JP2022017543A - 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス - Google Patents
衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス Download PDFInfo
- Publication number
- JP2022017543A JP2022017543A JP2021182948A JP2021182948A JP2022017543A JP 2022017543 A JP2022017543 A JP 2022017543A JP 2021182948 A JP2021182948 A JP 2021182948A JP 2021182948 A JP2021182948 A JP 2021182948A JP 2022017543 A JP2022017543 A JP 2022017543A
- Authority
- JP
- Japan
- Prior art keywords
- bubble
- pressure waveform
- scattering
- pressure
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/225—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00137—Details of operation mode
- A61B2017/00154—Details of operation mode pulsed
- A61B2017/00172—Pulse trains, bursts, intermittent continuous operation
- A61B2017/00176—Two pulses, e.g. second pulse having an effect different from the first one
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B2017/22005—Effects, e.g. on tissue
- A61B2017/22007—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
- A61B2017/22008—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B2017/22027—Features of transducers
- A61B2017/22028—Features of transducers arrays, e.g. phased arrays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0039—Ultrasound therapy using microbubbles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0078—Ultrasound therapy with multiple treatment transducers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mechanical Engineering (AREA)
- Surgical Instruments (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Vibration Dampers (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
[0001]本願は、米国特許法第119条の下で、2013年7月3日出願の「Modulated Excitation Sequences for Enhanced Pulsed Ultrasound Cavitational Therapy」と題する米国仮特許出願第61/842,820号の利益を主張するものであり、その出願は本明細書に参照により組み込まれる。
。この進入路からの前立腺の深さは、上述のイヌのモデルにおける深さよりも著しく深い。更に、骨盤の骨格解剖構造及び超音波撮像プローブの径直腸的位置は、有効な変換器の口径を著しく減少させた。筐体の下側外周の切り欠き部106は、主径においてFナンバー=0.85であり、切り欠き部においてFナンバー=0.98である超音波撮像プローブ(不図示)を収容するように構成され得る。
Fナンバー>0.8)を有する超音波療法用変換器を必要とする、骨格解剖的障害物を通過した肌の表面下深くの柔軟な組織が目標とされる際には不可欠である。柔軟な組織の向上したヒストトリプシ均質化のために最適化されたシーケンスは、シーケンスの効率を最適化することによって焦点前での熱傷の可能性を低減するために開発されてきた。最適化された励起シーケンスの向上した効率は、組織内でのヒストトリプシ気泡雲の生成開始の可能性を増大させ、組織を通って並進する際の消滅する気泡雲の発生を低減する。更に、最適化されたシーケンスは、神経血管構造のような線維弾性がより高い重要な体内構造を保護しつつ、繊維状組織又はより密度の低い組織を選択的に切除するために設計することもできる。
くとも1つの音響的に生成された核(気泡)を生じさせるように設計された初期パルスと、それに続く、最適化された遅延時間の後の、気泡雲を生じさせるために第1の気泡に衝撃波を衝突させることを可能にする衝撃散乱パルス(以後、散乱パルス又は散乱圧力波形と呼ぶ)とを特徴とする。気泡雲の効果を更に維持するために、同様に最適化されたタイミングで後続の散乱パルスが続き得る。パルスと圧力波形とは本願においては交換可能に用いられることに留意されたい。
用変換器から組織内へと供給するステップであって、初期圧力波形は組織内に少なくとも1つの気泡を生成するように構成されるステップと、散乱圧力波形を、少なくとも1つの
気泡の寿命期間内に超音波療法用変換器から少なくとも1つの気泡内へと供給するステップと、散乱圧力波形によって少なくとも1つの気泡の近傍にキャビテーション核を生成するステップとを備える。
200μs以内に供給される。
[00014]一実施形態において、方法は、初期圧力波形を供給するステップ及び散乱圧力
波形を供給するステップを、組織の治療が完了するまで繰り返すステップを更に備える。
)は、組織の加熱を低減させるために最小化される。
[00016]別の実施形態において、散乱圧力波形の圧力波高値は、焦点領域に追加的なキ
ャビテーション核を生じさせるのに十分な振幅である。
織の加熱を低減させるために最小化される。
[00018]いくつかの実施形態において、方法は、散乱圧力波形を供給するステップの後
に、第2の散乱圧力波形を少なくとも1つの気泡及びキャビテーション核に向かって供給するステップを更に備える。
sから1s以内に供給される。
[00020]別の実施形態において、方法は、少なくとも1つの気泡及び/又はキャビテー
ション核がもはや組織内に残存しなくなるまで、追加的な初期圧力波形を供給することなく追加的な散乱圧力波形を供給するステップを更に備える。
給される。
[00022]一実施形態において、初期圧力波形及び散乱圧力波形を備えるパルスシーケン
スは、1~5000Hzの範囲のシーケンスPRFを有する。
を介在する組織に供給する。
[00024]一実施形態において、初期圧力波形と散乱圧力波形とは、実質的に同様な圧力
振幅を有する。別の実施形態において、散乱圧力波形の圧力振幅は初期圧力波形の圧力振幅よりも小さい。代替的な実施形態において、散乱圧力波形の圧力振幅は初期圧力波形の圧力振幅よりも大きい。
波療法用変換器から組織内へと送出するステップであって、初期圧力波形は組織内に少なくとも1つの気泡を生成するように構成されるステップと、散乱圧力波形を、少なくとも1つの気泡の寿命期間の間に、超音波療法用変換器から少なくとも1つの気泡内へと送出するステップであって、散乱圧力波形は組織内で衝撃正圧半周期及び衝撃負圧半周期を有する衝撃焦点圧力波形となるように構成され、衝撃正圧半周期は少なくとも1つの気泡に衝突し、散乱し、反転し、衝撃負圧半周期と建設的に干渉して負圧半周期波形を形成するように構成されるステップと、正圧半周期波形と少なくとも1つの気泡との間の衝撃散乱メカニズムによって、少なくとも1つの気泡の近傍にキャビテーション核を生成するステップとを備える方法が提供される。
気泡を生成するために少なくとも5MPaのピーク負圧を提供するように構成された初期パルスを、超音波療法用変換器から供給するステップと、第1の散乱パルスを、少なくとも1つの気泡内に初期パルスから5μsから200μs以内に供給するステップと、第1の散乱パルスと少なくとも1つの気泡との間の衝撃散乱メカニズムによって、少なくとも1つの気泡の近傍に核のキャビテーション雲を生成するステップとを備える方法が提供される。
であって、超音波療法用生成器は超音波療法用変換器を駆動して、初期圧力波形を組織内へと供給して組織内に少なくとも1つの気泡を生成するように構成され、超音波療法用生成器は更に、超音波療法用変換器を駆動して、第1の散乱圧力波形を初期圧力波形から5μsから200μs以内に少なくとも1つの気泡内に供給して少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された超音波療法用生成器と、を備える超音波療法システムが提供される。
つの気泡の近傍にキャビテーション核を生成するのに十分な圧力振幅である。
[00029]他の実施形態において、超音波療法用生成器は更に、超音波療法用変換器を駆
動して、第1の散乱圧力波形の後に、少なくとも1つの気泡の近傍にキャビテーション核を生成するために、少なくとも1つの追加的な散乱パルスを供給するように構成される。
るために複雑な波形を生成するように構成された制御器と、制御器と結合された高電圧電源と、制御器及び高電圧電源から複雑な波形を受け取り、増幅するように構成された増幅器と、超音波療法用変換器のインピーダンスを増幅器とマッチングさせるように構成されたマッチングネットワークとを更に備える。
よって、組織内に少なくとも1つの気泡を生成するステップと、衝撃焦点圧力波形を少なくとも1つの気泡に衝突させるステップと、少なくとも1つの気泡の近傍にキャビテーション核を形成するステップと、を備える方法が提供される。
間の間に実行される。
[00033]別の実施形態において、衝突させるステップは、生成するステップから5μs
から200μs以内に実行される。
焦点圧力波形と少なくとも1つの気泡との間の衝撃散乱メカニズムによって達成される。
[00035]本発明の新規な特徴は、以下の特許請求の範囲に詳細に述べられている。本発
明の特徴及び利点は、本発明の原理が利用される例示的な実施形態について述べる以下の詳細な説明及び添付の図面を参照することによってより良く理解されるであろう。
[00042]好適な実施形態の開発のための重要な背景情報を提供するキャビテーション核
及び気泡雲形成のいくつかの原理が本明細書において開示される。キャビテーション核は、組織への低圧力の供給の結果として形成される個々の気泡である。気泡雲は、変換器の焦点又はその近傍に生じるキャビテーション核の密な群れからなる。キャビテーション核(気泡雲)の形成は、双方ともにヒストトリプシ療法の鍵となる要素である。
[00044]キャビテーション核は、少なくとも1つのキャビテーション核(気泡)を生じ
させるのに必要な圧力レベルに近い又は超えるピーク負(ピーク希薄)圧を組織が受けると、組織内に形成され得る。このレベルは可変であり、組織の特性(構造及び組成、溶解ガス含有量、及び不純物の存在)、変換器の形状(焦点距離及びfナンバー)及びシーケンス方式(PRF;周期数(サイクル数))などの複数の要素に依存することに留意されたい。1つの音響パルスから形成されるキャビテーション核の数は、達成されたピーク負圧と直接的な関係があるものと思われている。
[00046]キャビテーション核は最大サイズまで成長し、次いで崩壊する。気泡の生成開
始、成長、次いで崩壊というプロセスのキャビテーションの経時変化は媒体(すなわち、組織の種類)に依存する。液体に対するキャビテーションの経時変化は、ゼラチン及び柔軟な組織内での経時的変化よりも時間がかかる。表1は、キャビテーションの生成開始、成長及び崩壊の時間を水中とゼラチン中とで比較したものである。図2a~図2cは、典型的なキャビテーションの経時変化を示した図である。図2aは、組織、水又はゼラチンといった媒体内でのキャビテーション208の生成開始を示す。図2bはキャビテーション208の最大サイズまでの成長を図示し、そこではキャビテーション気泡が焦点領域内でひとまとまりになる。図2cはキャビテーション208の崩壊を示し、そこではほとんど全てのキャビテーション気泡が崩壊し消滅している。
[00048]音響波形が媒体中を移動するとき、正の(圧縮)半周期は負の(希薄)半周期
よりも速く移動する。この効果により、圧力波形は非線形になり、圧力波形の正の半周期
と負の半周期との間での急激な移行を生じさせる。この移行の傾きが増すにつれて正の半周期の圧力振幅は増大し、圧力波形はより非線形に又は「衝撃を受ける」ようになると言われている。これは、衝撃焦点圧力波形と称され得る。非線形性のレベルは圧力波形の圧力振幅及び媒体内を伝播する距離に依存する。図3は、正の半周期及び負の半周期を伴う衝撃焦点圧力波形の例を図示する。衝撃焦点圧力波形は複数の正及び負の半周期を含み得ることを理解されたい。
され得る。衝撃散乱は、音響波形の衝撃正圧半周期が既存の気泡によって反射又は散乱され、続いて衝撃正圧半周期が音響波形の入射した負圧半周期と加法的に結合するように反転されたときに起こる。この生成された結合した新たな負圧半周期が十分に大きければ(すなわち、対象となる組織又は媒体に固有の閾値よりも大きい、例えば、5MPaピーク負圧よりも大きい)、追加的なキャビテーション核が任意の既存の核の近傍に生じる。このプロセスは、結合した新たな負圧半周期の圧力が、新たなキャビテーション核を生じさせるのに不十分になるまで繰り返される。
側のフレームは既存の気泡408及び衝撃正圧半周期410を図示し、下側のフレームは超音波パルス圧力分布412を図示する(水平線414は圧力振幅ゼロを示す)。既存の気泡408は、上述したように初期パルス又はシーケンスによって形成され得る。次いで、衝撃散乱方法の一実施形態に従って、衝撃圧力波形は、気泡の寿命期間の間に、気泡408に向かって送出され得る。
示されるように、既存の気泡408に向かって左から右に伝播する。入射した衝撃圧力波形は、気泡の寿命期間の間に、気泡に向かって及びその内部へと供給され得、入射した衝撃圧力波形は気泡と干渉し合う。図4aにおいて、上述したように組織内に既に生成された単一の既存の気泡408が図示される。図4bに図示されるように、入射した衝撃圧力波形の初期負圧半周期によって、この気泡のサイズは増大する。図4cにおいて、入射した衝撃圧力波形412の衝撃正圧半周期410は気泡408と衝突し、正圧半周期は散乱し始める。散乱された衝撃正圧半周期は反転し、入射した衝撃圧力波形412の衝撃負圧半周期413と建設的に干渉して、気泡408の近傍又は背後に追加的なキャビテーション核420を生成する一過性の、大きな振幅の負圧半周期418(図4c~図4eにおいて円形の破線418として示される)を生じさせる。負圧半周期418は、矢印422によって示されるように右から左へと伝播する。図4eに図示されるように、負圧半周期418がキャビテーション核の形成のための閾値よりも小さくなるまで、追加的なキャビテーション核420が衝撃正圧波形410の反対方向に生じる。このプロセスは、既存の気泡408及び追加的なキャビテーション核420に向かって及びその内部へ送出される連続的な衝撃圧力波形によって繰り返し行われ得る。
向かって成長する傾向にあり、その範囲はパルス(波形)の高圧力周期数(高圧力サイクル数)及びパルス繰返し周波数(PRF)に依存する。衝撃波形の周期数(サイクル数)を最小化すること又はシーケンスPRFを減少することは、気泡雲の長さの減少及び時間平均強度の減少従って熱投与量減少のための効果的な方法である。
[00054]本開示において説明される好適なヒストトリプシ励起シーケンスの鍵となる要
素は、(1)初期パルス又は初期圧力波形と称され、組織内に少なくとも1つの気泡を形成するように構成された、シーケンスの第1のパルス、(2)散乱パルス又は散乱圧力波
形と称され、衝撃散乱によって少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された、シーケンスの第2のパルス、及び(3)初期パルスと散乱パルスとの間の特定の遅延時間、である。
つの気泡を生成するように初期パルスが構成されなければならない。これは、上述のように、従来のヒストトリプシ初期パルス、又は沸騰によって組織内に気泡形成を誘起可能なHIFU又は沸騰ヒストトリプシなどの他の超音波技術によって達成可能である。散乱パルスは、キャビテーション核の衝撃散乱形成に十分な高い圧力波高値を有さなければならない。いくつかの実施形態において、これらのパルスの間の遅延時間は5μsから200μsの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから40msの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから1sの範囲であり得る。
期数(サイクル数)は、増加又は減少され得る。初期パルスにおける圧力振幅及び/又は周期数を増加すると、組織内にキャビテーションを生じさせる可能性を高めることができる。しかしながら、これはまた、組織に供給される時間平均強度及び熱投与量、並びに気泡雲の範囲を増加させる恐れがある。初期パルスの圧力振幅及び/又は周期数を減少すると、シーケンスの強度及び熱投与量は減少するが、キャビテーションを生成及び/又は維持するシーケンスの能力を制限する恐れがある。
期数は、増加又は減少され得る。散乱パルスにおける圧力振幅及び/又は周期数を増加すると、組織内にキャビテーションを生じさせる可能性を高めることができる。しかしながら、これはまた、組織に供給される時間平均強度及び組織に供給される熱投与量、並びに気泡雲の範囲を増加させる恐れがある。散乱パルスの圧力振幅及び/又は周期数を減少すると、シーケンスの強度及び熱投与量は減少するが、キャビテーションを生成及び/又は維持するシーケンスの能力を制限する恐れがある。
内に保たれることを想定すると、5000Hz程度でよい。好適な範囲は治療される組織に依存する。より高いPRFは、より高密度で繊維性の組織に対して推奨され、低いPRFは、より低密度の組織に対して及びより繊維性が高く多くの場合重要な組織の保護のために推奨される。ヒストトリプシによって組織をその剛性に基づいて選択的に治療することは、シーケンス展開の有望な設計、性能考察であり得る。
ンスの強度及び熱投与量を減少するために、(初期パルスの圧力振幅及び/又は周期数と比べて)より小さな圧力振幅及び/又は周期数を有する追加的な散乱パルスが適用され得る。
ーションを生成し維持するために使用され得るヒストトリプシの初期及び散乱パルスシーケンス3つの異なる実施形態を示す。図5aにおいて、組織内に少なくとも1つの気泡を形成するように構成された圧力波形を備える初期パルス524aは、組織内に送出され得る。特定の遅延時間が経過した後に、散乱パルス526aが、組織内の、初期パルス524aによって形成された少なくとも1つの気泡に向かって及びその内部へ送出され得る。いくつかの実施形態において、これらのパルスの間の特定の遅延時間は5μsから200μsの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μs
から40msの範囲であり得る。別の実施形態において、これらのパルスの間の遅延時間は5μsから1sの範囲であり得る。組織内を移動するにつれて、散乱パルス526aは衝撃焦点圧力波形となり、散乱パルスの少なくとも1つの衝撃正圧半周期が少なくとも1つの気泡に衝突し、少なくとも1つの気泡によって散乱される。散乱パルスの衝撃正圧半周期は反転し、散乱パルスの衝撃負圧半周期と建設的に干渉して、初期パルスによって生成された少なくとも1つの気泡の背後に追加的なキャビテーション核を生成する、一過性の、大きな振幅の負圧半周期を生じさせる。これらの初期及び散乱パルスのパルスシーケンスペアは、図5aに図示されるように(パルスペア524b/526b、524c/526c、524d/526d、・・・、524n/526n)、結果として生じたキャビテーションから組織内に所望の切除効果を達成するために繰り返され得る。本実施形態において、初期及び散乱パルスの双方の圧力振幅及び/又は周期数は同一又は略同一でよい。
圧力振幅よりも小さいことを除いては図5aの実施形態と同様の、別の実施形態を図示する。衝撃の原理によって、ピーク正波は、ピーク負波と比べて増幅され、従って、反射及び反転された正波によって必要とされる負圧を依然として供給しつつも、散乱パルスを生じさせるために使用される圧力振幅は減少され得る。この実施形態は、図5aの実施形態よりも、より効率的であり、組織内に供給されるエネルギー投与量はより少ない。しかしながら、別の実施形態において、散乱パルスの圧力振幅は対応する初期パルスの圧力振幅よりも大きくてもよい。
この実施形態においては、初期パルス524aの後に、特定の遅延時間の後に、散乱パルス526aが続くが、図5aのようにその後に別の初期/散乱パルスのペアが続く代わりに、散乱パルス526aの後に、第2の遅延時間の後に、別の散乱パルス526bが続く。気泡雲の効果を維持し(例えばパルス526c、526d)、結果として生じたキャビテーションから組織内に所望の切除効果を達成するために、適切な遅延時間の後に、複数の散乱パルスが組織内に供給され得る。散乱パルスの圧力振幅は、初期パルスの圧力振幅よりも小さくても、それと等しくても、又はそれよりも大きくてもよい。いくつかの実施形態において、後続の散乱圧力波形のための遅延時間は、第1の散乱圧のために使用された遅延時間とは異なってよい。例えば、第1の散乱圧力波形は、初期圧力波形から5μsから200μs以内に供給されてよいが、後続の散乱圧力波形は、5μsから200μs、5μsから40ms、又は5μsから1s以内に供給されてよい。キャビテーションが組織内に再生成される必要がある場合は、図5cの524n/526nによって図示されるように、シーケンスは別の初期/散乱パルスペアによって再度開始されてよい。図5bの実施形態と同様に、この実施形態もまた、より小さな圧力振幅の散乱パルスを使用するが、使用する初期パルスはより少ない。この実施形態の結果として、図5a~図5cの実施形態の中で組織へのエネルギー投与量は最も少なくなる。この方式は、従来のヒストトリプシシーケンスと比べて、投与量を著しく低減(例えば、50%ほども)する可能性を有する。
[00064]初期/散乱ペアの目的は、衝撃散乱によって組織内にキャビテーションを生成
することである。気泡雲がひとたび生成されたとき、焦点が移動されないならば、気泡雲の効果を維持するために初期パルスはもはや必要とされなくてよい。この場合、システムは、まず初期/散乱ペアによって気泡雲を生じさせ、その後に、焦点が移動するまで、(初期パルスの圧力振幅と比べて)より小さい圧力振幅の散乱パルスが続くように設計されてよい。この点において、プロセスは繰り返される。
[00066]ヒストトリプシシステム及び生成器は、本明細書で説明される超音波パルスシ
ーケンスをサポートするために非常に複雑な波形を生成するように構成される。システム600の単純化されたブロック図が図6に示される。システムの主要な構成要素は、コンピュータ/制御器602、USB-シリアルコンバータ604、マイクロコントローラ606、FPGA(フィールドプログラマブルゲートアレイ)608、高電圧制御器及び電源610、増幅器612、及び療法用変換器614、である。
)上で動作可能で、USBシリアル通信604を介して生成器と通信可能な「ヒストトリプシサービスツール」ソフトウェアを使用して確立され得る。
するように構成され、全てのパラメータ(PRF,電圧振幅、周期数、セット当たりのパルス数、周波数、変換器の使用可能なエレメントチャンネル(transducer element channels enabled)、及び遅延時間)を生成されるパルス毎に異なって設定可能な、広範囲のカスタムシーケンスを生じさせる機能をユーザに提供する。パルス間の遅延時間は、パラメータセットのPRFによって、又はパルス当たりの周期数としてゼロを指定することによって指定され得る。
及び高電圧制御器610を通じて適宜変更される。この方法は、高電圧ライン上の全ての蓄電器が放電するまでに時間がかかりすぎるため、2つのパルス間での動的な電圧振幅変更には使用できない。パルス間での動的な電圧振幅変更には、所望のパルス電圧及びその結果としての圧力振幅を生成するためにパルスのデューティサイクルが変調されるFPGA608においてPWM(パルス幅変調)が使用される。
[00071]ヒストトリプシサービスツールは任意のPC上で動作するアプリケーションで
あり、システムを制御するために使用される。ヒストトリプシサービスツールは、療法の開始/停止、高電圧レベルと療法パラメータ(PRF,周期数、デューティレシオ、使用可能なチャンネル、遅延など)の設定と読み取り、及び他のサービス及びメンテナンスに関連する項目の設定と読み取りが可能である。
[00073]USB-シリアルコンバータ604は、マイクロコントローラ606と通信す
るために、USB接続をシリアルに変換する。
[00075]マイクロコントローラ606は、コンピュータ/制御器602(ヒストトリプ
シサービスツール)と通信し、動作パラメータの設定/読み取り、療法の開始/停止などを行う。マイクロコントローラ606は全てのパラメータを保存するために内部のフラッシュメモリを使用できる。マイクロコントローラは、複雑なパルスを生成するために必要なFPGA608の全ての駆動パラメータと通信する。マイクロコントローラはまた、シリアル通信を使用して高電圧制御器及び電源610とも通信し、駆動電圧の適切なレベルの設定/読み取りを行う。
[00077]FPGA608はマイクロコントローラ606から情報を受信し、増幅器61
2を駆動するために必要な複雑なパルスシーケンスを生成する。パルスの速度は10ns
刻みで計測されることが不可欠であるので、FPGAは100MHzのクロックで動作可能である。
[00079]高電圧制御器及び電源610は、増幅器の出力において適切な電圧振幅レベル
を得るために増幅器回路に供給される必要のあるDC電圧のレベルに関する命令を、マイクロコントローラ606から受け取る。
[00081]増幅器612はFPGAによって生成されたパルスを受け取り、高電圧制御器
及び電源から高電圧を供給される。増幅器612は、療法用変換器のインピーダンスを増幅器のインピーダンスに適切にマッチングさせるマッチングネットワーク部材を通じて療法用変換器614に供給される高電圧振幅パルスを生成する。高電圧振幅パルスの生成中にピーク電流要求に応えるために十分なエネルギーを保存可能な多数の蓄電器を使用することが必要である。
典型的にはコンピュータ可読記憶媒体に記憶され、この媒体はコンピュータシステムによる使用のためにコード及び/又はデータを記憶可能な任意の装置又は媒体でよい。コンピュータ可読記憶媒体は、揮発性メモリ、又は不揮発性メモリ、又はディスクドライブ若しくは磁気テープ若しくはCD(コンパクトディスク)若しくはDVD(デジタル多用途ディスクあるいはデジタルビデオディスク)等の磁気及び光記憶装置、又は既知の若しくは後に開発されるコンピュータ可読記憶媒体を記憶することができる他の媒体を含むが、これらに限定されるものではない。
したようなコンピュータ可読記憶媒体に記憶され得るコード及び/又はデータとして具現化することができる。コンピュータシステムがコンピュータ可読記憶媒体に記憶されたコード及び/又はデータを読み取り、実行するとき、コンピュータシステムは、データ構造及びコードとして具現化され、コンピュータ可読記憶媒体内に記憶された方法及び処理を実行する。
えば、ハードウェアモジュールは、特定用途向け集積回路(ASIC)チップ、フィールドプログラマブルゲートアレイ(FPGA)、及び既知の又は後に開発される他のプログラム可能論理装置を含み得るが、これらに限定されるものではない。ハードウェアモジュールは起動されると、ハードウェアモジュールはハードウェアモジュール内部に含まれる方法及びプロセスを実施する。
く、主題が実施され得る特定の実施形態を示す。前述のとおり、構造的及び論理的な置換及び変更が本開示の範囲から逸脱することなくなされ得るように他の実施形態が利用可能でありかつ導出できる。本発明に関する主題のそのような実施形態は、もしも実際上2つ以上が開示されている場合、単に利便性のため、本出願の範囲をいかなる単一の発明又は発明の概念にも自発的に制限することを意図することなく、本明細書において、個別に又は一括して「発明」という用語によって称され得る。従って、本明細書において特定の実施形態が図示され説明されたが、同様の目的を達成すると予想される任意の構成が、示されている特定の実施形態に置換され得る。本開示は、様々な実施形態の任意の及び全ての適応型又は変型にも及ぶものと意図される。上述の実施形態及び本明細書において具体的に説明されていない他の実施形態の組み合わせは、上記の説明を精査することによって当
業者には明らかになるであろう。
[形態1]
超音波エネルギーによって組織を治療する方法であって、
初期圧力波形を超音波療法用変換器から組織内へと供給するステップであって、前記初期圧力波形は前記組織内に少なくとも1つの気泡を生成するように構成されるステップと、
散乱圧力波形を、前記少なくとも1つの気泡の寿命期間内に、前記超音波療法用変換器から前記少なくとも1つの気泡内へと供給するステップと、
前記散乱圧力波形によって前記少なくとも1つの気泡の近傍にキャビテーション核を生成するステップと
を備える方法。
[形態2]
形態1に記載の方法において、前記散乱圧力波形は、前記初期圧力波形から5μsから200μs以内に供給される、方法。
[形態3]
形態1に記載の方法において、前記初期圧力波形を供給するステップ及び前記散乱圧力波形を供給するステップを、前記組織の治療が完了するまで繰り返すステップを更に備える、方法。
[形態4]
形態1に記載の方法において、前記初期圧力波形の圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される、方法。
[形態5]
形態1に記載の方法において、前記散乱圧力波形の圧力波高値は、焦点領域に追加的なキャビテーション核を生じさせるのに十分な振幅である、方法。
[形態6]
形態1に記載の方法において、前記散乱圧力波形の前記圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される、方法。
[形態7]
形態1に記載の方法において、前記散乱圧力波形を供給するステップの後に、第2の散乱圧力波形を前記少なくとも1つの気泡及び前記キャビテーション核に向かって供給するステップを更に備える、方法。
[形態8]
形態7に記載の方法において、前記第2の散乱圧力波形は、前記散乱圧力波形から5μsから1s以内に供給される、方法。
[形態9]
形態7に記載の方法において、前記少なくとも1つの気泡及び/又は前記キャビテーション核がもはや前記組織内に残存しなくなるまで、追加的な初期圧力波形を供給することなく追加的な散乱圧力波形を供給するステップを更に備える、方法。
[形態10]
形態9に記載の方法において、前記追加的な散乱圧力波形は5μsから1s毎に供給される、方法。
[形態11]
形態1に記載の方法において、前記初期圧力波形及び前記散乱圧力波形を備えるパルスシーケンスは、1~5000Hzの範囲のシーケンスPRFを有する、方法。
[形態12]
形態1に記載の方法において、前記散乱圧力波形は前記初期圧力波形よりも少ないエネルギーを介在する組織に供給する、方法。
[形態13]
形態1に記載の方法において、前記初期圧力波形と前記散乱圧力波形とは、実質的に同様な圧力振幅を有する、方法。
[形態14]
形態1に記載の方法において、前記散乱圧力波形の圧力振幅は前記初期圧力波形の圧力振幅よりも小さい、方法。
[形態15]
形態1に記載の方法において、前記散乱圧力波形の圧力振幅は前記初期圧力波形の圧力振幅よりも大きい、方法。
[形態16]
超音波エネルギーによって組織を治療する方法であって、
初期圧力波形を超音波療法用変換器から組織内へと送出するステップであって、前記初期圧力波形は前記組織内に少なくとも1つの気泡を生成するように構成されるステップと、
散乱圧力波形を、前記少なくとも1つの気泡の寿命期間の間に、前記超音波療法用変換器から前記少なくとも1つの気泡内へと送出するステップであって、前記散乱圧力波形は前記組織内で衝撃正圧半周期及び衝撃負圧半周期を有する衝撃焦点圧力波形となるように構成され、前記衝撃正圧半周期は前記少なくとも1つの気泡に衝突し、散乱し、反転し、前記衝撃負圧半周期と建設的に干渉して負圧半周期波形を形成するように構成されるステップと、
前記正圧半周期波形と前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するステップと
を備える方法。
[形態17]
超音波エネルギーを組織に供給する方法であって、
前記組織内に少なくとも1つの気泡を生成するために少なくとも5MPaのピーク負圧を提供するように構成された初期パルスを、超音波療法用変換器から供給するステップと、
第1の散乱パルスを、前記少なくとも1つの気泡内に、前記初期パルスから5μsから200μs以内に供給するステップと、
前記第1の散乱パルスと前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって、前記少なくとも1つの気泡の近傍に核のキャビテーション雲を生成するステップと
を備える方法。
[形態18]
超音波療法用変換器と、
前記超音波療法用変換器に結合された超音波療法用生成器であって、前記超音波療法用生成器は前記超音波療法用変換器を駆動して、初期圧力波形を組織内へと供給して組織内に少なくとも1つの気泡を生成するように構成され、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、第1の散乱圧力波形を前記初期圧力波形から5μsから200μs以内に前記少なくとも1つの気泡内に供給して前記少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された超音波療法用生成器と
を備える超音波療法システム。
[形態19]
形態18に記載のシステムであって、前記第1の散乱パルスの圧力波高値は前記少なくとも1つの気泡の近傍にキャビテーション核を生成するのに十分な圧力振幅である、システム。
[形態20]
形態18に記載のシステムであって、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、前記第1の散乱圧力波形の後に、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するために、少なくとも1つの追加的な散乱パルスを供給するように構成される、システム。
[形態21]
形態18に記載のシステムであって、前記超音波療法用生成器は、
前記初期及び散乱圧力波形を始動するために複雑な波形を生成するように構成された制御器と、
前記制御器と結合された高電圧電源と、
前記制御器及び前記高電圧電源から前記複雑な波形を受け取り、増幅するように構成された増幅器と、
前記超音波療法用変換器のインピーダンスを前記増幅器とマッチングさせるように構成されたマッチングネットワークと
を更に備える、システム。
[形態22]
超音波エネルギーによって組織を治療する方法であって、
超音波エネルギーによって、前記組織内に少なくとも1つの気泡を生成するステップと、
衝撃焦点圧力波形を前記少なくとも1つの気泡に衝突させるステップと、
前記少なくとも1つの気泡の近傍にキャビテーション核を形成するステップと
を備える方法。
[形態23]
形態22に記載の方法において、前記衝突させるステップは、前記少なくとも1つの気泡の寿命期間の間に実行される、方法。
[形態24]
形態23に記載の方法において、前記衝突させるステップは、前記生成するステップから5μsから200μs以内に実行される、方法。
[形態25]
形態22に記載の方法において、前記キャビテーション核を形成するステップは、前記衝撃焦点圧力波形と前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって達成される、方法。
Claims (25)
- 超音波エネルギーによって組織を治療する方法であって、
初期圧力波形を超音波療法用変換器から組織内へと供給するステップであって、前記初期圧力波形は前記組織内に少なくとも1つの気泡を生成するように構成されるステップと、
散乱圧力波形を、前記少なくとも1つの気泡の寿命期間内に、前記超音波療法用変換器から前記少なくとも1つの気泡内へと供給するステップと、
前記散乱圧力波形によって前記少なくとも1つの気泡の近傍にキャビテーション核を生成するステップと
を備える方法。 - 請求項1に記載の方法において、前記散乱圧力波形は、前記初期圧力波形から5μsから200μs以内に供給される、方法。
- 請求項1に記載の方法において、前記初期圧力波形を供給するステップ及び前記散乱圧力波形を供給するステップを、前記組織の治療が完了するまで繰り返すステップを更に備える、方法。
- 請求項1に記載の方法において、前記初期圧力波形の圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される、方法。
- 請求項1に記載の方法において、前記散乱圧力波形の圧力波高値は、焦点領域に追加的なキャビテーション核を生じさせるのに十分な振幅である、方法。
- 請求項1に記載の方法において、前記散乱圧力波形の前記圧力振幅及び/又は周期数は、組織の加熱を低減させるために最小化される、方法。
- 請求項1に記載の方法において、前記散乱圧力波形を供給するステップの後に、第2の散乱圧力波形を前記少なくとも1つの気泡及び前記キャビテーション核に向かって供給するステップを更に備える、方法。
- 請求項7に記載の方法において、前記第2の散乱圧力波形は、前記散乱圧力波形から5μsから1s以内に供給される、方法。
- 請求項7に記載の方法において、前記少なくとも1つの気泡及び/又は前記キャビテーション核がもはや前記組織内に残存しなくなるまで、追加的な初期圧力波形を供給することなく追加的な散乱圧力波形を供給するステップを更に備える、方法。
- 請求項9に記載の方法において、前記追加的な散乱圧力波形は5μsから1s毎に供給される、方法。
- 請求項1に記載の方法において、前記初期圧力波形及び前記散乱圧力波形を備えるパルスシーケンスは、1~5000Hzの範囲のシーケンスPRFを有する、方法。
- 請求項1に記載の方法において、前記散乱圧力波形は前記初期圧力波形よりも少ないエネルギーを介在する組織に供給する、方法。
- 請求項1に記載の方法において、前記初期圧力波形と前記散乱圧力波形とは、実質的に同様な圧力振幅を有する、方法。
- 請求項1に記載の方法において、前記散乱圧力波形の圧力振幅は前記初期圧力波形の圧力振幅よりも小さい、方法。
- 請求項1に記載の方法において、前記散乱圧力波形の圧力振幅は前記初期圧力波形の圧力振幅よりも大きい、方法。
- 超音波エネルギーによって組織を治療する方法であって、
初期圧力波形を超音波療法用変換器から組織内へと送出するステップであって、前記初期圧力波形は前記組織内に少なくとも1つの気泡を生成するように構成されるステップと、
散乱圧力波形を、前記少なくとも1つの気泡の寿命期間の間に、前記超音波療法用変換器から前記少なくとも1つの気泡内へと送出するステップであって、前記散乱圧力波形は前記組織内で衝撃正圧半周期及び衝撃負圧半周期を有する衝撃焦点圧力波形となるように構成され、前記衝撃正圧半周期は前記少なくとも1つの気泡に衝突し、散乱し、反転し、前記衝撃負圧半周期と建設的に干渉して負圧半周期波形を形成するように構成されるステップと、
前記正圧半周期波形と前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するステップと
を備える方法。 - 超音波エネルギーを組織に供給する方法であって、
前記組織内に少なくとも1つの気泡を生成するために少なくとも5MPaのピーク負圧を提供するように構成された初期パルスを、超音波療法用変換器から供給するステップと、
第1の散乱パルスを、前記少なくとも1つの気泡内に、前記初期パルスから5μsから200μs以内に供給するステップと、
前記第1の散乱パルスと前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって、前記少なくとも1つの気泡の近傍に核のキャビテーション雲を生成するステップと
を備える方法。 - 超音波療法用変換器と、
前記超音波療法用変換器に結合された超音波療法用生成器であって、前記超音波療法用生成器は前記超音波療法用変換器を駆動して、初期圧力波形を組織内へと供給して組織内に少なくとも1つの気泡を生成するように構成され、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、第1の散乱圧力波形を前記初期圧力波形から5μsから200μs以内に前記少なくとも1つの気泡内に供給して前記少なくとも1つの気泡の近傍にキャビテーション核を生成するように構成された超音波療法用生成器と
を備える超音波療法システム。 - 請求項18に記載のシステムであって、前記第1の散乱パルスの圧力波高値は前記少なくとも1つの気泡の近傍にキャビテーション核を生成するのに十分な圧力振幅である、システム。
- 請求項18に記載のシステムであって、前記超音波療法用生成器は更に、前記超音波療法用変換器を駆動して、前記第1の散乱圧力波形の後に、前記少なくとも1つの気泡の近傍にキャビテーション核を生成するために、少なくとも1つの追加的な散乱パルスを供給するように構成される、システム。
- 請求項18に記載のシステムであって、前記超音波療法用生成器は、
前記初期及び散乱圧力波形を始動するために複雑な波形を生成するように構成された制御器と、
前記制御器と結合された高電圧電源と、
前記制御器及び前記高電圧電源から前記複雑な波形を受け取り、増幅するように構成された増幅器と、
前記超音波療法用変換器のインピーダンスを前記増幅器とマッチングさせるように構成されたマッチングネットワークと
を更に備える、システム。 - 超音波エネルギーによって組織を治療する方法であって、
超音波エネルギーによって、前記組織内に少なくとも1つの気泡を生成するステップと、
衝撃焦点圧力波形を前記少なくとも1つの気泡に衝突させるステップと、
前記少なくとも1つの気泡の近傍にキャビテーション核を形成するステップと
を備える方法。 - 請求項22に記載の方法において、前記衝突させるステップは、前記少なくとも1つの気泡の寿命期間の間に実行される、方法。
- 請求項23に記載の方法において、前記衝突させるステップは、前記生成するステップから5μsから200μs以内に実行される、方法。
- 請求項22に記載の方法において、前記キャビテーション核を形成するステップは、前記衝撃焦点圧力波形と前記少なくとも1つの気泡との間の衝撃散乱メカニズムによって達成される、方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361842820P | 2013-07-03 | 2013-07-03 | |
US61/842,820 | 2013-07-03 | ||
JP2016524375A JP6600304B2 (ja) | 2013-07-03 | 2014-07-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
JP2019183193A JP6977008B2 (ja) | 2013-07-03 | 2019-10-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019183193A Division JP6977008B2 (ja) | 2013-07-03 | 2019-10-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022017543A true JP2022017543A (ja) | 2022-01-25 |
JP2022017543A5 JP2022017543A5 (ja) | 2022-08-25 |
Family
ID=52133288
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016524375A Active JP6600304B2 (ja) | 2013-07-03 | 2014-07-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
JP2019183193A Active JP6977008B2 (ja) | 2013-07-03 | 2019-10-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
JP2021182948A Pending JP2022017543A (ja) | 2013-07-03 | 2021-11-10 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016524375A Active JP6600304B2 (ja) | 2013-07-03 | 2014-07-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
JP2019183193A Active JP6977008B2 (ja) | 2013-07-03 | 2019-10-03 | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス |
Country Status (9)
Country | Link |
---|---|
US (3) | US10293187B2 (ja) |
EP (2) | EP4166194A1 (ja) |
JP (3) | JP6600304B2 (ja) |
CN (1) | CN105530869B (ja) |
BR (1) | BR112015032926B1 (ja) |
ES (1) | ES2941665T3 (ja) |
IL (1) | IL243001A0 (ja) |
MX (1) | MX369950B (ja) |
WO (1) | WO2015003142A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10219815B2 (en) | 2005-09-22 | 2019-03-05 | The Regents Of The University Of Michigan | Histotripsy for thrombolysis |
CA2770452C (en) | 2009-08-17 | 2017-09-19 | Histosonics, Inc. | Disposable acoustic coupling medium container |
US9144694B2 (en) | 2011-08-10 | 2015-09-29 | The Regents Of The University Of Michigan | Lesion generation through bone using histotripsy therapy without aberration correction |
WO2014055906A1 (en) | 2012-10-05 | 2014-04-10 | The Regents Of The University Of Michigan | Bubble-induced color doppler feedback during histotripsy |
US11432900B2 (en) | 2013-07-03 | 2022-09-06 | Histosonics, Inc. | Articulating arm limiter for cavitational ultrasound therapy system |
WO2015027164A1 (en) | 2013-08-22 | 2015-02-26 | The Regents Of The University Of Michigan | Histotripsy using very short ultrasound pulses |
JP6979882B2 (ja) | 2015-06-24 | 2021-12-15 | ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン | 脳組織の治療のための組織破砕療法システムおよび方法 |
GB201617255D0 (en) * | 2016-10-11 | 2016-11-23 | Oxford University Innovation Limited | Modular ultrasound apparatus and methods |
WO2020113083A1 (en) | 2018-11-28 | 2020-06-04 | Histosonics, Inc. | Histotripsy systems and methods |
US11497465B2 (en) | 2019-10-25 | 2022-11-15 | Bard Peripheral Vascular, Inc. | Method for treatment of a vascular lesion |
US11813485B2 (en) | 2020-01-28 | 2023-11-14 | The Regents Of The University Of Michigan | Systems and methods for histotripsy immunosensitization |
US20240149078A1 (en) * | 2022-10-28 | 2024-05-09 | Histosonics, Inc. | Histotripsy systems and methods |
WO2024163876A1 (en) * | 2023-02-03 | 2024-08-08 | Sciton, Inc. | Methods and systems for histotripsy |
Family Cites Families (323)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3243497A (en) | 1964-12-11 | 1966-03-29 | Dynapower Systems Corp Of Cali | Universal support for electrotherapeutic treatment head |
US3679021A (en) | 1970-03-25 | 1972-07-25 | Eg & G Inc | Acoustic pulse generating system |
US4016749A (en) | 1973-07-05 | 1977-04-12 | Wachter William J | Method and apparatus for inspection of nuclear fuel rods |
FR2355288A2 (fr) | 1974-11-28 | 1978-01-13 | Anvar | Perfectionnements aux procedes et dispositifs de sondage par ultra-sons |
US4024501A (en) | 1975-09-03 | 1977-05-17 | Standard Oil Company | Line driver system |
US4051394A (en) | 1976-03-15 | 1977-09-27 | The Boeing Company | Zero crossing ac relay control circuit |
US4277367A (en) | 1978-10-23 | 1981-07-07 | Wisconsin Alumni Research Foundation | Phantom material and method |
GB2048478A (en) | 1979-03-20 | 1980-12-10 | Gen Electric Co Ltd | Ultrasonic imaging system |
US4406153A (en) | 1979-05-04 | 1983-09-27 | Acoustic Standards Corporation | Ultrasonic beam characterization device |
US4269174A (en) | 1979-08-06 | 1981-05-26 | Medical Dynamics, Inc. | Transcutaneous vasectomy apparatus and method |
FR2472753A1 (fr) | 1979-12-31 | 1981-07-03 | Anvar | Perfectionnements aux dispositifs de sondage par ultra-sons |
US4305296B2 (en) | 1980-02-08 | 1989-05-09 | Ultrasonic imaging method and apparatus with electronic beam focusing and scanning | |
JPS5711648A (en) | 1980-06-27 | 1982-01-21 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
US4453408A (en) | 1981-03-09 | 1984-06-12 | William Clayman | Device for testing ultrasonic beam profiles |
JPS5826238A (ja) | 1981-08-08 | 1983-02-16 | Fujitsu Ltd | 超音波による圧力測定方式 |
US4622972A (en) | 1981-10-05 | 1986-11-18 | Varian Associates, Inc. | Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing |
DE3220751A1 (de) | 1982-06-02 | 1983-12-08 | Jörg Dr. 8022 Grünwald Schüller | Vorrichtung zur zertruemmerung von konkrementen, insbesondere von nierensteinen, im lebenden menschlichen oder tierischen koerper |
US4550606A (en) | 1982-09-28 | 1985-11-05 | Cornell Research Foundation, Inc. | Ultrasonic transducer array with controlled excitation pattern |
JPS6080779A (ja) | 1983-10-07 | 1985-05-08 | Matsushita Electric Ind Co Ltd | 磁界センサ |
US5143074A (en) | 1983-12-14 | 1992-09-01 | Edap International | Ultrasonic treatment device using a focussing and oscillating piezoelectric element |
USRE33590E (en) | 1983-12-14 | 1991-05-21 | Edap International, S.A. | Method for examining, localizing and treating with ultrasound |
US5143073A (en) | 1983-12-14 | 1992-09-01 | Edap International, S.A. | Wave apparatus system |
US5158070A (en) | 1983-12-14 | 1992-10-27 | Edap International, S.A. | Method for the localized destruction of soft structures using negative pressure elastic waves |
US5150711A (en) | 1983-12-14 | 1992-09-29 | Edap International, S.A. | Ultra-high-speed extracorporeal ultrasound hyperthermia treatment device |
US4549533A (en) | 1984-01-30 | 1985-10-29 | University Of Illinois | Apparatus and method for generating and directing ultrasound |
US4641378A (en) | 1984-06-06 | 1987-02-03 | Raycom Systems, Inc. | Fiber optic communication module |
DE3425705A1 (de) | 1984-07-12 | 1986-01-16 | Siemens AG, 1000 Berlin und 8000 München | Phased-array-geraet |
DE3427001C1 (de) | 1984-07-21 | 1986-02-06 | Dornier System Gmbh, 7990 Friedrichshafen | Ortungs- und Positioniervorrichtung |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US4625731A (en) | 1984-10-10 | 1986-12-02 | Picker International, Inc. | Ultrasonic image display mounting |
US5431621A (en) | 1984-11-26 | 1995-07-11 | Edap International | Process and device of an anatomic anomaly by means of elastic waves, with tracking of the target and automatic triggering of the shootings |
JPS61196718A (ja) | 1985-02-22 | 1986-08-30 | 株式会社日立製作所 | 地絡保護装置 |
US4689986A (en) | 1985-03-13 | 1987-09-01 | The University Of Michigan | Variable frequency gas-bubble-manipulating apparatus and method |
JPS61209643A (ja) | 1985-03-15 | 1986-09-17 | 株式会社東芝 | 超音波診断治療装置 |
US4865042A (en) | 1985-08-16 | 1989-09-12 | Hitachi, Ltd. | Ultrasonic irradiation system |
DE3580848D1 (de) | 1985-09-24 | 1991-01-17 | Hewlett Packard Gmbh | Schaltmatrix. |
DE3544628A1 (de) | 1985-12-17 | 1987-06-19 | Eisenmenger Wolfgang | Einrichtung zur mechanisch akustischen ankopplung von druckwellen, insbesondere von fokussierten stosswellen an den koerper von lebewesen |
DE3607949A1 (de) | 1986-03-11 | 1987-09-17 | Wolf Gmbh Richard | Verfahren zum erkennen von moeglichen gewebeschaedigungen bei der medizinischen anwendung von hochenergie-schall |
US4791915A (en) | 1986-09-29 | 1988-12-20 | Dynawave Corporation | Ultrasound therapy device |
US4984575A (en) | 1987-04-16 | 1991-01-15 | Olympus Optical Co., Ltd. | Therapeutical apparatus of extracorporeal type |
FR2614722B1 (fr) | 1987-04-28 | 1992-04-17 | Dory Jacques | Filtre acoustique permettant de supprimer ou d'attenuer les alternances negatives d'une onde elastique et generateur d'ondes elastiques comportant un tel filtre |
FR2614747B1 (fr) | 1987-04-28 | 1989-07-28 | Dory Jacques | Generateur d'impulsions elastiques ayant une forme d'onde predeterminee desiree et son application au traitement ou au diagnostic medical |
FR2619448B1 (fr) | 1987-08-14 | 1990-01-19 | Edap Int | Procede et dispositif de caracterisation tissulaire par reflexion d'impulsions ultrasonores a large bande de frequences, transposition du spectre de frequence des echos dans une gamme audible et diagnostic par ecoute |
US4973980A (en) | 1987-09-11 | 1990-11-27 | Dataproducts Corporation | Acoustic microstreaming in an ink jet apparatus |
DE3732131A1 (de) | 1987-09-24 | 1989-04-06 | Wolf Gmbh Richard | Fokussierender ultraschallwandler |
DE3741201A1 (de) | 1987-12-02 | 1989-06-15 | Schering Ag | Ultraschallarbeitsverfahren und mittel zu dessen durchfuehrung |
US4989143A (en) | 1987-12-11 | 1991-01-29 | General Electric Company | Adaptive coherent energy beam formation using iterative phase conjugation |
US5163421A (en) | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
US4957099A (en) | 1988-02-10 | 1990-09-18 | Siemens Aktiengesellschaft | Shock wave source for extracorporeal lithotripsy |
US5209221A (en) | 1988-03-01 | 1993-05-11 | Richard Wolf Gmbh | Ultrasonic treatment of pathological tissue |
DE3808783A1 (de) | 1988-03-16 | 1989-10-05 | Dornier Medizintechnik | Steinzerkleinerung durch kombinierte behandlung |
DE3817094A1 (de) | 1988-04-18 | 1989-11-30 | Schubert Werner | Ankopplungs- und haftvorrichtung fuer stosswellenbehandlungsgeraete |
US4938217A (en) | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Electronically-controlled variable focus ultrasound hyperthermia system |
US5158071A (en) | 1988-07-01 | 1992-10-27 | Hitachi, Ltd. | Ultrasonic apparatus for therapeutical use |
EP0548048B1 (en) | 1988-10-26 | 1996-02-14 | Kabushiki Kaisha Toshiba | Shock wave treatment apparatus |
FR2642640B1 (fr) | 1989-02-08 | 1991-05-10 | Centre Nat Rech Scient | Procede et dispositif de focalisation d'ultrasons dans les tissus |
JPH02217000A (ja) | 1989-02-16 | 1990-08-29 | Hitachi Ltd | 超音波探触子 |
JP2694992B2 (ja) | 1989-02-17 | 1997-12-24 | 株式会社東芝 | 結石破砕装置 |
FR2643252B1 (fr) | 1989-02-21 | 1991-06-07 | Technomed Int Sa | Appareil de destruction selective de cellules incluant les tissus mous et les os a l'interieur du corps d'un etre vivant par implosion de bulles de gaz |
US5435311A (en) | 1989-06-27 | 1995-07-25 | Hitachi, Ltd. | Ultrasound therapeutic system |
US5065761A (en) | 1989-07-12 | 1991-11-19 | Diasonics, Inc. | Lithotripsy system |
US5014686A (en) | 1989-08-31 | 1991-05-14 | International Sonic Technologies | Phantom kidney stone system |
US5580575A (en) | 1989-12-22 | 1996-12-03 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US6088613A (en) | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US5542935A (en) | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5065751A (en) | 1990-01-03 | 1991-11-19 | Wolf Gerald L | Method and apparatus for reversibly occluding a biological tube |
US5165412A (en) | 1990-03-05 | 1992-11-24 | Kabushiki Kaisha Toshiba | Shock wave medical treatment apparatus with exchangeable imaging ultrasonic wave probe |
US5091893A (en) | 1990-04-05 | 1992-02-25 | General Electric Company | Ultrasonic array with a high density of electrical connections |
DE4012760A1 (de) | 1990-04-21 | 1992-05-07 | G M T I Ges Fuer Medizintechni | Ultraschall-doppler-verfahren zur bestimmung der steingroesse aus der sinkgeschwindigkeit waehrend der gallen-lithotripsie sowie vorrichtung zur durchfuehrung des verfahrens |
US5215680A (en) | 1990-07-10 | 1993-06-01 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
US6344489B1 (en) | 1991-02-14 | 2002-02-05 | Wayne State University | Stabilized gas-enriched and gas-supersaturated liquids |
US5316000A (en) | 1991-03-05 | 1994-05-31 | Technomed International (Societe Anonyme) | Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy |
US5524620A (en) | 1991-11-12 | 1996-06-11 | November Technologies Ltd. | Ablation of blood thrombi by means of acoustic energy |
US5601526A (en) | 1991-12-20 | 1997-02-11 | Technomed Medical Systems | Ultrasound therapy apparatus delivering ultrasound waves having thermal and cavitation effects |
FR2685872A1 (fr) | 1992-01-07 | 1993-07-09 | Edap Int | Appareil d'hyperthermie ultrasonore extracorporelle a tres grande puissance et son procede de fonctionnement. |
US6436078B1 (en) | 1994-12-06 | 2002-08-20 | Pal Svedman | Transdermal perfusion of fluids |
DE4207463C2 (de) | 1992-03-10 | 1996-03-28 | Siemens Ag | Anordnung zur Therapie von Gewebe mit Ultraschall |
WO1993019705A1 (en) | 1992-03-31 | 1993-10-14 | Massachusetts Institute Of Technology | Apparatus and method for acoustic heat generation and hyperthermia |
US5230340A (en) | 1992-04-13 | 1993-07-27 | General Electric Company | Ultrasound imaging system with improved dynamic focusing |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5362309A (en) | 1992-09-14 | 1994-11-08 | Coraje, Inc. | Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis |
US5523058A (en) | 1992-09-16 | 1996-06-04 | Hitachi, Ltd. | Ultrasonic irradiation apparatus and processing apparatus based thereon |
DE4238645C1 (de) | 1992-11-16 | 1994-05-05 | Siemens Ag | Therapeutischer Ultraschall-Applikator für den Urogenitalbereich |
US5573497A (en) | 1994-11-30 | 1996-11-12 | Technomed Medical Systems And Institut National | High-intensity ultrasound therapy method and apparatus with controlled cavitation effect and reduced side lobes |
US5469852A (en) | 1993-03-12 | 1995-11-28 | Kabushiki Kaisha Toshiba | Ultrasound diagnosis apparatus and probe therefor |
DE4310924C2 (de) | 1993-04-02 | 1995-01-26 | Siemens Ag | Therapieeinrichtung zur Behandlung von pathologischem Gewebe mit Ultraschallwellen und einem Katheder |
DE4403134A1 (de) | 1993-05-14 | 1995-08-03 | Laser Medizin Zentrum Ggmbh Be | Kombinationsvorrichtung zur thermischen Verödung biologischen Gewebes |
US6251100B1 (en) | 1993-09-24 | 2001-06-26 | Transmedica International, Inc. | Laser assisted topical anesthetic permeation |
DE4405504B4 (de) | 1994-02-21 | 2008-10-16 | Siemens Ag | Verfahren und Vorrichtung zum Abbilden eines Objekts mit einem 2-D-Ultraschallarray |
US5509896A (en) | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
JPH0884740A (ja) | 1994-09-16 | 1996-04-02 | Toshiba Corp | 治療装置 |
US5694936A (en) | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
JP3754113B2 (ja) | 1994-09-17 | 2006-03-08 | 株式会社東芝 | 超音波治療装置 |
US5540909A (en) | 1994-09-28 | 1996-07-30 | Alliance Pharmaceutical Corp. | Harmonic ultrasound imaging with microbubbles |
EP0709673A1 (fr) | 1994-10-25 | 1996-05-01 | Laboratoires D'electronique Philips | Dispositif de contrÔle non destructif d'objets tubulaires creux par ultrasons |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
JP3609832B2 (ja) | 1995-01-20 | 2005-01-12 | メデラ インコーポレイテッド | 乳房シールド及び関連した搾乳器を支持する装置 |
US5678554A (en) | 1996-07-02 | 1997-10-21 | Acuson Corporation | Ultrasound transducer for multiple focusing and method for manufacture thereof |
DE19507305A1 (de) | 1995-03-02 | 1996-09-05 | Delma Elektro Med App | Operationsleuchte mit Hauptlampe und Ersatzlampe |
US6176842B1 (en) | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US5873902A (en) | 1995-03-31 | 1999-02-23 | Focus Surgery, Inc. | Ultrasound intensity determining method and apparatus |
US5617862A (en) | 1995-05-02 | 1997-04-08 | Acuson Corporation | Method and apparatus for beamformer system with variable aperture |
US5558092A (en) | 1995-06-06 | 1996-09-24 | Imarx Pharmaceutical Corp. | Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US5566675A (en) | 1995-06-30 | 1996-10-22 | Siemens Medical Systems, Inc. | Beamformer for phase aberration correction |
DE69520670T2 (de) | 1995-07-27 | 2001-09-13 | Agilent Technologies Deutschland Gmbh | Patientenüberwachungsmodul |
US5582578A (en) | 1995-08-01 | 1996-12-10 | Duke University | Method for the comminution of concretions |
JPH0955571A (ja) | 1995-08-11 | 1997-02-25 | Hewlett Packard Japan Ltd | 高絶縁区画付き電子回路基板及び製造方法 |
US5648098A (en) | 1995-10-17 | 1997-07-15 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
US5590657A (en) | 1995-11-06 | 1997-01-07 | The Regents Of The University Of Michigan | Phased array ultrasound system and method for cardiac ablation |
AU721034B2 (en) | 1996-02-15 | 2000-06-22 | Biosense, Inc. | Catheter based surgery |
US5676692A (en) | 1996-03-28 | 1997-10-14 | Indianapolis Center For Advanced Research, Inc. | Focussed ultrasound tissue treatment method |
CH691345A5 (de) | 1996-04-18 | 2001-07-13 | Siemens Ag | Therapiegerät mit einfacher Einstellung eines gewünschten Abstandes von einem Bezugspunkt. |
US6022309A (en) | 1996-04-24 | 2000-02-08 | The Regents Of The University Of California | Opto-acoustic thrombolysis |
US20020045890A1 (en) | 1996-04-24 | 2002-04-18 | The Regents Of The University O F California | Opto-acoustic thrombolysis |
US5724972A (en) | 1996-05-02 | 1998-03-10 | Acuson Corporation | Method and apparatus for distributed focus control with slope tracking |
US5717657A (en) | 1996-06-24 | 1998-02-10 | The United States Of America As Represented By The Secretary Of The Navy | Acoustical cavitation suppressor for flow fields |
US5849727A (en) | 1996-06-28 | 1998-12-15 | Board Of Regents Of The University Of Nebraska | Compositions and methods for altering the biodistribution of biological agents |
US5836896A (en) | 1996-08-19 | 1998-11-17 | Angiosonics | Method of inhibiting restenosis by applying ultrasonic energy |
US5753929A (en) | 1996-08-28 | 1998-05-19 | Motorola, Inc. | Multi-directional optocoupler and method of manufacture |
DE19635593C1 (de) | 1996-09-02 | 1998-04-23 | Siemens Ag | Ultraschallwandler für den diagnostischen und therapeutischen Einsatz |
CA2213948C (en) | 1996-09-19 | 2006-06-06 | United States Surgical Corporation | Ultrasonic dissector |
US6036667A (en) | 1996-10-04 | 2000-03-14 | United States Surgical Corporation | Ultrasonic dissection and coagulation system |
US5769790A (en) | 1996-10-25 | 1998-06-23 | General Electric Company | Focused ultrasound surgery system guided by ultrasound imaging |
US5827204A (en) | 1996-11-26 | 1998-10-27 | Grandia; Willem | Medical noninvasive operations using focused modulated high power ultrasound |
US5797848A (en) | 1997-01-31 | 1998-08-25 | Acuson Corporation | Ultrasonic transducer assembly with improved electrical interface |
US6001069A (en) | 1997-05-01 | 1999-12-14 | Ekos Corporation | Ultrasound catheter for providing a therapeutic effect to a vessel of a body |
US5879314A (en) | 1997-06-30 | 1999-03-09 | Cybersonics, Inc. | Transducer assembly and method for coupling ultrasonic energy to a body for thrombolysis of vascular thrombi |
US6093883A (en) | 1997-07-15 | 2000-07-25 | Focus Surgery, Inc. | Ultrasound intensity determining method and apparatus |
US5944666A (en) | 1997-08-21 | 1999-08-31 | Acuson Corporation | Ultrasonic method for imaging blood flow including disruption or activation of contrast agent |
US6128958A (en) | 1997-09-11 | 2000-10-10 | The Regents Of The University Of Michigan | Phased array system architecture |
US6113558A (en) | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
WO1999022644A1 (en) | 1997-11-03 | 1999-05-14 | Barzell Whitmore Maroon Bells, Inc. | Ultrasound interface control system |
DE19800416C2 (de) | 1998-01-08 | 2002-09-19 | Storz Karl Gmbh & Co Kg | Vorrichtung zur Behandlung von Körpergewebe, insbesondere von oberflächennahem Weichgewebe, mittels Ultraschall |
WO1999034858A1 (en) | 1998-01-12 | 1999-07-15 | Georgia Tech Research Corporation | Assessment and control of acoustic tissue effects |
US6896659B2 (en) | 1998-02-06 | 2005-05-24 | Point Biomedical Corporation | Method for ultrasound triggered drug delivery using hollow microbubbles with controlled fragility |
US6511444B2 (en) | 1998-02-17 | 2003-01-28 | Brigham And Women's Hospital | Transmyocardial revascularization using ultrasound |
US6659105B2 (en) | 1998-02-26 | 2003-12-09 | Senorx, Inc. | Tissue specimen isolating and damaging device and method |
US6165144A (en) | 1998-03-17 | 2000-12-26 | Exogen, Inc. | Apparatus and method for mounting an ultrasound transducer |
US6685640B1 (en) | 1998-03-30 | 2004-02-03 | Focus Surgery, Inc. | Ablation system |
FR2778573B1 (fr) | 1998-05-13 | 2000-09-22 | Technomed Medical Systems | Reglage de frequence dans un appareil de traitement par ultrasons focalises de haute intensite |
JP4095729B2 (ja) | 1998-10-26 | 2008-06-04 | 株式会社日立製作所 | 治療用超音波装置 |
US7687039B2 (en) | 1998-10-28 | 2010-03-30 | Covaris, Inc. | Methods and systems for modulating acoustic energy delivery |
EP1875960A3 (en) | 1998-10-28 | 2008-01-30 | Covaris, Inc. | Controlling sonic treatment |
AU1128600A (en) | 1998-11-20 | 2000-06-13 | Joie P. Jones | Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound |
US6309355B1 (en) | 1998-12-22 | 2001-10-30 | The Regents Of The University Of Michigan | Method and assembly for performing ultrasound surgery using cavitation |
US6508774B1 (en) | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
US6308710B1 (en) | 1999-04-12 | 2001-10-30 | David Silva | Scrotal drape and support |
JP2000300559A (ja) | 1999-04-26 | 2000-10-31 | Olympus Optical Co Ltd | 超音波探触子及びその製造方法 |
FR2792996B1 (fr) | 1999-04-28 | 2001-07-13 | Alm | Butee souple de limitation de course angulaire, systeme articule comprenant une telle butee, et equipement medical comportant un tel systeme articule |
US6890332B2 (en) | 1999-05-24 | 2005-05-10 | Csaba Truckai | Electrical discharge devices and techniques for medical procedures |
US6318146B1 (en) | 1999-07-14 | 2001-11-20 | Wisconsin Alumni Research Foundation | Multi-imaging modality tissue mimicking materials for imaging phantoms |
DE19933135A1 (de) | 1999-07-19 | 2001-01-25 | Thomson Brandt Gmbh | Galvanische Isoliervorrichtung mit Optokoppler für bidirektionale Verbindungsleitungen |
US20030078499A1 (en) | 1999-08-12 | 2003-04-24 | Eppstein Jonathan A. | Microporation of tissue for delivery of bioactive agents |
WO2001012069A1 (en) | 1999-08-13 | 2001-02-22 | Point Biomedical Corporation | Hollow microspheres with controlled fragility for medical use |
US6470204B1 (en) | 1999-08-25 | 2002-10-22 | Egidijus Edward Uzgiris | Intracavity probe for MR image guided biopsy and delivery of therapy |
AU775490B2 (en) | 1999-10-05 | 2004-08-05 | Omnisonics Medical Technologies, Inc. | Method and apparatus for ultrasonic medical treatment, in particular, for debulking the prostate |
US20030236539A1 (en) | 1999-10-05 | 2003-12-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic probe to clear a vascular access device |
US6524251B2 (en) | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US6391020B1 (en) | 1999-10-06 | 2002-05-21 | The Regents Of The Univerity Of Michigan | Photodisruptive laser nucleation and ultrasonically-driven cavitation of tissues and materials |
CA2387127A1 (en) | 1999-10-25 | 2001-05-17 | Therus Corporation | Use of focused ultrasound for vascular sealing |
US7300414B1 (en) | 1999-11-01 | 2007-11-27 | University Of Cincinnati | Transcranial ultrasound thrombolysis system and method of treating a stroke |
US6626855B1 (en) | 1999-11-26 | 2003-09-30 | Therus Corpoation | Controlled high efficiency lesion formation using high intensity ultrasound |
WO2001041655A1 (en) | 1999-12-06 | 2001-06-14 | Simcha Milo | Ultrasonic medical device |
US6719694B2 (en) | 1999-12-23 | 2004-04-13 | Therus Corporation | Ultrasound transducers for imaging and therapy |
US6635017B1 (en) | 2000-02-09 | 2003-10-21 | Spentech, Inc. | Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis |
US6308585B1 (en) | 2000-02-10 | 2001-10-30 | Ultra Sonus Ab | Method and a device for attaching ultrasonic transducers |
US6750463B1 (en) | 2000-02-29 | 2004-06-15 | Hill-Rom Services, Inc. | Optical isolation apparatus and method |
JP3565758B2 (ja) | 2000-03-09 | 2004-09-15 | 株式会社日立製作所 | 腫瘍治療用増感剤 |
AU2001245831A1 (en) | 2000-03-15 | 2001-09-24 | The Regents Of The University Of California | Method and apparatus for dynamic focusing of ultrasound energy |
US6543272B1 (en) | 2000-04-21 | 2003-04-08 | Insightec-Txsonics Ltd. | Systems and methods for testing and calibrating a focused ultrasound transducer array |
US6613004B1 (en) | 2000-04-21 | 2003-09-02 | Insightec-Txsonics, Ltd. | Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system |
US6419648B1 (en) | 2000-04-21 | 2002-07-16 | Insightec-Txsonics Ltd. | Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system |
US6536553B1 (en) | 2000-04-25 | 2003-03-25 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus using acoustic sensor for sub-surface object detection and visualization |
JP4754148B2 (ja) | 2000-05-16 | 2011-08-24 | アトリオニックス・インコーポレイテッド | 超音波トランスデューサを配送部材に組み込む装置および方法 |
US6556750B2 (en) | 2000-05-26 | 2003-04-29 | Fairchild Semiconductor Corporation | Bi-directional optical coupler |
US6477426B1 (en) | 2000-06-20 | 2002-11-05 | Celsion Corporation | System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors |
US6506171B1 (en) | 2000-07-27 | 2003-01-14 | Insightec-Txsonics, Ltd | System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system |
AU2001280040A1 (en) | 2000-07-31 | 2002-02-13 | Galil Medical Ltd. | Planning and facilitation systems and methods for cryosurgery |
IL137689A0 (en) | 2000-08-03 | 2001-10-31 | L R Res & Dev Ltd | System for enhanced chemical debridement |
WO2002016965A2 (en) | 2000-08-21 | 2002-02-28 | V-Target Technologies Ltd. | Radioactive emission detector |
US6612988B2 (en) | 2000-08-29 | 2003-09-02 | Brigham And Women's Hospital, Inc. | Ultrasound therapy |
US7299803B2 (en) | 2000-10-09 | 2007-11-27 | Ams Research Corporation | Pelvic surgery drape |
US6589174B1 (en) | 2000-10-20 | 2003-07-08 | Sunnybrook & Women's College Health Sciences Centre | Technique and apparatus for ultrasound therapy |
US6613005B1 (en) | 2000-11-28 | 2003-09-02 | Insightec-Txsonics, Ltd. | Systems and methods for steering a focused ultrasound array |
US6666833B1 (en) | 2000-11-28 | 2003-12-23 | Insightec-Txsonics Ltd | Systems and methods for focussing an acoustic energy beam transmitted through non-uniform tissue medium |
US6506154B1 (en) | 2000-11-28 | 2003-01-14 | Insightec-Txsonics, Ltd. | Systems and methods for controlling a phased array focused ultrasound system |
US6770031B2 (en) | 2000-12-15 | 2004-08-03 | Brigham And Women's Hospital, Inc. | Ultrasound therapy |
US6626854B2 (en) | 2000-12-27 | 2003-09-30 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US6645162B2 (en) | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US7347855B2 (en) | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
US6607498B2 (en) | 2001-01-03 | 2003-08-19 | Uitra Shape, Inc. | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
JP4712980B2 (ja) | 2001-01-18 | 2011-06-29 | 株式会社日立メディコ | 超音波装置 |
US20020099356A1 (en) | 2001-01-19 | 2002-07-25 | Unger Evan C. | Transmembrane transport apparatus and method |
US6559644B2 (en) | 2001-05-30 | 2003-05-06 | Insightec - Txsonics Ltd. | MRI-based temperature mapping with error compensation |
US6735461B2 (en) | 2001-06-19 | 2004-05-11 | Insightec-Txsonics Ltd | Focused ultrasound system with MRI synchronization |
US6820160B1 (en) | 2001-08-21 | 2004-11-16 | Cypress Semiconductor Corporation | Apparatus for optically isolating a USB peripheral from a USB host |
US7175596B2 (en) | 2001-10-29 | 2007-02-13 | Insightec-Txsonics Ltd | System and method for sensing and locating disturbances in an energy path of a focused ultrasound system |
EP1460938A4 (en) | 2001-11-05 | 2006-07-26 | Computerized Med Syst Inc | DEVICE AND METHOD FOR DISPLAYING, LEADING AND OBJECTING AN EXTERNAL RADIOTHERAPY |
WO2003040672A2 (en) | 2001-11-06 | 2003-05-15 | The Johns Hopkins University | Device for thermal stimulation of small neural fibers |
US6790180B2 (en) | 2001-12-03 | 2004-09-14 | Insightec-Txsonics Ltd. | Apparatus, systems, and methods for measuring power output of an ultrasound transducer |
US6522142B1 (en) | 2001-12-14 | 2003-02-18 | Insightec-Txsonics Ltd. | MRI-guided temperature mapping of tissue undergoing thermal treatment |
CA2474257A1 (en) | 2002-01-18 | 2003-08-07 | American Technology Corporation | Modulator- amplifier |
SG114521A1 (en) | 2002-01-21 | 2005-09-28 | Univ Nanyang | Ultrasonic treatment of breast cancers |
US6942617B2 (en) | 2002-02-04 | 2005-09-13 | Shen-Min Liang | Automatic stone-tracking system |
US7258674B2 (en) | 2002-02-20 | 2007-08-21 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
US6648839B2 (en) | 2002-02-28 | 2003-11-18 | Misonix, Incorporated | Ultrasonic medical treatment device for RF cauterization and related method |
US6736814B2 (en) | 2002-02-28 | 2004-05-18 | Misonix, Incorporated | Ultrasonic medical treatment device for bipolar RF cauterization and related method |
US6780161B2 (en) | 2002-03-22 | 2004-08-24 | Fmd, Llc | Apparatus for extracorporeal shock wave lithotripter using at least two shock wave pulses |
US20030181890A1 (en) | 2002-03-22 | 2003-09-25 | Schulze Dale R. | Medical device that removably attaches to a bodily organ |
US7128711B2 (en) | 2002-03-25 | 2006-10-31 | Insightec, Ltd. | Positioning systems and methods for guided ultrasound therapy systems |
AU2003265111A1 (en) | 2002-04-05 | 2003-11-17 | Misonix Incorporated | Electromechanical transducer with ergonomic shape |
US20030199857A1 (en) | 2002-04-17 | 2003-10-23 | Dornier Medtech Systems Gmbh | Apparatus and method for manipulating acoustic pulses |
AU2002345319B2 (en) | 2002-06-25 | 2008-03-06 | Ultrashape Ltd. | Devices and methodologies useful in body aesthetics |
DE10228550B3 (de) | 2002-06-26 | 2004-02-12 | Dornier Medtech Systems Gmbh | Lithotripter zur Fragmentierung eines Zielobjekts in einem Körper und Verfahren zur Überwachung der Fragmentierung eines Zielobjekts in einem Körper |
US6705994B2 (en) | 2002-07-08 | 2004-03-16 | Insightec - Image Guided Treatment Ltd | Tissue inhomogeneity correction in ultrasound imaging |
US6852082B2 (en) | 2002-07-17 | 2005-02-08 | Adam Strickberger | Apparatus and methods for performing non-invasive vasectomies |
US7367948B2 (en) | 2002-08-29 | 2008-05-06 | The Regents Of The University Of Michigan | Acoustic monitoring method and system in laser-induced optical breakdown (LIOB) |
JP3780253B2 (ja) | 2002-10-01 | 2006-05-31 | オリンパス株式会社 | 超音波用ファントム |
US20040067591A1 (en) | 2002-10-04 | 2004-04-08 | Wisconsin Alumni Research Foundation | Tissue mimicking elastography phantoms |
US7004282B2 (en) | 2002-10-28 | 2006-02-28 | Misonix, Incorporated | Ultrasonic horn |
US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7374551B2 (en) | 2003-02-19 | 2008-05-20 | Pittsburgh Plastic Surgery Research Associates | Minimally invasive fat cavitation method |
JP2006521902A (ja) | 2003-03-31 | 2006-09-28 | ライポソニックス, インコーポレイテッド | 渦型トランスデューサー |
US7377900B2 (en) | 2003-06-02 | 2008-05-27 | Insightec - Image Guided Treatment Ltd. | Endo-cavity focused ultrasound transducer |
WO2005009220A2 (en) | 2003-07-21 | 2005-02-03 | Johns Hopkins University | Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures |
US20050038361A1 (en) | 2003-08-14 | 2005-02-17 | Duke University | Apparatus for improved shock-wave lithotripsy (SWL) using a piezoelectric annular array (PEAA) shock-wave generator in combination with a primary shock wave source |
WO2005018469A1 (en) * | 2003-08-14 | 2005-03-03 | Duke University | Apparatus for improved shock-wave lithotripsy (swl) using a piezoelectric annular array (peaa) shock-wave generator in combination with a primary shock wave |
US7358226B2 (en) | 2003-08-27 | 2008-04-15 | The Regents Of The University Of California | Ultrasonic concentration of drug delivery capsules |
US7359640B2 (en) | 2003-09-30 | 2008-04-15 | Stmicroelectronics Sa | Optical coupling device and method for bidirectional data communication over a common signal line |
JP2005167058A (ja) | 2003-12-04 | 2005-06-23 | Oval Corp | 防爆用絶縁分離回路 |
US20050154308A1 (en) | 2003-12-30 | 2005-07-14 | Liposonix, Inc. | Disposable transducer seal |
US20050154314A1 (en) | 2003-12-30 | 2005-07-14 | Liposonix, Inc. | Component ultrasound transducer |
US7341569B2 (en) | 2004-01-30 | 2008-03-11 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
JP2007520307A (ja) | 2004-02-06 | 2007-07-26 | テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド | 微小気泡局所形成方法、強化超音波の使用によるキャビテーション効果制御および加熱効果制御 |
WO2005092197A1 (en) | 2004-03-09 | 2005-10-06 | Robarts Research Institute | An apparatus and computing device for performing brachytherapy and methods of imaging using the same |
US7196313B2 (en) | 2004-04-02 | 2007-03-27 | Fairchild Semiconductor Corporation | Surface mount multi-channel optocoupler |
US8727987B2 (en) | 2004-05-06 | 2014-05-20 | Nanyang Technological University | Mechanical manipulator for HIFU transducers |
US20070219448A1 (en) | 2004-05-06 | 2007-09-20 | Focus Surgery, Inc. | Method and Apparatus for Selective Treatment of Tissue |
FI116176B (fi) | 2004-05-18 | 2005-09-30 | Abb Oy | Maadoitus- ja ylijännitesuojausjärjestely |
WO2006018837A2 (en) | 2004-08-17 | 2006-02-23 | Technion Research & Development Foundation Ltd. | Ultrasonic image-guided tissue-damaging procedure |
US20060060991A1 (en) | 2004-09-21 | 2006-03-23 | Interuniversitair Microelektronica Centrum (Imec) | Method and apparatus for controlled transient cavitation |
US20120165668A1 (en) | 2010-08-02 | 2012-06-28 | Guided Therapy Systems, Llc | Systems and methods for treating acute and/or chronic injuries in soft tissue |
US20060074303A1 (en) | 2004-09-28 | 2006-04-06 | Minnesota Medical Physics Llc | Apparatus and method for conformal radiation brachytherapy for prostate gland and other tumors |
WO2006043859A1 (en) | 2004-10-18 | 2006-04-27 | Mobile Robotics Sweden Ab | Robot for ultrasonic examination |
US20060173387A1 (en) | 2004-12-10 | 2006-08-03 | Douglas Hansmann | Externally enhanced ultrasonic therapy |
US20060264760A1 (en) | 2005-02-10 | 2006-11-23 | Board Of Regents, The University Of Texas System | Near infrared transrectal probes for prostate cancer detection and prognosis |
US20060206028A1 (en) | 2005-03-11 | 2006-09-14 | Qi Yu | Apparatus and method for ablating deposits from blood vessel |
FR2883190B1 (fr) | 2005-03-15 | 2007-08-10 | Edap S A | Sonde therapeuthique endo-cavitaire comportant un transducteur d'imagerie integre au sein du transducteur ultrasonore de therapie |
US20060241523A1 (en) | 2005-04-12 | 2006-10-26 | Prorhythm, Inc. | Ultrasound generating method, apparatus and probe |
US20070016039A1 (en) | 2005-06-21 | 2007-01-18 | Insightec-Image Guided Treatment Ltd. | Controlled, non-linear focused ultrasound treatment |
US20060293630A1 (en) | 2005-06-22 | 2006-12-28 | Misonix Incorporated | Fluid containment apparatus for surgery and method of use |
US20070010805A1 (en) | 2005-07-08 | 2007-01-11 | Fedewa Russell J | Method and apparatus for the treatment of tissue |
US20070065420A1 (en) | 2005-08-23 | 2007-03-22 | Johnson Lanny L | Ultrasound Therapy Resulting in Bone Marrow Rejuvenation |
US7430913B2 (en) | 2005-08-26 | 2008-10-07 | The Boeing Company | Rapid prototype integrated matrix ultrasonic transducer array inspection apparatus, systems, and methods |
US8414494B2 (en) | 2005-09-16 | 2013-04-09 | University Of Washington | Thin-profile therapeutic ultrasound applicators |
US8057408B2 (en) | 2005-09-22 | 2011-11-15 | The Regents Of The University Of Michigan | Pulsed cavitational ultrasound therapy |
US20070083120A1 (en) | 2005-09-22 | 2007-04-12 | Cain Charles A | Pulsed cavitational ultrasound therapy |
US10219815B2 (en) | 2005-09-22 | 2019-03-05 | The Regents Of The University Of Michigan | Histotripsy for thrombolysis |
DE602006008492D1 (de) | 2005-11-07 | 2009-09-24 | Smith & Nephew Inc | Vorrichtung zur montage eines ultraschalltherapiegerätes an einem orthopädischen gips |
US9387515B2 (en) | 2005-11-15 | 2016-07-12 | The Brigham And Women's Hospital, Inc. | Impedance matching for ultrasound phased array elements |
WO2007062454A1 (en) | 2005-11-30 | 2007-06-07 | Urotech Pty Ltd | Urology drape |
ATE485772T1 (de) | 2006-01-26 | 2010-11-15 | Univ Nanyang | Vorrichtung zur motorisierten nadelplatzierung |
US8235901B2 (en) | 2006-04-26 | 2012-08-07 | Insightec, Ltd. | Focused ultrasound system with far field tail suppression |
US20080154181A1 (en) | 2006-05-05 | 2008-06-26 | Khanna Rohit K | Central nervous system ultrasonic drain |
JP4800862B2 (ja) | 2006-06-21 | 2011-10-26 | 株式会社日立製作所 | ファントム |
US7449947B2 (en) | 2006-09-06 | 2008-11-11 | Texas Instruments Incorporated | Reduction of voltage spikes in switching half-bridge stages |
US8332567B2 (en) | 2006-09-19 | 2012-12-11 | Fisher-Rosemount Systems, Inc. | Apparatus and methods to communicatively couple field devices to controllers in a process control system |
US7559905B2 (en) | 2006-09-21 | 2009-07-14 | Focus Surgery, Inc. | HIFU probe for treating tissue with in-line degassing of fluid |
US8535250B2 (en) | 2006-10-13 | 2013-09-17 | University Of Washington Through Its Center For Commercialization | Method and apparatus to detect the fragmentation of kidney stones by measuring acoustic scatter |
US7950980B2 (en) | 2006-10-19 | 2011-05-31 | Medela Holding Ag | System and device for supporting a breast shield |
US8382689B2 (en) | 2007-02-08 | 2013-02-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device and method for high intensity focused ultrasound ablation with acoustic lens |
EP2170181B1 (en) | 2007-06-22 | 2014-04-16 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
US20090227874A1 (en) | 2007-11-09 | 2009-09-10 | Eigen, Inc. | Holder assembly for a medical imaging instrument |
US8466605B2 (en) | 2008-03-13 | 2013-06-18 | Ultrashape Ltd. | Patterned ultrasonic transducers |
US8926606B2 (en) | 2009-04-09 | 2015-01-06 | Virginia Tech Intellectual Properties, Inc. | Integration of very short electric pulses for minimally to noninvasive electroporation |
JP2010029650A (ja) | 2008-07-01 | 2010-02-12 | Yoshihiro Kagamiyama | 医学用超音波ファントム |
JP2010019554A (ja) | 2008-07-08 | 2010-01-28 | Hioki Ee Corp | 回路基板および測定装置 |
JP4421663B1 (ja) | 2008-09-10 | 2010-02-24 | 株式会社東芝 | プリント配線板、電子機器 |
US20100125225A1 (en) | 2008-11-19 | 2010-05-20 | Daniel Gelbart | System for selective ultrasonic ablation |
DE102008059331B4 (de) | 2008-11-27 | 2012-05-31 | Siemens Aktiengesellschaft | Stativ, insbesondere Bodenstativ |
JP5341569B2 (ja) | 2009-03-06 | 2013-11-13 | 日置電機株式会社 | 絶縁入力型計測機器 |
CA2973013C (en) | 2009-03-20 | 2023-01-24 | University Of Cincinnati | Ultrasound-mediated inducement, detection, and enhancement of stable cavitation |
EP2243561B1 (en) | 2009-04-23 | 2018-11-28 | Esaote S.p.A. | Array of electroacoustic transducers and electronic probe for three-dimensional images comprising said transducer array |
US8992426B2 (en) | 2009-05-04 | 2015-03-31 | Siemens Medical Solutions Usa, Inc. | Feedback in medical ultrasound imaging for high intensity focused ultrasound |
US20100286519A1 (en) | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to automatically identify and treat adipose tissue |
CN102421372B (zh) | 2009-05-13 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | 具有音高偏移的超声血流多普勒音频 |
US8449466B2 (en) | 2009-05-28 | 2013-05-28 | Edwards Lifesciences Corporation | System and method for locating medical devices in vivo using ultrasound Doppler mode |
EP2449544B1 (en) | 2009-06-29 | 2018-04-18 | Koninklijke Philips N.V. | Tumor ablation training system |
CA2770452C (en) | 2009-08-17 | 2017-09-19 | Histosonics, Inc. | Disposable acoustic coupling medium container |
WO2011028609A2 (en) | 2009-08-26 | 2011-03-10 | The Regents Of The University Of Michigan | Devices and methods for using controlled bubble cloud cavitation in fractionating urinary stones |
JP5863654B2 (ja) | 2009-08-26 | 2016-02-16 | リージェンツ オブ ザ ユニバーシティー オブ ミシガン | 治療および画像処理超音波変換器用のマイクロマニピュレータ制御アーム |
US8539813B2 (en) | 2009-09-22 | 2013-09-24 | The Regents Of The University Of Michigan | Gel phantoms for testing cavitational ultrasound (histotripsy) transducers |
JP5542399B2 (ja) | 2009-09-30 | 2014-07-09 | 株式会社日立製作所 | 絶縁回路基板およびそれを用いたパワー半導体装置、又はインバータモジュール |
US9174065B2 (en) | 2009-10-12 | 2015-11-03 | Kona Medical, Inc. | Energetic modulation of nerves |
US20110118600A1 (en) | 2009-11-16 | 2011-05-19 | Michael Gertner | External Autonomic Modulation |
US20110112400A1 (en) | 2009-11-06 | 2011-05-12 | Ardian, Inc. | High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
JP4734448B2 (ja) | 2009-12-04 | 2011-07-27 | 株式会社日立製作所 | 超音波治療装置 |
WO2011092683A1 (en) | 2010-02-01 | 2011-08-04 | Livesonics Ltd. | Non-invasive ultrasound treatment of subcostal lesions |
JP5735488B2 (ja) | 2010-04-09 | 2015-06-17 | 株式会社日立製作所 | 超音波診断治療装置 |
US8876740B2 (en) | 2010-04-12 | 2014-11-04 | University Of Washington | Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound therapy |
WO2011133922A2 (en) | 2010-04-22 | 2011-10-27 | The University Of Washington Through Its Center For Commercialization | Ultrasound based method and apparatus for stone detection and to facilitate clearance thereof |
FR2960789B1 (fr) | 2010-06-07 | 2013-07-19 | Image Guided Therapy | Transducteur d'ultrasons a usage medical |
EP2397188A1 (en) | 2010-06-15 | 2011-12-21 | Theraclion SAS | Ultrasound probe head comprising an imaging transducer with a shielding element |
US20120092724A1 (en) | 2010-08-18 | 2012-04-19 | Pettis Nathaniel B | Networked three-dimensional printing |
US8333115B1 (en) | 2010-08-26 | 2012-12-18 | The Boeing Company | Inspection apparatus and method for irregular shaped, closed cavity structures |
CN105361923B (zh) | 2010-08-27 | 2018-02-02 | Ekos公司 | 用于治疗颅内出血的方法和设备 |
US9669203B2 (en) * | 2011-03-01 | 2017-06-06 | University Of Cincinnati | Methods of enhancing delivery of drugs using ultrasonic waves and systems for performing the same |
US8900145B2 (en) | 2011-03-10 | 2014-12-02 | University Of Washington Through Its Center For Commercialization | Ultrasound systems and methods for real-time noninvasive spatial temperature estimation |
US9498651B2 (en) * | 2011-04-11 | 2016-11-22 | University Of Washington | Methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities and associated systems and devices |
US9144694B2 (en) | 2011-08-10 | 2015-09-29 | The Regents Of The University Of Michigan | Lesion generation through bone using histotripsy therapy without aberration correction |
US20130102932A1 (en) | 2011-10-10 | 2013-04-25 | Charles A. Cain | Imaging Feedback of Histotripsy Treatments with Ultrasound Transient Elastography |
US20130090579A1 (en) | 2011-10-10 | 2013-04-11 | Charles A. Cain | Pulsed Cavitational Therapeutic Ultrasound With Dithering |
US20130190623A1 (en) | 2012-01-06 | 2013-07-25 | James A. Bertolina | Histotripsy Therapy Transducer |
US9049783B2 (en) | 2012-04-13 | 2015-06-02 | Histosonics, Inc. | Systems and methods for obtaining large creepage isolation on printed circuit boards |
WO2013166019A1 (en) | 2012-04-30 | 2013-11-07 | The Regents Of The University Of Michigan | Ultrasound transducer manufacturing using rapid-prototyping method |
CA2873130A1 (en) | 2012-05-23 | 2013-11-28 | Sunnybrook Research Institute | Multi-frequency ultrasound device and method of operation |
WO2014043206A2 (en) | 2012-09-11 | 2014-03-20 | Histosonics, Inc. | Histotripsy therapy system |
WO2014055906A1 (en) | 2012-10-05 | 2014-04-10 | The Regents Of The University Of Michigan | Bubble-induced color doppler feedback during histotripsy |
US20140128734A1 (en) | 2012-11-05 | 2014-05-08 | Ekos Corporation | Catheter systems and methods |
US11432900B2 (en) | 2013-07-03 | 2022-09-06 | Histosonics, Inc. | Articulating arm limiter for cavitational ultrasound therapy system |
WO2015000953A1 (en) | 2013-07-03 | 2015-01-08 | Bracco Suisse S.A. | Devices and methods for the ultrasound treatment of ischemic stroke |
-
2014
- 2014-07-03 WO PCT/US2014/045431 patent/WO2015003142A1/en active Application Filing
- 2014-07-03 US US14/323,693 patent/US10293187B2/en active Active
- 2014-07-03 CN CN201480038082.7A patent/CN105530869B/zh active Active
- 2014-07-03 BR BR112015032926-8A patent/BR112015032926B1/pt active IP Right Grant
- 2014-07-03 EP EP22213038.7A patent/EP4166194A1/en active Pending
- 2014-07-03 ES ES14819742T patent/ES2941665T3/es active Active
- 2014-07-03 JP JP2016524375A patent/JP6600304B2/ja active Active
- 2014-07-03 MX MX2015017596A patent/MX369950B/es active IP Right Grant
- 2014-07-03 EP EP14819742.9A patent/EP3016594B1/en active Active
-
2015
- 2015-12-21 IL IL243001A patent/IL243001A0/en unknown
-
2019
- 2019-05-13 US US16/410,821 patent/US20190275353A1/en active Pending
- 2019-10-03 JP JP2019183193A patent/JP6977008B2/ja active Active
-
2021
- 2021-11-10 JP JP2021182948A patent/JP2022017543A/ja active Pending
-
2024
- 2024-06-07 US US18/737,746 patent/US20240316367A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN105530869B (zh) | 2019-10-29 |
US20240316367A1 (en) | 2024-09-26 |
ES2941665T3 (es) | 2023-05-24 |
CN105530869A (zh) | 2016-04-27 |
EP3016594A1 (en) | 2016-05-11 |
MX2015017596A (es) | 2016-12-16 |
EP3016594B1 (en) | 2023-01-25 |
EP4166194A1 (en) | 2023-04-19 |
JP6600304B2 (ja) | 2019-10-30 |
JP6977008B2 (ja) | 2021-12-08 |
BR112015032926B1 (pt) | 2022-04-05 |
BR112015032926A2 (ja) | 2017-07-25 |
JP2020018878A (ja) | 2020-02-06 |
JP2016527945A (ja) | 2016-09-15 |
WO2015003142A1 (en) | 2015-01-08 |
IL243001A0 (en) | 2016-02-29 |
US20190275353A1 (en) | 2019-09-12 |
US20150011916A1 (en) | 2015-01-08 |
EP3016594A4 (en) | 2017-06-14 |
US10293187B2 (en) | 2019-05-21 |
MX369950B (es) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6977008B2 (ja) | 衝撃散乱を使用した気泡雲形成のために最適化されたヒストトリプシ励起シーケンス | |
US11819712B2 (en) | Histotripsy using very short ultrasound pulses | |
US10772646B2 (en) | Method for controlling histotripsy using confocal fundamental and harmonic superposition combined with hundred-microsecond ultrasound pulses | |
US20150258352A1 (en) | Frequency compounding ultrasound pulses for imaging and therapy | |
JP7458186B2 (ja) | 改良された音響波面を伴う高速パルス電気水圧(eh)ショックウェーブ発生装置 | |
JP2019513438A5 (ja) | ||
KR20170118745A (ko) | 조직에서 이물질을 제거하는 방법 및 시스템 | |
US20110270138A1 (en) | Ultrasound macro-pulse and micro-pulse shapes for neuromodulation | |
Inaba et al. | Coagulation of large regions by creating multiple cavitation clouds for high intensity focused ultrasound treatment | |
CA2605089A1 (en) | Ultrasound device | |
CN104093452B (zh) | 超声波像系统及超声波像生成方法 | |
JP2016527945A5 (ja) | ||
KR20090117208A (ko) | 충격파-초음파 통합형 치료기 | |
CN113349881A (zh) | 上百阵元相控阵脉冲超声多焦点组织毁损控制方法和系统 | |
CN202355446U (zh) | 一种压电聚焦式超声波碎石装置 | |
Kyriakou | Multi-physics computational modeling of focused ultrasound therapies | |
JP3644644B2 (ja) | 超音波治療装置 | |
WO2017077605A1 (ja) | 超音波医療装置 | |
Paonessa et al. | Extracorporeal shock wave lithotripsy: generators and treatment techniques | |
Osuga et al. | 2P5-2 Acceleration of Lithotripsy Using Cavitation Bubbles Induced by Second-harmonic Superimposition | |
Umemura et al. | High-throughput coagulation by heating with laterally enlarged focus, enhanced by mircobubble clouds created by electronically scanned trigger pulses | |
Ito et al. | Effect of alternate transmission of split apertures on bubble behavior and temperature rise for bubble-enhanced ultrasound treatment | |
KR20240078035A (ko) | 캐비테이션 버블 제어를 위한 초음파 신호 발생 방법 및 이를 적용한 초음파 치료 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211203 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221019 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230809 |