JP2022084609A - モジュラーマイクロ波源を使用した対称及び不規則なプラズマ - Google Patents

モジュラーマイクロ波源を使用した対称及び不規則なプラズマ Download PDF

Info

Publication number
JP2022084609A
JP2022084609A JP2022025273A JP2022025273A JP2022084609A JP 2022084609 A JP2022084609 A JP 2022084609A JP 2022025273 A JP2022025273 A JP 2022025273A JP 2022025273 A JP2022025273 A JP 2022025273A JP 2022084609 A JP2022084609 A JP 2022084609A
Authority
JP
Japan
Prior art keywords
dielectric
applicator
processing tool
microwave
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022025273A
Other languages
English (en)
Other versions
JP7232365B2 (ja
Inventor
タイ チョン チョア,
Thai Cheng Chua
ファルザド ハウシュマンド,
Houshmand Farzad
クリスチャン アモルミノ,
Amormino Christian
フィリップ アレン クラウス,
Allan Kraus Philip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2022084609A publication Critical patent/JP2022084609A/ja
Application granted granted Critical
Publication of JP7232365B2 publication Critical patent/JP7232365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32201Generating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • H01J37/32284Means for controlling or selecting resonance mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32311Circuits specially adapted for controlling the microwave discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】マイクロ波プラズマ源の分野に関し、具体的には、モジュラーマイクロ波プラズマ源を使用した対称及び/又は不規則なプラズマの形成に関する。【解決手段】処理チャンバと、処理チャンバに連結された複数のモジュラーマイクロ波源とを含むプラズマ処理ツールを含む。複数のモジュラーマイクロ波源は、処理チャンバの外壁の一部を形成する誘電体の上に位置づけされたアプリケータアレーを含む。アプリケータアレーは、誘電体に連結されうる。複数のモジュラーマイクロ波源は、マイクロ波増幅モジュールのアレーを含みうる。各マイクロ波増幅モジュールは、マイクロ波増幅モジュールのアレー内のアプリケータに連結されうる。誘電体は、平面状、非平面状、対称、又は非対称である。さらに誘電体は複数の凹部を含みうる。凹部のうちの少なくとも1つに少なくとも1つのアプリケータが位置づけされうる。【選択図】図1

Description

実施形態は、マイクロ波プラズマ源の分野に関し、具体的には、モジュラーマイクロ波プラズマ源を使用した対称及び/又は不規則なプラズマの形成に関する。
プラズマ処理は、多数の異なる技術、例えば半導体産業、ディスプレイ技術、微小電気機械システム(MEMS)などの製造において広く使用されている。現在、高周波(RF)によって生成されたプラズマが最も頻繁に使用されている。しかしながら、マイクロ波源を用いて生成されたプラズマにより、密度の高いプラズマ、及び/又は高濃度の励起中性種を有するプラズマが可能になる。残念ながら、マイクロ波源を用いて生成されたプラズマは、それ自体の欠点にも左右される。
典型的なマイクロ波プラズマシステムは、単一の大きなマイクロ波放射(通常、マグネトロン)源と、マイクロ波放射をマグネトロンから処理チャンバへ案内するための伝送路とを使用する。半導体産業における典型的な高電力用途では、伝送路はマイクロ波導波管である。マイクロ波源の特定の周波数を伝達するように設計された導波管なしには、マイクロ波電力は距離とともに急速に弱まるため、導波管が使用される。マイクロ波放射を処理チャンバへ伝送するには、チューナー、連結器、モード変換器などの追加の部品も必要である。これらの部品により、大きな(すなわち、少なくとも導波管と関連部品を合わせた大きさの)システムに構築が制限され、設計が著しく制限される。このため、発生しうるプラズマの形状寸法は、プラズマの形状寸法が導波管の形状と似るために、抑制されたものとなる。
上記マイクロ波源において、マイクロ波プラズマ源のサイズは、マイクロ波放射の波長の半分(すなわち、λ/2)以上の寸法に制限される。マイクロ波プラズマ源の寸法は、安定したマイクロ波プラズマを発生させるために、マイクロ波放射の波長の半分(すなわち、Nλ/2、Nはいずれかの正整数)の倍数単位のみでありうる。2.45GHzにおいて、マイクロ波の波長は空中又は真空において12.25cmである。このため、プラズマの寸法は、6.125cmの倍数でなければならない。したがって、マイクロ波プラズマ源は、特定の対称な幾何学形状及びサイズに制限され、マイクロ波プラズマ源が使用可能な場合が限定されうる。
したがって、プラズマの形状寸法と、処理される基板の形状寸法とを一致させるのは困難である。特に、大きい基板のウエハ(例えば300mm以上のウエハ)の全面上でプラズマが生成されるところにマイクロ波プラズマを作り出すのは困難である。あるマイクロ波によって生成されたプラズマは、拡大面上にマイクロ波エネルギーを分散させることができるように、スロットラインアンテナを使用しうる。しかしながら、上記システムは複雑であり、特定の形状寸法が要求され、プラズマと結合しうる電力密度が制限される。
更に、マイクロ波源は通常、均一性の高くない及び/又は空間的に整調可能な密度を有することができないプラズマを生成する。具体的には、プラズマ源の均一性は、マイクロ波空洞又はアンテナの特定の形状寸法に関連するマイクロ波の定在波パターンのモードに依存する。このため、均一性は主に、設計の形状寸法によって決定され、整調可能ではない。処理される基板のサイズが拡大し続けると、プラズマを整調することができないため、エッジ効果に対処することが更に困難になる。加えて、プラズマを整調できないことで、入ってくる基板の不均一性に対処し、処理システムの設計を補うのに(例えば、幾つかの処理チャンバにおいて回転しているウエハの不均一な半径方向速度に対応するのに)不均一性が要求される処理システムのプラズマ密度を調節するために処理方策を変更する能力が制限される。
実施形態は、処理チャンバと、処理チャンバに連結された複数のモジュラーマイクロ波源とを含むプラズマ処理ツールを含む。一実施形態において、複数のモジュラーマイクロ波源は、処理チャンバの外壁の一部を形成する誘電体の上に位置づけされたアプリケータアレーを含む。アプリケータアレーは、誘電体に連結されうる。更に、複数のモジュラーマイクロ波源は、マイクロ波増幅モジュールのアレーを含みうる。一実施形態において、各マイクロ波増幅モジュールは、アプリケータアレー内のアプリケータのうちの少なくとも1つに連結されうる。
一実施形態によれば、誘電体は平面状又は非平面状である。一実施形態において、誘電体は対称又は非対称でありうる。さらに別の実施形態において、誘電体は複数の凹部を含みうる。上記実施形態において、少なくとも1つのアプリケータは、凹部のうちの少なくとも1つに位置づけされうる。
更なる実施形態において、アプリケータは、誘電体共振空洞と、誘電体共振空洞の側壁の外側周囲に形成されたアプリケータハウジングと、誘電体共振器の軸中心を下方に延び、誘電体共振空洞の中心に形成されたチャネルの中まで延びるモノポールとを含みうる。実施形態はまた、前置増幅器と、主電力増幅器と、前置増幅器及び主電力増幅器に電気的に結合された電源と、循環装置とを含むマイクロ波増幅モジュールも含みうる。
上記要約は、すべての実施形態の完全なリストを含むものではない。上記で要約した様々な実施形態のすべての好適な組合せから実行可能であるだけでなく、以下の詳細説明に開示され、特に本願とともに出願される特許請求の範囲において指摘される全てのシステム及び方法が含まれると考えられる。上記組合せは、上記要約で具体的に列挙されていない特定の利点を有する。
一実施形態に係る、モジュラーマイクロ波プラズマ源を含むプラズマ処理ツールの概略図である。 一実施形態に係る、固体マイクロ波プラズマ源の概略ブロック図である。 一実施形態に係る、マイクロ波放射を処理チャンバに結合させるのに使用されうるアプリケータの断面図である。 一実施形態に係る、処理チャンバの一部である誘電体シート上に位置づけされたアプリケータアレーの断面図である。 一実施形態に係る、マイクロ波放射を処理チャンバに結合させるのに使用されうるアプリケータアレーの平面図である。 追加の実施形態に係る、マイクロ波放射を処理チャンバに結合させるのに使用されうるアプリケータアレーの平面図である。 一実施形態に係る、アプリケータアレーと、プラズマの条件を検出するための複数のセンサの平面図である。 一実施形態に係る、マルチゾーン処理ツールの1つのゾーン内に形成されたアプリケータアレーの平面図である。 一実施形態に係る、対称の誘電体プレートの上に装着されたアプリケータアレーの斜視図である。 一実施形態に係る、対称の誘電体プレート内部に部分的に埋め込まれたアプリケータアレーの切取斜視図である。 一実施形態に係る、不規則な形の誘電体プレートの上に装着されたアプリケータアレーの斜視図である。 一実施形態に係る、非平面状の誘電体内部に部分的に埋め込まれたアプリケータアレーの断面図である。 一実施形態に係る、球状の誘電体内部に部分的に埋め込まれたアプリケータアレーの断面図である。 一実施形態に係る、モジュラーマイクロ波放射源と合わせて使用されうる例示のコンピュータシステムを示すブロック図である。
一又は複数のモジュラーマイクロ波プラズマ源を含むデバイスを、様々な実施形態にしたがって説明する。以下の説明においては、実施形態の網羅的な理解を提供するために多数の具体的な詳細事項が明記される。実施形態はこれらの具体的な詳細がなくとも実践可能であることが、当業者には明らかになろう。他の事例では、実施形態が不必要に不明瞭にならないように、周知の態様については詳細に説明していない。更に、添付の図面に示す様々な実施形態は例示的な表現であり、必ずしも縮尺どおりには描かれていないことを理解されたい。
実施形態は、一又は複数のマイクロ波モジュールを備えるマイクロ波源を含む。一実施形態によれば、各マイクロ波モジュールは、マイクロ波固体エレクトロニクスの部分と、アプリケータの部分とを備える。一実施形態において、アプリケータの部分は、誘電体共振器であってよい。
マグネトロンの代わりに固体エレクトロニクスを使用することにより、プラズマ源のサイズと複雑さを大幅に削減することが可能になる。具体的には、固体部品は、上述したマグネトロンのハードウェアよりもかなり小型である。更に、固体部品を採用した分散配置を使用することにより、マイクロ波放射を処理チャンバへ伝送するのに必要なかさばった導波管をなくすことが可能である。代わりに、マイクロ波放射を同軸ケーブルで伝送することができる。導波管をなくすことにより、形成されるプラズマのサイズが導波管のサイズによって制限されない大面積マイクロ波源の構築も可能になる。代わりに、いかなる基板の形状にも一致する任意に大きい(また、任意の形状の)プラズマの形成を可能にする、マイクロ波モジュールのアレーが所定のパターンで構築されうる。例えば、マイクロ波モジュールのアプリケータを、任意の所望の形状(例えば、対称なプレート、不規則なプレート、非平面状の誘電体、内部ボイドを有する誘電体構造など)の誘電体上に配置する(または誘電体内部に部分的に埋め込む)ことができる。更に、アプリケータの断面形状は、アプリケータアレーができる限り互いに密に充填されうる(すなわち、最密充填のアレーになる)ように、選択されうる。実施形態はまた、マイクロ波モジュールのアレー内のアプリケータが不均一なサイズを有することも可能にしうる。このため、充填効率が更に改善されうる。
マイクロ波モジュールのアレーの使用により、各マイクロ波モジュールの電力設定を独立して変更することによって、プラズマ密度を局所的に変える能力において高い柔軟性も得られる。これにより、ウエハのエッジ効果に対して行われる調節、入ってくるウエハの不均一性に対して行われる調節、及び処理システムの設計を補う(例えば、幾つかの処理チャンバにおいて回転しているウエハの不均一な半径方向速度に対応する)のに不均一性が要求される処理システムにおいてプラズマ密度を調節する能力等の、プラズマ処理中の均一性の最適化を図ることが可能になる。
更なる実施形態はまた、一又は複数のプラズマモニタセンサも含みうる。上記実施形態は、各アプリケータによって局所的にプラズマの密度(またはその他任意のプラズマ特性)を測定し、その測定値をフィードバックループの一部として使用して各マイクロ波モジュールへ印加される電力を制御する方法を提供する。したがって、各マイクロ波モジュールは独立のフィードバックを有しうる、又はアレー内のマイクロ波モジュールのサブセットを制御ゾーンにおいてグループ化することができ、フィードバックループによりゾーン内のマイクロ波モジュールのサブセットが制御される。
改善されたプラズマの可同調性に加えて、個々のマイクロ波モジュールの使用により、現在利用可能なプラズマ源よりも高い電力密度が得られる。例えば、マイクロ波モジュールにより、典型的な高周波プラズマ処理システムよりも約5倍以上高い電力密度が可能になりうる。例えば、プラズマ化学気相堆積処理への典型的な電力は約3000Wであり、300mmの直径のウエハに対して約4W/cmの電力密度が得られる。これに対し、実施形態に係るマイクロ波モジュールは、4cmの直径のアプリケータを有する300W電力の増幅器を使用して、約24W/cmの電力密度が得られる。
ここで、一実施形態に係る、処理ツール100を示す断面図である図1を参照する。処理ツール100は、プラズマを用いるいずれかの種類の処理工程に好適な処理ツールであってよい。例えば、プラズマ処理ツール100は、プラズマ化学気相堆積(PECVD)、プラズマ原子層堆積(PEALD)、エッチング及び選択的除去、及びプラズマ洗浄で使用される処理ツールであってよい。本書で詳細に記載する実施形態は、プラズマ処理ツールを対象としているが、更なる実施形態には、マイクロ波放射を用いる任意のツールを含む処理ツール100を含みうることを理解されたい。例えば、プラズマの形成を必要としないマイクロ波放射を用いる処理ツール100は、工業用加熱及び/又は硬化処理ツール100を含みうる。
一般に、実施形態は、チャンバ178を含む処理ツール100を含む。プラズマ処理に使用される処理ツール178において、チャンバ178は真空チャンバであってよい。真空チャンバは、チャンバからガスを除去して所望の真空を提供するためのポンプ(図示せず)を含みうる。更なる実施形態は、処理ガスをチャンバ178に送るための一又は複数のガスライン170と、チャンバ178から副生成物を除去するための排気ライン172とを含むチャンバ178を含みうる。図示していないが、処理ツールが、基板174の上に処理ガスを均一に分配するためのシャワーヘッドを含みうることを理解されたい。
一実施形態において、基板174はチャック176上に支持されていてよい。例えば、チャック176は、静電チャックなどのいずれかの好適なチャックであってよい。チャックはまた、処理中の基板174の温度制御を提供するために、冷却ライン及び/又はヒータも含みうる。本書に記載のマイクロ波モジュールのモジュラー構成のおかげで、実施形態では、処理ツール100はいかなるサイズの基板174にも対応可能になる。例えば、基板174は、半導体ウエハ(例えば、200mm、300mm、450mm、又はそれ以上の)であってよい。代替的実施形態にはまた、半導体ウエハ以外の基板174も含まれる。例えば、実施形態は、ガラス基板(例えばディスプレイ技術用の)を処理するように構成された処理ツール100を含みうる。
一実施形態によれば、処理ツール100は、一又は複数のモジュラーマイクロ波源105を含む。モジュラーマイクロ波源105は、固体マイクロ波増幅回路130と、アプリケータ142とを含みうる。一実施形態において、電圧制御回路110は、各モジュラーマイクロ波源105内の固体マイクロ波増幅回路130へ伝送されるマイクロ波放射を所望の周波数で発生させるために、電圧制御型発振器120へ入力電圧を印加する。マイクロ波放射は、マイクロ波増幅回路130によって処理された後にアプリケータ142へ伝送される。一実施形態によれば、アプリケータ142アレー140は、プラズマを発生させるために、チャンバ178に連結され、各々がマイクロ波放射をチャンバ178内の処理ガスに結合させるためのアンテナとして機能する。
ここで、一実施形態に係る、モジュラーマイクロ波源内のエレクトロニクスを示し、より詳細に記載した概略ブロック図である図2を参照する。上述したように、電圧制御回路110は、入力電圧を電圧制御型発振器120へ印加する。実施形態は、約1Vと10V DCの間の入力電圧を含みうる。電圧制御型発振器120は、それ自体の振動周波数が入力電圧によって制御される高周波発振器である。一実施形態によれば、電圧制御回路110からの入力電圧により、電圧制御型発振器120が所望の周波数で振動する。一実施形態において、マイクロ波放射は、約2.3GHzと2.6GHzの間の周波数を有しうる。
一実施形態によれば、電圧制御型発振器120からマイクロ波増幅回路130へマイクロ波放射が伝送される。例示の実施形態において、単一のマイクロ波増幅回路130が図示されている。しかしながら、実施形態には、任意の数のマイクロ波増幅回路130が含まれうる。具体的には、マイクロ波増幅回路130の数は、アプリケータ142アレー140に必要なアプリケータ142の数と等しくてよい。このため、各アプリケータ142を異なる数のマイクロ波増幅回路130に連結させて、各アプリケータ142に供給される電力を個々に制御することが可能である。一実施形態によれば、処理ツール100において一を超えるモジュラーマイクロ波源105が使われる場合、マイクロ波増幅回路130は位相シフタ232を含みうる。単一のアプリケータのみが使用される場合、位相シフタ232は省略されうる。マイクロ波増幅回路130はまた、駆動体/前置増幅器234と、各々が電源239に連結された主マイクロ波電力増幅器236も含みうる。一実施形態によれば、マイクロ波増幅回路130はパルスモードで動作しうる。例えば、マイクロ波増幅回路130は、1%と99%の間のデューティサイクルを有しうる。更に具体的な実施形態において、マイクロ波増幅回路130は、約15%と30%の間のデューティサイクルを有しうる。
一実施形態において、マイクロ波放射は、増幅された後にアプリケータ142へ伝送されうる。しかしながら、アプリケータ142へ伝送された電力の一部は、出力インピーダンスの不一致に起因して反射して戻る場合がある。したがって、幾つかの実施形態はまた、反射電力レベルを電圧制御回路110へフィードバックすることを可能にするフィードバックライン286も含む。反射電力レベルVfeedbackは、電力増幅器236とアプリケータ142との間の循環装置238を使用することによってフィードバックライン286へ向けられうる。循環装置238は、反射電力を疑似負荷282及びアース284へ向け、疑似負荷282の手前で反射電力レベルVfeedbackが読み取られる。一実施形態において、電圧制御回路110は反射電力レベルVfeedbackを使用して、電圧制御型発振器120へ送られる出力電圧を調節し、これによってマイクロ波増幅回路130へ伝送されるマイクロ波放射の出力周波数が変わりうる。上記のようなフィードバックループが存在することで、実施形態において、電圧制御型発振器120の入力電圧の連続的な制御を提供することが可能になり、また反射電力レベルVfeedbackの削減も可能になる。一実施形態において、電圧制御型発振器120のフィードバック制御により、反射電力レベルを進行電力の約5%未満にすることが可能になりうる。幾つかの実施形態においては、電圧制御型発振器120のフィードバック制御により、反射電力のレベルを進行電力の約2%未満にすることが可能になりうる。したがって、実施形態は、処理チャンバ178に結合される進行電力の割合を高め、またプラズマに結合される利用可能な電力密度を高めることができる。更に、フィードバックライン286を使用したインピーダンスの整調は、通常のスロットプレートアンテナにおけるインピーダンスの整調よりも優れている。スロットプレートアンテナにおけるインピーダンスの整調には、アプリケータ内に形成された2つの誘電体スラグを動かすことが伴う。これには、アプリケータ内の2つの別々の部品の機械運動が伴い、これによりアプリケータの複雑性が高まる。更に、機械運動は、電圧制御型発振器120によってもたらされうる周波数の変化ほど正確ではない可能性がある。
ここで、一実施形態に係る、アプリケータ142の切取図である図3Aを参照する。一実施形態において、マイクロ波放射は、アプリケータ142を通して軸方向に延びるモノポール357に連結された同軸ケーブル351によってアプリケータ142へ伝送される。モノポール357は、誘電体共振空洞353の中心に形成されたチャネル358の中にも延びていてよい。誘電体共振空洞353は、石英、酸化アルミニウム、酸化チタン等の誘電体材料であってよい。更なる実施形態はまた、材料を含まない(すなわち、誘電体共振空洞353が空気又は真空でありうる)共振空洞353も含みうる。一実施形態によれば、誘電体共振器は、誘電体共振器がマイクロ波放射の共振の助けとなるように寸法設定される。一般に、誘電体共振空洞353のサイズは、誘電体共振空洞353を形成するのに使われる材料の比誘電率と、マイクロ波放射の周波数に依存する。例えば、高い比誘電率を有する材料により、小さい共振空洞353の形成が可能になる。誘電体共振空洞353が円形の断面を含む実施形態において、誘電体共振空洞353の直径は、約1cmと15cmの間でありうる。一実施形態において、モノポール357に対して垂直な平面に沿った誘電体共振空洞353の断面は、誘電体共振空洞353が共振の助けとなるように寸法設定されている限り、いかなる形状であってもよい。図示した実施形態において、モノポール357に対して垂直な平面に沿った断面は円形であるが、多角形(例えば、三角形、長方形等)、対称な多角形(例えば、正方形、五角形、六角形等)、楕円形等の他の形状も使用可能である。
一実施形態において、誘電体共振空洞353の断面は、モノポール357に対して垂直な全ての平面で同一でなくてよい。例えば、アプリケータハウジング355の開放端部に近接する底部の延在部の断面は、チャネル358に近接する誘電体共振空洞の断面よりも広くなっている。異なる寸法の断面を有することに加えて、誘電体共振空洞353は、異なる形状を有する断面を有しうる。例えば、誘電体共振空洞353の、チャネル358に近接する部分は、円形の断面を有しうるが、誘電体共振空洞353の、アプリケータハウジング355の開放端部に近接する部分は、対称な多角形の形状(例えば、五角形、六角形等)でありうる。しかしながら、実施形態には、モノポール357に対して垂直な全ての平面において均一な断面を有する誘電体共振空洞353も含まれうることを理解すべきである。
一実施形態によれば、アプリケータ353はまた、インピーダンス整調バックショート356も含みうる。バックショート356は、アプリケータハウジング355の外面上で摺動する置換可能なカバーであってよい。インピーダンスの調節を行う必要がある場合、アクチュエータ(図示せず)は、アプリケータハウジング355の外面に沿ってバックショート356を摺動させて、バックショート356の表面と、誘電体共振空洞353の上面との間の距離Dを変更しうる。このように、実施形態は、システム内でインピーダンスを調節する一を超える方法を提供する。一実施形態によれば、インピーダンス整調バックショート356を上述したフィードバック処理と合わせて使用して、インピーダンスの不一致に対処することができる。あるいは、フィードバック処理又はインピーダンス整調バックショート356をそれ自体のみで使用して、インピーダンスの不一致を調節することができる。
一実施形態によれば、アプリケータ142は、マイクロ波電磁場を処理チャンバ178に直接結合させる誘電体アンテナとして機能する。誘電体共振空洞353に入るモノポール357の特定の軸方向配置により、TMOIδモードの励起が起りうる。しかしながら、異なるアプリケータの配置を用いることで、異なるモードの励起が可能でありうる。例えば、図3に軸方向の配置を示したが、モノポール357を他の向きから誘電体共振空洞353に入れることが可能であることを理解すべきである。上記実施形態において、モノポール357を側方から(すなわち、誘電体共振空洞353の側壁を通って)誘電体共振空洞353に入れることができる。
ここで、一実施形態に係る、チャンバ178に連結されたアプリケータ142アレー140を有する処理ツール100の一部を示す図3Bを参照する。図示した実施形態では、誘電体プレート350に近接して位置づけされることによって、アプリケータ142からのマイクロ波放射がチャンバ178に結合される。アプリケータ142が誘電体プレート350に近接していることで、誘電体共振空洞353内で共振しているマイクロ波放射(図3Bに図示せず)が誘電体プレート350と結合し、それからチャンバ内の処理ガスと結合して、プラズマを生成することが可能になりうる。一実施形態において、誘電体共振空洞353は、誘電体プレート350と直接接触していてよい。更なる実施形態において、誘電体共振空洞353は、マイクロ波放射が誘電体プレート350へ伝送されうる限り、誘電体プレート350の表面から間隔を置いて離れていてよい。
一実施形態によれば、アプリケータ142アレー140は(例えば、整備のために、異なる寸法を有する基板に対応するためアプリケータアレーを再配置するために、又はその他いずれかの理由で)、チャンバ178から誘電体プレート350を取り外す必要なしに誘電体プレート350から取り外し可能でありうる。したがって、アプリケータ142は、チャンバ178内の真空を開放する必要なく、処理ツール100から取り外すことができる。更なる実施形態によれば、誘電体プレート350は、ガス注入プレート又はシャワーヘッドとしても機能しうる。
上記のように、アプリケータアレー140は、アレー140が任意の形状の基板174を網羅できるように配置されうる。図4Aは、円形基板174と一致するパターンに配置されたアプリケータ142アレー140を示す平面図である。複数のアプリケータ142を基板174の形状とおおよそ一致するパターンに形成することによって、基板174の全面上でプラズマを整調することが可能になる。例えば、各アプリケータ142は、基板174の全面にわたり均一なプラズマ密度を有するプラズマが形成されるように制御可能である。あるいは、基板174の表面にわたって可変のプラズマ密度を得るために、一又は複数のアプリケータ142を独立して制御することができる。このように、入ってくる基板上に存在する不均一性が修正されうる。例えば、基板174の外周に近接するアプリケータ142は、基板174の中心に近接するアプリケータとは異なる電力密度を有するように制御されうる。
図4Aにおいて、アレー140内のアプリケータ142は、基板174の中心から外へ延びている一連の同心リング状に密接に充填されている。しかしながら、実施形態は上記構成に限定されず、処理ツール100の必要に応じて任意の好適な間隔及び/又はパターンを使用することができる。更に、上述したように、実施形態では、任意の対称な断面を有するアプリケータ142が可能である。したがって、アプリケータ用に選択された断面形状は、充填効率を高めるように選択されうる。
ここで、一実施形態に係る、非円形の断面を有するアプリケータ142アレー140を示す平面図である図4Bを参照する。図示した実施形態は、六角形の断面を有するアプリケータ142を含む。上記アプリケータを使用することにより、各アプリケータ142の周囲が隣接したアプリケータ142とほぼ完全に合致しうるため、充填効率を改善することが可能になりうる。したがって、各アプリケータ142間の間隔が最小限に抑えられうるため、プラズマの均一性がまた更に高まりうる。図4Bに、隣接したアプリケータ142が側壁面を共有しているところを示したが、実施形態はまた、隣接したアプリケータ142間に間隔を含む非円形の対称な形状のアプリケータも含みうることを認識すべきである。
ここで、一実施形態に係るアプリケータ142アレー140を示す更なる平面図である図4Cを参照する。図4Cのアレー140は、複数のセンサ490も含む以外は、図4Aに関連して上述したアレー140とほぼ同様のものである。複数のセンサにより、各モジュラーマイクロ波源105の更なるフィードバック制御を提供するために使用されうる処理モニタの能力改善が得られる。一実施形態において、センサ490は、一又は複数の異なる種類のセンサ490、例えばプラズマ密度センサ、プラズマ発光センサ等を含みうる。基板174の表面全体にセンサを位置づけすることによって、処理チャンバ100の所定の位置においてプラズマ特性をモニタすることが可能になる。
一実施形態によれば、すべてのアプリケータ142を異なるセンサ490と対にすることができる。上記実施形態において、各センサ490からの出力を使用して、センサ490が対になっているそれぞれのアプリケータ142のフィードバック制御を得ることができる。更なる実施形態は、各センサ490を複数のアプリケータ142と対にすることを含みうる。例えば、各センサ490は、センサ490が近接して位置する複数のアプリケータ142にフィードバック制御を提供しうる。更に別の実施形態において、複数のセンサ490からのフィードバックを多入力多出力(MIMO)制御システムの一部として使用しうる。上記実施形態において、複数のセンサ490からのフィードバックに基づいて各アプリケータ142を調節することができる。例えば、第1のアプリケータ142のすぐ隣にある第1のセンサ490を、第1のセンサ490より第1のアプリケータ142から遠くに位置する第2のセンサ490によって第1のアプリケータ142に対して付与される制御効果よりも大きい制御効果を第1のアプリケータ142へ与えるように、重みづけすることができる。
ここで、一実施形態に係る、マルチゾーン処理ツール100内に位置づけされたアプリケータ142アレー140を示す更なる平面図である図4Dを参照する。一実施形態において、マルチゾーン処理ツール100は、任意の数のゾーンを含みうる。例えば、図示した実施形態は、ゾーン475~475を含む。各ゾーン475は、異なるゾーン475を通って回転する基板174に異なる処理工程を実施するように構成されうる。図示したように、ゾーン475に単一のアレー140が位置づけされる。しかしながら、実施形態は、デバイスの必要に応じて、一又は複数の異なるゾーン475内にアプリケータ142アレー140を有するマルチゾーン処理ツール100を含みうる。実施形態によって提供される空間的に整調可能なプラズマの密度により、基板174が異なるゾーン475を通過するときに回転している基板174の不均一な半径方向速度に対応することが可能になる。
ここで、様々な形状のプラズマを得るのにどのようにアプリケータアレー140を配置しうるかの柔軟性を示す異なる実施形態を示す図5A~5Eを参照する。以下に更に詳細に記載するように、実施形態により、マイクロ波モジュールのアプリケータ142を、いずれかの所望の形状(例えば、対称なプレート、不規則なプレート、非平面状の誘電体、内部ボイドを有する誘電体構造等)である誘電体上に配置する(又は誘電体内部に部分的に埋め込む)ことが可能になる。したがって、実施形態により、いずれかの所望の形状であってよく、上述した現在利用可能な処理ツール内で使用されるもの等の導波管の拘束寸法に制限されないプラズマを生成することが可能になる。
ここで、一実施形態に係る、対称な誘電体プレート550の上に位置づけされたアプリケータ142アレー140を示す斜視図である図5Aを参照する。図示した実施形態において、誘電体プレート550はほぼV字の形であり、1-1’の線の周りで対称である。一実施形態によれば、誘電体プレート550は、図3Bに関連して上述した誘電体プレート350とほぼ同じように機能しうる。このため、誘電体共振空洞(図5Aには図示せず)内で共振しているマイクロ波放射は誘電体プレート550と結合し、それからチャンバ内の処理ガスと結合して、プラズマを生成しうる。誘電体プレート550は、マイクロ波放射を分散させるように働き、マイクロ波放射が複数の個別のアプリケータ142から発せられるのにも関わらず、結果として得られるプラズマの形状を全体的に誘電体プレート550の形状とほぼ一致させることを可能にする。
しかしながら、結果として得られるプラズマの形状は、アレー140内の各アプリケータ142が個別に制御可能でありうる、又はグループで制御されうるため、誘電体プレート550の形状によっては制限されないことを理解されたい。このように、実施形態により、隣接した源の局所的な、また個別の強め合う干渉及び弱めあう干渉が可能になり、所望のプラズマ形状を達成しうる及び/又はプラズマの均一性が高まりうる。例えば、隣接したアプリケータ142のマイクロ波源は、特定の位相差で互いに位相固定され、所望のプラズマ形状を発生させることができる。特定の実施形態では、2つの隣接したアプリケータ142は、それらのマイクロ波源が180度の位相はずれに位相固定されうる。この結果、アプリケータ間で2つのマイクロ波源の弱めあう干渉が起り、その場所のプラズマ密度が低下する。同様に、強め合う干渉を利用して、所望の場所に高いプラズマ密度を生じさせることができる。
加えて、各アプリケータ142(またはアプリケータ142のグループ)のある時限の周波数、振幅、位相角、及びデューティサイクルの制御を使用して、結果的にウエハ上の均一性を改善することができる。各アプリケータ142のこれらのパラメータのいずれかあるいは全てを個別に制御することで、アプリケータ142の相互作用に起因した「ホットスポット」を最小限に抑える、あるいは完全に回避することが可能になる。一実施形態では、個々のアプリケータ142への電源の周波数及び振幅を変化させることで、ホットスポットが低減する、及び/又は時間平均化されるため、結果的に均一性が改善される。一実施形態では、各モジュールへのパルス電力のタイミングを変化させて、例えば最近接のパルス電力のタイミングを、隣接したアプリケータ142の両方が同時にオンにならないようなものにすることによって、相互作用が最小限に抑えられる。
一実施形態では、アプリケータ142をできる限り処理環境に近づけて配置するために、誘電体プレート550の厚さが最小限に抑えられる。例えば、誘電体プレート550の厚さは、約30mm未満であってよい。ある実施形態では、誘電体プレート550の厚さは5mmと15mmの間の厚さであってよい。しかしながら、誘電体プレート550の厚さを減らすことで、誘電体プレート550の構造健全性が低下しうることを認識すべきである。処理チャンバの条件によっては、誘電体プレート550の厚さを減らした結果、処理チャンバ外の圧力により誘電体プレート550が割れる、又はそうでなければ損傷を受ける可能性がある。
したがって、実施形態は、アプリケータを配置することができる凹部を含む誘電体プレートも含みうる。上記実施形態に係る誘電体プレートを、図5Bに示す。図示した実施形態では、誘電体プレート550に6つの凹部552が形成されている。しかしながら、任意の数の凹部552を含むことができることを理解すべきである。例示の目的で、アプリケータ142なしの凹部552がどのように見えうるかの例示を示すために、2つの凹部552は空になっている(すなわち、凹部552にアプリケータ142が配置されていない)。加えて、ある実施形態では、アプリケータ142が凹部552の中に着座していても、誘電体プレート550に恒久的に取り付けられない場合があることを理解されたい。したがって、必要に応じてアプリケータ142を取り外すことができる。
凹部552により、誘電体材料の薄い部分によってアプリケータ142をチャンバの処理エリアから離すことが可能になる。したがって、誘電体プレート550の構造健全性を大幅に低下させることなく、処理チャンバへのマイクロ波放射の転送がより効率的になりうる。例えば、凹部552を用いる実施形態では、アプリケータ142は、15mm未満の厚さを有する誘電体材料によってチャンバの処理エリアから離されていてよい。ある実施形態では、凹部552の底部の誘電体材料の厚さは、約5mm以下であってよい。
凹部552の図示に加え、図5Bにはまた、全てが同じサイズではないアプリケータ142も実施形態に含まれうることも示す。例えば、空(すなわち最も左側の2つの凹部552)である凹部552は、他の凹部552よりも小さい。このため、これらの凹部の中にぴったりはまるように設計されたアプリケータ142は、他のアプリケータ142よりも小さい直径断面を有しうる。アプリケータ142のサイズは、アプリケータ142の誘電体材料を変えることによって、共振を変えることなく変化させることができる。例えば、各アプリケータ142内の共振器の比誘電率は、各アプリケータ142が同じ共振を有するように選択されうる。アプリケータ142のサイズを変えることができることによって、誘電体プレート550上の充填効率を高めることが可能になる。例えば、図5Bに示すV字型の誘電体プレート550において、アプリケータ142が誘電体プレート550の表面積のより大きな部分の上に位置づけされるように、小さいアプリケータ142をV字の狭い部分に沿って位置づけしうる。
上記のように、アプリケータ142アレー140のモジュラー設計と可同調性により、任意の所望の形状のプラズマを形成することが可能になる。上記実施形態の一般的な例を、図5Cに示す斜視図に示す。図示したように、図5Cの誘電体プレート550は任意の形状であり、複数のアプリケータ142が誘電体プレート550の表面上に配置される。他の実施形態では、誘電体プレート550はいかなる形状(例えば、多角形、円形、楕円形、直線のエッジと曲線のエッジを含みうる形状等)であってもよい。上記実施形態では、アプリケータ142は、所望の形状のプラズマを得られるように表面上に分散されうる。例えば、各アプリケータ142は均一な形状であってよく、アプリケータ142は複数の異なる形状を含むことができ、異なる形状寸法、又は所望の形状のプラズマを得るのに必要なその他任意の構成を有するアプリケータ142もありうる。更に、図5Cに示すアプリケータ142は誘電体プレート550の上面に着座しているが、アプリケータ142を上述した図5Bと同様に、誘電体プレート550内に形成された凹部に配置することも可能であることを理解すべきである。
更に別の実施形態では、アプリケータアレーは非平面状の構成に配置されうる。上記実施形態を、図5Dに示す断面図に示す。図5Dに示すように、アプリケータ142アレー140は、非平面状の誘電体550に形成された凹部552に据え付けされる。図示した実施形態おいて、非平面状の誘電体550をX-Z軸平面で示す。一実施形態では、非平面状の誘電体550は、アプリケータ142を不均一なZ軸の高さに位置づけすることを可能にする任意の形状であってよい。例えば、非平面状の誘電体550は、アーチ型、ドーム型、ピラミッド型、球形、又はその他任意の所望の形状であってよい。したがって、実施形態により、処理チャンバ内部でのほぼ非平面のプラズマの形成が可能になる。上記実施形態は、必ずしも平面状、又は非平面状のグループに配列された物体の集合ではない物体(例えば、ウエハ、プレート等の基板以外の物体)を処理するのにプラズマ処理を必要とする場合に有益でありうる。
別の実施形態によれば、非平面状の誘電体550は円形である断面を有しうる。上記実施形態を、図5Eに示す断面図において示す。図示したように、非平面状の誘電体550は、X-Z軸平面においてリングを形成する。幾つかの実施形態において、非平面状の誘電体550はY軸平面に延びて、円筒を形成しうる。別の実施形態では、非平面状の誘電体は、三角形の断面を有しうる。別の実施形態では、非平面状の誘電体は、正方形の断面を有しうる。別の実施形態では、非平面状の誘電体は、長方形の断面を有しうる。別の実施形態では、非平面状の誘電体は、境界線がジョルダ曲線(すなわち、平面内の非自己交差連続ループ)である断面を有しうる。更なる実施形態では、非平面状の誘電体550は、球を形成しうる(すなわち、非平面状の誘電体は内部ボイドを有する誘電体であってよい)。非平面状の誘電体550が内部ボイドを有する三次元形状である実施形態では、非平面状の本体550は、互いに連結された2つ以上の誘電体からなる、ある形状を形成するものでありうる。上記実施形態は、三次元物体の全面を処理するのにプラズマ処理を必要とする場合に有利でありうる。
ここで、一実施形態に係る、処理ツール100の例示のコンピュータシステム660を示すブロック図である図6を参照する。一実施形態において、コンピュータシステム660は処理ツール100に連結され、処理ツール100内での処理を制御する。コンピュータシステム660は、ローカルエリアネットワーク(LAN)、イントラネット、エクストラネット、又はインターネットにおいて、他のマシンに接続され(例えばネットワーク化され)うる。コンピュータシステム660は、クライアント-サーバネットワーク環境においてはサーバ又はクライアントマシンの役割で、或いは、ピアツーピア(又は分散)ネットワーク環境においてはピアマシンとして作動しうる。コンピュータシステム660は、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、パーソナルデジタルアシスタント(PDA)、携帯電話、ウェブアプライアンス、サーバ、ネットワークルータ、スイッチ又はブリッジ、或いは、そのマシンによって行われる動作を特定する(連続した又は別様な)命令のセットを実行可能な任意のマシンでありうる。更に、コンピュータシステム660として単一のマシンのみを示しているが、用語「マシン」は、本書に記載の方法のうちの任意の一又は複数を実施するために、命令のセット(又は複数のセット)を個々に、又は連携的に実行するマシン(コンピュータなど)の任意の集合体を含むとも解釈すべきである。
コンピュータシステム660は、命令が記憶された非一過性のマシン可読媒体を有するコンピュータプログラム製品、又はソフトウェア622を含んでいてよく、これらの命令は、実施形態に係る処理を実施するコンピュータシステム660(又は、他の電子デバイス)をプログラムするために使用されうる。マシン可読媒体は、マシン(例えばコンピュータなど)によって可読の形態で情報を保存又は伝送するための任意の機構を含む。例えば、マシン可読(例えばコンピュータ可読)媒体は、マシン(例えばコンピュータ)可読記憶媒体(例えば、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイス等)、マシン(例えばコンピュータ)可読伝送媒体(電気的形態、光学的形態、音響的形態、又はその他の伝播信号の形態(例えば赤外線信号、デジタル信号等))等を含む。
一実施形態では、コンピュータシステム660は、バス630を介して互いに通信し合う、システムプロセッサ602と、メインメモリ604(例えば、読み出し専用メモリ(ROM)と、フラッシュメモリと、シンクロナスDRAM(SDRAM)又はランバスDRAM(RDRAM)などのダイナミックランダムアクセスメモリ(DRAM))と、スタティックメモリ606(例えば、フラッシュメモリ、スタティックランダムアクセスメモリ(SRAM)など)と、二次メモリ618(例えば、データ記憶装置)とを含む。
システムプロセッサ602は、マイクロシステムプロセッサ、中央処理装置などの一又は複数の汎用処理装置を表す。より詳細には、システムプロセッサは、複合命令セット演算(CISC)マイクロシステムプロセッサ、縮小命令セット演算(RISC)マイクロシステムプロセッサ、超長命令語(VLIW)マイクロシステムプロセッサ、他の命令セットを実行するシステムプロセッサ、又は、命令セットの組み合わせを実行するシステムプロセッサでありうる。システムプロセッサ602は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号システムプロセッサ(DSP)、ネットワークシステムプロセッサなどの、一又は複数の特殊用途処理デバイスでもありうる。システムプロセッサ602は、本書に記載の工程を実施するための処理論理626を実行するように構成される。
コンピュータシステム660は更に、他のデバイス又はマシンと通信するためのシステムネットワークインターフェースデバイス608を含みうる。コンピュータシステム660は、ビデオディスプレイユニット610(液晶ディスプレイ(LCD)、発光ダイオードディスプレイ(LED)、又は陰極線管(CRT)など)、英数字入力デバイス612(キーボードなど)、カーソル制御デバイス614(マウスなど)、及び信号生成デバイス616(スピーカなど)も含みうる。
二次メモリ618は、本書に記載の方法又は機能のうちの一又は複数のいずれかを具現化する、一又は複数の命令セット(例えば、ソフトウェア622)が記憶されている、マシンアクセス可能記憶媒体(又は、より具体的には、コンピュータ可読記憶媒体)を含みうる。このソフトウェア622は、コンピュータシステム660によって実行されている間、完全に又は少なくとも部分的に、メインメモリ604及び/又はシステムプロセッサ602の中にも常駐していてよく、メインメモリ604及びシステムプロセッサ602は、マシン可読記憶媒体も構成しうる。このソフトウェア622は更に、システムネットワークインターフェースデバイス608を介してネットワーク620上で送信又は受信されうる。
例示的な一実施形態では、マシンアクセス可能記憶媒体631を単一の媒体として示しているが、「マシン可読記憶媒体(machine-readable storage medium)」という語は、一又は複数の命令セットを記憶している単一の媒体又は複数の媒体(例えば、集中データベース若しくは分散データベース、並びに/又は、関連キャッシュ及びサーバ)を含むと解釈すべきである。用語「マシン可読記憶媒体」はまた、マシンによって実行される命令セットを記憶すること、又は符号化することが可能であり、かつ、方法のうちの任意の一又は複数をマシンに実施させる任意の媒体を含むとも解釈すべきである。従って、用語「マシン可読記憶媒体」は、固体メモリ、光媒体、及び磁気媒体を含むがそれらに限定されないと解釈すべきである。
前述の明細書に、特定の例示の実施形態を説明した。以下の特許請求の範囲から逸脱しない限り、例示の実施形態に様々な修正を加えることができることが明らかになろう。従って、本明細書及び図面を限定的と捉えるのではなく、例として見なすべきである。

Claims (15)

  1. プラズマ処理ツールであって、
    処理チャンバと、
    前記処理チャンバに連結された複数のモジュラーマイクロ波源であって、
    前記処理チャンバの外壁の一部を形成する誘電体の上に位置づけされ、前記誘電体に連結されたアプリケータアレーと、
    前記アプリケータアレー内のアプリケータのうちの少なくとも1つに各々が連結されたマイクロ波増幅モジュールのアレーと
    を備える複数のモジュラーマイクロ波源と
    を備える、プラズマ処理ツール。
  2. 前記誘電体は対称及びほぼV字形である、請求項1に記載のプラズマ処理ツール。
  3. 前記誘電体は非対称である、請求項1に記載のプラズマ処理ツール。
  4. 前記誘電体は非平面状である、請求項1に記載のプラズマ処理ツール。
  5. 前記誘電体はドームである、又は内部ボイドを有する三次元形状である、請求項4に記載のプラズマ処理ツール。
  6. 前記誘電体は、互いに連結した2つ以上の誘電体部品を備える、請求項1に記載のプラズマ処理ツール。
  7. 前記誘電体は複数の凹部を備え、少なくとも1つのアプリケータが前記凹部のうちの少なくとも1つの中にある、請求項1に記載のプラズマ処理ツール。
  8. 前記アプリケータアレーは不均一な寸法を有するアプリケータを含み、前記アプリケータの各々の共振は均一である、請求項1に記載のプラズマ処理ツール。
  9. 前記マイクロ波増幅モジュールは各々、独立して制御可能である、請求項1に記載のプラズマ処理ツール。
  10. 前記アプリケータの間に位置づけされた複数のプラズマセンサを更に備え、前記複数のプラズマセンサのうちの一又は複数によって各マイクロ波増幅モジュールのためのフィードバック制御データが提供される、請求項1に記載のプラズマ処理ツール。
  11. プラズマ処理ツールであって、
    少なくとも1つの表面が誘電体である処理チャンバと、
    前記処理チャンバに連結された複数のモジュラーマイクロ波源であって、
    前記誘電体と接触するように位置づけされたアプリケータアレーと、
    各々が前記アプリケータアレー内のアプリケータのうちの少なくとも1つに連結されたマイクロ波増幅モジュールのアレーと
    を備える複数のモジュラーマイクロ波源と
    を備え、
    前記アプリケータアレーの各アプリケータは、
    誘電体共振空洞と、
    前記誘電体共振空洞の側壁の外側周囲に形成されたアプリケータハウジングと、
    誘電体共振器の軸中心を下方に延び、前記誘電体共振空洞の中心に形成されたチャネルの中まで延びるモノポールと
    を備え、
    前記マイクロ波増幅モジュールは各々、
    前置増幅器と、
    主電力増幅器と、
    前記前置増幅器、及び前記主電力増幅器に電気的に結合された電源と、
    循環装置と
    を備える、プラズマ処理ツール。
  12. 前記誘電体が、約30mm未満の厚さを有する、請求項11に記載のプラズマ処理ツール。
  13. 前記誘電体が複数の凹部を備え、少なくとも1つのアプリケータが前記凹部のうちの少なくとも1つの中にあり、前記複数の凹部は全てが同じサイズではない、請求項11に記載のプラズマ処理ツール。
  14. 前記誘電体は対称である、請求項11に記載のプラズマ処理ツール。
  15. 前記誘電体は非平面状である、請求項11に記載のプラズマ処理ツール。
JP2022025273A 2017-04-11 2022-02-22 マイクロ波源およびマイクロ波増幅モジュールのアレー Active JP7232365B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/485,217 2017-04-11
US15/485,217 US10707058B2 (en) 2017-04-11 2017-04-11 Symmetric and irregular shaped plasmas using modular microwave sources
PCT/US2018/022044 WO2018190978A1 (en) 2017-04-11 2018-03-12 Symmetric and irregular shaped plasmas using modular microwave sources
JP2019555485A JP7030840B2 (ja) 2017-04-11 2018-03-12 モジュラーマイクロ波源を使用したプラズマ処理ツール

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019555485A Division JP7030840B2 (ja) 2017-04-11 2018-03-12 モジュラーマイクロ波源を使用したプラズマ処理ツール

Publications (2)

Publication Number Publication Date
JP2022084609A true JP2022084609A (ja) 2022-06-07
JP7232365B2 JP7232365B2 (ja) 2023-03-02

Family

ID=63711699

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019555485A Active JP7030840B2 (ja) 2017-04-11 2018-03-12 モジュラーマイクロ波源を使用したプラズマ処理ツール
JP2022025273A Active JP7232365B2 (ja) 2017-04-11 2022-02-22 マイクロ波源およびマイクロ波増幅モジュールのアレー

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019555485A Active JP7030840B2 (ja) 2017-04-11 2018-03-12 モジュラーマイクロ波源を使用したプラズマ処理ツール

Country Status (6)

Country Link
US (2) US10707058B2 (ja)
JP (2) JP7030840B2 (ja)
KR (2) KR102357334B1 (ja)
CN (2) CN115692156A (ja)
TW (2) TW202131380A (ja)
WO (1) WO2018190978A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488796B2 (en) * 2019-04-24 2022-11-01 Applied Materials, Inc. Thermal break for high-frequency antennae
KR20220051192A (ko) 2019-08-13 2022-04-26 어플라이드 머티어리얼스, 인코포레이티드 다이렉트 마이크로파 플라즈마를 이용한 peald 티타늄 나이트라이드
US11348783B2 (en) 2019-09-05 2022-05-31 Applied Materials, Inc. Methods and apparatus for dynamical control of radial uniformity with two-story microwave cavities
US11564292B2 (en) * 2019-09-27 2023-01-24 Applied Materials, Inc. Monolithic modular microwave source with integrated temperature control
US11881384B2 (en) * 2019-09-27 2024-01-23 Applied Materials, Inc. Monolithic modular microwave source with integrated process gas distribution
US20210098230A1 (en) * 2019-09-27 2021-04-01 Applied Materials, Inc. Monolithic modular high-frequency plasma source
WO2021069620A1 (en) * 2019-10-11 2021-04-15 Neocoat Sa Cvd reactor for manufacturing synthetic films and methods of fabrication
US20210391149A1 (en) * 2020-06-10 2021-12-16 Applied Materials, Inc. Modular microwave source with multiple metal housings
US20210391156A1 (en) * 2020-06-10 2021-12-16 Applied Materials, Inc. Clean unit for chamber exhaust cleaning
WO2022054072A1 (en) * 2020-09-13 2022-03-17 Sigma Carbon Technologies System for growth of crystalline material(s)
WO2022067303A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN114678246A (zh) * 2020-12-24 2022-06-28 中微半导体设备(上海)股份有限公司 用于电容耦合等离子处理器阻抗特性测量的测量装置和方法
JP2022110698A (ja) * 2021-01-19 2022-07-29 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US20220254641A1 (en) * 2021-02-11 2022-08-11 Applied Materials, Inc. Method and apparatus of low temperature plasma enhanced chemical vapor deposition of graphene
US20230260758A1 (en) * 2022-02-14 2023-08-17 Taiwan Semiconductor Manufacturing Company Methods and systems for cooling plasma treatment components
US20230317416A1 (en) * 2022-04-01 2023-10-05 Applied Materials, Inc. Plasma showerhead with improved uniformity
US20230411123A1 (en) * 2022-06-09 2023-12-21 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266268A (ja) * 2003-02-14 2004-09-24 Tokyo Electron Ltd プラズマ発生装置およびプラズマ発生方法ならびにリモートプラズマ処理装置
JP2013077441A (ja) * 2011-09-30 2013-04-25 Tokyo Electron Ltd マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置
JP2014154421A (ja) * 2013-02-12 2014-08-25 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法、および高周波発生器
US20150371828A1 (en) * 2014-06-24 2015-12-24 Applied Materials, Inc. Low cost wide process range microwave remote plasma source with multiple emitters
KR20170015161A (ko) * 2015-07-31 2017-02-08 도쿄엘렉트론가부시키가이샤 마이크로파 플라즈마원 및 플라즈마 처리 장치

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5134965A (en) * 1989-06-16 1992-08-04 Hitachi, Ltd. Processing apparatus and method for plasma processing
US5179264A (en) 1989-12-13 1993-01-12 International Business Machines Corporation Solid state microwave powered material and plasma processing systems
US5961871A (en) 1991-11-14 1999-10-05 Lockheed Martin Energy Research Corporation Variable frequency microwave heating apparatus
KR970071945A (ko) * 1996-02-20 1997-11-07 가나이 쯔도무 플라즈마처리방법 및 장치
DE19608949A1 (de) 1996-03-08 1997-09-11 Ralf Dr Spitzl Vorrichtung zur Erzeugung von leistungsfähigen Mikrowellenplasmen
JPH11214196A (ja) * 1998-01-29 1999-08-06 Mitsubishi Electric Corp プラズマ発生装置
JP4014300B2 (ja) * 1998-06-19 2007-11-28 東京エレクトロン株式会社 プラズマ処理装置
US6263830B1 (en) 1999-04-12 2001-07-24 Matrix Integrated Systems, Inc. Microwave choke for remote plasma generator
US6646386B1 (en) 1999-07-20 2003-11-11 Tokyo Electron Limited Stabilized oscillator circuit for plasma density measurement
US6741944B1 (en) 1999-07-20 2004-05-25 Tokyo Electron Limited Electron density measurement and plasma process control system using a microwave oscillator locked to an open resonator containing the plasma
US6509542B1 (en) * 1999-09-30 2003-01-21 Lam Research Corp. Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
JP2004055614A (ja) * 2002-07-16 2004-02-19 Tokyo Electron Ltd プラズマ処理装置
US20060137613A1 (en) * 2004-01-27 2006-06-29 Shigeru Kasai Plasma generating apparatus, plasma generating method and remote plasma processing apparatus
KR20050079860A (ko) * 2004-02-07 2005-08-11 삼성전자주식회사 마이크로 웨이브 공급장치, 이를 이용한 플라즈마공정장치 및 플라즈마 공정방법
JP2006128075A (ja) 2004-10-01 2006-05-18 Seiko Epson Corp 高周波加熱装置、半導体製造装置および光源装置
JP2006287817A (ja) 2005-04-04 2006-10-19 Tokyo Electron Ltd マイクロ波発生装置、マイクロ波供給装置、プラズマ処理装置及びマイクロ波発生方法
JP5161086B2 (ja) 2006-07-28 2013-03-13 東京エレクトロン株式会社 マイクロ波プラズマ源およびプラズマ処理装置
EP1976346A1 (en) 2007-03-30 2008-10-01 Ecole Polytechnique Apparatus for generating a plasma
US8783220B2 (en) 2008-01-31 2014-07-22 West Virginia University Quarter wave coaxial cavity igniter for combustion engines
JP5224837B2 (ja) 2008-02-01 2013-07-03 株式会社東芝 基板のプラズマ処理装置及びプラズマ処理方法
JP5376816B2 (ja) * 2008-03-14 2013-12-25 東京エレクトロン株式会社 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
KR101245430B1 (ko) * 2008-07-11 2013-03-19 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
JP5309847B2 (ja) 2008-09-30 2013-10-09 東京エレクトロン株式会社 プラズマ処理装置
JP2010074154A (ja) 2008-08-22 2010-04-02 Tokyo Electron Ltd マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP2010170974A (ja) 2008-12-22 2010-08-05 Tokyo Electron Ltd プラズマ源およびプラズマ処理装置
KR101277032B1 (ko) 2009-03-27 2013-06-24 도쿄엘렉트론가부시키가이샤 튜너 및 마이크로파 플라즈마원
US8674606B2 (en) * 2009-04-27 2014-03-18 Advanced Energy Industries, Inc. Detecting and preventing instabilities in plasma processes
US8302923B2 (en) * 2009-07-13 2012-11-06 Invue Security Products Inc. Merchandise display hook having pivotable locking base
CN102148429B (zh) 2010-02-06 2016-03-30 清华大学 纳米光学天线阵列的制造方法
JP5823399B2 (ja) 2010-09-09 2015-11-25 東京エレクトロン株式会社 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP5893865B2 (ja) * 2011-03-31 2016-03-23 東京エレクトロン株式会社 プラズマ処理装置およびマイクロ波導入装置
FR2974701B1 (fr) * 2011-04-27 2014-03-21 Sairem Soc Pour L Applic Ind De La Rech En Electronique Et Micro Ondes Installation de production d'un plasma micro-onde
JP2013045551A (ja) 2011-08-23 2013-03-04 Tokyo Electron Ltd プラズマ処理装置、マイクロ波導入装置及びプラズマ処理方法
US8808496B2 (en) * 2011-09-30 2014-08-19 Tokyo Electron Limited Plasma tuning rods in microwave processing systems
JP2013143448A (ja) * 2012-01-10 2013-07-22 Tokyo Electron Ltd 表面波プラズマ処理装置
JP2013161913A (ja) 2012-02-03 2013-08-19 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP5882777B2 (ja) 2012-02-14 2016-03-09 東京エレクトロン株式会社 成膜装置
US9161428B2 (en) 2012-04-26 2015-10-13 Applied Materials, Inc. Independent control of RF phases of separate coils of an inductively coupled plasma reactor
US20140002196A1 (en) 2012-06-25 2014-01-02 Paul H. Leek Method and system for controlling the frequency of a high power microwave source
JP5947138B2 (ja) 2012-07-25 2016-07-06 東京エレクトロン株式会社 成膜装置
KR101661076B1 (ko) 2012-10-11 2016-09-28 도쿄엘렉트론가부시키가이샤 성막 장치
JP5839606B2 (ja) 2013-02-26 2016-01-06 東京エレクトロン株式会社 窒化膜を形成する方法
WO2014159449A1 (en) * 2013-03-14 2014-10-02 Tokyo Electron Limited Microwave surface-wave plasma device
TWI568317B (zh) * 2013-03-15 2017-01-21 東京威力科創股份有限公司 微波共振器處理系統中之電漿調整桿
JP2015135782A (ja) * 2014-01-20 2015-07-27 東京エレクトロン株式会社 マイクロ波処理装置及びマイクロ波処理方法
JP6383674B2 (ja) * 2014-02-19 2018-08-29 東京エレクトロン株式会社 基板処理装置
CN107852805B (zh) * 2014-12-05 2020-10-16 Agc玻璃欧洲公司 空心阴极等离子体源
JP6378070B2 (ja) 2014-12-15 2018-08-22 東京エレクトロン株式会社 成膜方法
JP6345104B2 (ja) 2014-12-24 2018-06-20 東京エレクトロン株式会社 成膜方法
JP6479560B2 (ja) 2015-05-01 2019-03-06 東京エレクトロン株式会社 成膜装置
US20170133202A1 (en) 2015-11-09 2017-05-11 Lam Research Corporation Computer addressable plasma density modification for etch and deposition processes
US10748745B2 (en) * 2016-08-16 2020-08-18 Applied Materials, Inc. Modular microwave plasma source
JP6752117B2 (ja) 2016-11-09 2020-09-09 東京エレクトロン株式会社 マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP6698560B2 (ja) 2017-02-01 2020-05-27 東京エレクトロン株式会社 マイクロ波プラズマ源、マイクロ波プラズマ処理装置、およびプラズマ処理方法
JP6850645B2 (ja) 2017-03-22 2021-03-31 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266268A (ja) * 2003-02-14 2004-09-24 Tokyo Electron Ltd プラズマ発生装置およびプラズマ発生方法ならびにリモートプラズマ処理装置
JP2013077441A (ja) * 2011-09-30 2013-04-25 Tokyo Electron Ltd マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置
JP2014154421A (ja) * 2013-02-12 2014-08-25 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法、および高周波発生器
US20150371828A1 (en) * 2014-06-24 2015-12-24 Applied Materials, Inc. Low cost wide process range microwave remote plasma source with multiple emitters
KR20170015161A (ko) * 2015-07-31 2017-02-08 도쿄엘렉트론가부시키가이샤 마이크로파 플라즈마원 및 플라즈마 처리 장치

Also Published As

Publication number Publication date
TW202131380A (zh) 2021-08-16
US20200402769A1 (en) 2020-12-24
JP2020517060A (ja) 2020-06-11
KR20190127989A (ko) 2019-11-13
JP7030840B2 (ja) 2022-03-07
TWI719290B (zh) 2021-02-21
JP7232365B2 (ja) 2023-03-02
KR102357334B1 (ko) 2022-02-08
CN110612594B (zh) 2022-10-28
CN110612594A (zh) 2019-12-24
KR102253568B1 (ko) 2021-05-17
WO2018190978A1 (en) 2018-10-18
US10707058B2 (en) 2020-07-07
CN115692156A (zh) 2023-02-03
US20180294143A1 (en) 2018-10-11
TW201903818A (zh) 2019-01-16
KR20210057224A (ko) 2021-05-20

Similar Documents

Publication Publication Date Title
JP7030840B2 (ja) モジュラーマイクロ波源を使用したプラズマ処理ツール
JP7045365B2 (ja) モジュラーマイクロ波プラズマ源
JP6999697B2 (ja) 局所的なローレンツ力を用いるモジュール式マイクロ波源
JP2020009745A (ja) 遠隔モジュール型高周波源
JP2024069217A (ja) フェーズドアレイのモジュール型高周波源
US11081317B2 (en) Modular high-frequency source
TW202412564A (zh) 相控陣模組化高頻源

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230217

R150 Certificate of patent or registration of utility model

Ref document number: 7232365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150