JP2022152603A - 回転電機の制御装置 - Google Patents

回転電機の制御装置 Download PDF

Info

Publication number
JP2022152603A
JP2022152603A JP2021055431A JP2021055431A JP2022152603A JP 2022152603 A JP2022152603 A JP 2022152603A JP 2021055431 A JP2021055431 A JP 2021055431A JP 2021055431 A JP2021055431 A JP 2021055431A JP 2022152603 A JP2022152603 A JP 2022152603A
Authority
JP
Japan
Prior art keywords
resolver
inverter
power factor
control device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021055431A
Other languages
English (en)
Inventor
嘉朗 瀬戸
Yoshiaki Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021055431A priority Critical patent/JP2022152603A/ja
Publication of JP2022152603A publication Critical patent/JP2022152603A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】レゾルバのオフセット値を補正する機会を多くし、レゾルバの回転位置をより精度良く検出する。【解決手段】回転電機の制御装置は、回転電機の出力トルクと回転数とが比較的低トルク且つ比較的低回転の第1所定領域のときに、トルク指令に基づく力率指令と計測値に基づく制御力率との差分が小さくなるようにレゾルバのオフセット値を補正する。これにより、回転電機が第1所定領域内で駆動しているときにオフセット値を補正することができるから、レゾルバの回転速度が一定のときにのみオフセット値を補正するものに比して、レゾルバのオフセット値を補正する機会を多くし、レゾルバの回転位置をより精度良く検出することができる。【選択図】図3

Description

本発明は、回転電機の制御装置に関し、詳しくは、レゾルバを備える回転電機の制御装置に関する。
従来、この種の回転電機の制御装置としては、レゾルバの回転速度が一定のときに特定された複数の時点において取得された回転位置データに基づいてレゾルバの補正パラメータを算出するものが提案されている(例えば、特許文献1参照)。この制御装置では、補正パラメータは、レゾルバが任意の回転速度で回転している時に取得された任意の値の回転位置データおよびレゾルバの回転が停止している時に取得された任意の値の回転位置データに適用可能なように算出しており、これにより、レゾルバの回転位置をより良好な精度で検出できるようにしている。
特開2009-008536号公報
しかしながら、上述の回転電機の制御装置では、レゾルバの回転速度が一定のときに補正パラメータを算出するから、補正パラメータを精度良く算出するためには、レゾルバの回転速度を精度良く一定に保つ必要がある。このため、自動車などに搭載された場合、通常の使用時にはレゾルバの回転速度を一定に保つ場合が少なく、補正パラメータを精度良く算出する機会が少なくなり、レゾルバの回転位置を精度良く検出することができない場合が生じる。
本発明の回転電機の制御装置は、レゾルバのオフセット値を補正する機会を多くし、レゾルバの回転位置をより精度良く検出することができるようにすることを主目的とする。
本発明の回転電機の制御装置は、上述の主目的を達成するために以下の手段を採った。
本発明の回転電機の制御装置は、
インバータにより駆動される回転電機の回転軸に取り付けられたレゾルバを備える回転電機の制御装置であって、
前記回転電機の出力トルクと回転数とが比較的低トルク且つ比較的低回転の第1所定領域のときに、トルク指令に基づく力率指令と計測値に基づく制御力率との差分が小さくなるように前記レゾルバのオフセット値を補正する、
ことを特徴とする。
本発明の回転電機の制御装置では、回転電機の出力トルクと回転数とが比較的低トルク且つ比較的低回転の第1所定領域のときに、トルク指令に基づく力率指令と計測値に基づく制御力率との差分が小さくなるようにレゾルバのオフセット値を補正する。このため、レゾルバの回転速度が一定のときに補正するものに比して、レゾルバのオフセット値を補正する機会を多くすることができる。この結果、レゾルバの回転位置をより精度良く検出することができる。ここで、力率は、電圧位相と電流位相との差分に対する余弦(cos(電圧位相-電流位相))である。
本発明の回転電機の制御装置において、前記回転電機の出力トルクと前記回転電機の回転数が前記第1所定領域外ではあるが第2所定領域内のときには、前記インバータの入力電圧と前記インバータのキャリア周波数とのうちの少なくとも1つを変更した状態としてトルク指令に基づく力率指令と計測値に基づく制御力率との差分が小さくなるように前記レゾルバのオフセット値を補正するものとしてもよい。こうすれば、レゾルバのオフセット値を補正する機会を更に多くすることができる。この場合、前記回転電機の出力トルクと前記回転電機の回転数が前記第1所定領域外ではあるが前記第2所定領域内のときにデッドタイムが既知のときには、前記インバータの入力電圧と前記インバータのキャリア周波数をデッドタイム電圧が標準デッドタイム電圧となる電圧とキャリア周波数となる状態として前記レゾルバのオフセット値を補正するものとしてもよい。こうすれば、演算誤差を少なくすることができ、より精度良くオフセット値を補正することができる。ここで、標準デッドタイム電圧は、力率指令から算出したデッドタイムの際のデッドタイム電圧または実測したときにデッドタイムの際のデッドタイム電圧である。また、前記回転電機の出力トルクと前記回転電機の回転数が前記第1所定領域外ではあるが前記第2所定領域内のときには、前記インバータの入力電圧と前記インバータのキャリア周波数とのうちの少なくとも1つをデッドタイム電圧が小さくなるように変更した状態として前記レゾルバのオフセット値を補正するものとしてもよい。このようにデッドタイム電圧が小さくなるようにするのは、デッドタイム電圧を小さくしてデッドタイム電圧のバラツキの程度を小さくし、デッドタイム電圧のバラツキの程度が小さいほどオフセット値の補正の精度が高くなることに基づく。
本発明の一実施例としての回転電機の制御装置30が組み込まれた駆動装置20の構成の概略を示す構成図である。 レゾルバ28のオフセット値OFを説明する説明図である。 実施例の駆動装置20の制御装置30により実行されるオフセット補正値学習処理の一例を示すフローチャートである。 第1学習可能領域および第2学習可能領域の一例を示す説明図である。 モータ電圧やデッドタイム電圧などの一例をd軸q軸上に示す説明図である。 レゾルバ28のオフセット値を補正する制御を実行する際の制御装置30の機能ブロックの一例を示す制御ブロック図である。 力率指令設定用マップの一例を示す説明図である。 変形例の力率指令設定用マップの一例を示す説明図である。 モータ回転数Nmの大小と演算誤差との関係の一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての回転電機の制御装置30が組み込まれた駆動装置20の構成の概略を示す構成図である。駆動装置20は、直流電源22と、インバータ24と、モータ26と、レゾルバ28と、制御装置30と、を備える。
直流電源22は、バッテリなどの蓄電装置などが相当し、バッテリからの直流電力の電圧を昇圧して出力する昇圧回路を有するものとしてもよい。
モータ26は、例えば同期発電電動機や誘導モータなど種々の三相交流モータが相当し、インバータ24から印加されるuvw相の三相電流が印加されることにより駆動する。インバータ24は、周知のインバータ回路として構成されている。
レゾルバ28は、モータ26の回転軸に連結された楕円形状のロータと、発振回路から励磁信号として交流電流が印加される励磁コイルや電気的に90度ずれて(位相差が90度となるよう)配置された2つの出力コイルを内蔵する磁性体としてのステータ128と、を有する周知のレゾルバとして構成されている。レゾルバは、2つの出力コイルにより検出される正弦波状のsin信号と余弦波状のcos信号をレゾルバ信号として出力する。
制御装置30は、図示しないCPUを中心とする周知のマイクロコンピュータとして構成されており、図示しないが、CPUの他にプログラムなどが記憶されたROMや、データを一時的に記憶するRAM、フラッシュメモリ、入力回路、出力回路などを備える。制御装置30には、直流電源22とインバータ24とを接続する電力ラインに取り付けられた電圧センサ23からのインバータ入力電圧Vinvや、インバータ24からモータ26に印加される3相電流のうちのv相の電ラインに取り付けられた電流センサ25vからのv相電流Iv、同じくw相の電ラインに取り付けられた電流センサ25wからのw相電流Iw、レゾルバ28からのレゾルバ信号、モータトルク指令などが入力回路を介して入力されている。レゾルバ信号の入力回路としては、sin信号やcos信号をデジタル信号に変換するADコンバータや、ADコンバータからのsin信号およびcos信号からレゾルバ角φを演算するRDコンバータなどによる周知のレゾルバ入力回路として構成されている。また、制御装置20からは、インバータ24の各スイッチング素子をスイッチングするスイッチング制御信号や、直流電源22への電圧指令Vinv*などが出力回路を介して出力されている。制御装置20では、3相交流のうちのu相の電力ラインに流れるu相電流Iuについては、v相電流Ivとw相電流Iwとを用いてIu+Iv+Iw=0により計算している。また、制御装置20では、レゾルバ角φに対してオフセット値OFとオフセット補正値Fとを用いて修正レゾルバ角φを計算し、モータ26の回転数Nmを演算したり、トルク指令値T*を用いてインバータ24の各スイッチング素子をスイッチングするスイッチング制御信号など生成している。オフセット値OFは、図2に示すように、製造誤差や取り付け誤差などにより制御上のd軸およびq軸に対して生じている回転角度誤差である。
次に、こうして構成された駆動装置20の制御装置30によりレゾルバ28のオフセット値OFを補正するオフセット補正値Fの学習処理について説明する。図3は、実施例の駆動装置20の制御装置30により実行されるオフセット補正値学習処理の一例を示すフローチャートである。この処理は繰り返し実行される。
オフセット補正値学習処理が実行されると、制御装置30は、まず、トルク指令値T*やモータ回転数Nm,電圧センサ23からのインバータ入力電圧Vinv,インバータ24のキャリア周波数fcなどの処理に必要なデータを入力する(ステップS100)。実施例では、トルク指令値T*は、モータ回転数Nmやアクセル操作量などにより制御装置30により設定されたものを入力するものとした。モータ回転数Nmは、レゾルバ角φなどに基づいて演算されたものを入力するものとした。インバータ24のキャリア周波数fcは、制御装置30によりインバータ24のスイッチング素子のスイッチング制御信号を生成する際に用いられるパルス幅変調(PWM:Pulse Width Modulation)におけるキャリア周波数を入力するものとした。
続いて、入力したトルク指令値T*とモータ回転数Nmとが第1学習可能範囲内であるか否かを判定する(ステップS110)。第1学習可能範囲は、オフセット補正値Fの学習を良好に行なうことができる範囲として実験などにより予め定められた範囲である。図5は、モータ電圧やデッドタイム電圧などの一例をd軸q軸上に示す説明図である。図中、第2象限において、最もd軸よりの実線矢印がモータ電圧のベクトルであり、q軸よりの一点鎖線矢印が電流のベクトルであり、第4象限における2つの実線矢印が標準デッドタイム電圧DTtypおよび最大デッドタイム電圧DTmaxである。標準デッドタイム電圧DTtypは、力率指令Pf*から算出したデッドタイムの際のデッドタイム電圧または実測したときにデッドタイムの際のデッドタイム電圧である。最大デッドタイム電圧DTmaxは、デッドタイムのバラツキにより生じるデッドタイム電圧のバラツキにおける最大値である。また、第2象限において、DTtypモータ電圧はモータ電圧から標準デッドタイム電圧DTtypを減じたベクトルであり、DTmaxモータ電圧はモータ電圧から最大デッドタイム電圧DTmaxを減じたベクトルである。電圧位相-電流位相の演算誤差は、DTtypモータ電圧と電流との位相θtypからDTmaxモータ電圧と電流との位相θmaxを減じた値(θtypーθmax)となる。第1学習可能範囲は、この演算誤差(θtypーθmax)が許容可能な範囲ということができる。図4に第1学習可能範囲および第2学習可能範囲の一例を示す。図中、ハッチングが施されていない白抜きの領域が第1学習可能範囲であり、ハッチングが施された領域が第2学習範囲である。図示するように、第1学習可能範囲は比較的低トルクかつ比較的低回転の領域に設定されており、第2学習可能範囲は第1学習可能範囲の若干高トルク側までと若干高回転数側までに設定されている。第2学習可能範囲については後述する。
入力したトルク指令値T*とモータ回転数Nmとが第1学習可能範囲内であると判定したときには、オフセット補正値Fの学習を行ない(ステップS140)、本処理を終了する。オフセット補正値Fの学習は、図6に例示する制御ブロックにより行なわれる。図6の制御ブロックは、レゾルバ28のオフセット値OFを補正する制御を実行する際の制御装置30の機能ブロックの一例である。この制御ブロックでは、制御装置20は、機能ブロックとして、力率指令演算部32と、制御力率演算部34と、減算器36と、PI制御器38とを備える。
力率指令演算部32は、トルク指令T*を用いて力率指令Pf*を演算する。力率指令の演算は 実施例では、トルクと力率との関係を予め求めて力率指令設定用マップとして記憶しておき、トルク指令T*が与えられるとトルク指令T*をマップに適用して得られる力率を導出し、これを力率指令Pf*とすることにより行なうものとした。図6に力率指令設定用マップの一例を示す。図7の力率指令設定用マップでは、トルクが大きくなるほど力率が小さくなる。力率は電圧位相と電流位相との差分に対する余弦(cos(電圧位相-電流位相))であり、力率指令Pf*はモータ26に作用すべき理想的な(目標とする)力率である。図7に例示した力率指令設定用マップはデッドタイム電圧分を除いた力率指令を導出するものであるが、デッドタイム電圧分を含んだ力率指令を導出するものとしてもよい。この場合、図8に例示する力率指令設定用マップを用いればよい。図8に例示する力率指令設定用マップは、モータ26の回転数とトルク指令T*と力率指令P
f*との関係を予め求めたものである。モータ26の回転数が大きくなるほど若干ではあるが力率指令Pf*は大きくなる。また、インバータ24に入力される電圧Vhやキャリア周波数などとトルクと力率との関係を予め求めて力率指令設定用マップとしてもよい。この場合、電圧Vhが大きいほど若干ではあるが力率は大きくなり、インバータ24のキャリア周波数が大きくなるほど若干ではあるが力率は大きくなる。
制御力率演算部34は、計測値に基づいて制御力率Pfcを演算する。例えば、電流センサ25v,25wからのv相電流Iv,w相電流Iwやレゾルバ28からのレゾルバ信号、オフセット値OFなどに基づいて電流位相を演算し、電流フィードバック制御によって得られたd軸電圧Vdとq軸電圧Vqとから電圧位相を演算し、演算により得られた電圧位相と電流位相との差分に対する余弦(cos(電圧位相-電流位相))として制御力率Pfcを演算する。ここで、電流位相や電圧位相の演算については、オフセット値OFおよびオフセット補正値Fを用いて補正された修正レゾルバ角φが用いられている。なお、電圧位相については、予めd軸およびq軸の自己インダクタンスLd,Lqをマップ化しておき、この自己インダクタンスLd,Lqと相電流から得られる電機子電流のd軸電流idとq軸電流iqとを用いて次式(1)により演算して求めるものとしてもよい。式(1)中、Rは電機子抵抗、ωは角速度、pは微分演算子、φは永久磁石による電機子鎖交磁束である。
Figure 2022152603000002
減算器36は、力率指令Pf*と制御力率Pfcとの差分(Pf*-Pfc)を演算する。
PI制御器38は、次式(2)に示すように、力率指令Pf*と制御力率Pfcとの差分(Pf*-Pfc)に対する比例項と積分項の和をオフセット補正値Fとして演算して出力する。式(2)中、kpは比例項のゲインであり、kiは積分項のゲインである。
F=kp(Pf*-Pfc)+∫ki(Pf*-Pfc)dt (2)
こうして求めたオフセット補正値Fは、レゾルバ角φを計算する際のオフセット値OFの補正に用いられ、補正後の修正レゾルバ角φによりインバータ24に出力するスイッチング制御信号が生成される。
図3のオフセット補正値学習処理の説明に戻る。ステップS110で入力したトルク指令値T*とモータ回転数Nmとが第1学習可能範囲内ではないと判定したときには、トルク指令値T*とモータ回転数Nmとが第2学習可能範囲内であるか否かを判定する(ステップS120)。即ち、第1学習可能範囲外ではあるが第2学習可能範囲内であるか否かを判定するのである。第1学習可能範囲外ではあるが第2学習可能範囲内である領域は、インバータ24の入力電圧Vinvやインバータ24のキャリア周波数fcを変更すれば演算誤差が許容可能な範囲内となる領域である。
図9にモータ回転数Nmの大小と演算誤差との関係の一例を示す。図中、実線のモータ電圧とDTtypモータ電圧とDTmaxモータ電圧はモータ回転数Nmが小さいとき(図5と同じ)を示し、破線のモータ電圧とDTtypモータ電圧とDTmaxモータ電圧はモータ回転数Nmが大きいときを示す。モータ回転数Nmが大きいときの演算誤差(θtypーθmax)は、モータ回転数Nmが小さいときに比して小さくなることが解る。したがって、第1学習可能領域よりモータ回転数Nmが大きい領域では演算誤差(θtypーθmax)が小さくなるから、学習が可能な領域をある程度の範囲まで拡げることができる。また、デッドタイム電圧のq軸成分VqDTおよびd軸成分VdDTは次式(3)および(4)により示されるから、インバータ24のキャリア周波数fcやインバータ入力電圧Vinvを調整することにより、デッドタイム電圧のバラツキを小さくすることも可能である。具体的に、インバータ24のキャリア周波数fcやインバータ入力電圧Vinvを小さくすればよい。インバータ24のキャリア周波数fcやインバータ入力電圧Vinvを小さくなればデッドタイム電圧は小さくなるから、そのバラツキを小さくなる。この結果、演算誤差(θtypーθmax)が小さくなる。したがって、インバータ24のキャリア周波数fcやインバータ入力電圧Vinvを小さくすることによって学習が可能な領域をある程度の範囲まで拡げることができる。これらのことから学習が可能な領域が第2学習可能範囲である。なお、デッドタイムが既知の場合、デッドタイム電圧が標準デッドタイム電圧DTtypとなるキャリア周波数fcやインバータ入力電圧Vinvを求めておき、求めたキャリア周波数fcやインバータ入力電圧Vinvに変更可能な領域を第2学習可能領域としてもよい。この場合、デッドタイム電圧のバラツキはないから、演算誤差は値0となる。第2学習可能範囲は、実験や計算などにより予め定めることができる。
VqDT=√3×DT×fc×Vinv×sin(電流位相) (3)
VdDT=√3×DT×fc×Vinv×cos(電流位相) (4)
ステップS110およびS120で第1学習可能範囲外ではあるが第2学習可能範囲内であると判定したときには、インバータ24のキャリア周波数fcやインバータ入力電圧Vinvを学習可能な値に変更する(ステップS130)。そして、その状態でオフセット補正値Fの学習を行ない(ステップS140)、本処理を終了する。なお、インバータ入力電圧Vinvの変更は、直流電源22が出力電圧を調整できる構成、例えば直流電源22が昇圧コンバータを備える場合などに、制御装置30からの電圧指令により行なうことができる。
以上説明した実施例の駆動装置20に組み込まれた制御装置30では、トルク指令値T*とモータ回転数Nmとがオフセット補正値Fの学習を良好に行なうことができる第1学習可能範囲内であると判定したときには、オフセット補正値Fの学習を行なう。これにより、レゾルバ28の回転速度が一定のときにオフセット補正値Fを演算するものに比して、レゾルバ28のオフセット補正値Fを演算する機会を多くすることができる。この結果、レゾルバ28の回転位置(レゾルバ角φ)をより精度良く検出することができる。しかも、トルク指令値T*とモータ回転数Nmとが第1学習可能範囲外ではあるが第2学習可能範囲内であると判定したときには、インバータ24のキャリア周波数fcやインバータ入力電圧Vinvを学習可能な値に変更してオフセット補正値Fの学習を行なう。これにより、レゾルバ28のオフセット補正値Fを演算する機会を多くすることができる。
実施例の駆動装置20に組み込まれた制御装置30では、力率指令Pf*と制御力率Pfcとの差分が小さくなるようにオフセット値OFを補正するオフセット補正値Fを学習するものとした。しかし、学習したオフセット補正値Fをオフセット値OFとするようにオフセット値OFを学習するものとしてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、インバータ24が「インバータ」に相当し、モータ26が「回転電機」に相当し、レゾルバ28が「レゾルバ」に相当し、制御装置30が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、回転電機の制御装置の製造産業などに利用可能である。
20 駆動装置、22 直流電源、24 インバータ、25v,25w 電流センサ、26 モータ、28 レゾルバ、30 制御装置、32 力率指令演算部、34 制御力率演算部、38 減算器、38 PI制御器。

Claims (4)

  1. インバータにより駆動される回転電機の回転軸に取り付けられたレゾルバを備える回転電機の制御装置であって、
    前記回転電機の出力トルクと回転数とが比較的低トルク且つ比較的低回転の第1所定領域のときに、トルク指令に基づく力率指令と計測値に基づく制御力率との差分が小さくなるように前記レゾルバのオフセット値を補正する、
    ことを特徴とする回転電機の制御装置。
  2. 請求項1記載の回転電機の制御装置であって、
    前記回転電機の出力トルクと前記回転電機の回転数が前記第1所定領域外ではあるが第2所定領域内のときには、前記インバータの入力電圧と前記インバータのキャリア周波数とのうちの少なくとも1つを変更した状態としてトルク指令に基づく力率指令と計測値に基づく制御力率との差分が小さくなるように前記レゾルバのオフセット値を補正する、
    回転電機の制御装置。
  3. 請求項2記載の回転電機の制御装置であって、
    前記回転電機の出力トルクと前記回転電機の回転数が前記第1所定領域外ではあるが前記第2所定領域内のときにデッドタイムが既知のときには、前記インバータの入力電圧と前記インバータのキャリア周波数をデッドタイム電圧が標準デッドタイム電圧となる電圧とキャリア周波数となる状態として前記レゾルバのオフセット値を補正する、
    回転電機の制御装置。
  4. 請求項2記載の回転電機の制御装置であって、
    前記回転電機の出力トルクと前記回転電機の回転数が前記第1所定領域外ではあるが前記第2所定領域内のときには、前記インバータの入力電圧と前記インバータのキャリア周波数とのうちの少なくとも1つをデッドタイム電圧が小さくなるように変更した状態として前記レゾルバのオフセット値を補正する、
    回転電機の制御装置。
JP2021055431A 2021-03-29 2021-03-29 回転電機の制御装置 Pending JP2022152603A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021055431A JP2022152603A (ja) 2021-03-29 2021-03-29 回転電機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021055431A JP2022152603A (ja) 2021-03-29 2021-03-29 回転電機の制御装置

Publications (1)

Publication Number Publication Date
JP2022152603A true JP2022152603A (ja) 2022-10-12

Family

ID=83555851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021055431A Pending JP2022152603A (ja) 2021-03-29 2021-03-29 回転電機の制御装置

Country Status (1)

Country Link
JP (1) JP2022152603A (ja)

Similar Documents

Publication Publication Date Title
US8975841B2 (en) Motor control device
US9112436B2 (en) System for controlling controlled variable of rotary machine
JP5273451B2 (ja) モータ制御装置
JP2009247181A (ja) モータ制御装置および電動パワーステアリング装置
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
US20140225540A1 (en) Control apparatus for ac motor
JP5267848B2 (ja) モータ制御装置
JP5170505B2 (ja) モータ制御装置
JP7151872B2 (ja) 永久磁石同期機の制御装置
JP5605312B2 (ja) 回転機の制御装置
JP5136839B2 (ja) モータ制御装置
JP5585397B2 (ja) 回転機の制御装置
JP2022152603A (ja) 回転電機の制御装置
CN113078863B (zh) 交流旋转电机的控制装置
JP2023048833A (ja) モータユニットの状態推定方法及び状態推定装置
JP2022152604A (ja) 回転電機の制御装置
JP5996485B2 (ja) モータの駆動制御装置
JP5141955B2 (ja) モータ制御装置
JP7267457B2 (ja) 電力変換装置
JP7321375B2 (ja) モータ制御装置
JP5605311B2 (ja) 回転機の制御装置
JP4687104B2 (ja) 永久磁石型回転電動機の制御装置およびその方法
JP2017225233A (ja) 回転機制御装置及び回転機制御方法
JP2023032879A (ja) モータユニットの制御方法及び制御装置
JP2024083692A (ja) 交流回転電機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231219