JP2022039002A - タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 - Google Patents
タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 Download PDFInfo
- Publication number
- JP2022039002A JP2022039002A JP2020143771A JP2020143771A JP2022039002A JP 2022039002 A JP2022039002 A JP 2022039002A JP 2020143771 A JP2020143771 A JP 2020143771A JP 2020143771 A JP2020143771 A JP 2020143771A JP 2022039002 A JP2022039002 A JP 2022039002A
- Authority
- JP
- Japan
- Prior art keywords
- unit
- pulse
- pulse train
- pattern
- tread
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Tires In General (AREA)
Abstract
【課題】 走行時に生じる振動をより一層低減することができるタイヤ等を提供する。【解決手段】 トレッド部を有するタイヤである。トレッドパターン3の模様列5から、各模様構成単位4を単位パルスとし、単位パルスを、間隔を空けて並べた第1パルス列を得、パーティング領域の列18から、各パーティング領域17を単位パルスとし、単位パルスを、間隔を空けて並べた第2パルス列を得、第1パルス列の単位パルスと、第2パルス列の単位パルスとを重ね合わせて第3パルス列を得たときに、第3パルス列の1~k次の振幅Fkのうち、1次数の振幅F1が、一定の範囲に制限される。【選択図】図1
Description
本発明は、タイヤ等に関する。
下記特許文献1には、トレッド部に、模様構成単位がタイヤ周方向に配列された列を含むトレッドパターンを有するタイヤが記載されている。このタイヤは、模様構成単位の列を、模様構成単位をパルスとしたパルス列に置換し、パルス列をフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1を所定の範囲内に限定している。
上記のタイヤは、走行時に生じる振動の低減について、効果が期待される。一方、近年の振動への低減要求は増々強くなっている。
一般に、タイヤのトレッド部を加硫成形するトレッドモールドは、複数のトレッドセグメントをタイヤ周方向に連ねて形成されている。このため、トレッドセグメントの割り位置では、僅かではあるものの、モールドの真円度が低下し、ノイズ性能に影響を与える。したがって、走行時の振動をより一層低減するためには、トレッドパターンのみならず、トレッドモールドの割り位置の影響も考慮する必要がある。
本発明は、以上のような実状に鑑み案出されたもので、走行時に生じる振動をより一層低減することができるタイヤ等を提供することを主たる目的としている。
本発明は、トレッド部を有するタイヤであって、前記トレッド部に、模様構成単位がタイヤ周方向に配列された模様列を含むトレッドパターンと、前記トレッドパターンを成形するための複数のトレッドセグメントの割り位置に対応して形成されたパーティングラインによって区分されたパーティング領域の列とを有し、前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、前記パーティング領域の列から、各パーティング領域をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記パーティング領域の配列の順に、かつ、各パーティング領域の前記長さに応じた間隔を空けて並べた第2パルス列を得、前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、前記第3パルス列を下記式(1)でフーリエ変換して得られる1~k次数の振幅Fkのうち、1次数の振幅F1は、1.2以下であることを特徴とする。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
本発明に係る前記タイヤにおいて、前記1次数の振幅F1は、1.0以下であってもよい。
本発明に係る前記タイヤにおいて、前記1~k次数の振幅Fkのうち、2次数の振幅F2及び3次数の振幅F3は、1.2以下であってもよい。
本発明に係る前記タイヤにおいて、前記1~k次数の振幅Fkのうち、4次数の振幅F4ないし10次数の振幅F10は、1.2以下であってもよい。
本発明に係る前記タイヤにおいて、前記模様列は、タイヤ周方向の長さが異なる少なくとも2種類の模様構成単位を含んでもよい。
本発明に係る前記タイヤにおいて、第1パルス列の各単位パルスの前記大きさ及び前記間隔は、その単位パルスに対応する前記模様構成単位の前記長さを、全ての前記模様構成単位の前記長さの中央値に対する比で定義され、前記第1パルス列の各単位パルスの前記大きさ及び前記間隔は、0.8~1.2であってもよい。
本発明に係る前記タイヤにおいて、前記模様列は、タイヤ周方向の長さが小さい模様構成単位を、タイヤ周方向の長さが大きい模様構成単位よりも多く含んでもよい。
本発明に係る前記タイヤにおいて、前記パーティング領域は、前記タイヤ周方向の長さが異なる少なくとも2種類を含んでもよい。
本発明に係る前記タイヤにおいて、各第2パルス列の各単位パルスの大きさ及び前記間隔は、その単位パルスに対応する前記パーティング領域の前記長さを、全ての前記パーティング領域の前記長さの中央値に対する比で定義され、前記第2パルス列の各単位パルスの前記大きさ及び前記間隔は、0.5~1.5であってもよい。
本発明は、タイヤのトレッドパターンに含まれる模様列について、前記模様列を構成する模様構成単位のタイヤ周方向の配列を決定するための方法であって、前記トレッドパターンは、タイヤ周方向の割り位置が予め定められた複数のトレッドセグメントで成形されるものであり、前記方法は、前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、前記第3パルス列を下記式(4)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、前記配列を決定する工程を含むことを特徴とする。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
本発明は、タイヤのトレッドパターンを成形するための複数のトレッドセグメントについて、前記トレッドセグメントのタイヤ周方向の割り位置を決定するための方法であって、前記トレッドパターンは、模様構成単位のタイヤ周方向の配列が予め定められた模様列を含み、前記方法は、前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、前記第3パルス列を下記式(5)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、前記割り位置を決定する工程を含むことを特徴とする。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
本発明は、模様構成単位がタイヤ周方向に配列された模様列を含むトレッドパターンが設けられたタイヤを設計するための方法であって、前記トレッドパターンは、タイヤ周方向で分割された複数のトレッドセグメントで成形されるものであり、前記方法は、前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、前記第3パルス列を下記式(6)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、前記模様構成単位の配列と、前記トレッドセグメントの割り位置とを決定する工程を含むことを特徴とする。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
本発明は、模様構成単位がタイヤ周方向に配列された模様列を含むトレッドパターンが設けられたタイヤを製造するための方法であって、前記方法は、前記トレッドパターンを成形するための複数のトレッドセグメントを含むトレッドモールドを用いて、未加硫の生タイヤのトレッド部を加硫成形する加硫工程を含み、前記トレッドモールドは、前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、前記第3パルス列を下記式(7)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1は、1.2以下であることを特徴とする。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
本発明では、トレッドパターンの模様列と、トレッドモールドの割り位置とを相互に関連付けた第3パルス列をフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が一定の範囲に制限される。このように、本発明のタイヤは、トレッドパターンの模様列に起因する振動と、トレッドセグメントの割り位置に起因する振動との相互干渉が考慮された第3パルス列が規制されているため、振動がより一層低減する。
以下、本発明の実施の一形態が図面に基づき説明される。なお、各図面は、発明の内容の理解を高めるためのものであり、誇張された表示が含まれる他、各図面間において、縮尺等は厳密に一致していない点が予め指摘される。
図1は、タイヤ1のトレッド部2の一例を示す展開図である。本実施形態のタイヤ1は、トレッド部2を有している。トレッド部2は、トレッドパターン3を有している。
本実施形態のトレッドパターン3は、模様構成単位4がタイヤ周方向に配列された模様列5を含んで構成されている。模様列5は、少なくとも1列(本実施形態では、5列)設けられている。各模様構成単位4は、タイヤ軸方向で隣り合う他の模様列5の模様構成単位4と、タイヤ周方向の位置が同一である場合が例示されているが、タイヤ周方向に位置ずれして(位相がずれて)いてもよい。
模様列5は、タイヤ周方向の長さD1がそれぞれ同一となる1種類の模様構成単位4(図示省略)で構成されたものでもよい。本実施形態の模様列5は、タイヤ周方向の長さD1が異なる少なくとも2種類(本例では、5種類)の模様構成単位4を含んでいる。
本明細書において、特に断りがない場合、タイヤ1の各部の寸法等は、タイヤ1が正規リムにリム組みされ、かつ、正規内圧が充填された無負荷である正規状態で測定された値とする。
「正規リム」とは、タイヤ1が基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim" である。
「正規内圧」は、タイヤ1が基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" である。
模様構成単位4の種類は、例えば、タイヤ1が装着される車両や路面の条件に応じて適宜設定されうる。模様構成単位4は、例えば、2~10種類程度が望ましい。本実施形態の模様構成単位4は、5種類(本例では、4SS、4S、4M、4L、4LL)である場合が例示される。
本実施形態の模様構成単位4は、1つのブロック6と、このブロック6とタイヤ周方向の一方側で隣り合う1つの横溝7とを含んで構成されている。したがって、本実施形態のトレッドパターン3は、ブロックパターンである場合が例示される。なお、トレッドパターン3は、ブロックパターンに限定されるわけではなく、例えば、リブパターンであってもよい。本実施形態のブロック6(模様列5)は、横溝7と、横溝7と交わる向きにのび、かつ、タイヤ周方向に連続してのびる主溝8とで区分されている。
図2は、タイヤ1の加硫工程の一例を説明する断面図である。タイヤ1の加硫工程では、加硫金型10が用いられる。加硫金型10は、従来のものと同様に、トレッドモールド11、一対のサイドモールド15、一対のビードリング19、及び、ブラダー20を含んで構成されている。なお、加硫金型10は、このような構成に限定されるわけではない。例えば、ブラダー20に代えて、剛性中子(図示省略)が用いられてもよい。
本実施形態の加硫工程では、例えば、高圧蒸気の供給によって膨張したブラダー20により、未加硫の生タイヤ1Lが、トレッドモールド11の成形面11s、一対のサイドモールド15の成形面15s及び一対のビードリング19の成形面19sに押し付けられる。これにより、加硫工程では、生タイヤ1Lが加硫成形されて、図1に示したタイヤ1が製造されうる。
図3は、図2のタイヤ赤道Cに沿ったトレッドモールド11及び生タイヤ1Lの断面図である。トレッドモールド11は、トレッドパターン3(図1に示す)を成形するための複数のトレッドセグメント12を含んで構成されている。これらのトレッドセグメント12がタイヤ周方向に並べられることによって、トレッドモールド11が形成される。トレッドセグメント12は、例えば、コンテナ14(図2に示す)に固定されている。
複数のトレッドセグメント12(トレッドモールド11)には、トレッドパターン3(図1に示す)を形成するための成形面11sが設けられている。これらの成形面11sに、未加硫の生タイヤ1Lが押し付けられて加硫成形されることによって、トレッドパターン3(図1に示す)が形成される。
トレッドモールド11は、タイヤ周方向の長さD4がそれぞれ同一となる1種類のトレッドセグメント12で構成されてもよい。本実施形態のトレッドモールド11は、タイヤ周方向の長さD4が異なる少なくとも2種類のトレッドセグメント12を含んで構成されている。
トレッドセグメント12の種類は、例えば、コンテナ14(図2に示す)への固定位置や、トレッドセグメント12の構造(図示しない溝形成部やブレード)等の種々の制約に応じて、適宜設定されうる。トレッドセグメント12の種類は、例えば、2~10種類程度が望ましい。本実施形態のトレッドセグメント12は、5種類(本例では、12a、12b、12c、12d、12e)である場合が例示される。
図1に示されるように、加硫成形されたトレッド部2には、トレッドセグメント12の割り位置13(図3に示す)に対応して、パーティングライン(分割線)16が形成される。これにより、トレッド部2には、パーティングライン16によって区分されたパーティング領域17の列18が設けられる。
本実施形態のパーティングライン16は、タイヤ軸方向に沿って直線状に形成されているが、このような態様に限定されない。パーティングライン16は、例えば、タイヤ軸方向に対して傾斜していてもよいし、湾曲していてもよい。
パーティング領域17は、図3に示した加硫成形時において、各トレッドセグメント12の成形面11sに当接していた領域として特定されうる。本実施形態のトレッドモールド11は、タイヤ軸方向において分割されていない。このため、図1に示されるように
本実施形態のトレッド部2は、タイヤ周方向にのびるパーティングライン(図示省略)が形成されないため、1つのパーティング領域の列18のみが設けられている。なお、トレッド部2には、2つ以上のパーティング領域の列(図示省略)が設けられてもよい。
本実施形態のトレッド部2は、タイヤ周方向にのびるパーティングライン(図示省略)が形成されないため、1つのパーティング領域の列18のみが設けられている。なお、トレッド部2には、2つ以上のパーティング領域の列(図示省略)が設けられてもよい。
図3に示したように、本実施形態のトレッドセグメント12は、タイヤ周方向の長さD4が異なる少なくとも2種類(本例では、5種類)を含んでいる。これにより、図1に示されるように、トレッド部2には、タイヤ周方向の長さ(すなわち、タイヤ周方向で隣接するパーティングライン16、16間の距離)D2が異なる少なくとも2種類(本例では、5種類)のパーティング領域17が含まれる。
各パーティング領域17(本例では、17a、17b、17c、17d、17e)の長さD2及び配列は、図3に示した各トレッドセグメント12(本例では、12a、12b、12c、12d、12e)の長さD4及び配列と対応している。このため、図1に示されるように、本実施形態のパーティング領域の列18には、5種類(本例では、17a、17b、17c、17d、17e)のパーティング領域17が含まれる。
ところで、図3に示したトレッドモールド11は、複数のトレッドセグメント12で形成されているため、トレッドセグメント12の割り位置13において、僅かではあるものの、トレッドモールド11の真円度が低下する場合がある。この真円度の低下は、図1に示したトレッド部2に影響を及ぼす。このため、トレッド部2の真円度は、パーティングライン16において、走行性能に影響の無い範囲で低下する場合がある。このような真円度の低下は、トレッドパターン3の模様列5と同様に、走行時に生じる振動の一因となる場合がある。このため、走行時の振動をより一層低減するためには、トレッドパターン3のみならず、トレッドモールド11の割り位置13の影響も考慮する必要がある。
図4は、第1パルス列21の一例を示す線図である。図4において、縦軸は、第1パルス列21の単位パルス24の大きさB1を示している。一方、横軸は、各単位パルス24が発生する間隔を示している。
本実施形態のタイヤ1において、図1に示した模様列5から、第1パルス列21(図4に示す)が得られる。なお、トレッド部2に複数の模様列5が形成されている場合には、任意の模様列5から第1パルス列21が取得されうる。この場合、走行時の振動やピッチノイズへの影響が大きい模様列5(例えば、タイヤ赤道C側に配された模様列5)から第1パルス列21が取得されるのが望ましい。
本実施形態では、図1に示した模様列5の各模様構成単位4(本例では、4SS、4S、4M、4L、4LL)が、それらのタイヤ周方向の長さD1に応じた大きさB1を有する単位パルス24とされている。このため、図1に示した模様列5のように、タイヤ周方向の長さD1が異なる少なくとも2種類の模様構成単位4を含む場合、第1パルス列21には、大きさB1が異なる少なくとも2種類の単位パルス24が含まれる。そして、これらの単位パルス24が、模様構成単位4の配列の順に、間隔G1を空けて並べられることにより、第1パルス列21が取得されうる。本実施形態において、単位パルス24の配列は、図1に示した模様列5から1つの模様構成単位4(図4では、模様構成単位4SS)を選択し、その選択された模様構成単位4を起点として、模様構成単位4の配列の順に並べられる。
本実施形態の各単位パルス24の間隔G1は、各模様構成単位4のタイヤ周方向の長さD1(図1に示す)に応じて設定されている。このため、本実施形態の模様列5のように、タイヤ周方向の長さD1が異なる少なくとも2種類の模様構成単位4を含む場合、各単位パルス24の配列は、等間隔ではない。
各単位パルス24の大きさB1及び間隔G1は、各模様構成単位4のタイヤ周方向の長さD1(図1に示す)に応じて設定されれば、特に限定されない。本実施形態において、各単位パルス24の大きさB1及び間隔G1は、その単位パルス24に対応する模様構成単位4の長さD1(図1に示す)について、全ての模様構成単位4の長さD1の中央値(本例では、模様構成単位4Mの長さD1)に対する比で定義されている。なお、模様構成単位4の種類が偶数である場合、各単位パルス24の大きさB1及び間隔G1は、全ての模様構成単位4の長さD1の平均値に対する比として定義されてもよい。
図5は、第2パルス列22の一例を示す線図である。図5において、縦軸は、第2パルス列22の単位パルス25の大きさB2を示している。一方、横軸は、各単位パルス25が発生する間隔を示している。
本実施形態のタイヤ1において、図1に示したパーティング領域の列18から、第2パルス列22が得られる。本実施形態では、各パーティング領域17(本例では、17a、17b、17c、17d、17e)が、それらのタイヤ周方向の長さD2(図2に示す)に応じた大きさB2を有する単位パルス25とされている。そして、これらの単位パルス25が、パーティング領域17の配列の順に、間隔G2を空けて並べられることにより、第2パルス列22が取得されうる。
本実施形態において、単位パルス25は、図1に示したパーティング領域の列18から1つのパーティング領域17(図5では、パーティング領域17e)を選択し、そのパーティング領域17を起点として、パーティング領域17の配列の順に並べられる。
本実施形態の各単位パルス25の間隔G2は、各パーティング領域17のタイヤ周方向の長さD2(図1に示す)に応じて設定されている。このため、本実施形態のパーティング領域の列18のように、タイヤ周方向の長さD2が異なる少なくとも2種類のパーティング領域17を含む場合、各単位パルス25の配列は、等間隔ではない。
各単位パルス25の大きさB2及び間隔G2は、各パーティング領域17のタイヤ周方向の長さD2(図1に示す)に応じて設定されれば、特に限定されない。本実施形態において、各単位パルス25の大きさB2及び間隔G2は、その単位パルス25に対応するパーティング領域17の長さD2について、全てのパーティング領域17の長さD2の中央値(本例では、パーティング領域17cの長さD2)に対する比で定義されている。なお、パーティング領域17の種類が偶数である場合、各単位パルス25の大きさB2及び間隔G2は、全てのパーティング領域17の長さD2の平均値に対する比で定義されてもよい。
図6は、第3パルス列23の一例を示す線図である。本実施形態では、図4に示した第1パルス列21の単位パルス24と、図5に示した第2パルス列22の単位パルス25とが重ね合わされることによって、第3パルス列23が得られる。
第3パルス列23の単位パルス24、25の配列は、適宜設定されうる。本実施形態の単位パルス24、25の配列は、第1パルス列21の単位パルス24に対応する模様構成単位4(図1に示す)と、第2パルス列22の単位パルス25に対応するパーティング領域17(図1に示す)とのタイヤ周方向の相対位置を一致させている。なお、第1パルス列21の単位パルス24の位置と、第2パルス列22の単位パルス25の位置とが重なる場合には、それらの単位パルス24、25が、1つ単位パルスとして定義(併合)されてもよい。
第1パルス列21の単位パルス24の大きさB1及び間隔G1(図4に示す)の計算に用いられた中央値と、第2パルス列22の単位パルス25の大きさB2及び間隔G2(図5に示す)の計算に用いられた中央値とが異なる場合、単位パルス24、25の相対位置が一致しない場合がある。この場合、第1パルス列21及び第2パルス列22のいずれか一方のパルス列の中央値を、他方のパルス列の中央値に一致させて、一方のパルス列の単位パルスの間隔が補正されるのが望ましい。
上記のように取得された第3パルス列23は、図1に示したトレッド部2の模様構成単位4及びパーティング領域17の配列の順に、単位パルス24、25がそれぞれ並べられる。さらに、各単位パルス24、25の間隔G3は、タイヤ周方向で隣接する模様構成単位4、又は、パーティングライン16の間のタイヤ周方向の距離(長さ)D3(図1に示す)に応じて設定されている。したがって、第3パルス列23は、図1に示したトレッドパターン3の模様列5と、図3に示したトレッドモールド11の割り位置13(図1のパーティングライン16)とを相互に関連付けたものとして設定される。
本実施形態のタイヤ1は、図6に示した第3パルス列23を下記式(1)でフーリエ変換して得られる1~k次の振幅Fk(パワースペクトル密度)のうち、1次数の振幅F1(図7に示す)が、1.2以下に限定される。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
上記の式(1)において、総数Nは、第3パルス列23の単位パルス24、25の総数である。したがって、総数Nは、タイヤ1周での模様構成単位4及びパーティング領域17の総数(単位パルス24、25が併合される場合を除く)と同一となる。
第3パルス列の全長L(図示省略)は、図6に示した第3パルス列23の各単位パルス24、25の間隔G3を総和することで求められる。間隔G3は、単位パルスに対応する模様構成単位4又はパーティング領域17について、タイヤ周方向で隣接する模様構成単位4又はパーティング領域17との長さD3と、第1パルス列21及び第2パルス列22の一方の中央値との比として求められる。したがって、全長Lは、図1に示したタイヤ1周に亘って配置されている全ての模様構成単位4及びパーティング領域17について、長さD3の比(間隔G3)を総和したものと同一となり、タイヤ1周分の波長の長さを表したものとして扱われる。
上記の式(1)のパルス位置X(j)(jは、1~Nまでの自然数)は、以下のように、第3パルス列23の起点Sからj番目の単位パルス24又は25の位置を示すものである。このパルス位置X(j)は、起点Sからj番目の単位パルス24又は25までに存在する単位パルスについて、それらの単位パルス24又は25との間隔G3(長さD3(図1に示す)の比PL(j))を総和することで求められる。
X(1)=PL(1)
X(2)=PL(1)+PL(2)
・
・
・
X(j)=PL(1)+PL(2)+ … +PL(j)
X(1)=PL(1)
X(2)=PL(1)+PL(2)
・
・
・
X(j)=PL(1)+PL(2)+ … +PL(j)
上記式(1)は、第3パルス列23の単位パルス24、25の大きさP(j)(即ち、第1パルス列21の単位パルス24の大きさB1、及び、第2パルス列22の単位パルス25の大きさB2)が考慮されている。大きさP(j)は、起点Sからj番目に配列されている模様構成単位4又はパーティング領域17について、その隣接する模様構成単位4又はパーティング領域17との長さD3と、第1パルス列21又は第2パルス列22の中央値との比として求められる。
図7は、振幅Fkと次数kとの関係の一例を示すグラフである。振幅Fkは、低次成分(本実施形態では、周波数が小さいノイズエネルギー)の予測に使用される。振幅Fkは、タイヤ走行時において、ピッチノイズを周波数分析したときのノイズエネルギーの大きさに相関がある。次数kは、ノイズエネルギーの周波数に相関があり、上記式(1)に示されるように、1次からN次(即ち、第3パルス列の単位パルス24、25の総数(模様構成単位及びパーティング領域の総数)N)までの範囲に設定されている。
1次数の振幅F1は、例えば、タイヤ1(図1に示す)が乗用車用である場合、車両速度が15~35km/hのノイズエネルギーに相当し、2~5Hz付近のうなり音を発生させやすい。一般に、2~5Hz付近のうなり音は、車内に振動を生じさせ、人間にとって不快に感じられる。
本実施形態のタイヤ1において、1次数の振幅F1が1.2以下に限定されている。これは、種々の実験結果によって、発明者らが知見したものである。
発明者らによる実験では、先ず、模様構成単位4(図1に示す)や、トレッドセグメント12(図3に示す)の設計因子を違えた複数のタイヤ1が試作され、図6のような第3パルス列23が作成された。次に、第3パルス列23を上記式(1)でフーリエ変換して得られる1~k次の振幅(パワースペクトル密度)Fkのうち、1次数の振幅F1が求められた。そして、試作されたタイヤ1が実車に装着され、走行時に車内で生じる振動について、ドライバーによる官能テストが行われた。このような実験により、発明者らは、1次数の振幅F1が1.2以下に限定されることにより、車内で生じる振動がより一層低減することを知見した。
本実施形態のタイヤ1は、上記式(1)で得られる1~k次の振幅Fkのうち、1次数の振幅F1が一定の範囲に制限される。これにより、タイヤ1は、トレッドパターン3の模様列5(図5に示す)に起因する振動と、トレッドセグメント12の割り位置13(図3に示す)に起因する振動との相互干渉が考慮された第3パルス列23が規制されうる。したがって、本実施形態のタイヤ1は、走行時に生じる振動がより一層低減することが可能となる。
本実施形態では、模様構成単位4(図1に示す)及びトレッドセグメント12(図3に示す)の種類数に応じて、1次数の振幅F1の閾値を変化させる必要はない。これは、振幅Fkが、種類数による振幅変化が小さいためである。したがって、本実施形態のタイヤ1は、走行時に生じる振動を確実に低減できる。
走行時に生じる振動をより効果的に低減するために、1次数の振幅F1は、好ましくは1.0以下であるのが望ましく、さらに好ましくは0.9以下であるのが望ましい。これにより、本実施形態のタイヤ1は、走行時の振動をより効果的に低減することが可能となる。
また、発明者らは、1次数の振幅F1だけでなく、2次数の振幅F2及び3次数の振幅F3(図7に示す)についても、走行時に生じる振動への影響が大きいことを知見した。したがって、1~k次数の振幅Fkのうち、2次数の振幅F2及び3次数の振幅F3も、1.2以下であるのが望ましい。これにより、タイヤ1は、走行時に生じる振動を、効果的に低減することが可能となる。このような作用を効果的に発揮させるために、2次数の振幅F2及び3次数の振幅F3は、好ましくは1.0以下であるのが望ましく、さらに好ましくは0.9以下であるのが望ましい。
さらに、発明者らは、4次数の振幅F4ないし10次数の振幅F10(図7に示す)についても、走行時に生じる振動への影響が大きいことを知見した。したがって、1~k次数の振幅Fkのうち、4次数の振幅F4ないし10次数の振幅F10も、1.2以下であるのが望ましい。これにより、タイヤ1は、走行時に生じる振動を、より効果的に低減することが可能となる。このような作用を効果的に発揮させるために、4次数の振幅F4ないし10次数の振幅F10は、好ましくは1.0以下であるのが望ましく、さらに好ましくは0.9以下であるのが望ましい。
また、1~k次の振幅Fkのうち、振幅Fkの最大値Fmax(図7に示す)は、一定の範囲に限定されるのが望ましい。これにより、振幅Fkのピークを次数kの広い範囲に均すことができ、ピッチノイズを低減(ホワイトノイズ化)することが可能となる。このような作用を効果的に作用させるために、振幅Fkの最大値Fmaxは、下記式(2)を満たすのが望ましい。
図1に示されるように、本実施形態の模様列5は、タイヤ周方向の長さD1が異なる少なくとも2種類の模様構成単位4を含んでいる。これにより、トレッド部2には、模様構成単位4によるピッチバリエーションが形成されるため、模様列5に起因する振動やピッチノイズを効果的に低減させることが可能となる。
図4に示した第1パルス列21で隣接する一対の単位パルス24、24について、それらの間隔(本例では、全ての模様構成単位4の長さD1の中央値に対する比)G1の差(例えば、図4に示したG1b-G1a)の絶対値は、適宜設定されうる。本実施形態の絶対値は、0.05~0.35に設定されている。
一対の単位パルス24、24の間隔G1の差の絶対値が0.05以上に設定されることにより、単位パルス24に対応する模様構成単位4(図1に示す)のピッチバリエーションについて、ノイズ低減効果を効果的に発揮することが可能となる。このような観点より、間隔G1の差は、好ましくは0.10以上であり、より好ましくは0.15以上である。
一方、一対の単位パルス24、24の間隔G1の差の絶対値が0.35以下に設定されることにより、タイヤ周方向で隣り合う模様構成単位4、4間の剛性差が大きくなるのを防ぐことができる。これにより、相対的に剛性が小さい模様構成単位4で大きく摩耗するようなトレッド部2の偏摩耗を防ぐことが可能となる。このような観点より、間隔G1の差は、好ましくは0.30以下であり、より好ましくは0.25以下である。
図4に示した第1パルス列21の各単位パルス24の大きさB1及び間隔G1(本例では、全ての模様構成単位4の長さD1の中央値に対する比)は、0.8~1.2に設定されるのが望ましい。これにより、この実施形態のタイヤ1は、ピッチバリエーションによるノイズ低減効果を発揮しつつ、トレッド部2の偏摩耗を防ぐことが可能となる。このような観点より、大きさB1及び間隔G1は、好ましくは0.85以上であり、より好ましくは0.9以上である。また、大きさB1及び間隔G1は、好ましくは1.15以下であり、より好ましくは1.1以下である。
図1に示したタイヤ周方向の長さD1が異なる模様構成単位4を、長さD1の大きさの順(本例では、4SS、4S、4M、4L、4LLの順)に並べたとき、隣り合う模様構成単位4、4間の長さD1の増加の割合は、適宜設定されうる。本実施形態において、長さD1の増加の割合は、0.08~0.25に設定されるのが望ましい。
隣り合う模様構成単位4、4間の長さD1の増加の割合が0.08以上に設定されることにより、ピッチバリエーションによるノイズ低減効果を発揮することが可能となる。このような観点より、増加の割合は、好ましくは0.11以上であり、より好ましくは0.14以上である。
一方、隣り合う模様構成単位4、4間の長さD1の増加の割合が0.25以下に設定されることにより、トレッド部2の偏摩耗を防ぐことが可能となる。このような観点より、増加の割合は、好ましくは0.22以下であり、より好ましくは0.18以下である。
模様列5は、タイヤ周方向の長さD1が小さい模様構成単位4(以下、「小さい模様構成単位」ということがある。)を、タイヤ周方向の長さD1が大きい模様構成単位4(以下、「大きい模様構成単位」ということがある。)よりも多く含むのが望ましい。小さい模様構成単位4及び大きい模様構成単位4については、適宜区別することができる。
本実施形態において、「小さい模様構成単位」とは、模様構成単位4の種類数が奇数の場合、それらの長さD1の中央値をとる模様構成単位4(4M)よりも小さい長さD1を有する模様構成単位4(4SS、4S)として区別される。一方、「大きい模様構成単位」とは、長さD1の中央値をとる模様構成単位4(4M)よりも大きい長さD1を有する模様構成単位4(4SS、4S)として区別される。
また、模様構成単位4の種類数が偶数の場合、「小さい模様構成単位」とは、全ての模様構成単位4の長さD1の平均値よりも長さD1の小さい模様構成単位4として区分される。一方、「大きい模様構成単位」とは、全ての模様構成単位4の長さD1の平均値以上の長さD1を有する模様構成単位4として区分される。
本実施形態では、タイヤ周方向に長さD1が大きい模様構成単位4(本例では、4L、4LL)の個数を少なくできるため、タイヤ周方向において、大きい模様構成単位4が占める割合を小さくすることができる。これにより、本実施形態では、タイヤ周方向において、小さい模様構成単位4(本例では、4SS、4S)が占める割合を大きくできるため、小さい模様構成単位4の長さD1を大きくすることができる。したがって、本実施形態のタイヤ1は、小さい模様構成単位4の剛性を高くすることができるため、耐偏摩耗性能を向上させることができる。
小さい模様構成単位4(本例では、4SS、4S)が複数存在する場合には、それらの模様構成単位4のうち、長さD1が小さい模様構成単位(本例では、4SS)を、長さD1が大きい模様構成単位(本例では、4S)よりも多く含むのが望ましい。また、大きい模様構成単位(本例では、4L、4LL)が複数存在する場合には、それらの大きい模様構成単位のうち、長さD1が小さい模様構成単位(本例では、4L)を、長さD1が大きい模様構成単位(本例では、4LL)よりも多く含むのが望ましい。これにより、タイヤ1は、耐偏摩耗性能をさらに向上させることができる。
本実施形態のパーティング領域17は、タイヤ周方向の長さD2が異なる少なくとも2種類を含んでいる。これにより、トレッド部2には、パーティング領域17(パーティングライン16のタイヤ周方向の位置)にバリエーションが形成されるため、トレッドセグメント12の割り位置13(パーティングライン16)に起因する振動やピッチノイズを低減させうる。
図5に示されるように、第2パルス列22の単位パルス25の大きさB2及び間隔G2(本例では、図1に示した全てのパーティング領域17の長さD2の中央値に対する比)は、0.5~1.5であるのが望ましい。
第2パルス列22の単位パルス25の大きさB2及び間隔G2が1.5以下に設定されることにより、図1に示したパーティング領域17(トレッドセグメント12のタイヤ周方向の長さD4)が、必要以上に大きくなるのを防ぐことができる。なお、トレッドセグメント12の長さD4が大きくなると、図3に示したトレッドセグメント12の個数が少なくなり、真円度が低下して、振動やピッチノイズの抑制効果が小さくなる傾向がある。このような観点より、間隔G2は、好ましくは1.35以下であり、より好ましくは1.2以下である。
一方、第2パルス列22の単位パルス25の大きさB2及び間隔G2が0.5以上に設定されることにより、図1に示したパーティング領域17(図3に示したトレッドセグメント12の長さD4)が必要以上に小さくなるのを防ぐことができる。これにより、図3に示したトレッドセグメント12の個数が多くなるのを抑制することができるため、トレッドモールド11の製造コストの増大が抑制されうる。このような観点より、大きさB2及び間隔G2は、好ましくは0.65以上であり、より好ましくは0.8以上である。
図6に示した第3パルス列23の単位パルス24、25の総数(タイヤ1周での模様構成単位4及びパーティング領域17の総数)Nは、下記式(3)を満たすのが望ましい。
第3パルス列23の単位パルス24、25の総数Nが30以上に設定されることにより、タイヤ1周での模様構成単位4及びパーティング領域17のピッチバリエーションによるノイズ低減効果を効果的に発揮することが可能となる。このような観点より、総数Nは、好ましくは35以上であり、より好ましくは40以上である。
一方、第3パルス列23の単位パルス24、25の総数Nが90以下に設定されることにより、模様構成単位4及びパーティング領域17の個数が必要以上に多くなるのを防ぐことができる。これにより、トレッド部2の偏摩耗や、トレッドセグメント12の製造コストの増大を防ぐことが可能となる。このような観点より、総数Nは、好ましくは85以下であり、より好ましくは80以下である。
次に、図1に示したトレッドパターン3に含まれる模様列5を構成する模様構成単位4のタイヤ周方向の配列を決定する方法(以下、単に「配列決定方法」ということがある。)が説明される。上述したように、トレッドパターン3は、図3に示したタイヤ周方向の割り位置13が予め定められた複数のトレッドセグメント12で成形される。
この配列決定方法では、図3に示したトレッドセグメント12の予め定められた割り位置13(図1のパーティングライン16)に対して、模様構成単位4のタイヤ周方向の配列が決定される。この実施形態の配列決定方法では、例えば、公知のコンピュータ(図示省略)が用いられる。
図8は、タイヤの模様構成単位の配列決定方法の処理手順の一例を示すフローチャートである。この実施形態において、これまでの実施形態と同一の構成については、同一の符号を付し、説明を省略することがある。
この実施形態の配列決定方法では、先ず、図3に示したトレッドセグメント12のタイヤ周方向の割り位置13が決定される(工程S1)。割り位置13は、適宜決定されうる。一般に、トレッドモールド11には、コンテナ14(図2に示す)への固定位置や、トレッドセグメント12の構造(図示しない溝形成部やブレード)等の種々の制約によって、タイヤ周方向に分割できない領域(以下、単に「分割不可領域」ということがある。)が存在する。この実施形態の工程S1では、トレッドモールド11の分割不可領域(図示省略)を除いた領域において、トレッドセグメント12の割り位置13が決定される。なお、割り位置13は、例えば、トレッドモールド11の設計データ(例えば、CADデータ)に基づいて決定される。
次に、この実施形態の配列決定方法では、図1に示したタイヤ1のトレッドパターン3に含まれる模様列5について、模様列5を構成する模様構成単位4のタイヤ周方向の配列が仮決定される(工程S2)。この実施形態の工程S2では、工程S1で決定された割り位置13から特定される複数のトレッドセグメント12(図3に示す)に対して、模様構成単位4の配列(模様列5)が仮決定される。このような模様列5の仮決定は、トレッドモールド11の設計データ(例えば、CADデータ)に基づいて行われうる。
次に、この実施形態の配列決定方法では、仮決定された模様列5(一例として、図1に示す)から第1パルス列21(一例として、図4に示す)が取得される(工程S3)。図4に示されるように、この実施形態では、工程S2で仮決定された模様列5の各模様構成単位4(図1に示す)が、それらのタイヤ周方向の長さD1に応じた大きさB1を有する単位パルス24とされている。そして、これらの単位パルス24が、模様構成単位4の配列の順に、間隔G1を空けて並べられることにより、第1パルス列21が取得されうる。各単位パルス24の大きさB1及び間隔G1は、これまでの実施形態と同様に、各模様構成単位4のタイヤ周方向の長さD1(図1に示す)に応じて設定されている。
次に、この実施形態の配列決定方法では、トレッドセグメントの列30(図3に示す)から第2パルス列22(一例として、図5に示す)が取得される(工程S4)。図5に示されるように、この実施形態では、工程S1において割り位置13が決定された各トレッドセグメント12(図3に示す)が、それらのタイヤ周方向の長さD4に応じた大きさB2を有する単位パルス25とされている。そして、これらの単位パルス25が、トレッドセグメント12の配列の順に、間隔G2を空けて並べられることにより、第2パルス列22が取得されうる。なお、図3に示した各トレッドセグメント12(12a、12b、12c、12d、12e)の長さD4及び配列は、図1に示した各パーティング領域17(17a、17b、17c、17d、17e)のタイヤ周方向の長さD2及び配列と対応している。
図5に示されるように、各単位パルス25の大きさB2及び間隔G2は、図3に示した各トレッドセグメント12のタイヤ周方向の長さD4に応じて設定されている。この実施形態において、各単位パルス25の大きさB2及び間隔G2は、その単位パルス25に対応するトレッドセグメント12の長さD4について、全てのトレッドセグメント12の長さD4の中央値(トレッドセグメント12cの長さD4)に対する比で定義されている。なお、トレッドセグメント12の種類が偶数である場合、各単位パルス25の大きさB2及び間隔G2は、全てのトレッドセグメント12の長さD4の平均値に対する比で定義されてもよい。
次に、この実施形態の配列決定方法では、第1パルス列21の単位パルス24(図4に示す)と、第2パルス列22の単位パルス25(図5に示す)とが重ね合わされることによって、第3パルス列23(図6に示す)が取得される(工程S5)。第3パルス列23は、上述の実施形態と同様に、第1パルス列21の単位パルス24に対応する模様構成単位4(図1に示す)と、第2パルス列22の単位パルス25に対応するトレッドセグメント12(図3に示す)とのタイヤ周方向の相対位置を一致させている。したがって、第3パルス列23は、工程S1で決定されたトレッドモールド11の割り位置13と、工程S2で仮決定されたトレッドパターン3の模様列5とを相互に関連付けたものとして設定される。
次に、この実施形態の配列決定方法では、第3パルス列23(一例として、図6に示す)を下記式(4)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が、1.2以下か否かが判断される(工程S6)。下記式(4)は、上記式(1)のパーティング領域17を、トレッドセグメント12に対応させている点を除いて、上記式(1)と同一である。下記式(4)の定数及び変数は、上記式(1)の定数及び変数と同一である。
ここで、
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
工程S6において、1次数の振幅F1が1.2以下であると判断された場合(工程S6で、「Y」)、第3パルス列23が一定の範囲に規制されている。この第3パルス列23は、工程S1で決定された割り位置13(図3に示す)に起因する振動と、工程S2で仮決定された模様列5(図5に示す)に起因する振動との相互干渉が考慮されたものである。したがって、工程S2で仮決定された模様構成単位4の配列が、模様列5の模様構成単位4の配列として決定(採用)される(工程S7)。
一方、工程S6において、1次数の振幅F1が1.2よりも大であると判断された場合(工程S6で、「N」)、第3パルス列23(一例として、図6に示す)が一定の範囲に規制されていない。このため、仮決定された模様構成単位4の配列に、改善の余地があると判断される。この場合、模様構成単位4の配列を仮決定する工程S2が再度実施され、工程S3~工程S6が再度実施される。なお、配列を仮決定する工程S2では、以前に仮決定された配列と重複しないように、新たな配列が決定されるのが望ましい。
このように、この実施形態の配列決定方法では、1~k次数の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、模様構成単位4の配列(図1に示す)が決定されるため、振動を低減しうる模様構成単位4の配列を確実に決定することができる。
振動をより一層低減しうる模様構成単位4の配列を決定するために、工程S6では、1次数の振幅F1が、好ましくは1.0以下であるか否かが判断されるのが望ましく、さらに好ましくは、0.9以下であるか否かが判断されるのが望ましい。さらに、工程S6では、2次数の振幅F2及び3次数の振幅F3、及び、4次数の振幅F4ないし10次数の振幅F10が、好ましくは1.2以下、より好ましくは1.0以下、さらに好ましくは0.9以下であるか否かが判断されるのが望ましい。
さらに、工程S6では、1~k次の振幅Fkのうち、振幅Fkの最大値Fmaxが上記式(2)を満たすか否かが判断されてもよい。これにより、配列決定方法では、ピッチノイズを低減(ホワイトノイズ化)可能な模様構成単位4の配列を決定することが可能となる。
決定される模様構成単位4の配列は、これまでの実施形態と同様に、タイヤ周方向の長さD1が異なる少なくとも2種類の模様構成単位4を含んでいるのが望ましい。さらに、図4に例示される第1パルス列21で隣接する一対の単位パルス24、24について、それらの大きさB1及び間隔G1(本例では、全ての模様構成単位4の長さD1の中央値に対する比)の差の絶対値は、0.05~0.35に設定されるのが望ましい。
図1に示したタイヤ周方向の長さD1が異なる模様構成単位4を、長さD1の大きさの順(本例では、4SS、4S、4M、4L、4LLの順)に並べたとき、隣り合う模様構成単位4、4間の長さD1の増加の割合は、0.08~0.25が望ましい。
決定される模様構成単位4の配列は、これまでの実施形態と同様に、タイヤ周方向の長さD1が小さい模様構成単位4を、タイヤ周方向の長さD1が大きい模様構成単位4よりも多く含むのが望ましい。これにより、小さい模様構成単位4の剛性を高くすることができるため、耐摩耗性能を向上させることができる模様構成単位4の配列を決定することができる。
トレッドモールド11の割り位置13を決定する工程S1では、図3に示されるように、タイヤ周方向の長さD4が異なる少なくとも2種類のトレッドセグメント12に分割されるように、割り位置13が決定されるのが望ましい。これにより、図1に示したトレッド部2には、パーティング領域17(パーティングライン16のタイヤ周方向の位置)にバリエーションが形成され、トレッドセグメント12の割り位置13(パーティングライン16)に起因する振動やピッチノイズを低減しうる。
図9に示した第2パルス列22の単位パルス25の大きさB2及び間隔G2は、これまでの実施形態の大きさB2及び間隔G2と同様の範囲に設定されるのが望ましい。また、第3パルス列23の単位パルス24、25の総数(タイヤ1周での模様構成単位4及びパーティング領域17の総数)Nは、これまでの実施形態と同様に、上記式(5)を満たすのが望ましい。
次に、図3に示したトレッドセグメント12のタイヤ周方向の割り位置13を決定するための方法(以下、単に「割り位置決定方法」ということがある。)が説明される。この割り位置決定方法では、図1に示した模様構成単位4のタイヤ周方向の配列が予め定められた模様列5に対して、図3に示したトレッドセグメント12の割り位置13が決定される。この実施形態の割り位置決定方法では、例えば、公知のコンピュータ(図示省略)が用いられる。
図9は、トレッドセグメントの割り位置決定方法の処理手順の一例を示すフローチャートである。この実施形態において、これまでの実施形態と同一の構成については、同一の符号を付し、説明を省略することがある。
この実施形態の割り位置決定方法では、先ず、図1に示したタイヤ1のトレッドパターン3に含まれる模様列5について、模様列5を構成する模様構成単位4のタイヤ周方向の配列が決定される(工程S11)。模様構成単位4の配列は、例えば、タイヤ1のカテゴリや、予め定められたトレッドパターン3に基づいて決定されうる。模様列5は、トレッドモールド11の設計データ(例えば、CADデータ)に基づいて決定される。
次に、この実施形態の割り位置決定方法では、図3に示したトレッドセグメント12のタイヤ周方向の割り位置13が仮決定される(工程S12)。この実施形態の工程S12では、工程S11で決定された模様構成単位4の配列から特定される模様列5(図1に示す)に対して、トレッドセグメント12の割り位置13(トレッドセグメント12の配列)が仮決定される。工程S12では、トレッドモールド11の分割不可領域(図示省略)を除いた領域において、割り位置13がそれぞれ決定される。このような割り位置13の仮決定は、例えば、トレッドモールド11の設計データ(例えば、CADデータ)に基づいて行われる。
次に、この実施形態の割り位置決定方法では、模様列5(図1に示す)から第1パルス列21(図4に示す)が取得される(工程S13)。図4に示されるように、この実施形態では、工程S11で決定された模様列5の各模様構成単位4(図1に示す)が、それらのタイヤ周方向の長さD1に応じた大きさB1を有する単位パルス24とされている。そして、これらの単位パルス24が、模様構成単位4の配列の順に、間隔G1を空けて並べられることにより、第1パルス列21が取得されうる。第1パルス列21は、上述の配列決定方法と同一の手順に基づいて取得されうる。
次に、この実施形態の割り位置決定方法では、トレッドセグメントの列30(図3に示す)から第2パルス列22(図5に示す)が取得される(工程S14)。図5に示されるように、この実施形態では、工程S12で仮決定された各トレッドセグメント12(図3に示す)が、それらのタイヤ周方向の長さD4に応じた大きさB2を有する単位パルス25とされている。そして、これらの単位パルス25が、トレッドセグメント12の配列の順に、間隔G2を空けて並べられることにより、第2パルス列22が取得されうる。第2パルス列22は、上述の配列決定方法と同一の手順に基づいて取得されうる。
次に、この実施形態の割り位置決定方法では、第1パルス列21の単位パルス24(図4に示す)と、第2パルス列22の単位パルス25(図5に示す)とが重ね合わされることによって、図6に示した第3パルス列23が取得される(工程S15)。第3パルス列23は、上述の配列決定方法と同一の手順に基づいて取得されうる。
次に、この実施形態の割り位置決定方法では、図6に示した第3パルス列23を下記式(5)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下か否かが判断される(工程S16)。下記式(5)は、上記式(4)と同一である。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
工程S16において、1次数の振幅F1が1.2以下であると判断された場合(工程S16で、「Y」)、第3パルス列23が一定の範囲に規制されている。第3パルス列23は、工程S11で決定されたトレッドパターン3の模様列5(図5に示す)に起因する振動と、工程S12で仮決定されたトレッドセグメント12の割り位置13(図3に示す)に起因する振動との相互干渉が考慮されたものである。したがって、工程S12で仮決定された割り位置13が、トレッドセグメント12の割り位置13として決定(採用)される(工程S17)。
一方、工程S16において、1次数の振幅F1が1.2よりも大であると判断された場合(工程S16で、「N」)、第3パルス列23(一例として、図6に示す)が一定の範囲に規制されていない。このため、仮決定されたトレッドセグメント12の割り位置13(図3に示す)に、改善の余地があると判断される。この場合、割り位置13を仮決定する工程S12が再度実施され、工程S13~工程S16が再度実施される。なお、割り位置13を仮決定する工程S12では、以前に仮決定された割り位置(トレッドセグメント12の列)と重複しないように、新たな割り位置13が決定されるのが望ましい。
このように、この実施形態の割り位置決定方法では、1~k次数の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、トレッドセグメント12の割り位置13(図3に示す)が決定される。このため、この実施形態の割り位置決定方法では、振動を低減しうるトレッドセグメント12の割り位置13を確実に決定することができる。
振動をより一層低減しうる割り位置13を決定するために、工程S16では、1次数の振幅F1が、好ましくは1.0以下であるか否かが判断されるのが望ましく、さらに好ましくは0.9以下であるか否かが判断されるのが望ましい。さらに、工程S16では、2次数の振幅F2及び3次数の振幅F3、及び、4次数の振幅F4ないし10次数の振幅F10が、好ましくは1.2以下、より好ましくは1.0以下、さらに好ましくは0.9以下であるか否かが判断されるのが望ましい。
さらに、工程S16では、1~k次の振幅Fkのうち、振幅Fkの最大値Fmaxが上記式(2)を満たすか否かが判断されてもよい。これにより、割り位置決定方法では、ピッチノイズを低減(ホワイトノイズ化)可能な割り位置13を決定することが可能となる。
図1に示した模様構成単位4、図3に示したトレッドセグメント12(割り位置13)、及び、図4~図6に示した単位パルス24、25に関するその他の数値範囲は、上述の配列決定方法と同一の範囲に設定されるのが望ましい。
次に、図1に示したタイヤ1を設計するための方法(以下、単に「設計方法」ということがある。)が説明される。この設計方法では、図1に示した模様構成単位4の配列、及び、図3に示したトレッドセグメント12の割り位置13が決定される。この実施形態の設計方法では、例えば、公知のコンピュータ(図示省略)が用いられる。
図10は、タイヤの設計方法の処理手順の一例を示すフローチャートである。この実施形態において、これまでの実施形態と同一の構成については、同一の符号を付し、説明を省略することがある。
この実施形態の設計方法では、先ず、図1に示したタイヤ1のトレッドパターン3に含まれる模様列5について、模様列5を構成する模様構成単位4のタイヤ周方向の配列(模様列5)が仮決定される(工程S21)。工程S21は、例えば、図8に示した配列決定方法の仮決定する工程S2と同様の手順に基づいて実施されうる。
次に、この実施形態の設計方法では、図3に示したトレッドセグメント12のタイヤ周方向の割り位置13が仮決定される(工程S22)。工程S22は、例えば、図9に示した割り位置決定方法の仮決定する工程S12と同様の手順に基づいて実施されうる。
次に、この実施形態の設計方法では、模様列5(図1に示す)から第1パルス列21(図4に示す)が取得される(工程S23)。図4に示されるように、この実施形態では、工程S21で仮決定された模様列5の各模様構成単位4(図1に示す)が、それらのタイヤ周方向の長さD1に応じた大きさB1を有する単位パルス24とされている。そして、これらの単位パルス24が、模様構成単位4の配列の順に、間隔G1を空けて並べられることにより、第1パルス列21が取得されうる。第1パルス列21は、上述の配列決定方法と同一の手順に基づいて取得されうる。
次に、この実施形態の設計方法では、トレッドセグメントの列30(図3に示す)から第2パルス列22(図5に示す)が取得される(工程S24)。図5に示されるように、この実施形態では、工程S22で仮決定された各トレッドセグメント12(図3に示す)が、それらのタイヤ周方向の長さD4に応じた大きさB2を有する単位パルス25とされている。そして、これらの単位パルス25が、トレッドセグメント12の配列の順に、間隔G2を空けて並べられることにより、第2パルス列22が取得されうる。第2パルス列22は、上述の配列決定方法と同一の手順に基づいて取得されうる。
次に、この実施形態の設計方法では、第1パルス列21の単位パルス24(図4に示す)と、第2パルス列22の単位パルス25(図5に示す)とが重ね合わされることによって、図6に示す第3パルス列23が取得される(工程S25)。第3パルス列23は、上述の配列決定方法と同一の手順に基づいて取得されうる。
次に、この実施形態の設計方法では、図6に示した第3パルス列23を下記式(6)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下か否かが判断される(工程S26)。下記式(6)は、上記式(4)と同一である。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
工程S26において、1次数の振幅F1が1.2以下であると判断された場合(工程S26で、「Y」)、第3パルス列23が一定の範囲に規制される。第3パルス列23は、工程S21で仮決定された模様構成単位4の配列(模様列5)に起因する振動と、工程S22で仮決定されたトレッドセグメント12の割り位置13に起因する振動との相互干渉が考慮されたものである。したがって、工程S21で仮決定された模様構成単位4の配列が、模様列5の模様構成単位4の配列として決定(採用)される(工程S27)。さらに、工程S22で仮決定された割り位置13が、トレッドセグメント12の割り位置13として決定(採用)される(工程S28)。
一方、工程S26において、1次数の振幅F1が1.2よりも大であると判断された場合(工程S26で、「N」)、第3パルス列23(一例として、図6に示す)が一定の範囲に規制されていない。このため、仮決定された模様構成単位4の配列(図1に示す)、及び、仮決定されたトレッドセグメント12の割り位置13(図3に示す)に改善の余地があると判断される。この場合、模様構成単位4の配列を仮決定する工程S21、及び、トレッドセグメント12の割り位置13を仮決定する工程S22が再度実施され、工程S23~工程S26が再度実施される。
なお、再度実施される工程S21及び工程S22では、模様構成単位4の配列と、トレッドセグメント12の割り位置13との組み合わせが、以前に仮決定されたものと重複しないように、模様構成単位4の配列、及び、割り位置13が仮決定されるのが望ましい。
このように、この実施形態の設計方法では、1~k次数の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、図1に示した模様構成単位4の配列と、図3に示したトレッドセグメント12の割り位置13とが決定される。したがって、この実施形態の設計方法では、振動を確実に低減しうる模様構成単位4の配列、及び、トレッドセグメント12の割り位置13を確実に決定することができる。
振動をより一層低減しうる模様構成単位4の配列、及び、割り位置13を決定するために、工程S26では、1次数の振幅F1が、好ましくは1.0以下であるか否かが判断されるのが望ましく、さらに好ましくは0.9以下であるか否かが判断されるのが望ましい。さらに、工程S26では、2次数の振幅F2及び3次数の振幅F3、及び、4次数の振幅F4ないし10次数の振幅F10が、好ましくは1.2以下、より好ましくは1.0以下、さらに好ましくは0.9以下であるか否かが判断されるのが望ましい。
さらに、工程S26では、1~k次の振幅Fkのうち、振幅Fkの最大値Fmaxが上記式(2)を満たすか否かが判断されてもよい。これにより、この実施形態の設計方法では、ピッチノイズを低減(ホワイトノイズ化)可能な模様構成単位4の配列、及び、トレッドセグメント12の割り位置13を決定することが可能となる。
図1に示した模様構成単位4、図3に示したトレッドセグメント12(割り位置13)、及び、図4~図6に示した単位パルス24、25に関する数値範囲は、上述の配列決定方法と同一の範囲に設定されるのが望ましい。
次に、図1に示したタイヤ1を製造するための方法(以下、単に「製造方法」ということがある。)が説明される。この実施形態において、これまでの実施形態と同一の構成については、同一の符号を付し、説明を省略することがある。
この製造方法では、図2及び図3に示されるように、複数のトレッドセグメント12を含むトレッドモールド11を用いて、未加硫の生タイヤ1Lのトレッド部2を加硫成形する加硫工程が含まれる。
図3に示されるように、トレッドモールド11は、これまでの実施形態と同様に、トレッドパターン3(図1に示す)を成形するための複数のトレッドセグメント12を含んでいる。図1に示されるように、トレッドパターン3は、模様構成単位4がタイヤ周方向に配列された模様列5を含んでいる。
この実施形態では、図3に示したトレッドモールド11において、成形面11sに形成される模様列5(図1に示す)から、第1パルス列21(図4に示す)が得られる。この実施形態では、図1に示した模様列5の各模様構成単位4が、それらのタイヤ周方向の長さD1に応じた大きさB1を有する単位パルス24とされている。そして、これらの単位パルス24が、模様構成単位4の配列の順に、間隔G1を空けて並べられることにより、第1パルス列21が取得されうる。第1パルス列21は、上述の配列決定方法と同一の手順に基づいて取得されうる。
この実施形態では、図3に示したトレッドモールド11において、トレッドセグメントの列30から、第2パルス列22(図5に示す)が取得される。この実施形態では、各トレッドセグメント12が、それらのタイヤ周方向の長さD4に応じた大きさB2を有する単位パルス25とされている。そして、これらの単位パルス25が、トレッドセグメント12の配列の順に、間隔G2を空けて並べられることにより、第2パルス列22が取得されうる。第2パルス列22は、上述の配列決定方法と同一の手順に基づいて取得されうる。
この実施形態では、トレッドモールド11において、第1パルス列21の単位パルス24(図4に示す)と、第2パルス列22の単位パルス25(図5に示す)とが重ね合わされることによって、図6に示した第3パルス列23が取得される。第3パルス列23は、上述の配列決定方法と同一の手順に基づいて取得されうる。
この実施形態では、図6に示した第3パルス列23を下記式(7)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下に限定される。下記式(7)は、上記式(4)と同一である。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
この実施形態のトレッドモールド11は、第3パルス列23が規制されている。第3パルス列23は、トレッドモールド11で加硫成形されるタイヤ1(図1に示す)について、模様構成単位4の配列に起因する振動と、トレッドセグメント12の割り位置13に起因する振動との相互干渉が考慮されたものである。したがって、このようなトレッドモールド11で加硫成形されたトレッド部2を有するタイヤ1は、振動を低減することが可能となる。
走行時に生じる振動をより効果的に低減するために、1次数の振幅F1は、好ましくは1.0以下であるのが望ましく、さらに好ましくは0.9以下であるのが望ましい。さらに、2次数の振幅F2及び3次数の振幅F3、及び、4次数の振幅F4ないし10次数の振幅F10は、好ましくは1.2以下であるのが望ましく、より好ましくは1.0以下であるのが望ましく、さらに好ましくは0.9以下であるのが望ましい。
また、1~k次の振幅Fkのうち、振幅Fkの最大値Fmaxが上記式(2)を満たすのが望ましい。これにより、振幅Fkのピークを次数kの広い範囲に均すことができ、ピッチノイズを低減(ホワイトノイズ化)することが可能なタイヤ1を製造することが可能となる。
図1に示した模様構成単位4、図3に示したトレッドセグメント12(割り位置13)、及び、図4~図6に示した単位パルス24、25に関する数値範囲は、上述の配列決定方法と同一の範囲に設定されるのが望ましい。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
[実施例A]
図1に示した基本構成を有し、かつ、表1及び表2の仕様を有するブロックパターンのタイヤが、図2及び図3に示した加硫金型を用いて試作された(実施例1~4、及び、比較例1)。各供試タイヤのトレッド部は、模様構成単位が配列された模様列を含むトレッドパターンと、トレッドセグメントの割り位置に対応して形成されたパーティングラインによって区分されるパーティング領域の列とを有している。なお、各供試タイヤは、表1に示されるとおり、模様列がそれぞれ異なっているが、パーティング領域の列はいずれも同一である。
図1に示した基本構成を有し、かつ、表1及び表2の仕様を有するブロックパターンのタイヤが、図2及び図3に示した加硫金型を用いて試作された(実施例1~4、及び、比較例1)。各供試タイヤのトレッド部は、模様構成単位が配列された模様列を含むトレッドパターンと、トレッドセグメントの割り位置に対応して形成されたパーティングラインによって区分されるパーティング領域の列とを有している。なお、各供試タイヤは、表1に示されるとおり、模様列がそれぞれ異なっているが、パーティング領域の列はいずれも同一である。
各供試タイヤについて、模様列から第1パルス列(一例として、図4に示す)が取得された。第1パルス列は、各模様構成単位を、それらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、単位パルスを模様構成単位の配列の順に、かつ、各模様構成単位のタイヤ周方向の長さに応じた間隔を空けて並べたものである。
各供試タイヤについて、パーティング領域の列から第2パルス列(一例として、図5に示す)が取得された。第2パルス列は、各パーティング領域を、それらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、単位パルスをパーティング領域の配列の順に、かつ、各パーティング領域のタイヤ周方向の長さに応じた間隔を空けて並べたものである。
各供試タイヤについて、第1パルス列の単位パルスと、第2パルス列の前記単位パルスとが重ね合わされて第3パルス列(一例として、図6に示す)が取得された。次に、第3パルス列を上記式(1)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が求められた。そして、各供試タイヤについて、走行時に生じる振動が評価された。共通仕様及びテスト方法は、次のとおりである。
タイヤサイズ:195/65R15
リムサイズ:15×6.5J
内圧:230kPa
荷重:4.20kN
模様列(4列):
模様構成単位の種類数:5
パーティング領域の列(トレッドセグメントの列):
総数:9
種類数:9
配列:a b c d e f g h i
(aからiに向かって、タイヤ周方向の長さが大となっている)
第1パルス列:
単位パルスの間隔:0.8~1.2
隣接する一対の単位パルスの間隔の差の絶対値:0.05~0.35
第2パルス列:
単位パルスの間隔:0.5~1.5
リムサイズ:15×6.5J
内圧:230kPa
荷重:4.20kN
模様列(4列):
模様構成単位の種類数:5
パーティング領域の列(トレッドセグメントの列):
総数:9
種類数:9
配列:a b c d e f g h i
(aからiに向かって、タイヤ周方向の長さが大となっている)
第1パルス列:
単位パルスの間隔:0.8~1.2
隣接する一対の単位パルスの間隔の差の絶対値:0.05~0.35
第2パルス列:
単位パルスの間隔:0.5~1.5
<車内騒音試験>
各供試タイヤが上記リムにリム組みされ、上記内圧、及び、上記荷重の条件下で1800ccの国産乗用車の右前輪に装着された。左前輪、及び、後輪には、トレッドパターンの無いスリックタイヤが装着された。そして、車両をスムース路面に走行させ、60km/hから20km/hまで惰行走行させたときの振動やピッチノイズが、ドライバーの官能によって10点法で評価された。結果は、数値が大きいほど良好である。
テスト結果が、表2に示される。
各供試タイヤが上記リムにリム組みされ、上記内圧、及び、上記荷重の条件下で1800ccの国産乗用車の右前輪に装着された。左前輪、及び、後輪には、トレッドパターンの無いスリックタイヤが装着された。そして、車両をスムース路面に走行させ、60km/hから20km/hまで惰行走行させたときの振動やピッチノイズが、ドライバーの官能によって10点法で評価された。結果は、数値が大きいほど良好である。
テスト結果が、表2に示される。
テストの結果、1~k次数の振幅Fkのうち、1次数の振幅F1が一定の範囲に制限された実施例は、1次数の振幅F1が一定の範囲に制限されない比較例に比べて、走行時の振動を低減することができた。
[実施例B]
図1に示した基本構成を有し、かつ、ブロックパターンのタイヤが、図2及び図3に示した加硫金型を用いて試作された(実施例5~7及び比較例2)。各供試タイヤのトレッド部は、模様構成単位が配列された模様列を含むトレッドパターンと、トレッドセグメントの割り位置に対応して形成されたパーティングラインによって区分されるパーティング領域の列とを有している。なお、各供試タイヤは、表1のタイヤBに示した模様構成単位の配列を有しているが、パーティング領域の列は、表3に示されるとおり、それぞれ異なっている。
図1に示した基本構成を有し、かつ、ブロックパターンのタイヤが、図2及び図3に示した加硫金型を用いて試作された(実施例5~7及び比較例2)。各供試タイヤのトレッド部は、模様構成単位が配列された模様列を含むトレッドパターンと、トレッドセグメントの割り位置に対応して形成されたパーティングラインによって区分されるパーティング領域の列とを有している。なお、各供試タイヤは、表1のタイヤBに示した模様構成単位の配列を有しているが、パーティング領域の列は、表3に示されるとおり、それぞれ異なっている。
実施例Aと同様の手順に基づいて、各供試タイヤの第3パルス列が取得され、第3パルス列を上記式(1)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が求められた。そして、各供試タイヤについて、走行時に生じる振動が評価された。共通仕様は、パーティング領域の列を除いて、実施例Aと同一である。また、テスト方法は、実施例Aに記載のとおりである。テストの結果が、表4に示される。
テストの結果、1~k次数の振幅Fkのうち、1次数の振幅F1が一定の範囲に制限された実施例は、1次数の振幅F1が一定の範囲に制限されない比較例に比べて、走行時の振動を低減することができた。
1 タイヤ
2 トレッド部
3 トレッドパターン
4 模様構成単位
5 模様列
17 パーティング領域
18 パーティング領域の列
2 トレッド部
3 トレッドパターン
4 模様構成単位
5 模様列
17 パーティング領域
18 パーティング領域の列
Claims (15)
- トレッド部を有するタイヤであって、
前記トレッド部に、
模様構成単位がタイヤ周方向に配列された模様列を含むトレッドパターンと、
前記トレッドパターンを成形するための複数のトレッドセグメントの割り位置に対応して形成されたパーティングラインによって区分されたパーティング領域の列とを有し、
前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、
前記パーティング領域の列から、各パーティング領域をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記パーティング領域の配列の順に、かつ、各パーティング領域の前記長さに応じた間隔を空けて並べた第2パルス列を得、
前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、
前記第3パルス列を下記式(1)でフーリエ変換して得られる1~k次数の振幅Fkのうち、1次数の振幅F1は、1.2以下である、
タイヤ。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ - 前記1次数の振幅F1は、1.0以下である、請求項1記載のタイヤ。
- 前記1~k次数の振幅Fkのうち、2次数の振幅F2及び3次数の振幅F3は、1.2以下である、請求項1又は2記載のタイヤ。
- 前記1~k次数の振幅Fkのうち、4次数の振幅F4ないし10次数の振幅F10は、1.2以下である、請求項1ないし3のいずれか1項に記載のタイヤ。
- 前記模様列は、タイヤ周方向の長さが異なる少なくとも2種類の模様構成単位を含む、請求項1ないし5のいずれか1項に記載のタイヤ。
- 第1パルス列の各単位パルスの前記大きさ及び前記間隔は、その単位パルスに対応する前記模様構成単位の前記長さを、全ての前記模様構成単位の前記長さの中央値に対する比で定義され、
前記第1パルス列の各単位パルスの前記大きさ及び前記間隔は、0.8~1.2である、請求項6記載のタイヤ。 - 前記模様列は、タイヤ周方向の長さが小さい模様構成単位を、タイヤ周方向の長さが大きい模様構成単位よりも多く含む、請求項6又は7記載のタイヤ。
- 前記パーティング領域は、前記タイヤ周方向の長さが異なる少なくとも2種類を含む、請求項1ないし8のいずれか1項に記載のタイヤ。
- 各第2パルス列の各単位パルスの大きさ及び前記間隔は、その単位パルスに対応する前記パーティング領域の前記長さを、全ての前記パーティング領域の前記長さの中央値に対する比で定義され、
前記第2パルス列の各単位パルスの前記大きさ及び前記間隔は、0.5~1.5である、請求項9記載のタイヤ。 - タイヤのトレッドパターンに含まれる模様列について、前記模様列を構成する模様構成単位のタイヤ周方向の配列を決定するための方法であって、
前記トレッドパターンは、タイヤ周方向の割り位置が予め定められた複数のトレッドセグメントで成形されるものであり、
前記方法は、
前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、
前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、
前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、
前記第3パルス列を下記式(4)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、前記配列を決定する工程を含む、
タイヤの模様構成単位の配列決定方法。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ - タイヤのトレッドパターンを成形するための複数のトレッドセグメントについて、前記トレッドセグメントのタイヤ周方向の割り位置を決定するための方法であって、
前記トレッドパターンは、模様構成単位のタイヤ周方向の配列が予め定められた模様列を含み、
前記方法は、
前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、
前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、
前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、
前記第3パルス列を下記式(5)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、前記割り位置を決定する工程を含む、
トレッドセグメントの割り位置決定方法。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ - 模様構成単位がタイヤ周方向に配列された模様列を含むトレッドパターンが設けられたタイヤを設計するための方法であって、
前記トレッドパターンは、タイヤ周方向で分割された複数のトレッドセグメントで成形されるものであり、
前記方法は、
前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、
前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、
前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、
前記第3パルス列を下記式(6)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1が1.2以下となるように、前記模様構成単位の配列と、前記トレッドセグメントの割り位置とを決定する工程を含む、
タイヤの設計方法。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ - 模様構成単位がタイヤ周方向に配列された模様列を含むトレッドパターンが設けられたタイヤを製造するための方法であって、
前記方法は、
前記トレッドパターンを成形するための複数のトレッドセグメントを含むトレッドモールドを用いて、未加硫の生タイヤのトレッド部を加硫成形する加硫工程を含み、
前記トレッドモールドは、
前記模様列から、各模様構成単位をそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記模様構成単位の配列の順に、かつ、各模様構成単位の前記長さに応じた間隔を空けて並べた第1パルス列を得、
前記トレッドセグメントの列から、各トレッドセグメントをそれらのタイヤ周方向の長さに応じた大きさを有する単位パルスとし、前記単位パルスを前記トレッドセグメントの配列の順に、かつ、各トレッドセグメントの前記長さに応じた間隔を空けて並べた第2パルス列を得、
前記第1パルス列の前記単位パルスと、前記第2パルス列の前記単位パルスとを重ね合わせて第3パルス列を得たときに、
前記第3パルス列を下記式(7)でフーリエ変換して得られる1~k次の振幅Fkのうち、1次数の振幅F1は、1.2以下である、
タイヤの製造方法。
N:第3パルス列の単位パルスの総数
L:第3パルス列の全長
k:1~Nまでの自然数
X(j):第3パルス列の起点からj番目の単位パルスの位置
P(j):第3パルス列の起点からj番目の単位パルスの大きさ
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020143771A JP2022039002A (ja) | 2020-08-27 | 2020-08-27 | タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020143771A JP2022039002A (ja) | 2020-08-27 | 2020-08-27 | タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022039002A true JP2022039002A (ja) | 2022-03-10 |
Family
ID=80498230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020143771A Pending JP2022039002A (ja) | 2020-08-27 | 2020-08-27 | タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022039002A (ja) |
-
2020
- 2020-08-27 JP JP2020143771A patent/JP2022039002A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3996390B2 (ja) | タイヤの成形金型、及びそれによって製造された空気入りタイヤ | |
US9770950B2 (en) | Heavy duty tire | |
JP4331150B2 (ja) | 空気入りタイヤ | |
JP2008049967A (ja) | 重荷重用タイヤ | |
JP4981849B2 (ja) | 空気入りタイヤ及びその製造方法 | |
CN104903121A (zh) | 充气轮胎 | |
JPWO2010067699A1 (ja) | 空気入りタイヤ及びその製造方法 | |
CN107635795A (zh) | 充气轮胎 | |
JP2020023175A (ja) | 金型、タイヤの製造方法及びタイヤ | |
CN112937224B (zh) | 充气轮胎 | |
WO2018230166A1 (ja) | タイヤ | |
JP2022039002A (ja) | タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 | |
US20180086157A1 (en) | Pneumatic tire | |
CN107848343B (zh) | 轮胎 | |
CN103863018B (zh) | 充气轮胎 | |
JP4162115B2 (ja) | 空気入りタイヤ | |
JP7497585B2 (ja) | タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、タイヤの設計方法及びタイヤの製造方法 | |
JP4162114B2 (ja) | 空気入りタイヤ | |
JP2022042833A (ja) | タイヤの設計方法及びタイヤの製造方法 | |
CN105121184B (zh) | 充气轮胎 | |
US10688829B2 (en) | Tire | |
JP6624231B2 (ja) | 空気入りタイヤ | |
JP2022038461A (ja) | タイヤ、タイヤの模様構成単位の配列決定方法、トレッドセグメントの割り位置決定方法、及び、タイヤの設計方法 | |
JP2016145009A (ja) | 空気入りタイヤ | |
JP7497583B2 (ja) | タイヤ、タイヤの製造方法、タイヤの設計方法及び模様構成単位の配列決定方法 |