
なお、図1中、二重線矢印は固体の流れ、一重線矢印は液体の流れを示す。また、以下の説明では、炭酸カルシウムの生成方法を中心に説明する。
本発明に使用されるCa含有廃棄物としては、一般ごみや産廃ごみなどの焼却灰、火力発電所等から排出されるフライアッシュ、スラグ、廃コンクリート、生コンスラッジ、バイオ灰などがある。
特に、後述するように、セメント製造設備における脱塩バイパス部分から得られる脱塩ダストは、塩化カリウム成分を含有するため、本発明に好適に用いることが可能である。
Ca含有廃棄物は、粒度を1000μm以下、より好ましくは500μm以下、100μm以上の範囲に調整される。これにより、Caを抽出し易くすることが可能となる。
Ca溶解工程(Ca溶解手段)では、粒度調整したCa含有廃棄物に塩酸水を添加して、好ましくは、水素イオン濃度指数をpH5以下、pH0.5以上の範囲になるようにする。
この際に、必要に応じて洗浄水を添加してもよい。洗浄は、固液分離の際、固形分に含まれる液体を清水と置換するために実施されるものである。
Ca含有廃棄物からのCa抽出に要する反応時間としては、120分以下、より好ましくは30分以上、60分以下である。また、多段階で、特に多段向流で溶解抽出を行うことも可能である。
Caを抽出する際の塩酸を含む水溶液の温度は、常温以上が好ましく、より好ましくは20℃以上、70℃以下の範囲である。後述するバイポーラ膜電気透析(BMED)処理で利用する膜が有機膜であるため、前記水溶液の温度は、当該膜の耐熱温度も考慮して設定される。
Ca溶解工程(Ca溶解手段)で、残渣と水溶液に分離し、当該残渣は、例えば、セメント製造設備において、セメント原料として使用することが可能である。
Ca溶解工程(Ca溶解手段)で得られたCaイオンを含有する水溶液は、Ca以外の不純物イオンを含んでおり、分離工程(分離手段)では、水素イオン濃度指数を調整することで、不純物イオンを分離する。
Ca溶解工程(Ca溶解手段)から得られたCaイオンを含有する水溶液のpHを、例えば、pH5~6に、水酸化ナトリウム又は水酸化カリウムを用いて調整することで、Caイオンを含有する水溶液中に含まれるSiやAlイオンを、ゲルとして除去することが可能である。また、必要に応じて、清水等の洗浄水を添加して、固形分を洗浄することも可能である。これらのゲルはセメント原料として利用することができる。
次いで、SiやAlイオンを除去した後のCaイオン含有水溶液のpHを、例えばpH7~10に、水酸化ナトリウム又は水酸化カリウムを用いて調整することで、PbやCrイオンなどの重金属を分離することができる。また、必要に応じて、清水等の洗浄水を添加することも可能であり、かかる洗浄により、固形分を洗浄する。
なお、重金属を除去する前に、必要に応じて、Caイオン含有水溶液に凝集剤を添加することも可能である。例えば、高分子凝集剤または無機凝集剤があげられる。無機凝集剤としては、ポリ硫酸第二鉄、等の鉄塩、または硫酸アルミニウム、ポリ塩化アルミニウム、等のアルミ塩がある。高分子凝集剤としては、アニオン、ノニオン、カチオン性等のpHおよび粒子性状により適したものを用いればよく、ポリアクリルアミド系、ポリアクリル酸ソーダ系、ポリアクリル酸エステル系等がある。
さらに、前記重金属イオンが除去されたCaイオン含有水溶液のpHを11~12に、水酸化ナトリウム又は水酸化カリウムを用いて調整することで、含有されるMgイオンを、ゲルとして除去することが可能となる。また、必要に応じて、清水等の洗浄水を添加することも可能であり、かかる洗浄により、固形分を洗浄する。
Caイオン含有水溶液から、上記不要な不純物を分離除去した水溶液に、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を添加することで、高純度の炭酸カルシウムが生成され、炭酸カルシウムと、塩化カリウム及び/又は塩化ナトリウム水溶液とに分離される。実際に、熱分析装置(TG)を用いて、550℃~800℃の重量減少から炭酸カルシウムの純度を計算すると、95.7%の値が得られた。
得られた炭酸カルシウムは、上述したプラスチック、紙、塗料などの充填材(フィラー)、また農薬・肥料などの土壌改良剤、食品添加物や化粧品原料などに利用され、本発明では、炭酸マグネシウムなどの不純物を含まない、純度の高い炭酸カルシウムが得られる。
また、これらの炭酸カルシウムは、セメント原料として利用できるだけでなく、セメントの増量材としても利用可能である。
図2は、図1の炭酸カルシウム生成方法に、二酸化炭素を固定化する工程方法を組み込んだものである。
なお、図2中、二重線矢印は固体の流れ、一重線矢印は液体の流れ、点線は気体の流れを示す。
Ca溶解工程(Ca溶解手段)で使用する塩酸水は、塩化カリウム及び/又は塩化ナトリウムを含む水溶液をバイポーラ膜電気透析(BMED)処理(BMED処理手段)により生成している。
また、この塩化カリウム及び/又は塩化ナトリウムは、図1の炭酸カルシウム回収工程(炭酸カルシウム回収手段)で生成される塩化カリウム及び/又は塩化ナトリウムを含む水溶液が使用可能である。
炭酸カルシウム回収工程(炭酸カルシウム回収手段)(図2で「Ca回収」と表示)で発生する塩化カリウム及び/又は塩化ナトリウムは、必要に応じて、MF膜(ろ過膜)により微粒子を除去し、RO膜(逆浸透膜)により水溶液を濃縮するなどの前処理を施されることも可能である。
バイポーラ膜電気透析(BMED)は電気で動作し、塩酸水以外に同時に水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液を生成する。
水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液に二酸化炭素を接触させ、二酸化炭素を吸収し、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を生成させる。
この炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液は、図1の炭酸カルシウム回収工程(炭酸カルシウム回収手段)に用いることが可能である。
当該二酸化炭素は、火力発電設備などの燃焼排ガスや、セメント製造設備での排ガスに含まれている二酸化炭素を使用することができ、また、大気中の二酸化炭素を直接吸収させて利用することも可能である。
利用するCa含有廃棄物としては、上述したもの以外に、セメント製造設備の脱塩バイパス部分から得られる脱塩ダストも好適に利用することが可能である。
これは、脱塩ダストが塩化カリウムを含有しており、矢印Aで示すように、Ca溶解工程で利用することで、塩化カリウムを含む水溶液が生成される。
このため、図2の工程を循環する水溶液中には、塩化カリウムが塩化ナトリウムよりも多くなる。
塩化カリウムは炭酸カルシウム回収工程(炭酸カルシウム回収手段)(Ca回収)を経てバイポーラ膜電気透析(BMED)手段に導入される。塩化カリウムの濃度が高くなるに従い、BMEDでの電流効率が向上し、省電力化にも寄与する。
また、Ca含有廃棄物にはNaを含むため、図2のように循環利用を続けると、Naイオン濃度が上昇することとなる。このため、Naイオン濃度を一定となるように、Ca回収からBMEDに至る経路の途中でブロー排水を行う。一方、このブロー排水は、塩化カリウムも排出するため、処理プロセス(処理システム)における塩化カリウム(KCl)が不足することとなる。これを補うには、塩化カリウムを含む脱塩ダストをCa含有廃棄物として利用することがより効果的である。
また、脱塩ダストは、図2の矢印Bで示すように、水洗いして塩化カリウムを含む水溶液を生成し、不純物などを除去する水処理を施した後に、分離工程と炭酸カルシウム回収工程との間に供給するよう構成することも可能である。なお、図2の処理プロセスで、脱塩ダストから得られた塩化カリウムを含む水溶液は、ブロー排水からBMEDに至る経路の途中に導入することも可能である。
水洗いした脱塩ダストは脱水し、脱水ケーキをセメント原料としてセメント製造プロセスに戻すことも可能である。
図3乃至図9は、一般ごみ焼却施設Aで採取したフライアッシュ(FA1)からのCa等の抽出率の時間変化を示したものである。なお、抽出率とは、「廃棄物に含有されている成分の全量に対する溶解した成分量の比」を意味する。
フライアッシュの粒度を150μm(図3のみ)と500μmとし、水溶液の温度を常温(20℃)と40℃(図3のみ)で、水素イオン濃度指数をpH0.5,1,2,3,6における抽出率を測定した。
図3はCa、図4はK、図5はCr、図6はPb、図7はSi、図8はAl、図9はMgを各々示している。
図3を参照すると、Ca抽出に必要なpHは3以下である。
Caの抽出率は30分以降、特に60分以降は、反応時間(経過時間)による変化が緩やかになっており、Ca溶解抽出は30分以降にほぼ完了していることが理解される。
また、一般的な傾向として、pH1と3の場合を比較すると、粒度が小さくなるに従い、抽出率が高くなっており、pH1の場合を比較すると、水溶液の温度が高いほど、抽出率が高くなることが理解される。
図4乃至図9を参照すると、K,Cr,Pb,Si,Al,Mgのいずれにおいても、pH3以下の場合、30分経過後では、十分な溶解が見られる。このため、Caに対するこれらの不純物イオンを効果的に除去することが不可欠となる。
図10は一般ごみ焼却施設Bから採取されたフライアッシュ(FA2)、図11は生コン工場Aの排水工程から採取された生コンスラッジ(CS1)、図12は生コン工場Bの排水工程から採取された生コンスラッジ(CS2)であり、各々のサンプルのCa抽出率の時間変化を示すグラフである。
水溶液のpHを0.5,1,3,6とし、粒度を150μm,500μm、水溶液温度を常温(20℃),40℃に設定している。
図10のフライアッシュも図3と同様に、pH3以下、より好ましくはpH1以下でCa抽出率が高くなっている。
図11や図12の生コンスラッジでは、pH6以下でもCa抽出率が高くなっている。
いずれも30分経過後は、抽出率の変化は緩やかになっている。また、粒度が小さい方が、また水溶液の温度が高い方が溶出率は高くなる傾向がある。
以上説明したように、本発明によれば、カルシウム含有廃棄物を利用し、純度の高い炭酸カルシウムを生成することが可能な炭酸カルシウム生成方法及びシステムを提供することが可能となる。
また、得られた残渣をセメント原料等に利用することが可能である。

Claims (10)

  1. カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成方法において、
    カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解工程と、
    前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離工程と、
    該分離工程を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収工程とを有することを特徴とする、炭酸カルシウムの生成方法。
  2. 請求項1に記載の炭酸カルシウム生成方法において、該塩酸水は、塩化カリウム及び/又は塩化ナトリウムを含む水溶液をバイポーラ膜電気透析処理により生成され、前記塩化カリウム及び/又は塩化ナトリウムは、該炭酸カルシウム回収工程で生成される塩化カリウム及び/又は塩化ナトリウムを含む水溶液の少なくとも一部を使用することを特徴とする、炭酸カルシウムの生成方法。
  3. 請求項2に記載の炭酸カルシウム生成方法において、該バイポーラ膜電気透析処理により水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液を生成し、前記水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液に二酸化炭素を接触させ、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を生成し、前記炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を該炭酸カルシウム回収工程に用いることを特徴とする、炭酸カルシウムの生成方法。
  4. 請求項3に記載の炭酸カルシウム生成方法において、該二酸化炭素は、セメント製造設備から排出される二酸化炭素を使用することを特徴とする、炭酸カルシウムの生成方法。
  5. 請求項1乃至4のいずれかに記載の炭酸カルシウム生成方法において、該カルシウム含有廃棄物には、セメント製造設備の脱塩バイパス部分から得られる脱塩ダストを含むことを特徴とする、炭酸カルシウムの生成方法。
  6. カルシウム含有廃棄物から炭酸カルシウムを生成する炭酸カルシウム生成システムにおいて、
    カルシウム含有廃棄物に塩酸水を添加して、カルシウムを溶解させ、カルシウムイオンを含む水溶液を生成するカルシウム溶解手段と、
    前記カルシウムイオンを含有する水溶液の水素イオン濃度指数を調整し、Si、Al、Mg、及び重金属からなる群より選ばれる少なくとも一つを含む成分を該水溶液から分離する分離手段と、
    該分離手段を経て得られた水溶液と、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液とを用いて、炭酸カルシウムを生成する炭酸カルシウム回収手段とを有することを特徴とする、炭酸カルシウムの生成システム。
  7. 請求項6に記載の炭酸カルシウム生成システムにおいて、該塩酸水は、塩化カリウム及び/又は塩化ナトリウムを含む水溶液からバイポーラ膜電気透析処理手段により生成され、前記塩化カリウム及び/又は塩化ナトリウムは、該炭酸カルシウム回収手段で生成される塩化カリウム及び/又は塩化ナトリウムを含む水溶液の少なくとも一部を使用することを特徴とする、炭酸カルシウムの生成システム。
  8. 請求項7に記載の炭酸カルシウム生成システムにおいて、該バイポーラ膜電気透析処理手段により水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液を生成し、前記水酸化カリウム及び/又は水酸化ナトリウムを含む水溶液に二酸化炭素を接触させ、炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を生成し、前記炭酸カリウム及び/又は炭酸ナトリウムを含む水溶液を該炭酸カルシウム回収手段に用いることを特徴とする、炭酸カルシウムの生成システム。
  9. 請求項8に記載の炭酸カルシウム生成システムにおいて、該二酸化炭素は、セメント製造設備から排出される二酸化炭素を使用することを特徴とする、炭酸カルシウムの生成システム。
  10. 請求項6乃至9のいずれかに記載の炭酸カルシウム生成システムにおいて、該カルシウム含有廃棄物には、セメント製造設備の脱塩バイパス部分から得られる脱塩ダストを含むことを特徴とする、炭酸カルシウムの生成システム。

JP2021141723A 2021-08-31 2021-08-31 炭酸カルシウム生成方法及びシステム Pending JP2023035105A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021141723A JP2023035105A (ja) 2021-08-31 2021-08-31 炭酸カルシウム生成方法及びシステム
PCT/JP2022/032756 WO2023033039A1 (ja) 2021-08-31 2022-08-31 炭酸カルシウム生成方法及びシステム
AU2022340139A AU2022340139A1 (en) 2021-08-31 2022-08-31 Calcium carbonate generation method and system
CA3230476A CA3230476A1 (en) 2021-08-31 2022-08-31 Calcium carbonate generation method and system
CN202280059220.4A CN117897359A (zh) 2021-08-31 2022-08-31 碳酸钙的生成方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021141723A JP2023035105A (ja) 2021-08-31 2021-08-31 炭酸カルシウム生成方法及びシステム

Publications (1)

Publication Number Publication Date
JP2023035105A true JP2023035105A (ja) 2023-03-13

Family

ID=85411327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021141723A Pending JP2023035105A (ja) 2021-08-31 2021-08-31 炭酸カルシウム生成方法及びシステム

Country Status (5)

Country Link
JP (1) JP2023035105A (ja)
CN (1) CN117897359A (ja)
AU (1) AU2022340139A1 (ja)
CA (1) CA3230476A1 (ja)
WO (1) WO2023033039A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116730447B (zh) * 2023-08-08 2023-11-14 杭州匠容道环境科技有限公司 飞灰水洗液资源化利用的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026418A (ja) * 1999-07-16 2001-01-30 Taiheiyo Cement Corp 工業的に有用な無機材料の回収方法及び該回収方法によって回収した工業的に有用な無機材料
JP3962855B2 (ja) * 2001-07-19 2007-08-22 日立造船株式会社 飛灰からの重金属の回収方法
JP2005246226A (ja) * 2004-03-03 2005-09-15 Dowa Mining Co Ltd 飛灰の処理方法
JP4731190B2 (ja) * 2005-03-25 2011-07-20 大阪瓦斯株式会社 焼却炉飛灰からの亜鉛の回収方法
JP2012096975A (ja) 2010-11-05 2012-05-24 Univ Of Tokyo 二酸化炭素固定化装置
JP5908992B2 (ja) * 2011-12-21 2016-04-26 コレックス・マテリアルズ・インコーポレーテッドCorex Materials, Inc. カルシウム抽出とpcc製造を継続的に行うための回収方法
WO2014007331A1 (ja) * 2012-07-05 2014-01-09 アイシン精機株式会社 アルカリ金属及び/又はアルカリ土類金属の抽出方法
GB201612102D0 (en) * 2016-07-12 2016-08-24 Univ Court Of The Univ Of Aberdeen The Carbon dioxide capture and utilisation methods and systems

Also Published As

Publication number Publication date
WO2023033039A1 (ja) 2023-03-09
AU2022340139A1 (en) 2024-03-07
CN117897359A (zh) 2024-04-16
CA3230476A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
CN109396163B (zh) 一种提高氯离子溶出率的垃圾飞灰处理工艺
KR102093004B1 (ko) 마그네슘 함유 제련 폐수를 종합 회수하는 방법
CN109396162B (zh) 一种垃圾飞灰的节能处理工艺
JP4839653B2 (ja) 塩素および重金属類を含有する廃棄物の処理方法
CN109704369A (zh) 一种利用含硫酸钠废盐渣回收硫酸钠的方法
JP6877459B2 (ja) 塩の回収のための方法および配置
CN106745076A (zh) 一种将工业废水处理所产杂盐资源化的方法
CN109665495B (zh) 一种水洗飞灰高盐废水与旁路灰的联合资源化利用方法
CN109500061B (zh) 一种联合利用焚烧飞灰与旁路灰的方法
CN113245342B (zh) 基于晶种法的垃圾焚烧飞灰水洗制盐的资源化处理方法及处理系统
JP2001026418A (ja) 工業的に有用な無機材料の回収方法及び該回収方法によって回収した工業的に有用な無機材料
JP2011000522A (ja) 浸出液から酸およびアルカリを製造する方法および装置
WO2023033039A1 (ja) 炭酸カルシウム生成方法及びシステム
JP3306471B2 (ja) セメントキルン排ガスダストの処理方法
CN113333441B (zh) 一种飞灰的处理系统
CN105906129A (zh) 废水中水资源回用和盐分转化利用的方法
JP5293005B2 (ja) タリウム及び硝酸カリウムの回収方法及び回収装置
JP7485125B1 (ja) セメント製造プロセスから生じる廃棄物の再利用循環方法及びそのシステム
CN116199377A (zh) 一种水洗废盐分质调控的焚烧飞灰资源化利用方法
WO2024053678A1 (ja) 炭酸カルシウムの製造方法及び製造システム
CN115026100A (zh) 一种垃圾焚烧飞灰处理系统
JP2002167218A (ja) アルカリ金属塩化物の精製方法及びアルカリ金属水酸化物の製造方法
JP2003047828A (ja) ガスの処理方法
CN217458850U (zh) 一种飞灰水洗液制盐系统
CN216946598U (zh) 一种飞灰水洗液脱盐系统