JP2022132684A - 二軸延伸ポリエステル樹脂系フィルム及びその製造方法 - Google Patents

二軸延伸ポリエステル樹脂系フィルム及びその製造方法 Download PDF

Info

Publication number
JP2022132684A
JP2022132684A JP2022110779A JP2022110779A JP2022132684A JP 2022132684 A JP2022132684 A JP 2022132684A JP 2022110779 A JP2022110779 A JP 2022110779A JP 2022110779 A JP2022110779 A JP 2022110779A JP 2022132684 A JP2022132684 A JP 2022132684A
Authority
JP
Japan
Prior art keywords
polyester resin
film
temperature
mass
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022110779A
Other languages
English (en)
Inventor
悟郎 荒木
Goro Araki
宏 芦原
Hiroshi Ashihara
弾 長野
Hazumu Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Unitika Ltd
Unitika Trading Co Ltd
Original Assignee
Nippon Ester Co Ltd
Unitika Ltd
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77929184&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022132684(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Ester Co Ltd, Unitika Ltd, Unitika Trading Co Ltd filed Critical Nippon Ester Co Ltd
Publication of JP2022132684A publication Critical patent/JP2022132684A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】リサイクル原料を使用していない二軸延伸ポリエステルフィルムと同等又はそれ以上の優れた物性、特に低温環境下での優れた耐屈曲性を有する二軸延伸ポリエステル樹脂フィルムを提供する。【解決手段】下記の物性(1)~(2):(1)示差走査熱量測定(DSC)において、25℃から300℃まで昇温速度20℃/分で昇温し、300℃で10分保持した後、降温速度40℃/分で降温する際に結晶化する温度が160~180℃であること、(2)-10℃雰囲気下でのゲルボフレックステスターによる200回繰り返し屈曲疲労テスト後におけるピンホール個数が10個/500cm2以下であること、を全て満たすことを特徴とする二軸延伸ポリエステル樹脂系フィルムに係る。【選択図】なし

Description

本発明は、新規な二軸延伸ポリエステル樹脂系フィルム及びその製造方法に関する。
ポリエステル樹脂の代表例であるポリエチレンテレフタレート(PET)は、高融点で耐薬品性があり、また比較的低コストであるため、繊維、フィルム、ペットボトル等の成形品等に幅広く用いられている。これらのポリエステル製品は、製造段階又は加工段階で屑の発生が避けられず、また当該製品も使用後には廃棄処分されることが多い。このため、これらポリエステル屑、使用済みポリエステル製品等を大量に処分する必要が生じる。ところが、これらを焼却炉で焼却処分しようとする場合には高熱が発生するため、焼却炉の傷みが大きくなり、その寿命が短くなるほか、大気汚染、COガス発生等の問題も引き起こす。
これに対し、焼却せずに処分しない場合には、上記のような問題を回避できるものの、ポリエステル樹脂は自然界では腐敗分解されないために半永久的に残ることになる。このため、一度使用されたポリエステル製品のうち、ゴミとして捨てられたポリエステル容器等が河川を経由して海洋へ流出し、波、潮流、紫外線等の作用で細かく破砕されてマイクロプラスチックとなる。近年では、このマイクロプラスチックが海洋生物の体内に蓄積、食物連鎖で濃縮され、海洋生物の生態系に悪影響が出ていることも、プラスチックによる海洋汚染の一大原因として問題視されている。このような理由から、ポリエステル樹脂を含むプラスチックスの使用量の削減のほか、生分解性プラスチックへの切り替え等の動きが全世界的に起きている。
同様の理由から、資源を再利用するリサイクルが様々な方法で行われている。PETに代表されるポリエステル製品に関しても、その製造工程で発生したポリエステル屑をリサイクルする方法に加え、一度市場に出回って廃棄された製品を回収し、それを原料として再使用する方法が検討されている。特に、近年においては、一定のリサイクル率を達成することで認定されるエコマークを付与した製品が普及している。
また、製造工程で発生したポリエステル屑又は使用済みのポリエステル製品を回収したリサイクルポリエステルを原料として用いたリサイクル方法は、各種提案されている。
例えば、PET屑にメタノールを添加してジメチレンテレフタレート(以下「DMT」と表記することがある。)とエチレングリコール(以下「EG」と表記することがある。)に分解する方法(特許文献1)、PET屑にEGを添加して解重合した後、メタノールを添加してDMTを回収する方法(特許文献2)、PET屑をEGで解重合してオリゴマーとし、これを重縮合反応に用いる方法(特許文献3)あるいは解重合後に固相重合に用いる(特許文献4、5)等が提案されている。
ところで、いったん製品となったPETボトル等を再生する際に問題になる不純物としては、ポリエステル樹脂中に添加されている各種の添加剤のほか、ボトル本体に付属するものとして、a)キャップ(アルミニウム、ポリプロピレン、ポリエチレン)、b)中栓、c)ライナー(ポリプロピレン、ポリエチレン)、d)ラベル(紙、ポリスチレン等の樹脂、インク)、e)接着剤、f)印字用インク等がある。
一般に、再生工程の前処理としては、以下のような手順によって実施される。まず、回収されたPETボトルを振動ふるいにかけて砂、金属等を除去する。その後、PETボトルを洗浄し、着色ボトルを分離した上で、粗い粉砕を行う。そして、風力分離によりラベル等を取り除く。さらに、キャップ等に由来するアルミニウム片を除いて、PETボトル片を細かく粉砕する。高温アルカリ洗浄により接着剤、蛋白質、かび等の成分を除き、比重差によりポリプロピレン、ポリエチレン等の異種成分を分離する工程が行われる。
特公昭42-8855号公報 特開昭48-62732号公報 特開昭60-248646号公報 特開2012-126763号公報 特開2012-041463号公報
しかしながら、これらの従来技術では、得られるポリエステル樹脂フィルムの製造工程上の問題があることに加え、得られたポリエステル樹脂フィルムの物性という点でもさらなる改善の余地がある。
例えば、特許文献1~3に記載の方法では、回収装置の設置、運転、維持等に多額のコストもかかり、実用性という点で改善の余地がある。
また、特許文献1~3に記載されたリサイクル方法で得られた再生ポリエステル樹脂は、非ポリエステル樹脂由来の異物の除去が十分に行えず、異物の混入量が十分に低減できたものではない。このため、フィルムの製膜工程におけるTダイ表面(リップ面)の汚染が起こり、延伸工程においてフィルムが破断するトラブルが多発する。その結果として、加工操業性が非常に悪くなり、長期の連続運転が困難となる。特に、薄いフィルムを製造する際には、製膜時の引き取り速度を早くする必要があり、それゆえに厚いフィルムよりも張力がかかるため、上記問題はより顕著になる。
特許文献4又は5に記載の方法で得られた再生ポリエステル樹脂を製膜したフィルムは、引張伸度をはじめとした十分な機械強度が得られないため、厚みの薄いフィルムを製膜する際の延伸工程における破断も生じやすく、操業性にも問題があり、低温環境下での耐屈曲性に劣っている。
これに関し、一般的には、フィルム原料としてバージンポリエステルの含有比率を高くすれば、より良好な物性を有するフィルムを得ることが可能になるが、低温環境下での耐屈曲性に関しては改善できていない。他方、環境上の見地より、フィルム中のリサイクル原料の比率は高くできることが望ましい。例えば、ポリエステルフィルムとほかの素材からなるフィルムを貼り合わせてなるラミネート包材のエコマークの認証には、リサイクル原料比率が25質量%以上であることが求められている。ところが、厚み50μm以下の薄いポリエステルフィルムにおいてはリサイクル比率が35%以上の高い延伸フィルムを製造することは困難である。
このように、プラスチック使用量低減の観点から、厚みが50μm以下という薄いフィルムであっても、長期連続運転が可能であり、しかもリサイクル原料を使用していない二軸延伸ポリエステルフィルムと同等又はそれ以上の優れた物性を有する二軸延伸ポリエステル樹脂フィルムを製造できる方法が求められているが、その開発には未だ至っていないのが実情である。
従って、本発明の主な目的は、リサイクル原料を使用していない二軸延伸ポリエステルフィルムと同等又はそれ以上の優れた物性、特に低温環境下での優れた耐屈曲性を有する二軸延伸ポリエステル樹脂フィルムを提供することにある。さらに、本発明は、リサイクルポリエステル原料を用いても、厚みが50μm以下の薄いフィルムであっても長期連続運転が可能な製造方法を提供することも目的とする。
本発明者らは、従来技術の問題点に鑑みて鋭意研究を重ねた結果、使用済ポリエステル製品又はポリエステル製品の製造工程で発生するポリエステル片を回収したリサイクルポリエステル原料を用いて、特定の工程を経て得られるポリエステル樹脂フィルムが上記目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記の二軸延伸ポリエステル樹脂系フィルム及びその製造方法に係る。
1. 下記の物性(1)~(2):
(1)示差走査熱量測定(DSC)において、25℃から300℃まで昇温速度20℃/分で昇温し、300℃で10分保持した後、降温速度40℃/分で降温する際に結晶化する温度が160~180℃であること、
(2)-10℃雰囲気下でのゲルボフレックステスターによる200回繰り返し屈曲疲労テスト後におけるピンホール個数が10個/500cm以下であること、
を全て満たすことを特徴とする二軸延伸ポリエステル樹脂系フィルム。
2. ヘイズが10.0%以下であることを特徴とする前記項1に記載の二軸延伸ポリエステル樹脂系フィルム。
3. カルボキシル末端基濃度が20~60当量/tである、前記項1に記載の二軸延伸ポリエステル樹脂系フィルム。
4. 全反射測定法による赤外分光分析(ATR-IR)により求められる表面結晶化度が1.1~1.4である、前記項1に記載の二軸延伸ポリエステル樹脂系フィルム。
5. 厚みが50μm以下であり、かつ、MD方向及びTD方向の引張伸度がいずれも100%以上である、前記項1に記載の二軸延伸ポリエステル樹脂系フィルム。
6. b*値が0以下である、前記項1に記載の二軸延伸ポリエステル樹脂系フィルム。
7. 前記項1~6のいずれかに記載の二軸延伸ポリエステル樹脂系フィルムを含む包装材料。
8. 二軸延伸ポリエステル樹脂系フィルムを製造する方法であって、
(A)リサイクルポリエステル原料を解重合反応に供することにより反応生成物を得る工程、
(B)前記反応生成物を濾過し、濾液を回収する工程
(C)重合触媒の存在下で温度260℃以上及び圧力1.0hPa以下で前記濾液を重縮合反応に供することによりポリエステル樹脂を得る工程、
(D)前記ポリエステル樹脂を含む出発材料を用いて未延伸フィルムを製造した後、前記未延伸フィルムを二軸延伸する工程、
を含むことを特徴とする二軸延伸ポリエステル樹脂系フィルムの製造方法。
9. 前記(A)の工程が、エチレンテレフタレートオリゴマー及びエチレングリコールの存在下で行われる、前記項8に記載の二軸延伸ポリエステル樹脂系フィルムの製造方法。
10. 前記(A)の工程が、エチレンテレフタレートオリゴマー、エチレングリコール及びリサイクルポリエステル原料の全ての成分を全グリコール成分/全酸成分のモル比が1.08~1.35の範囲内で実施される、前記項9に記載の二軸延伸ポリエステル樹脂系フィルムの製造方法。
11. 前記(B)の工程において、前記濾過を濾過粒度10~25μmのフィルターで実施する、前記項8に記載の二軸延伸ポリエステル樹脂系フィルムの製造方法。
本発明によれば、リサイクル原料を使用していない二軸延伸ポリエステルフィルムと同等又はそれ以上の優れた物性、特に低温環境下での優れた耐屈曲性を有する二軸延伸ポリエステル樹脂フィルムを提供することができる。
特に、本発明の二軸延伸ポリエステル樹脂フィルムは、リサイクル原料を特定の工程で処理されており、異物混入量が少なく、降温結晶化温度が特定の範囲であるポリエステル樹脂を含むことから、厚みが50μm以下であっても、高い延伸速度で長期に亘って連続生産が可能であり、そのフィルムの表面結晶化度が低く抑えられている。このため、リサイクル原料を含まないポリエステル樹脂よりも低温環境下での耐屈曲性に優れ、MD及びTD方向の引張伸度もリサイクル原料を使用していないポリエステル樹脂フィルムと同等に優れているものである。
さらに、本発明では、リサイクル比率が35%以上という高いリサイクル比率の二軸延伸ポリエステル樹脂系フィルムを提供することができる。このフィルムは、引張強度及び引張弾性率という機械物性にも優れるとともに、透明性、色調、濡れ性、印刷適性等にも優れていることから、特に包装材料として好適に用いることができる。
本発明の製造方法では、上記のような耐屈曲性等に優れた二軸延伸ポリエステル樹脂フィルムを効率良くかつ確実に製造することができる。すなわち、本発明の製造方法によって得られる二軸延伸ポリエステル樹脂フィルムも、上記のような優れた特性を発揮することができる。
1.二軸延伸ポリエステル樹脂系フィルム
本発明の二軸延伸ポリエステル樹脂系フィルム(本発明フィルム)は、下記の物性(1)~(2):
(1)示差走査熱量測定(DSC)において、25℃から300℃まで昇温速度20℃/分で昇温し、300℃で10分保持した後、降温速度40℃/分で降温する際に結晶化する温度が160~180℃であること、
(2)-10℃雰囲気下でのゲルボフレックステスターによる200回繰り返し屈曲疲労テスト後におけるピンホール個数が10個/500cm以下であること、
を全て満たすことを特徴とする。
(A)本発明フィルムの組成
本発明フィルムは、ポリエステル樹脂を含むものであるが、その含有量は特に限定されない。本発明では、ポリエステル樹脂の含有量は、本発明フィルム中60~100質量%程度であることが好ましく、特に80~100質量%であることがより好ましい。従って、本発明の効果を妨げない範囲内において、他の成分が含まれていても良い。
他の成分としては、例えば後述するように、一般的なフィルムに含まれている添加剤が挙げられる。また、添加剤については、本発明フィルムの製造時にはじめて添加される添加剤のほか、原料中に含まれる添加剤、不純物等も包含される。
本発明フィルムに含まれるポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられるが、本発明では、その原料として一部又は全てがリサイクルポリエステル原料から由来する成分を含むポリエステル樹脂(以下、「再生ポリエステル樹脂」と称す。)を利用しやすいという点でポリエチレンテレフタレート(PET)を含むことが望ましい。この場合、ポリエステル樹脂中に占めるPETの割合は、特に限定されないが、通常は70~100質量%の範囲内で適宜設定することができ、好ましくは80~100質量%であり、最も好ましくは90~100質量%である。
PETは、通常はエチレングリコールとテレフタル酸の重縮合物であるが、用いる原料によっては、上記2成分以外の成分が含まれる場合がある。この場合には、PET以外のポリエステル樹脂が重縮合反応により生成することもあり、このような態様も本発明に包含される。すなわち、本発明フィルムが、PET以外のポリエステル樹脂を含む場合、酸成分又はグリコール成分として以下に示すような成分が共重合されているポリエステル樹脂が含まれていても良い。また、PET以外のポリエステル樹脂を含む場合、1種又は2種以上のポリエステル樹脂が含まれていても良い。
ポリエステル樹脂を構成する酸成分としては、例えばイソフタル酸、フタル酸、無水フタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸、ドデカン二酸等、ダイマー酸、更には無水トリメリット酸、トリメリット酸、ピロメリット酸、1,4-シクロヘキサンジカルボン酸、セバシン酸、ダイマー酸等が挙げられる。これらは1種又は2種以上であっても良い。
また、ポリエステル樹脂を構成するグリコール成分としては、例えばネオペンチルグリコール、1,4-ブタンジオール、1,2-プロピレングリコール、1,5-ペンタンジオール、1,3-プロパンジオール、1,6-ヘキサメチレンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、ダイマージオール、ブチルエチルプロパンジオール、(2-メチル1,3-プロパンジオール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ビスフェノールA又はビスフェノールSのエチレンオキシド付加体等を挙げることができる。これらは1種又は2種以上であっても良い。
本発明フィルムのカルボキシル末端基濃度は、特に限定されないが、通常は20~60当量/t程度であることが好ましい。特に、その上限は50当量/t以下であることが好ましく、その中でも45当量/t以下であることが最も好ましい。また、下限は30当量/t以上であることが最も好ましい。カルボキシル末端基濃度を60当量/t以下とすることにより、耐熱性に優れた性能を有しており、MD及びTD方向の引張伸度に優れた二軸延伸フィルムを得ることが可能となる。一方、カルボキシル末端基濃度を20当量/t以上とすることにより50μm以下という比較的薄い二軸延伸フィルムであったとしても、MD及びTD方向の引張伸度がリサイクル原料を使用していないポリエステル樹脂フィルムと同等に優れた高延伸倍率の二軸延伸フィルムを比較的長期にわたって連続生産することが可能となる。
また、本発明のポリエステル樹脂フィルムは、全グリコール成分の合計量を100モル%とするとき、ジエチレングリコールの含有量が0.5~3.0モル%であることが好ましく、その中でも1.0~3.0モル%であることがより好ましく、1.2~3.0モル%であることが最も好ましい。特に、後述する再生ポリエステル樹脂を用いることで、製膜時のTダイの表面(リップ面)汚染を抑制でき、高リサイクル比率のポリエステル樹脂を高延伸倍率で長期に亘って連続生産が可能な二軸延伸フィルムを得ることが可能となる。
本発明のポリエステル樹脂系フィルムは、フィルムの性能に悪影響を与えない範囲で、例えば着色材、フィラー、分散剤、酸化防止剤、紫外線吸収剤、防腐剤、帯電防止剤、ブロッキング防止剤、無機微粒子等の各種の添加剤を1種あるいは2種以上添加することができる。
特に、本発明フィルムでは、フィルムのスリップ性を向上させる等の目的で、滑剤が配合されていても良い。滑剤としては、無機系滑剤又は有機系滑剤のいずれも用いることができる。滑剤の具体例としては、クレー、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、珪酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、層状ケイ酸塩、エチレンビスステアリン酸アミド等が挙げられる。これらの中でもシリカが好ましい。滑剤の含有量は、限定的ではないが、通常はポリエステル樹脂系フィルム中に0.01~0.3質量%程度の範囲が適当である。
一方、本発明フィルムでは、透明性向上の観点から、耐衝撃改良剤の含有量が3質量%以下であることが好ましく、より好ましくは2質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.5質量以下%であり、実質的に含んでいないことが最も好ましい。耐衝撃改良剤は、フィルムに加わる衝撃又は屈曲によるクラックの進展を抑制するための分散材(分散粒子)である。従って、そのような機能を有する材料であれば、例えば「耐衝撃改良剤」、「衝撃強度改質剤」等の名称で市販されている材料のほか、他の名称で市販又は使用されている材料も包含される。
特に、このような機能を有する材料として、エラストマー及びゴムが挙げられる。より具体的には、(エチレン及び/又はプロピレン)・α-オレフィン系共重合体、(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマ-重合体等のオレフィン系重合体、スチレン系エラストマー、ウレタン系エラストマー、フッ素系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等のエラストマー、チオコールゴム、多硫化ゴム、アクリルゴム、シリコーンゴム、ポリエーテルゴム、エピクロルヒドリンゴム等の合成ゴム等が挙げられる。
耐衝撃改良剤を添加すると、フィルムの耐屈曲性が改善されるものの、フィルム中に耐衝撃改良剤の粒子が分散するために透明性が低下する。このため、従来の二軸延伸ポリエステル樹脂系フィルムにおいては、耐屈曲性と透明性とは互いに相反する特性とされており、これらを両立させることが困難となっている。これに対し、本発明フィルムは、これらの耐衝撃改良剤を含んでいなくても、優れた耐屈曲性等を発揮することができるので、高い透明性も確保することができる。すなわち、本発明では、優れた耐屈曲性等と高い透明性とを兼ね備えたフィルムを提供することができる。
本発明フィルムは、本発明の効果を損なわない範囲でコロナ放電処理、易接着処理等の表面処理が施されても良い。また、易接着層、バリアコート層、印刷層等を必要に応じて設けることもできる。
(B)本発明フィルムの構成・特性
本発明フィルムは、二軸延伸(二軸配向)されたフィルムであって、下記の物性(1)~(2):
(1)示差走査熱量測定(DSC)において、25℃から300℃まで昇温速度20℃/分で昇温し、300℃で10分保持した後、降温速度40℃/分で降温する際に結晶化する温度(降温結晶化温度)が160~180℃であること、及び
(2)-10℃雰囲気下でのゲルボフレックステスターによる200回繰り返し屈曲疲労テスト後におけるピンホール個数が10個/500cm以下であること(耐屈曲性)、
を全て満たす。
(1)降温結晶化温度(Tc)
本発明フィルムの降温結晶化温度(Tc)については、下限値が160℃以上であることが必要であり、さらに163℃以上であることが好ましく、特に165℃以上であることがより好ましく、その中でも170℃以上であることが最も好ましい。
また、Tcの上限値は180℃以下であることが必要であり、さらに178℃以下であることが好ましく、特に175℃以下であることがより好ましい。降温結晶化温度を上記範囲内に制御することにより、優れた引張伸度及び低温環境下での耐屈曲性を発揮させることができる。本発明フィルムの原料として、後述する再生ポリエステル樹脂の好ましい含有量が30質量%以上、より好ましい含有量が40質量%以上含有することで、本発明フィルムの降温結晶化温度(Tc)を上記範囲にすることができる。
(2)耐屈曲性
本発明では、従来のポリエステル樹脂系フィルム(特にヴァージンポリエステルフィルム)よりも優れた特徴の一つとして耐屈曲性がある。その耐屈曲性の高さの指標として、特定の耐屈曲試験後のフィルム表面のピンホール数で示し、ピンホール数が少ないほど高い耐屈曲性を示す。
この試験は、-10℃雰囲気下でのゲルボフレックステスターによる200回繰り返し屈曲疲労テスト後におけるピンホール個数を計測し、フィルム500cm以下当たりのピンホール個数で示す。ゲルボフレックステスター(装置)自体は、特に限定されず、公知又は市販のものを使用することができる。
本発明フィルムにおけるピンホール数は、通常は10個/500cm以下であり、特に5個/500cm以下であることが望ましい。すなわち、このような少ないピンホール数をもつフィルムは、包装体とした際の耐破袋性に優れており、特にチルド流通の食品用容器又は食品包装材料のほか、輸液バッグ等の医療用容器に好適に用いることが可能となる。
(3)その他の物性
本発明フィルムは、上記(1)(2)の物性のほか、以下の物性の少なくとも1つをさらに有することが望ましい。
(3-1)ヘイズ(Hz)
ヘイズは、包装材料等に使用した場合の透明性を維持できる等の観点から、ヘイズが通常10%以下であり、特に8%以下であることがより好ましく、その中でも7%以下であることが最も好ましい。ヘイズの下限値は、例えば0.1%程度とすることができるが、これに限定されない。なお、本発明フィルムに透明性が要求されない場合は、ヘイズが10%を超えても良い。
(3-2)表面結晶化度
本発明フィルムの表面結晶化度は、特に制限されないが、下記のような範囲内に設定することが望ましい。下限値は1.1以上であることが好ましく、1.15以上であることがより好ましく、1.2以上であることが最も好ましい。上限値としては、1.4以下であることが好ましく、1.35以下であることがより好ましい。表面結晶化度をこの範囲とすることにより、機械強度、特に優れた耐屈曲性を得ることが可能となる。
(3-3)b*値
本発明フィルムは、外観上、b値は0以下であることが好ましく、-1以下であることがより好ましい。b*値は、色調を示す指標である。b*値が高いほどフィルムは黄色味が強く、包装材料又は内容物の劣化を連想させるため、b*は低い方が好まれる。
(3-4)濡れ張力
本発明フィルムは、その表面に印刷する際の印刷適性の観点で、濡れ張力が44mN/m以上が好ましく、46mN/m以上がより好ましく、50mN/m以上が最も好ましい。
(3-5)引張伸度
本発明フィルムは、MD及びTD方向の引張伸度がいずれも100%以上であることが好ましく、110%以上がより好ましく、115%以上がさらに好ましく、120%以上が最も好ましい。引張伸度が100%未満であると、フィルムが脆く、延伸時に破断する場合があり、長期の連続生産が困難であり、包装材料としてもシート又は袋体の破れを生じやすく不適である。
(3-6)引張強度
本発明フィルムは、MD及びTD方向の引張強度がいずれも200MPa以上が好ましく、210MPa以上がより好ましく、220MPa以上が最も好ましい。
(3-7)引張弾性率
本発明フィルムは、MD及びTD方向の引張弾性率がいずれも3.0GPa以上が好ましく、3.5GPa以上がより好ましく、3.7GPa以上が最も好ましい。
(3-8)突刺強力
本発明フィルムは、包装材料として使用した場合に内容物の突起部との接触による破れを抑制する観点から、突刺強力は7.0N以上であることが好ましく、特に7.5N以上であることがより好ましく、その中でも8.0N以上であることが最も好ましい。
(3-9)乾熱収縮率
本発明フィルムは、加工工程での熱変形を抑制する観点で、MD及びTD方向の乾熱収縮率がいずれも2.0%以下が好ましく、特に1.5%以下がより好ましく、その中でも1.0%以下が最も好ましい。
(3-10)フィルム厚み
本発明フィルムの厚みは、プラスチック使用量低減の観点から、50μm以下であることが好ましく、特に45μm以下であることがより好ましく、その中でも40μm以下であることが最も好ましい。また、下限値については、機械的強度を保つ観点から5μm以上であることがより好ましく、特に10μm以上であることが最も好ましい。
2.二軸延伸ポリエステル樹脂系フィルムの製造方法
本発明の二軸延伸ポリエステル樹脂系フィルムの製造方法は、
(A)リサイクルポリエステル原料を解重合反応に供することにより反応生成物を得る工程(解重合工程)、
(B)前記反応生成物を濾過し、濾液を回収する工程(濾過工程)、
(C)重合触媒の存在下で温度260℃以上及び圧力1.0hPa以下で前記濾液を重縮合反応に供することによりポリエステル樹脂を得る工程(重縮合工程)、
(D)前記ポリエステル樹脂を含む出発材料を用いて未延伸フィルムを製造した後、前記未延伸フィルムを二軸延伸する工程(延伸工程)、
を含むことを特徴とする。
(A)解重合工程
解重合工程では、リサイクルポリエステル原料を解重合反応に供することにより反応生成物を得る。
本発明において、リサイクルポリエステル原料とは、例えば使用済みポリエステル製品、ポリエステル製品を製造する工程で発生するポリエステル片が挙げられる。
使用済みポリエステル製品としては、例えば一度市場に出回り、使用後に回収されたポリエステル成形品(繊維、フィルムを含む。)等が挙げられる。その代表例としては、PETボトル等のような容器又は包装材料が挙げられる。
また、ポリエステル製品を製造する工程で発生するポリエステル片(以下、「未採用ポリエステル樹脂」と称す場合がある。)は、製品化に至らなかったポリエステルであり、例えば規格を外れた樹脂ペレット、成形時に不要になった材料(フィルム端部)、成形時に切断された断片、成形時、加工時等に発生した屑(ポリエステル屑)、銘柄変更時に発生する移行品の裁断物、試作品・不良品の裁断物等が挙げられる。
リサイクルポリエステル原料の形態としては、限定的ではなく、前記使用済みポリエステル製品又は前記未採用ポリエステル樹脂の当初の形態のままでも良いし、さらに裁断、粉砕等の加工を施して得られる裁断片、粉砕物(粉末)等の形態のほか、これらを成形してなる成形体(ペレット等)等の固体の形態が挙げられる。より具体的には、a)ポリエステル屑の溶融物を冷却した後に切断して得られるペレット、b)PETボトルのようなポリエステル成形品を細かく裁断した裁断片等が例示される。その他にも、上記のような裁断片、粉砕物(粉末)等を溶媒に分散又は溶解させて得られる液体(分散液又は溶液)の形態であっても良い。これらの原料を用いて本発明フィルムを製造する際には、必要に応じてこれらをその融点以上の温度で溶融させて融液として缶内へ投入することもできる。
解重合工程では、リサイクルポリエステル原料を解重合反応に供するが、これにより、その原料を構成しているオリゴマー等を得ることができる。
解重合反応に際しては、リサイクルポリエステル原料単独で解重合反応に供することもできるが、本発明ではエチレンテレフタレートオリゴマー及びエチレングリコールの存在下でサイクルポリエステル原料を解重合反応に供することが望ましい。リサイクルポリエステル原料を利用した従来法においては、リサイクルポリエステル原料のみを用いて解重合を行っているのに対し、本発明においてはエチレンテレフタレートオリゴマー及びエチレングリコールの存在下でリサイクルポリエステル原料の解重合反応を行い、好ましくはエチレンテレフタレートオリゴマー、エチレングリコール及びリサイクルポリエステル原料の全ての成分における「全グリコール成分/全酸成分」のモル比が特定の範囲内になるようにリサイクルポリエステル原料を投入し、解重合反応を行うことが望ましい。このようにすることにより、各種の無機物のみならず、非ポリエステル樹脂由来の異物の析出が効率良く行われるため、後述の濾過工程において、これらの異物を効果的に取り除くことができる。そして、後述の重縮合工程において、ジエチレングリコールの含有量及びカルボキシル末端基濃度が特定範囲のものであり、かつ、異物の混入量が比較的少ない再生ポリエステル樹脂を得ることが可能となる。
本発明の製造方法においては、上記の解重合反応により、リサイクルポリエステル原料をモノマーにまで分解されずに、繰り返し単位が5~20程度のオリゴマーまで分解されることが望ましい。このように制御することにより、各種の無機物のみならず、非ポリエステル樹脂由来の異物の析出が効率良く行われる結果、より多くの異物を取り除くことが可能となる。
エチレンテレフタレートオリゴマー及びエチレングリコールは、いずれも公知又は市販のものを使用することができる。また、公知の製造方法によって製造することもできる。特に、エチレンテレフタレートオリゴマーとしては、例えばエチレングリコールとテレフタル酸とのエステル化反応物を好適に用いることができる。また、エチレンテレフタレートオリゴマーの数平均重合度は、限定的ではないが、例えば2~20程度とすることができる。
エチレンテレフタレートオリゴマー及びエチレングリコールの使用量は、限定的ではないが、上記の観点から特にエチレンテレフタレートオリゴマー、エチレングリコール及びリサイクルポリエステル原料の全ての成分における「全グリコール成分/全酸成分」のモル比が1.08~1.35となるように設定することが好ましい。
エチレンテレフタレートオリゴマーの使用量は、上記モル比に設定できる限りは特に限定されないが、後記の重縮合工程で得られるポリエステル樹脂(以下「再生ポリエステル樹脂」ともいう。)100質量%中0.20~0.80質量%程度とすることが好ましく、特に0.30~0.70質量%とすることがより好ましい。エチレンテレフタレートオリゴマーの量が上記より少ない場合、リサイクルポリエステル原料を投入した際に、リサイクルポリエステル原料どうしがブロッキングを起こしやすくなり、攪拌機に過大な負荷がかかるおそれがある。一方、エチレンテレフタレートオリゴマーの量が上記範囲より多い場合は解重合反応に特に問題は起きないが、最終的に得られる再生ポリエステル樹脂のリサイクル比率が低くなることがある。
エチレングリコールの添加量は、上記モル比に設定できる限りは特に限定されないが、解重合反応を十分に進行させるという見地より、エチレンテレフタレートオリゴマーを100質量部に対して5~15質量部とすることが好ましく、その中でも5~10質量部とすることがより好ましい。エチレングリコールの添加量が多すぎると再生ポリエステル樹脂中のカルボキシル末端基濃度が低くなり、少なすぎるとカルボキシル末端基濃度が高くなり、いずれも本願の範囲を逸脱する場合がある。特に、15質量部を超えると、反応器内でエチレンテレフタレートオリゴマーが固化しやすくなり、以後の反応が継続できなくなる場合がある。
解重合工程でエチレンテレフタレートオリゴマーとエチレングリコールを用いる場合、その混合方法(添加順序)は、限定的ではないが、特にエチレンテレフタレートオリゴマーとエチレングリコールとを含む混合物にリサイクルポリエステル原料を添加する方法が好ましい。これにより解重合反応の進行のむらを少なくすることができる。
また、エチレンテレフタレートオリゴマー及びエチレングリコールの混合に際しては、例えばエチレンテレフタレートオリゴマー中にエチレングリコールを添加することが好ましい。また、添加する際は、オリゴマーの固化を防ぐ目的等で、攪拌機を回しながら内容物の温度を均一にし、添加することが好ましい。
リサイクルポリエステル原料を上記混合物に投入する際には、常圧下で撹拌しながら行うことが好ましく、少量の不活性ガス(一般的には窒素ガスを使用)でパージした状態で投入することがより好ましい。これによって、酸素の混入を妨げることができ、色調の悪化をより確実に防ぐことができる。
リサイクルポリエステル原料は、全グリコール成分/全酸成分のモル比が1.08~1.35であることが好ましく、特に1.10~1.33であることがより好ましく、その中でも1.12~1.30であることが最も好ましい。全グリコール成分/全酸成分のモル比が上記範囲外である場合、得られる再生ポリエステル樹脂は、本発明で規定するカルボキシル末端基濃度及びジエチレングリコールの含有量の少なくとも一方を満足しないものとなり、また平均昇圧速度も高くなる場合がある。すなわち、解重合反応を行う際の全グリコール成分/全酸成分のモル比が上記範囲外である場合、各種の無機物及び非ポリエステル樹脂由来の異物が効率的に析出されないため、濾過工程でこれらの異物を効果的に濾過することができず、重縮合工程後に異物が析出しやすくなる結果、平均昇圧速度が高い再生ポリエステル樹脂となるおそれがある。
解重合工程において、解重合時の反応温度(特に反応器の内温)は、限定的ではないが、特に245~280℃の範囲に設定して行うことが好ましく、その中でも255~275℃の範囲に設定して行うことがより好ましい。解重合時の反応温度が245℃未満になる場合には、反応物が固化し、操業性が悪化するとともに、再生ポリエステル樹脂が得られたとしても、ジエチレングリコールの含有量又はカルボキシル末端基濃度が高くなりすぎる傾向となる。前記反応温度が280℃を超える場合は、得られる再生ポリエステル樹脂のジエチレングリコールの含有量又はカルボキシル末端基濃度が高くなりすぎるおそれがある。
また、解重合反応の時間(リサイクルポリエステル原料の投入終了後からの反応時間)は、解重合反応が完了するのに十分な時間とすれば良く、特に限定されないが、通常は4時間以内とすることが好ましい。特に、ジエチレングリコールの副生量を抑えること、ポリエステルの色調悪化を抑えること等の観点から2時間以内とすることがより好ましい。前記反応時間の下限値は、限定的ではなく、例えば1時間程度とすることもできる。
反応装置は、特に限定されず、公知又は市販の装置も使用することができる。特に、反応器においても、その容量、攪拌翼形状等は一般的に使用されているエステル化反応器で特に問題ないが、解重合反応を効率的に進めるため、エチレングリコールを系外に溜出させない蒸留塔を有する反応器であることが好ましい。
(B)濾過工程
濾過工程では、前記反応生成物を濾過し、濾液を回収する。前記の解重合工程で得られる反応生成物は、主としてリサイクルポリエステル原料の解重合体(特に再生されたオリゴマー)を含む液状体である。濾過工程では、その反応生成物(液状体)をフィルターに通過させて異物を濾過するとともに、濾液を回収する。
前記の解重合工程では、各種の無機物のみならず、非ポリエステル樹脂由来の異物の析出が効率良く行われるため、フィルター(好ましくは濾過粒度10~25μm程度のフィルター)を通過させることにより、析出した異物を濾過し、異物の混入量の少ない解重合体を得ることができる。濾過粒度が25μmより大きいフィルターを使用すると、ポリマー中の異物を十分に除去できず、得られる再生ポリエステル樹脂中の異物が多くなる。このため、このような樹脂を用いて延伸フィルムを製膜すると、Tダイ表面(リップ面)の汚染が生じ、延伸時にフィルムが破断する場合がある。一方、濾過粒度が10μmよりも小さいフィルターを使用すると、異物による目詰まりが生じやすく、フィルターライフが短くなることにより、コスト的に不利となるほか、操業性も低下するおそれがある。
濾過工程で使用できるフィルターとしては、一般的なフィルターを使用できるが、特に金属製フィルターが好ましい。材質としては、特に限定されず、例えばステンレス鋼等が挙げられる。フィルター形式も、特に限定されず、例えばスクリーンチェンジャー式フィルター、リーフディスクフィルター、キャンドル型焼結フィルター等が挙げられる。これらは、公知又は市販のものを使用することもできる。
(C)重縮合工程
重縮合工程では、重合触媒の存在下で温度260℃以上及び圧力1.0hPa以下で前記濾液を重縮合反応に供することによりポリエステル樹脂(再生ポリエステル樹脂)を得る。
重合触媒としては、限定的ではないが、例えばゲルマニウム化合物、アンチモン化合物、チタン化合物、コバルト化合物等の少なくとも1種を用いることができる。その中でも、特にゲルマニウム化合物及びアンチモン化合物の少なくとも1種を使用することが好ましい。特に、得られる再生ポリエステル樹脂の透明性を重視する場合においては、ゲルマニウム化合物を使用することが好ましい。上記の各化合物としては、ゲルマニウム、アンチモン、チタン、コバルト等の酸化物、無機酸塩、有機酸塩、ハロゲン化物、硫化物等の少なくとも1種が例示される。
重合触媒の使用量は、特に限定されないが、例えば生成するポリエステル樹脂の酸成分1モルに対して5×10-5モル/unit以上とすることが好ましく、その中でも6×10-5モル/unit以上とすることがより好ましい。上記使用量の上限は、例えば1×10-3モル/unit程度とすることができるが、これに限定されない。
なお、リサイクルポリエステル原料中に含まれる重合触媒も、重縮合反応時に触媒として作用する場合もあるため、重縮合工程で重合触媒を添加する際には、リサイクルポリエステル原料中に含まれる重合触媒の種類及びその含有量を考慮することが好ましい。
また、重縮合反応時には、必要に応じて、上記の重合触媒と併せて、例えばa)溶融粘度を調整することができる脂肪酸エステル、b)ヒンダードフェノール系抗酸化剤、c)樹脂の熱分解を抑制することができるリン化合物等を必要に応じて添加することもできる。
脂肪酸エステルとしては、例えば蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート、ジペンタエリスリトールヘキサステアレート等が挙げられる。これらの中でも、グリセリンモノステアレート、ペンタエリスリトールテトラステアレート、ジペンタエリスリトールヘキサステアレートが好ましい。これらは1種又は2種以上で用いることができる。
ヒンダードフェノール系抗酸化剤としては、例えば2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4’-ブチリデンビス-(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1’-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が用いられるが、効果とコストの点で、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタンが好ましい。これらは1種又は2種以上で用いることができる。
リン化合物としては、例えば亜リン酸、リン酸、トリメチルフォスファイト、トリフェニルフォスファイト、トリデシルフォスファイト、トリメチルフォスフェート、トリデシルフォスフェート、トリフェニルフォスフォート等のリン化合物を用いることができる。これらは1種又は2種以上で用いることができる。
重縮合反応においては、温度260℃以上及び1.0hPa以下の減圧下で重縮合反応を行う。重縮合反応温度が260℃未満であったり、あるいは重縮合反応時の圧力が1.0hPaを超えると、重縮合反応時間が長くなるため、生産性に劣り、再生ポリエステル樹脂中のカルボキシル末端基濃度が低すぎるものとなる。
重縮合反応温度は、特に270℃以上とすることが好ましい。一方、重縮合反応温度が高過ぎると、熱分解によりポリマーが着色し、色調が悪化すること、同じく熱分解により再生ポリエステル樹脂中のカルボキシル末端基濃度が高くなりすぎるため、本発明においては、重縮合反応温度の上限は、通常は285℃以下とすることが好ましい。
圧力は、特に0.8hPa以下とすることが好ましい。下限値は、例えば0.1hPa程度とすることができるが、これに限定されない。
このようにして、重縮合反応を実施することによって再生ポリエステル樹脂を得ることができる。得られる再生ポリエステル樹脂の構成又は特性は、特に限定されないが、以下のように設定されていることが好ましい。
本発明において、再生ポリエステル樹脂は、その種類は限定されないが、特にポリエチレンテレフタレート(PET)を主体とするものであることが好ましい。再生ポリエステル樹脂中におけるPETの含有量は70質量%以上であることが好ましく、特に80質量%以上であることがより好ましく、その中でも90~100質量%であることが最も好ましい。
本発明において、再生ポリエステル樹脂は、全グリコール成分の合計量を100モル%とするとき、ジエチレングリコールの含有量は0.5~4モル%程度であることが好ましく、特に1~3.5モル%であることがより好ましく、その中でも1.2~3モル%であることが最も好ましい。特に、本発明の製造方法により得られる再生ポリエステル樹脂においては、エチレングリコールを原料の一つとして用いると、その際の副生成物としてジエチレングリコールが生じ得る。本発明における再生ポリエステル樹脂は、その副生するジエチレングリコールの量が少ないものであり、ジエチレングリコールの含有量が4モル%以下とすることにより、より熱安定性に優れた性能を得ることができる。このため、未延伸シートないしは延伸フィルムを製膜する際に、Tダイの表面(リップ面)汚染を抑制でき、高い生産性を得ることが可能となる。
また、再生ポリエステル樹脂は、カルボキシル末端基濃度が40当量/t以下であることが好ましく、特に30当量/t以下であることがより好ましく、25当量/t以下であることがさらに好ましく、その中でも20当量/t以下であることが最も好ましい。カルボキシル末端基濃度を40当量/t以下とすることにより、耐熱性に優れた性能を有しており、各種の成形方法により耐熱性に優れた成形品を得ることが可能となる。なお、カルボキシル末端基濃度の下限値は、フィルム製膜時の引張伸度等の機械強度向上の観点から10当量/t以上であることが好ましい。
再生ポリエステル樹脂は、次の方法により測定される平均昇圧速度が0.6MPa/h以下であり、特に0.5MPa/h以下であることが好ましく、その中でも0.4MPa/h以下であることがより好ましい。本発明における平均昇圧速度は、各種無機物に由来する異物、非ポリエステル樹脂に由来する異物等の混入量の多さの指標となるものであり、平均昇圧速度が小さいほど異物の混入量が少ないことを示す。平均昇圧速度が0.6MPa/h以下であることにより、例えば延伸倍率が10倍以上の高倍率の延伸フィルムを製造することも可能となる。なお、平均昇圧速度の下限値は、例えば0.01MPa/h程度とすることができるが、これに限定されない。
上記の平均昇圧速度の測定方法は、エクストルーダー及び圧力センサを含む昇圧試験機を用い、エクストルーダーの先端に前記フィルターをセットし、ポリエステル樹脂をエクストルーダーにて300℃で溶融し、前記フィルターからの吐出量29.0g/分で当該溶融物を押し出した時の前記フィルターにかかる圧力値として、押し出し開始時の圧力値を「初期圧力値(MPa)」とし、その後連続して12時間押し出しをした時点の圧力値を「最終圧力値(MPa)」とした場合、それらの圧力値に基づいて下記計算式Aにより平均昇圧速度を算出する:
平均昇圧速度(MPa/h)=(最終圧力値-初期圧力値)/12)・・・A
前記の測定で用いるエクストルーダー、フィルター等は、本発明の規定を満たす限りは、制限されず、公知又は市販のものを適宜使用することもできる。
再生ポリエステル樹脂の極限粘度は、特に限定されないが、通常は0.44~0.80程度であることが好ましく、特に0.55~0.70であることがより好ましい。また、再生ポリエステル樹脂は、固相重合工程を経て高重合度化することも可能である。この場合、得られる再生ポリエステル樹脂の極限粘度は、通常0.80~1.25とすることが好ましい。
再生ポリエステル樹脂の降温結晶化温度(Tc)は、下限値が160℃以上であることが好ましく、さらに163℃以上であることがより好ましく、165℃以上であることがさらに好ましく、その中でも170℃以上であることが最も好ましい。
また、Tcの上限値は、180℃以下であることが好ましく、さらに178℃以下であることがより好ましく、その中でも175℃以下であることが最も好ましい。降温結晶化温度を上記範囲内に制御した再生ポリエステル樹脂を含有することにより、得られた二軸延伸ポリエステル樹脂系フィルムは、引張伸度が高く、低温環境下での耐屈曲性にも優れている。
(D)延伸工程
延伸工程では、前記ポリエステル樹脂(再生ポリエステル樹脂)を含む出発材料を用いて未延伸フィルムを製造した後、前記未延伸フィルムを二軸延伸する。
出発材料中におけるリサイクルポリエステル原料の含有量は、限定的ではなく、通常は20質量%以上(特に24質量%以上)程度であれば良くが、エコマーク認証等の環境的な観点から、25質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、特に50質量%以上であることが最も好ましい。前記含有量が低すぎると、それに伴ってリサイクル比率が低下する。上記含有量の上限については、通常は80質量%程度に設定できるが、これに限定されない。
また、再生ポリエステル樹脂は、1種類の再生ポリエステル樹脂のみからなるものでも良く、2種類以上の再生ポリエステル樹脂を混合したものでも良く、再生ポリエステル樹脂と再生ポリエステル樹脂以外の樹脂を混合したものでも良い。本発明フィルムの降温結晶化温度を規定する範囲とするためには、再生ポリエステル樹脂の含有量は、通常30質量%以上であることが好ましく、40質量%以上であることがより好ましい。なお、上限は、例えば95質量%以下、さらには98質量%以下、特に100質量%とすることもできるが、これに限定されない。
再生ポリエステル樹脂以外の樹脂としては、例えば、リサイクル原料を使用していないポリエステル樹脂(以下、「バージンポリエステル樹脂」と称す場合がある。)、未採用ポリエステル樹脂等が挙げられる
出発材料中には、本発明の効果を損なわない範囲で、リサイクル比率を高くするために未採用ポリエステル樹脂、使用済みポリエステル製品等も含まれていても良い。
未採用ポリエステル樹脂は、製品化に至っていない材料である。例えば、前記したようにフィルム製造時に発生した未延伸屑、耳部トリミング屑、スリット屑、不良品等が挙げられる。これらは、粉砕物(フレーク等)のほか、これらを再溶融して作製されたペレット等の形態で添加することができる。
使用済みポリエステル製品は、製品化された後、使用後に廃棄される予定の製品である。これは、適切な洗浄工程の後、その粉砕物あるいはこれを再溶融して作製されたペレットの形態で添加することができる。
出発材料中における未採用ポリエステル樹脂の含有量は、通常75質量%以下であることが好ましく、特に65質量%以下がより好ましく、50質量%以下がさらに好ましく、40質量%以下が特に好ましく、その中でも35質量%以下であることが最も好ましい。未採用ポリエステル樹脂の含有量が75質量%を超えると、異物又は熱劣化物が増え、フィルム製膜の際に切断等のトラブルが生じる傾向にある。また、引張伸度等のようなフィルムの機械物性が低下する傾向にある。
未採用ポリエステル樹脂として用いるフィルム屑又は不良品は、例えば、シリカ等の滑剤のほか、酸化防止剤等の各種添加剤の濃度が屑となる銘柄ごとに異なる。そのため、出発材料中の未採用ポリエステル樹脂の含有量が多くなるほど、前記添加剤濃度のバラツキが生じ、得られたフィルムのヘイズ、フィルム表面の濡れ張力、印刷適性等に悪影響を及ぼす場合がある。
前記理由から、目的とするポリエステル樹脂フィルムが複数の層から構成される場合、表層の未採用ポリエステル樹脂含有量は50質量%以下とすることが好ましく、特に40質量%以下とすることがより好ましく、その中でも35質量%以下とすることが最も好ましい。一方、中間層においては、未採用ポリエステル樹脂の含有量が多くても濡れ張力、印刷適性等のフィルム表面特性には影響を与えないため、リサイクル比率を高くする観点から、未採用ポリエステル樹脂含有量を多くすることができる。中間層の未採用ポリエステル樹脂含有量は100質量%としても良い。
また、出発材料に関し、本発明フィルムのリサイクル比率は高い方が好ましい。より具体的には、通常はリサイクル率が25質量%以上であることが好ましく、35質量%以上であることがより好ましく、特に40質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましく、その中でも65%以上であることが最も好ましい。上限値は、例えば80質量%程度とすることができるが、これに限定されない。従って、上記のようなリサイクル率となるように、出発材料の組成を調整することが望ましい。なお、本発明において、リサイクル率Rとは、下記式で示される重量割合をいう。
R(質量%)=A×B+C
(但し、Aは、再生ポリエステル樹脂に占めるリサイクルポリエステル原料の重量割合(質量%)を示す。Bは、再生ポリエステル樹脂がフィルム中に占める重量割合(質量%)を示す。Cは、未採用ポリエステル樹脂がフィルム中に占める重量割合(質量%)を示す。)
未延伸フィルムの作製方法は、限定的でなく、公知のフィルム製膜法によって成形することができる。例えば、前記原料の溶融物をTダイから押出した後、キャスティングロールで冷却することによって得ることができる。この場合、未延伸フィルムの結晶化度を均一にする観点で、このキャスティングロール表面の実温度を精度良く管理することが必要である。
次いで、得られた未延伸フィルムの二軸延伸を行う。これにより、MD及びTD方向の引張伸度がいずれも優れたフィルムを得ることができる。二軸延伸法は、限定的でなく、例えば同時二軸延伸法、逐次二軸延伸法が挙げられる。引張強度、引張弾性率のいずれの物性もMD及びTD方向の差を小さくするという機械物性の面バランスの観点で、同時二軸延伸法が好ましく、乾熱収縮率のMD及びTD方向の差を小さくするという熱特性の面バランスの観点及び突刺強力、衝撃強度向上の観点で逐次二軸延伸法が好ましく、これらは求めるフィルム物性、用途において適宜選択できる。
延伸倍率は、例えばフィルムの用途、所望の物性等に応じて適宜設定することができ、例えばMD方向2~4倍、TD方向2~4倍とすることができるが、これに限定されない。延伸温度も、限定的でなく、例えば40~220℃の範囲内で実施することができる。特に、逐次延伸の場合、MD方向の延伸は40~80℃とし、TD方向の延伸は80~150℃とすることが好ましい。また、同時二軸延伸の場合は160~220℃とすることが好ましい。
得られた二軸延伸フィルムは、寸法安定性向上、熱水収縮率を抑制するために、必要に応じて220~240℃程度の温度で短時間の熱処理を施すことが好ましい。
延伸工程で与えられる変形と熱により、延伸フィルムの結晶化が進行するが、本発明の範囲の降温結晶化温度であらわされるような結晶化の特性を持つ再生ポリエステル樹脂を用いることにより、フィルムの表面結晶化度を適切にコントロールが容易になり、機械特性に優れ、特に表面の結晶化の状態に影響される耐屈曲性に優れた延伸フィルムを得ることができる。
3.本発明フィルムの使用
本発明フィルムの形態としては、単一の層から構成されるものであっても良いし、同時溶融押出し又はラミネーションによって形成された、複数の層から構成されるフィルムであっても良い。
例えば、再生ポリエステル樹脂を含有する二軸延伸ポリエステル樹脂フィルムと、未採用ポリエステル樹脂を含有する二軸延伸ポリエステル樹脂フィルムとを積層する二種二層の構成のほか、再生ポリエステル樹脂を含有する二軸延伸ポリエステル樹脂フィルムで未採用ポリエステル樹脂を含有する二軸延伸ポリエステル樹脂フィルムを挟む二種三層の構成でも良い。二種三層構成のような中間層を挟める層構成のポリエステル樹脂フィルムであれば、中間層フィルムは複数の層から構成されるフィルムの表面を構成しないため、フィルム全体の耐屈曲性、強度、表面結晶化度等への影響はわずかであり、未採用ポリエステル樹脂の含有量を多くすることができる。
また、本発明フィルムは、そのまま単独で使用することもできるほか、他の層(シーラント層、印刷層、ガスバリア層等)とともに積層フィルムとしても使用することができる。
さらに、本発明フィルム又はその積層フィルムを用いて所定の袋体を構成することもできる。袋体の形状も、限定的でなく、例えば二方袋、三方袋、チャック付三方袋、合掌袋、ガゼット袋、底ガゼット袋、スタンド袋等の各種の袋体を製造することができる。従って、例えばドライラミネート法、押出しラミネート法等の公知の方法を用いて、ポリオレフィン等のシーラント層と本発明フィルムとを積層して積層フィルムとし、そのシーラント層どうしを熱融着させて包装袋を構成することができる。
包装材料(包装袋、容器等)として用いる場合、その内容物も限定されず、食品をはじめ、医薬品・医療機器、化粧品、化学品、雑貨、電子部品等の包装材料として幅広く使用することができる。
以下、本発明の実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。
1.使用材料について
後記の実施例及び比較例において使用した原料は、以下のとおりである。
<再生ポリエステル樹脂A-1>
エステル化反応器に、テレフタル酸(TPA)とエチレングリコール(EG)のスラリー(TPA/EGモル比=1/1.6)を供給し、温度250℃及び圧力50hPaの条件で反応させ、エステル化反応率95%のエチレンテレフタレートオリゴマー(数平均重合度:5)を得た。
エチレンテレフタレートオリゴマー45.0質量部をエステル化反応器に仕込み、続いてエステル化反応器の撹拌機を回した状態でエチレングリコールを7.0質量部投入した。エステル化反応器(以後「ES缶」と表記する。)の内温降下が止まったところより、55.0質量部のリサイクルポリエステル原料(ポリエステル樹脂を製造する工程で発生するポリエステル屑のペレット状のもの)をロータリーバルブを介して約2時間かけて定量投入した。このとき、全グリコール成分/全酸成分のモル比(以下「G/A」と表記する。)は1.16であった。その後、270℃の熱処理条件下で1時間解重合反応を行った。
次に、得られた解重合体を、ES缶と重縮合反応器との間に目開き20μmのキャンドルフィルターをセットして重縮合反応器(以後PC缶と表記)へ圧送した後、重合触媒として三酸化アンチモンを1.0×10-4mol/unit、二酸化チタンのEGスラリーを0.20質量%となるように加え、PC缶を減圧にして60分後に最終圧力0.5hPa及び温度275℃で4時間、溶融重合反応を行い、再生ポリエステル樹脂A-1(極限粘度:0.64、カルボキシル末端基濃度27当量/t、降温結晶化温度170℃)を得た。
<再生ポリエステル樹脂A-2>
A-1と同様にして、エステル化反応率95%のエチレンテレフタレートオリゴマー(数平均重合度:5)を得た。
エチレンテレフタレートオリゴマー30.0質量部をES缶に仕込み、続いてES缶の撹拌機を回した状態でエチレングリコールを7.0質量部投入した。ES缶の内温降下が止まったところより、70.0質量部のリサイクルポリエステル原料(実施例1と同様のもの)をロータリーバルブを介し約2時間かけて定量投入した。このとき、G/Aは1.10であった。その後、270℃の熱処理条件下で1時間解重合反応を行った。そして、得られた解重合体を、ES缶とPC缶との間に目開き20μmのキャンドルフィルターをセットしてPC缶へ圧送した後、重合触媒として三酸化アンチモンを1.0×10-4mol/unitとなるように加え、PC缶を減圧にして60分後に最終圧力0.5hPa、温度275℃で5時間、溶融重合反応を行い、再生ポリエステル樹脂A-2(極限粘度:0.65、カルボキシル末端基濃度38当量/t、降温結晶化温度170℃)を得た。
<再生ポリエステル樹脂A-3>
A-1と同様にして、エステル化反応率95%のエチレンテレフタレートオリゴマー(数平均重合度:5)を得た。
エチレンテレフタレートオリゴマー45.0質量部をES缶に仕込み、続いてES缶の撹拌機を回した状態でエチレングリコールを10.0質量部投入した。ES缶の内温降下が止まったところより、55.0質量部のリサイクルポリエステル原料(ポリエステル樹脂を製造する工程で発生するポリエステル屑のペレット状のもの)をロータリーバルブを介して約2時間かけ、全グリコール成分/全酸成分のモル比(以下「G/A」と表記する。)が1.20となるように投入し、270℃の熱処理条件下で1時間解重合反応を行った。そして、得られた解重合体を、ES缶と重縮合反応器との間に目開き20μmのキャンドルフィルターをセットして重縮合反応器(以後「PC缶」と表記)へ圧送した後、重合触媒として三酸化アンチモンを1.0×10-4mol/unit、二酸化チタンのEGスラリーを0.20質量%となるように加え、PC缶を減圧にして60分後に最終圧力0.5hPa及び温度260℃で7時間、溶融重合反応を行い、再生ポリエステル樹脂A-3(極限粘度:0.64、カルボキシル末端基濃度13当量/t、降温結晶化温度170℃)を得た。
<再生ポリエステル樹脂A-4>
回転型乾燥機内、リサイクルポリエステル原料100質量部に対して単位時間あたり10質量部のエチレングリコールを6時間かけて投入し、混合した。処理は窒素環境下、220℃で行った。さらに、0.5mmHg、230℃で10時間、固相重合を行い、再生ポリエステル樹脂A-4(極限粘度0.65、カルボキシル末端基濃度5当量/t、降温結晶化温度144℃)を得た。
<再生ポリエステル樹脂A-5>
回転型乾燥機内、リサイクルポリエステル原料100質量部に対して単位時間あたり5質量部のエチレングリコールを6時間かけて投入し混合した以外はA-4と同様にして、再生ポリエステル樹脂A-5(極限粘度0.66、カルボキシル末端基濃度9当量/t、降温結晶化温度144℃)を得た。
<未採用ポリエステル樹脂>
ポリエチレンテレフタレート樹脂フィルム製造時に発生したフィルム屑を粉砕後、250~290℃で再溶融し、ペレット化した。その後、乾燥し、ポリエステル樹脂フィルムに用いる未採用ポリエステル樹脂(降温結晶化温度179℃)とした。
<バージンポリエステル樹脂B-1>
日本エステル社製ポリエチレンテレフタレート樹脂UT-CBR(降温結晶化温度177℃)を用いた。
<バージンポリエステル樹脂B-2>
エステル化反応器にて、テレフタル酸とエチレングリコールとのエステル化反応を行い、エステル化生成物を得た。得られたエステル化生成物を重縮合反応器に移送し、触媒として二酸化ゲルマニウムを添加して重縮合反応を行ったのち、チップ化した。得られたポリエステルチップをさらに窒素雰囲気下170℃、2時間乾燥するとともに結晶化を行った。その後バッチ式固相重合装置で、窒素気流にて230℃で6時間、固相重合を行った。
固相重合したポリエステルを95℃の熱湯に4時間浸漬し、水処理を行った後、脱水し、120℃で2時間、窒素気流下で乾燥してポリエステル樹脂(極限粘度0.65、降温結晶化温度180℃)を得た。
<バージンポリエステル樹脂B-3>
恒力社製KH2650A(降温結晶化温度155℃)
<シリカ含有ポリエステル樹脂(シリカマスター)>
バージンのポリエチレンテレフタレート樹脂に平均粒径2.3μmのシリカを1.5質量%含有する日本エステル社製のGS-BR-MGを用いた。
実施例1
再生ポリエステル樹脂A-1を93.5質量%、シリカマスターを6.5質量%混合して押出機内で溶融混練し、Tダイへ供給してシート状に吐出し、20℃に温調した金属ドラムに巻き付け、冷却して巻き取ることにより、約120μmの厚みの単層の未延伸シートを得た。次いで、この未延伸シートの端部をテンター式同時二軸延伸装置のクリップで保持し、180℃の条件下で、MD方向に3.0倍、TD方向に3.3倍の延伸倍率で同時二軸延伸した。その後、TD方向の弛緩率を5%として215℃で4秒間の熱処理を施し、室温まで徐冷し、片面にコロナ放電処理を行って、厚さが12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は51.4%であった。
実施例2
未採用ポリエステル樹脂を混合し、再生ポリエステル樹脂A-1とシリカマスターの含有量を表1に記載のとおり変更した以外は、実施例1と同様に厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は60.2%であった。
実施例3
実施例2と同様にして得られた未延伸フィルムを、ロール式延伸機で85℃の条件下でMD方向に3.5倍に延伸し、次いで端部をクリップで保持し、120℃条件下でTD方向に3.6倍の延伸倍率で逐次二軸延伸した。その後、TD方向の弛緩率2%として230℃で3秒間の熱処理を施し、室温まで徐冷し、片面にコロナ放電処理を行って、厚さが12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は60.2%であった。
実施例4
再生ポリエステル樹脂A-2に変更し、再生ポリエステル樹脂、未採用ポリエステル樹脂、シリカマスターの含有量をそれぞれ表1のとおり変更した以外は、実施例3と同様に逐次二軸延伸法で厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は69.6%であった。
実施例5
再生ポリエステル樹脂A-3に変更し、再生ポリエステル樹脂、未採用ポリエステル樹脂、シリカマスターの含有量をそれぞれ表1のとおり変更した以外は、実施例3と同様に逐次二軸延伸法で厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は60.2%であった。
実施例6
Tダイからシート状への引取り速度を調整して、延伸後のフィルムの厚みを25μmに変更し、ロール式延伸機の温度を83℃、TD方向の弛緩を228℃で6秒とした以外は、実施例4と同様に逐次二軸延伸法で二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は69.6%であった。
実施例7
再生ポリエステル樹脂A-1と、未採用ポリエステル樹脂、バージンポリエステル樹脂B-1、シリカマスターの含有量をそれぞれ表1に記載のとおり変更した以外は、実施例3と同様に厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は42.6%であった。
実施例8
再生ポリエステル樹脂をA-2に変更し、未採用ポリエステル樹脂、バージンポリエステル樹脂B-1、シリカマスターの含有量をそれぞれ表1のとおり変更した以外は、実施例3と同様に逐次二軸延伸法で厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は43.3%であった。
実施例9
再生ポリエステル樹脂をA-3に変更し、未採用ポリエステル樹脂、バージンポリエステル樹脂B-1、シリカマスターの含有量をそれぞれ表1のとおり変更した以外は、実施例3と同様に逐次二軸延伸法で厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は42.6%であった。
比較例1
ポリエステル樹脂フィルムの組成として、バージンポリエステル樹脂B-1を46.7質量%、未採用ポリエステル樹脂を50.0質量%、シリカマスターを3.3質量%とした以外は、実施例1と同様に同時二軸延伸を行い、厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は50.0%であった。
比較例2
比較例1と同様にして得られた未延伸フィルムを、実施例3と同じ条件で逐次二軸延伸を行い、厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は50.0%であった。
比較例3
再生ポリエステル樹脂をA-4に変更し、バージンポリエステル樹脂B-1、シリカマスター含有量を表1に記載のとおり変更した以外は、実施例3と同様に厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は50.0%であった。
比較例4
再生ポリエステル樹脂をA-4に変更した以外は、実施例7と同様に厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は62.8%であった。
比較例5
再生ポリエステル樹脂をA-5に変更した以外は、実施例7と同様に厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は62.8%であった。
比較例6
Tダイからシート状への引取り速度を調整して、延伸後のフィルムの厚みを25μmに変更し、TD方向の弛緩を213℃で8秒とした以外は、比較例4と同様に逐次二軸延伸法で二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は62.8%であった。
比較例7
ポリエステル樹脂フィルムの組成として、バージンポリエステル樹脂B-1を93.5質量%、シリカマスターを6.5質量%とした以外は、実施例1と同様に同時二軸延伸を行い、厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は0.0%であった。
比較例8
ポリエステル樹脂フィルムの組成として、バージンポリエステル樹脂B-1を76.7質量%、未採用ポリエステル樹脂を18.0質量%、シリカマスターを5.3質量%とした以外は、実施例3と同じ条件で逐次二軸延伸を行い、厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は18.0%であった。
比較例9
Tダイからシート状への引取り速度を調整して、延伸後のフィルムの厚みを60μmに変更しロール式延伸機の温度を81℃、TD方向の弛緩を228℃で10秒とした以外は、比較例4と同様に逐次二軸延伸法で二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は50.0%であった。
比較例10
バージンポリエステル樹脂B-2を用いたほかは比較例7と同様にして得られた未延伸フィルムを、実施例3と同じ条件で逐次二軸延伸を行い、厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は0.0%であった。
比較例11
バージンポリエステル樹脂B-3を用いたほかは比較例7と同様にして得られた未延伸フィルムを、実施例3と同じ条件で逐次二軸延伸を行い、厚さ12μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は0.0%であった。
参考例1
バージンポリエステル樹脂B-1を91.5%、シリカマスターを6.5質量%とし、耐衝撃改良剤として三菱ケミカル製「モディックGQ131」(ポリエステル系エラストマー)を3.5質量%添加した以外は、実施例1と同様に15μmの二軸延伸ポリエステル樹脂フィルムを得た。なお、前記フィルム中のリサイクル比率は0.0%であった。
試験例1
各実施例、比較例及び参考例で得られたフィルム等について下記の物性を評価した。その結果を表1~表2に示す。なお、各測定に際しては、温度23℃及び湿度50%RHの環境下に2時間以上放置した試料を使用し、温度23℃及び湿度50%RHの環境下で測定した。
(1)極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒として、温度20℃で測定した。
(2)カルボキシル末端基濃度
得られたポリエステル樹脂フィルム0.1gをベンジルアルコール10mlに溶解し、この溶液にクロロホルム10mlを加えた後、1/10規定の水酸化カリウムベンジルアルコール溶液で滴定して求めた。
(3)ポリエステル樹脂の組成
得られた再生ポリエステル樹脂又はポリエステル樹脂フィルムを、重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比が1:20の混合溶媒に溶解させ、日本電子社製「LA-400型NMR」装置にてH-NMRを測定し、得られたチャートの各成分のプロトンのピークの積分強度から、共重合成分の種類と含有量を求めた。
(4)引張強度(MPa)
島津製作所製オ-トグラフを使用し、日本産業規格JIS K7127に準じて引張強度を測定した。実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのTD方向の中央部を幅10mm、長さ150mmにMD方向、TD方向にそれぞれ切り出したものを試料とした。測定長100mm、引張速度500mm/minの条件で測定を行い、次式により求めた。
引張強度(MPa)=破断時の引張荷重(N)/測定試料の元の平均断面積(mm
(5)引張伸度(%)
島津製作所製オ-トグラフを使用し、日本産業規格JIS K7127に準じて引張伸度を測定した。実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのTD方向の中央部を幅10mm、長さ150mmにMD方向、TD方向にそれぞれ切り出したものを試料とした。測定長100mm(掴み具間距離)、引張速度500mm/minの条件で測定を行い、次式により求めた。
引張伸度(%)=破断時の掴み具移動距離(mm)/元の掴み具間距離(100mm)×100
(6)引張弾性率(GPa)
島津製作所製オ-トグラフを使用し、日本産業規格JIS K7127に準じて引張弾性率を測定した。実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのTD方向の中央部を幅10mm、長さ150mmにMD方向、TD方向にそれぞれ切り出したものを試料とした。測定長100mm(掴み具間距離)、引張速度20mm/minの条件で測定を行い、次式により求めた。
引張弾性率(GPa)=F/A×ΔL(1mm)/L(100mm)×9.807×10-3
F:伸度1%時の応力(kgf)
A:試験片の初期断面積(mm
ΔL:伸度1%時における試験片の長さ (mm)
L:掴み具間距離(100mm)
(7)突刺強力(N)
実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのTD方向の中央部を中心に50mm×50mmに切り出し、中央に30mmφの円状の穴を有する専用固定板に貼りつけ、島津製作所社製オートグラフを使用し、直径1.0mm、先端形状半径0.5mmの半円形の針を用いて、試験速度50mm/minの条件で、突刺強力を測定した。
(8)乾熱収縮率(%)
実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのTD方向の中央部を幅10mm、長さ150mmにMD方向、TD方向にそれぞれ切り出し、長さ100mmの標点をマーキングし、160℃の熱風中で15分間処理し、処理後の標点間距離(mm)を読み取り次式により求めた。
熱水収縮率(%)=(処理前標点間距離-処理後標点間距離)/処理前標点間距離×100
(9)ヘイズ(%)
日本電色工業株式会社製ヘーズメーター(NDH4000)を用い、日本産業規格JIS K7136に準じて実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのTD方向の中央部を測定した。
(10)b
日本電色工業株式会社製 分光色差計NF555を用い、日本産業規格JIS K7373に基づき、光源D65、視野角2°という反射条件で、実施例、比較例及び参考例で得られたポリエステル樹脂フィルム30枚を重ねて測定を行った。あて板として三刺激値X/Y/Z=84.3/89.0/93.5の白板を使用した。色相が黄色であるとプラス値であり、マイナスの値は色相が青色であることを示す。
(11)濡れ張力(mN/m)
日本産業規格JIS K6768に準じて、濡れ張力試験用混合液No.36.0~54.0(富士フィルム和光純薬株式会社製)を用い、実施例、比較例及び参考例で得られたポリエステル樹脂フィルムのコロナ処理面を測定した。測定箇所は、TD方向における中央から両端に向けて200mm間隔で5カ所の位置の濡れ張力を測定した。これをMD方向に1mごと測定し、合計50カ所の測定を行った。50カ所の濡れ張力測定値の最小値と最大値を表2に示す。濡れ張力は、44mN/m以上が実用的であり、特に46mN/m以上が好ましい。
(12)インキ密着性(印刷適性)
[印刷工程]
印刷用インキは、リオアルファR39藍(TOYOINK製)に、希釈剤NKFS102(TOYOINK)を混ぜ、ザーンカップ#3で15秒となるように粘度を調整した。印刷用ロールフィルムは、実施例、比較例及び参考例で得られたポリエステル樹脂フィルムをTD方向の中央から左右500mmの位置でスリットし作製した。階調10%、20%、30%、40%、100%の順でMD方向に彫刻された階調変更版を用いて、インキをフィルムに塗布した後、50℃で10秒間乾燥し、巻き取って印刷フィルムを作製した。
[評価方法]
作製した印刷フィルムの階調40%印刷部分にTD方向の端から端までセロハンテープ(18mm巾)を気泡が混入しないように貼り付け、貼付け部の中央から左右100mmの範囲を評価部分とし、その上から軽く20回こすりつけた。次に、セロハンテープをフィルムに対して剥離角度 180°で急速に引き剥がし、評価部分のインキの剥離具合を目視で観察し、次の基準に従って3段階で評価した。
(評価基準)
◎…非常に良好(インキのドットはとれない)
○…良好(インキのドットがわずかにとれる)
×…不良(インキのドットの半数以上がとれる)
(13)連続生産性
ポリエステルフィルムを連続して生産した状況において、下記の基準で評価した。
◎;48時間以上連続して操業することができた。
○;24時間以上連続して操業することができたが、フィルターの昇圧、Tダ イのリップ面の汚染、フィルムの破断、ロール汚染等によって、フィルムを生産できない状況に陥り、連続操業時間が48時間未満であった。
×;24時間の連続操業中に、フィルターの昇圧、Tダイのリップ面の汚染、フィルムの破断、ロール汚染等によって、フィルムを生産できない状況に陥った。
(14)フィルムの降温結晶化温度(再結晶化温度)
日本産業規格JIS K7121に準じて、パーキンエルマー社製、示差走査熱量計(入力補償型DSC8000)を用い、実施例、比較例及び参考例で得られた樹脂フィルムを10mg量り、サンプルとして測定した。測定条件は、昇温速度20℃/minにて25℃から300℃まで昇温し、300℃で10分間保持した後、降温速度40℃/minにて100℃まで冷却し、降温時に結晶化するピークトップ温度を降温結晶化温度Tcとした。
(15)フィルムの表面結晶化度
日本分光社製、赤外分光光度計(FT/IR-6100)を使用し、反射法(ATR法)にて1340cm-1付近の結晶吸収バンドと1410cm-1付近の補正バンドとの吸光度比(1340cm-1/1410cm-1)により表面結晶化度を求めた。
なお、本発明では、水平型プリズムATR610RSを使用して、プリズムとしてダイアモンドを用い、入射角45°、積算回数64回で測定を行った。
(16)低温環境下での耐屈曲性
得られたポリエステル樹脂フィルムを、5℃、65%RHに調整した環境試験室内で2時間放置した後、-10℃の環境下でさらに5分静置し、-10℃の環境下でゲルボフレックステスター(テスター産業社製、BE-1005)を用いて200回の屈曲疲労テスト(ねじり角は440゜)を行った。耐屈曲疲労テストはASTM F392規格に準じて、フィルムサンプル(チャック間距離178mm、直径89mm)について、ピンホール個数を、濾紙上でインキの透過箇所の個数を計測することによって求めた。サンプル数3で測定を実施し、500cmあたりのピンホール個数の平均値を算出した。
Figure 2022132684000001
Figure 2022132684000002
実施例1~9の二軸延伸ポリエステル樹脂系フィルムは、フィルム原料の一部又は全てがリサイクルポリエステル原料から由来する成分を含むポリエステル樹脂(再生ポリエステル樹脂)を含有し、降温結晶化温度が本発明で規定する範囲を満たしているため、厚みが50μm未満の薄いフィルムであったとしても長期の連続生産が可能であり、-10℃という低温環境下での耐屈曲性に優れており、さらに、MD及びTD方向の引張伸度がいずれも100%以上であり、フィルム中のリサイクル比率が35%以上の高リサイクル比率のフィルムであった。
一方、比較例1、2はフィルム中のリサイクル比率が50%と高いが、再生ポリエステル樹脂を含有しておらず、未採用ポリエステル樹脂のみを含有しているものであるため、延伸工程における切断トラブルが生じ長期の連続生産性に劣っており、得られた二軸延伸ポリエステル樹脂フィルムは、低温環境下での耐屈曲性に劣り多くのピンホールを生じた。さらに、引張伸度が低く、ヘイズが高く、色調も黄色かった。
比較例3~6は、用いた再生ポリエステル樹脂の原料にエチレンテレフタレートオリゴマーを含有していなかったため、降温結晶化温度が本発明で規定する範囲を満たしていなかった。また、引張伸度が低く、延伸工程における切断トラブルが生じ長期の連続生産性に劣っており、得られた二軸延伸ポリエステルフィルムは、低温環境下での耐屈曲性に劣り、多くのピンホールを生じた。
比較例9は、比較例3~6に比べてフィルム厚みが厚かったため、長期の連続生産性及び引張伸度は改善されたが、降温結晶化温度が本発明で規定する範囲を満たしておらず、低温での耐屈曲性は劣り、ヘイズも高かった。
比較例7、8、10、11は、再生ポリエステル樹脂を含有していないため、低温環境下での耐屈曲性に劣っていた。特に、比較例10、11は、降温結晶化温度が本発明で規定する範囲を満たしていないため、低温環境下での耐屈曲性に劣り、多くのピンホールを生じた。

Claims (7)

  1. 下記の物性(1)~(2):
    (1)示差走査熱量測定(DSC)において、25℃から300℃まで昇温速度20℃/分で昇温し、300℃で10分保持した後、降温速度40℃/分で降温する際に結晶化する温度が160~180℃であること、
    (2)-10℃雰囲気下でのゲルボフレックステスターによる200回繰り返し屈曲疲労テスト後におけるピンホール個数が10個/500cm以下であること、
    を全て満たすことを特徴とする二軸延伸ポリエステル樹脂系フィルム。
  2. ヘイズが10.0%以下である、請求項1に記載の二軸延伸ポリエステル樹脂系フィルム。
  3. カルボキシル末端基濃度が20~60当量/tである、請求項1に記載の二軸延伸ポリエステル樹脂系フィルム。
  4. 全反射測定法による赤外分光分析(ATR-IR)により求められる表面結晶化度が1.1~1.4である、請求項1に記載の二軸延伸ポリエステル樹脂系フィルム。
  5. 厚みが50μm以下であり、かつ、MD方向及びTD方向の引張伸度がいずれも100%以上である、請求項1に記載の二軸延伸ポリエステル樹脂系フィルム。
  6. b*値が0以下である、請求項1に記載の二軸延伸ポリエステル樹脂系フィルム。
  7. 請求項1~6のいずれかに記載の二軸延伸ポリエステル樹脂系フィルムを含む包装材料。
JP2022110779A 2020-03-31 2022-07-08 二軸延伸ポリエステル樹脂系フィルム及びその製造方法 Pending JP2022132684A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020063466 2020-03-31
JP2020063466 2020-03-31
JP2020165553 2020-09-30
JP2020165553 2020-09-30
JP2022512165A JP7153259B2 (ja) 2020-03-31 2021-03-26 二軸延伸ポリエステル樹脂系フィルムの製造方法
PCT/JP2021/013129 WO2021200754A1 (ja) 2020-03-31 2021-03-26 二軸延伸ポリエステル樹脂系フィルム及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022512165A Division JP7153259B2 (ja) 2020-03-31 2021-03-26 二軸延伸ポリエステル樹脂系フィルムの製造方法

Publications (1)

Publication Number Publication Date
JP2022132684A true JP2022132684A (ja) 2022-09-09

Family

ID=77929184

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022512165A Active JP7153259B2 (ja) 2020-03-31 2021-03-26 二軸延伸ポリエステル樹脂系フィルムの製造方法
JP2022110779A Pending JP2022132684A (ja) 2020-03-31 2022-07-08 二軸延伸ポリエステル樹脂系フィルム及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022512165A Active JP7153259B2 (ja) 2020-03-31 2021-03-26 二軸延伸ポリエステル樹脂系フィルムの製造方法

Country Status (7)

Country Link
US (1) US20230113079A1 (ja)
EP (1) EP4129627A4 (ja)
JP (2) JP7153259B2 (ja)
KR (1) KR20230011919A (ja)
CN (1) CN115605337A (ja)
TW (1) TW202146247A (ja)
WO (1) WO2021200754A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828020B (zh) * 2020-12-18 2024-01-01 日商東洋紡股份有限公司 聚酯膜、標籤膜、顯示器用擴散膜及顯示器用透鏡膜
JP7266766B1 (ja) 2022-04-01 2023-04-28 タキロンシーアイ株式会社 ポリエステル系樹脂組成物及びポリエステル系シュリンクフィルム
WO2023188471A1 (ja) * 2022-04-01 2023-10-05 タキロンシーアイ株式会社 ポリエステル系樹脂組成物及びポリエステル系シュリンクフィルム
JP2024018163A (ja) * 2022-07-29 2024-02-08 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
JP2024018260A (ja) * 2022-07-29 2024-02-08 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器
JP2024018217A (ja) * 2022-07-29 2024-02-08 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP2024018209A (ja) * 2022-07-29 2024-02-08 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP2024018190A (ja) * 2022-07-29 2024-02-08 東洋紡株式会社 ガスバリアフィルム、積層体、および包装容器
JP2024018165A (ja) * 2022-07-29 2024-02-08 東洋紡株式会社 二軸配向ポリエステルフィルム、積層体、および包装容器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320019B2 (ja) 1971-12-06 1978-06-24
JPS60248646A (ja) 1984-05-25 1985-12-09 Toray Ind Inc ポリエステル屑の解重合方法
JP3739170B2 (ja) * 1997-05-12 2006-01-25 日本エステル株式会社 スクラップ利用ポリエステルの製造法
JP3715812B2 (ja) * 1998-12-10 2005-11-16 株式会社アイエス ポリエチレンテレフタレート廃棄物のケミカルリサイクル方法
CN1240749C (zh) * 2001-09-20 2006-02-08 帝人株式会社 聚(芳族二羧酸乙二醇酯)树脂的生产方法及树脂产物
JP2005171138A (ja) * 2003-12-12 2005-06-30 Nippon Ester Co Ltd 再生ポリエステル樹脂、ポリエステル解重合反応生成物、及び再生ポリエステル樹脂の製造方法
CN101384650A (zh) * 2006-02-15 2009-03-11 东丽株式会社 成型部件用聚酯膜
JP5267400B2 (ja) * 2009-09-25 2013-08-21 東レ株式会社 太陽電池用白色ポリエステルフィルム
JP5577773B2 (ja) * 2010-03-16 2014-08-27 東レ株式会社 ポリエステル組成物の製造方法およびそれを用いたフィルム
JP5716318B2 (ja) 2010-08-20 2015-05-13 東洋紡株式会社 回収ポリエステル樹脂の再生方法、およびリサイクルポリエステル樹脂を用いた成形品
JP5671990B2 (ja) 2010-12-13 2015-02-18 東洋紡株式会社 ポリエステル樹脂の製造方法
JP2015140412A (ja) * 2014-01-30 2015-08-03 東レ株式会社 共重合ポリエステルの製造方法

Also Published As

Publication number Publication date
TW202146247A (zh) 2021-12-16
CN115605337A (zh) 2023-01-13
JP7153259B2 (ja) 2022-10-14
JPWO2021200754A1 (ja) 2021-10-07
WO2021200754A1 (ja) 2021-10-07
EP4129627A4 (en) 2024-04-10
KR20230011919A (ko) 2023-01-25
EP4129627A1 (en) 2023-02-08
US20230113079A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP7153259B2 (ja) 二軸延伸ポリエステル樹脂系フィルムの製造方法
JP7226661B2 (ja) 二軸配向ポリエステルフィルムロール及びその製造方法
JP7276508B2 (ja) 二軸配向ポリエステルフィルム及びその製造方法
KR102416318B1 (ko) 폴리에스테르계 라벨 및 포장용기
TW201509986A (zh) 聚酯片材、由聚酯片材製得之成形體及卡片
EP3041677A1 (en) Co-extruded multi-layer polyester films having hydrolytic stability and improved delamination resistance
US20220403124A1 (en) Biaxially oriented polyester film and method for producing same
JP7072764B2 (ja) 再生ポリエステル樹脂の製造方法
JP7243912B2 (ja) 二軸配向ポリエチレンテレフタレートフィルムロール
JP7196970B1 (ja) 二軸配向ポリエチレンテレフタレートフィルムロール
JP6708278B2 (ja) ポリエステル系ラベルおよび包装容器
WO2023182059A1 (ja) 熱収縮性ポリエステル系フィルム
JP2023056047A (ja) 二軸配向ポリエチレンテレフタレートフィルムロール
JP2023028054A (ja) 再生ポリエステル樹脂及び再生ポリエステル樹脂の製造方法
WO2023157729A1 (ja) 二軸配向ポリエステルフィルム
JP2021161379A (ja) 再生ポリエステル樹脂及び再生ポリエステル樹脂の製造方法
JP2022055957A (ja) 再生ポリエステル樹脂及び再生ポリエステル樹脂の製造方法
JP2023014436A (ja) 二軸延伸ポリアミドフィルム
JP2024066032A (ja) ポリエステルフィルム
JP2023049184A (ja) 金属板ラミネート用ポリエステルフィルム
TW202216841A (zh) 熱收縮性聚酯系膜、熱收縮性標籤、以及包裝體
JP2024064168A (ja) 再生ポリエステル樹脂及び再生ポリエステル樹脂の製造方法
JP2007290321A (ja) 多層熱収縮性ポリエステル系フィルム及びラベル
JP2010031209A (ja) 共重合ポリエステル樹脂組成物およびそれからなる二軸配向フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240223