WO2017077605A1 - 超音波医療装置 - Google Patents

超音波医療装置 Download PDF

Info

Publication number
WO2017077605A1
WO2017077605A1 PCT/JP2015/081070 JP2015081070W WO2017077605A1 WO 2017077605 A1 WO2017077605 A1 WO 2017077605A1 JP 2015081070 W JP2015081070 W JP 2015081070W WO 2017077605 A1 WO2017077605 A1 WO 2017077605A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
output
bubble
ultrasonic wave
unit
Prior art date
Application number
PCT/JP2015/081070
Other languages
English (en)
French (fr)
Inventor
定生 江幡
東 隆
一郎 佐久間
高木 周
歩 石島
田中 純
Original Assignee
オリンパス株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, 国立大学法人東京大学 filed Critical オリンパス株式会社
Priority to PCT/JP2015/081070 priority Critical patent/WO2017077605A1/ja
Priority to JP2017548565A priority patent/JPWO2017077605A1/ja
Publication of WO2017077605A1 publication Critical patent/WO2017077605A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body

Definitions

  • the present invention relates to an ultrasonic medical device.
  • HIFU High Intensity Focused Ultrasound
  • Patent Document 1 an ultrasonic treatment method using focused ultrasound (HIFU: High Intensity Focused Ultrasound) in combination with microbubbles.
  • HIFU is a technology that focuses ultrasound and forms a focal point with high energy density, and can treat living tissue locally at the focal point.
  • Microbubbles can be generated using nanodroplets.
  • the nanodroplet is a nanometer-size capsule made of a film of lipid, protein, biodegradable polymer or the like and enclosing a liquid.
  • the liquid changes to bubbles due to a decrease in pressure, and micrometer-sized bubbles (microbubbles) are generated.
  • the microbubbles vibrate by ultrasonic waves and have a function of promoting the warming action of the living tissue by ultrasonic irradiation. Furthermore, the microbubbles are crushed by ultrasonic waves, and at that time, physical energy is generated.
  • nanodroplets are accumulated in cancer tissue, and HIFU is irradiated to the cancer tissue, so that the cell cannot be destroyed by itself. Cells can be destroyed. Since the tissue in the region where the nanodroplet is not present is hardly heated by such a low energy HIFU, only the tissue in the region where the nanodroplet is present can be selectively treated.
  • the ultrasonic device described in Patent Document 1 cannot grasp the temperature of the living tissue irradiated with the HIFU and the generation state of the microbubbles, the irradiation amount of the HIFU given to the living tissue is appropriately controlled. There is a problem that it is difficult. When the irradiation amount of HIFU is insufficient, microbubbles cannot be generated or the living tissue cannot be heated to a necessary temperature. When the irradiation amount of HIFU is excessive, the temperature of the living tissue becomes excessively high. Furthermore, the appropriate amount of ultrasound irradiation varies depending on the organ and the site.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an ultrasonic medical device capable of controlling the amount of ultrasonic irradiation without excess or deficiency regardless of the organ or region to be treated.
  • the present invention provides an ultrasonic element for outputting a first ultrasonic wave for generating bubbles in the biological tissue and a second ultrasonic wave for heating the biological tissue from the ultrasonic element.
  • a drive unit for driving the bubble, a bubble detection unit for detecting the bubble, and at least one of the first ultrasonic wave and the second ultrasonic wave based on a detection result of the bubble by the bubble detection unit There is provided an ultrasonic medical device including a control unit that controls the driving unit so as to adjust an output value.
  • 1 is an overall configuration diagram of an ultrasonic medical device according to an embodiment of the present invention. It is a figure explaining the structure of the 1st ultrasonic element in the ultrasonic medical apparatus of FIG. 1, a 2nd ultrasonic element, and the ultrasonic pulse output from each ultrasonic element. It is a flowchart which shows operation
  • FIG. 12 shows the output of a phase change ultrasonic pulse and a treatment ultrasonic pulse.
  • FIG. 12 shows the other example of the time change of the output of a phase change ultrasonic pulse and a treatment ultrasonic pulse by the ultrasonic medical device of FIG. 12, and the output of a phase change ultrasonic pulse and a treatment ultrasonic pulse.
  • 6 is a flowchart showing an operation of a third modification of the ultrasonic medical apparatus in FIG. 1. It is a figure which shows an example of the time change of the temperature of the cancer tissue in a 3rd modification. It is a flowchart which shows operation
  • the ultrasonic medical device 100 outputs a phase change ultrasonic pulse W1 (first ultrasonic wave) and a therapeutic ultrasonic pulse W2 (second ultrasonic wave).
  • a unit 1 a diagnostic unit 2 that acquires an ultrasound image of the living tissue A, and a treatment unit 1 and a control unit 3 that controls the diagnostic unit 2 are provided.
  • Reference numeral 4 denotes an elongated probe inserted into the body, and reference numeral 5 denotes a housing connected to the proximal end of the probe 4.
  • the treatment unit 1 includes a first pulse generation unit (drive unit) 11 that generates a first pulse electric signal, and a first amplifying the first pulse electric signal generated by the first pulse generation unit 11 And the first ultrasonic element that generates the phase change ultrasonic pulse W1 or the therapeutic ultrasonic pulse W2 by applying the first pulse electric signal amplified by the first amplifier 12 13.
  • the diagnostic unit 2 includes a second pulse generator 21 that generates a second pulse electric signal, and a second amplifier 22 that amplifies the second pulse electric signal generated by the second pulse generator 21. And a second ultrasonic element 23 that generates a diagnostic ultrasonic pulse W3 when a second pulse electric signal amplified by the second amplifying unit 22 is applied.
  • the second ultrasonic element 23 receives the reflected echo of the diagnostic ultrasonic pulse W3 from the living tissue A, converts the reflected echo into an electrical signal (echo signal), and converts the echo signal into a third amplification unit 24 (described later). ).
  • FIG. 2 shows the shape and arrangement of the first ultrasonic element 13 and the second ultrasonic element 23.
  • the first ultrasonic element 13 and the second ultrasonic element 23 are provided at the tip of the probe 4.
  • the first ultrasonic element 13 outputs focused ultrasonic waves (HIFU) focused from the concave radiation surface 13a to the focal point F as phase change ultrasonic pulses W1 and therapeutic ultrasonic pulses W2.
  • the second ultrasonic element 23 outputs a divergent ultrasonic wave as a diagnostic ultrasonic pulse W3 from the convex radiation surface 23a.
  • the first ultrasonic element 13 has an annular shape, and the second ultrasonic element 23 is disposed in the center of the first ultrasonic element 13.
  • the diagnostic ultrasonic pulse W3 is irradiated to the range including the focal point F of the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2, and an ultrasonic image in the range including the focal point F is acquired by the diagnostic unit 2. It is like that.
  • the phase change ultrasonic pulse W1 is used to generate nanobubbles by bubbling nanodroplets (bubble material) C.
  • the nanodroplet C is a nanometer-sized capsule made of a lipid film, a protein, or a polymer film and enclosing a liquid.
  • the membrane holds a ligand that specifically binds to a specific component in the living body.
  • the liquid has a boiling point higher than the body temperature (37 ° C.) and lower than the boiling point of water (100 ° C.).
  • the nanodroplet C is bubbled when irradiated with ultrasonic waves having an amplitude greater than or equal to a predetermined value. Therefore, the phase change ultrasonic pulse W1 has an amplitude greater than or equal to a predetermined value.
  • the nanodroplet C is irradiated with the phase change ultrasonic pulse W1
  • the nanodroplet C is bubbled due to a pressure drop, and microbubbles that are micrometer-sized bubbles are generated.
  • the microbubble has a higher reflectance than the living tissue A with respect to the diagnostic ultrasonic pulse W3. Therefore, in the ultrasonic image, the microbubble region has a higher luminance value than the region of the living tissue A.
  • the treatment ultrasonic pulse W2 is for heating and treating a treatment target site of the living tissue A, and the nanodroplet C is not bubbled by the treatment ultrasonic pulse W2.
  • C has an amplitude less than a predetermined value at which bubbles are formed.
  • the cancer tissue B is treated with the therapeutic ultrasonic pulse W2. Therefore, in the nanodroplet C, a ligand that specifically binds to cancer cells and a liquid having a boiling point at a temperature at which the cancer cells die (for example, 50 ° C.) are used.
  • the diagnosis unit 2 further amplifies the echo signal output from the second ultrasonic element 23, and sets the amplitude of the echo signal amplified by the third amplifier 24 to the luminance value Y.
  • a luminance value conversion unit 25 for conversion, an image construction unit 26 for forming an ultrasonic image based on the luminance value Y converted by the luminance value conversion unit 25, and an ultrasonic image formed by the image construction unit 26 The display unit 27 to display, the storage unit 28 that stores the luminance value Y converted by the luminance value conversion unit 25, the luminance value Yth stored in the storage unit 28 and the latest luminance received from the luminance value conversion unit 25
  • a bubble detection unit 29 that detects microbubbles based on the value Y is provided.
  • the luminance value conversion unit 25 transmits the luminance value Y obtained from the echo signal to the image construction unit 26. Further, the luminance value conversion unit 25 transmits the first obtained luminance value Y to the storage unit 28 and transmits the second and subsequent luminance values Y to the bubble detection unit 29.
  • the storage unit 28 stores the luminance value Y received from the luminance value conversion unit 25.
  • luminance value Yth the luminance value Y stored in the storage unit 28 is referred to as “luminance value Yth”.
  • the bubble detection unit 29 compares the latest luminance value Y received from the luminance value conversion unit 25 with the luminance value Yth. Bubble detection unit 29 determines that microbubbles are present when luminance value Y is greater than luminance value Yth. On the other hand, when the brightness value Y is equal to or less than the brightness value Yth, the bubble detection unit 29 determines that there is no microbubble. The bubble detection unit 29 transmits the detection result of the microbubbles to the output control unit 31 and the intensity control unit 32 in the control unit 3.
  • the bubble detection unit 29 outputs the ultrasonic wave received by the second ultrasonic element 23 while the diagnostic ultrasonic pulse W3 is output from the second ultrasonic element 23 and the ultrasonic image is acquired.
  • the ultrasonic wave emitted from the nanodroplet C is detected, and it is determined whether or not the nanodroplet C exists at the irradiation target position (the focal point F and the vicinity of the focal point F) of the phase change ultrasonic pulse W1. The result is transmitted to the output control unit 31.
  • the control unit 3 includes an output control unit 31 that controls the timing of output of ultrasonic pulses from the first ultrasonic element 13 and the second ultrasonic element 23, and a phase output from the first ultrasonic element 13. And an intensity control unit 32 that controls the intensity of the changing ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2.
  • the output control unit 31 controls the timing at which the first pulse generation unit 11 generates the first pulse electric signal for driving the first ultrasonic element 13, thereby controlling the first ultrasonic generation unit 13. The timing at which the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2 are output is controlled. Similarly, the output control unit 31 controls the timing at which the second pulse generation unit 21 generates the second pulse electric signal for driving the second ultrasonic element 23, thereby controlling the second ultrasonic wave. The timing at which the diagnostic ultrasonic pulse W3 is output from the element 23 is controlled.
  • the output control unit 31 repeatedly outputs the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2 in order.
  • the output control unit 31 outputs the first diagnostic ultrasonic pulse W3 from the second ultrasonic element 23 prior to the output of the first phase change ultrasonic pulse W1.
  • an ultrasonic image before the biological tissue A is irradiated with the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2 is acquired, and the luminance value Y of the ultrasonic image is stored in the storage unit 28 as the luminance value Yth. Is done.
  • the output control unit 31 continues to output the phase change ultrasonic pulse. The irradiation of W1 is executed.
  • the output control unit 31 does not execute the irradiation of the phase change ultrasonic pulse W1. Then, a display to the effect that the nano droplet C does not exist is displayed on the display unit 27.
  • the output control unit 31 continues or ends the output of the phase change ultrasonic pulse W1 based on the detection result of the microbubbles by the bubble detection unit 29. Make a decision. That is, the output control unit 31 outputs the second diagnostic ultrasonic pulse W3 immediately after the output of the phase change ultrasonic pulse W1.
  • the luminance value Y is acquired by the luminance value conversion unit 25, and the presence or absence of microbubbles is determined by the bubble detection unit 29.
  • the luminance value Y acquired by the second diagnostic ultrasonic pulse W3 is referred to as “luminance value Y1”.
  • the output control unit 31 continuously outputs the phase change ultrasonic pulse W1. Meanwhile, immediately before the output of the phase change ultrasonic pulse W1, the diagnostic ultrasonic pulse W3 is output, and the bubble detection unit 29 determines whether or not the nano droplet is present at the irradiation position of the phase change ultrasonic pulse W1. Determined. When the nano droplet is present at the irradiation position of the phase change ultrasonic pulse W1, the output control unit 31 executes the irradiation of the phase change ultrasonic pulse W1.
  • the output control unit 31 does not execute the irradiation of the phase change ultrasonic pulse W1, and no nano droplet is present thereafter.
  • the display is displayed on the display unit 27.
  • the output control unit 31 ends the output of the phase change ultrasonic pulse W1.
  • the phase change ultrasonic pulse W ⁇ b> 1 is continuously output until microbubbles are generated and detected by the bubble detection unit 29.
  • the output control unit 31 determines whether or not to subsequently output the therapeutic ultrasonic pulse W2 based on the detection result of the microbubbles by the bubble detection unit 29 after the output of the phase change ultrasonic pulse W1 is completed. I do. That is, the output control unit 31 outputs the third diagnostic ultrasonic pulse W3 after a predetermined time from the end of the output of the phase change ultrasonic pulse W1. Thereby, the luminance value Y is acquired by the luminance value conversion unit 25, and the presence or absence of microbubbles is determined by the bubble detection unit 29.
  • luminance value Y acquired by the third diagnostic ultrasonic pulse W3 is referred to as “luminance value Y2”.
  • the bubble detection unit 29 compares the irradiation position distribution of the phase change ultrasonic pulse W1 with the distribution of the microbubbles, and the irradiation position of the phase change ultrasonic pulse W1 matches the position where the microbubbles are generated. It is determined whether or not. If the two positions do not match, there is a possibility that the nano droplet does not exist at the irradiation position of the phase change ultrasonic pulse W1, so the output control unit 31 performs the subsequent phase change ultrasonic pulse W1 and treatment ultrasonic wave. Irradiation of the pulse W2 is not executed, and a display to the effect that no nano-droplet exists is displayed on the display unit 27.
  • the microbubble disappears gradually.
  • the output control unit 31 subsequently outputs the therapeutic ultrasonic pulse W2.
  • the output control unit 31 ends the treatment operation by the series of ultrasonic pulses without outputting the therapeutic ultrasonic pulse W2.
  • the intensity control unit 32 adjusts the amplification factor of the first pulse electric signal by the first amplification unit 12 to thereby adjust the phase change ultrasonic pulse W1 and the treatment ultrasonic pulse output from the first ultrasonic element 13. Control the amplitude of W2.
  • the intensity control unit 32 increases the amplitude of the phase change ultrasonic pulse W1 and the treatment ultrasonic pulse W2 based on the detection result of the microbubbles by the bubble detection unit 29. That is, when a microbubble is not detected immediately after the output of the phase change ultrasonic pulse W1, the intensity control unit 32 increases the amplitude of the phase change ultrasonic pulse W1 to be output next. Further, when the microbubble is not detected after a predetermined time from the end of the output of the phase change ultrasonic pulse W1, the intensity control unit 32 increases the amplitude of the treatment ultrasonic pulse W2 that is output next.
  • a user administers a medicine containing nanodroplets to a living body.
  • the nanodroplets administered into the living body accumulate in the cancer tissue B as shown in FIG.
  • the user positions the probe 4 with respect to the living tissue A so that the focal point F is located on the cancer tissue B, and starts irradiation of the ultrasonic pulse to the living tissue A.
  • the first diagnostic ultrasonic pulse W3 is irradiated to the living tissue A including the cancer tissue B, an ultrasonic image is acquired, and the luminance value Yth is stored in the storage unit 28 (Ste S1).
  • the cancer tissue B is irradiated with the phase change ultrasonic pulse W1 (step S2).
  • the biological tissue A is irradiated with the second diagnostic ultrasonic pulse W3, an ultrasonic image is acquired, and the luminance value Y1 is acquired (step S3).
  • the luminance value Y1 is larger than the luminance value Yth.
  • the luminance value Y1 is It becomes the luminance value Yth or less.
  • the bubble detection unit 29 determines whether or not a microbubble has occurred (step S4).
  • the output control unit 31 irradiates the cancer tissue B again with the phase change ultrasonic pulse W1 (step S2), and the phase change ultrasonic wave is generated until the microbubble is generated.
  • the irradiation with the pulse W1 is repeated (steps S2 to S4).
  • the amplitude of the phase change ultrasonic pulse W1 is increased stepwise by the intensity control unit 32 (step S5).
  • step S6 After the occurrence of microbubbles (YES in step S4), when a predetermined time has elapsed (step S6), the living tissue A is irradiated with the third diagnostic ultrasonic pulse W3, an ultrasonic image is acquired, and the luminance value Y2 is acquired (step S7).
  • the luminance value Y2 becomes higher than the luminance value Yth, and when the microbubble has disappeared, the luminance value Y2 becomes the luminance value Yth. It becomes as follows.
  • the disappearance rate of the microbubbles depends on the relationship between the boiling point of the liquid of the nanodroplet and the temperature of the cancer tissue B around the microbubbles when the bubbles are formed.
  • the microbubble extinction rate when the temperature around the microbubble at the time of bubbling is equal to the boiling point of the liquid is used as a threshold, the microbubble is stably present when the temperature of the cancer tissue B is equal to or higher than the boiling point of the liquid.
  • the annihilation speed becomes a predetermined threshold value or less.
  • step S8 microbubbles are detected when the temperature of cancer tissue B is 50 ° C. or higher, which is the boiling point of the liquid, while when the temperature of cancer tissue B is less than 50 ° C., microbubbles are detected. Not detected.
  • step S8 When the microbubble is not detected in step S8 (NO in step S8), the output control unit 31 irradiates the cancer tissue B with the therapeutic ultrasonic pulse W2 (step S10), and the microbubble is detected in step S8. Until the temperature of the cancer tissue B reaches 50 ° C. or higher, irradiation with the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2 is repeated (steps S2 to S9).
  • the amplitude of the therapeutic ultrasound pulse W2 is increased stepwise by the intensity control unit 32 (steps S9 and S10). If a microbubble is detected in step S8 (YES in step S8), the output control unit 31 does not output the treatment ultrasonic pulse W2, and ends the treatment by irradiation with the ultrasonic pulse.
  • the phase change ultrasonic pulse W1 is repeated until the generation of microbubbles is detected. Since it continues to be output, microbubbles can be generated reliably. Further, by gradually increasing the amplitude of the phase change ultrasonic pulse W1, it is possible to promote the bubble formation of the nanodroplet and to generate the microbubble more reliably. In addition, after the microbubbles are generated, the repeated output of the phase change ultrasonic pulse W1 is quickly stopped. Thus, there is an advantage that the irradiation amount of the phase change ultrasonic pulse W1 can be controlled so as not to be excessive or insufficient.
  • the cancer tissue B is a liquid of microbubbles. It is detected whether or not it has been heated to a boiling point of 50 ° C. or higher, and the therapeutic ultrasonic pulse W2 is continuously output until the temperature of the cancer tissue B reaches 50 ° C. or higher, so that the cancer tissue B is reliably treated. be able to. Further, by gradually increasing the amplitude of the treatment ultrasonic pulse W2, it is possible to promote the warming of the cancer tissue B and to treat the cancer tissue B more reliably.
  • the repeated output of the therapeutic ultrasonic pulse W2 is quickly stopped.
  • the irradiation amount of the therapeutic ultrasonic pulse W2 can be controlled so as not to be excessive or insufficient.
  • the element necessary for detecting the microbubble is only the second ultrasonic element 23, and a special device or a large-scale device is not required.
  • the luminance values Y1 and Y2 of the ultrasonic image it is possible to accurately detect the occurrence of microbubbles in any living tissue A as well as the cancer tissue B. Therefore, there is an advantage that the doses of the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2 can be controlled so as not to be excessive or insufficient regardless of the organ or site to be treated.
  • the amplitude of the output values of the phase change ultrasonic pulse W1 and the treatment ultrasonic pulse W2 is increased.
  • the peak values or output times of the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2 may be increased.
  • two or more of the amplitude, peak value, and irradiation time may be increased simultaneously.
  • FIG. 5 shows an example in which both the amplitude and peak value of the therapeutic ultrasonic pulse W2 are increased.
  • FIG. 6 shows an example of increasing the output time of the therapeutic ultrasound pulse W2.
  • the peak value and the output time are controlled by the output control unit 31 controlling the waveform of the pulse electrical signal generated by the first pulse generation unit 11 and the second pulse generation unit 21, respectively.
  • the control unit 301 further includes a storage unit 33 for storing the output values of the phase change ultrasonic pulse W1 and the therapeutic ultrasonic pulse W2. I have.
  • the output value is at least one of the amplitude value, the peak value, and the output time of the phase change ultrasonic pulse W1 and the treatment ultrasonic pulse W2.
  • the output control unit 31 and the intensity control unit 32 when a microbubble is detected in step 8, the output value of the therapeutic ultrasound pulse W2 output immediately before. Is stored in the storage unit 33 (step S11). After the output value is stored in the storage unit 33, the output control unit 31 and the intensity control unit 32 generate the therapeutic ultrasound pulse W2 having the output value stored in the storage unit 33 (step S12).
  • Step S1 to S10 are omitted, and the therapeutic ultrasonic pulse W2 having a certain output value necessary for heating the cancer tissue B to 50 ° C. or higher is output.
  • FIG. 9, FIG. 10, and FIG. 11 each show an example when the output value is an amplitude, a peak value, and an output time. Therefore, after step S11, by moving the focal point F with respect to the cancer tissue B, there is an advantage that a wide range can be efficiently heated and treated without excess or deficiency.
  • the ultrasonic medical device 102 according to the second modification is a further modification of the ultrasonic medical device 101.
  • the control unit 302 further includes another storage unit.
  • storage part 34 memorize
  • the output control unit 31 and the intensity control unit 32 each store the amplitude, peak value, and output time of the therapeutic ultrasonic pulse W2 each time the therapeutic ultrasonic pulse W2 is output. Are stored and accumulated respectively. As shown in FIG. 13, when the microbubble is detected in step 8, the output control unit 31 and the intensity control unit 32 calculate the output from the therapeutic ultrasound pulse W2 accumulated in the storage unit 34. The integrated energy value of the therapeutic ultrasonic pulse W2 output until then is calculated, and the calculated integrated energy value is stored in the storage unit.
  • the output control unit 31 and the intensity control unit 32 treat the therapeutic ultrasonic pulse so that the output energy amount of the therapeutic ultrasonic pulse W2 per one output becomes equal to the energy integrated value stored in the storage unit 34.
  • the output value of W2 is calculated, and the calculated output value is stored in the storage unit 34 as a fixed setting value (step S13).
  • the intensity control unit 32 calculates an offset value by multiplying the energy integrated value by a coefficient, calculates a fixed amplitude value by adding the offset value to the amplitude value, and stores the fixed amplitude value in the storage unit 34.
  • the amplitude value to which the offset value is added is the amplitude value of the therapeutic ultrasonic pulse W2 output immediately before the microbubble is detected in step 8.
  • the output control unit 31 and the intensity control unit 32 After the fixed setting value is stored in the storage unit 34, the output control unit 31 and the intensity control unit 32 generate the therapeutic ultrasonic pulse W2 having the fixed setting value stored in the storage unit 34 (step S14).
  • FIGS. 14 to 16 once the cancer tissue B is heated to 50 ° C. or higher, steps S1 to S10 are thereafter omitted, and the cancer tissue B is brought to 50 ° C.
  • a therapeutic ultrasonic pulse W2 having an energy equal to that required for heating is output with one output.
  • FIG. 14, FIG. 15 and FIG. 16 each show an example when the output value is an amplitude, a peak value, and an output time.
  • the ultrasonic medical apparatus according to the third modification differs from the above-described ultrasonic medical apparatus 100 in the operation after the microbubble is detected in step S8.
  • the apparatus configuration of the ultrasonic medical apparatus of this modification is the same as that of the ultrasonic medical apparatus 100 of FIG.
  • step S8 After the microbubbles are first detected in step S8, that is, after the cancer tissue B is once heated to 50 ° C. or higher, the output control unit 31 performs treatment ultrasonic pulses for a predetermined time T (steps S16 and S17). The output of W2 and the phase change ultrasonic pulse W1 is continued (steps S2 to S10).
  • the output control unit 31 and the intensity control are performed. At least one of the units 32 reduces the output value of the therapeutic ultrasound pulse W2 stepwise (step S15).
  • FIG. 18 shows the time change of the temperature of the cancer tissue B in this modification.
  • the output value of the therapeutic ultrasonic pulse W2 decreases, the temperature increase of the cancer tissue B due to the irradiation of the therapeutic ultrasonic pulse W2 decreases.
  • the temperature of the cancer tissue B can be lowered to less than 50 ° C.
  • the disappearance rate of the microbubbles is greater than the threshold value, so that it is detected in step S8 that the temperature of the cancer tissue B has decreased to less than 50 ° C.
  • the output value of the sonic pulse W2 is increased.
  • the temperature of the cancer tissue B is estimated based on the disappearance rate of the microbubbles.
  • the therapeutic ultrasonic pulse W2 is weakened, and the temperature of the cancer tissue B is lower than 50 ° C.
  • the ultrasonic medical apparatus according to the fourth modification is a modification of the third modification. As shown in FIGS. 19 and 20, after the microbubble is detected in step S8, the luminance value Y2 is detected. Is different from the third modification in that the increase / decrease width of the output value of the therapeutic ultrasonic pulse W2 is set based on the difference
  • the apparatus configuration of the ultrasonic medical apparatus of this modification is the same as that of the ultrasonic medical apparatus 100 of FIG.
  • step S8 If microbubbles are detected in step S8, the difference
  • step S18 the therapeutic ultrasound pulse W2 is output (step S19), and then the same operations as steps S2 to S10 are executed (steps S20 to S28).
  • steps S20 to S26 and S28 are the same as steps S2 to S8 and S10, respectively, but step S27 is different from step S9.
  • step S27 the increase range of the output value is set so that the increase range of the output value decreases as
  • step S17 When the predetermined time T has elapsed (YES in step S17), the output value of the therapeutic ultrasound pulse W2 output immediately before is stored in the storage unit 33 (step S29) and the storage unit 33, as in steps S11 and S12.
  • the therapeutic ultrasonic pulse W2 having the output value stored in the output is output (step S30).
  • is a value representing the amount of microbubbles present in the cancer tissue B.
  • is a value representing the amount of microbubbles present in the cancer tissue B.
  • the output of the therapeutic ultrasonic pulse W2 is such that the therapeutic ultrasonic pulse W2 is attenuated when the temperature of the cancer tissue B is high and the therapeutic ultrasonic pulse W2 is increased when the temperature of the cancer tissue B is low. Increase / decrease value is adjusted.
  • the temperature reached by the cancer tissue B due to irradiation of the therapeutic ultrasonic pulse W2 is also not constant. Therefore, in the third and fourth modified examples, when the rate of decrease in the temperature of the cancer tissue B is sufficiently large, as shown in FIG. 21, treatment ultrasound is used until the temperature of the cancer tissue B returns to a normal temperature. The output of the pulse W2 may be stopped, and then the treatment ultrasonic pulse W2 may be irradiated to the cancer tissue B. Thereby, the temperature rise amount of the cancer tissue B by one irradiation of the therapeutic ultrasonic pulse W2 can be grasped. When the temperature rise amount is insufficient, the output value of the therapeutic ultrasonic pulse W2 may be increased.
  • the stop time of the therapeutic ultrasonic pulse W2 becomes long.
  • the cancer tissue B is changed to 50 ° C. You may heat above. By doing in this way, it can prevent that treatment time becomes long.
  • the bubble detection unit 29 detects microbubbles based on the luminance value Y obtained from the amplitude of the echo signal.
  • this microbubble detection method is merely an example. Microbubbles may be detected using this method.
  • a contrast detection harmonic imaging such as a method in which the bubble detection unit 29 directly receives an echo signal from the second ultrasonic element 23 and detects a microbubble based on the amplitude value of the echo signal, or a known pulse inversion method.
  • a method of using a value obtained by performing processing for emphasizing the frequency component from the bubble used in the above method may be adopted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本発明の超音波医療装置(100)は、バブル発生用の第1の超音波(W1)と生体組織加温用の第2の超音波(W2)とを超音波素子(13)から出力するように該超音波素子(13)を駆動する駆動部(11)と、バブルを検出するバブル検出部(29)と、該バブル検出部(29)によるバブルの検出結果に基づいて、少なくとも一方の超音波(W1,W2)の出力値を調整するように駆動部(11)を制御する制御部(31,32)とを備える。

Description

超音波医療装置
 本発明は、超音波医療装置に関するものである。
 従来、集束超音波(HIFU:High Intensity Focused Ultrasound)をマイクロバブルと組み合わせて使用する超音波治療方法が知られている(例えば、特許文献1参照)。HIFUは、超音波を集束させ、エネルギ密度の高い焦点を形成する技術であり、生体組織を焦点において局所的に治療することができる。
 マイクロバブルは、ナノ液滴を使用して発生させることができる。ナノ液滴は、脂質、タンパク質または生分解性高分子等の膜からなり、液体が封入されたナノメートルサイズのカプセルである。ナノ液滴に超音波が照射されると、圧力の低下によって液体が気泡に変化し、マイクロメートルサイズの気泡(マイクロバブル)が発生する。マイクロバブルは、超音波によって振動し、超音波照射による生体組織の加温作用を促進する働きを有する。さらに、マイクロバブルは、超音波により圧壊し、そのときに物理的エネルギを発生させる。
 したがって、例えば癌治療において、ナノ液滴を癌組織に集積させ、該癌組織にHIFUを照射することによって、それのみでは細胞を破壊することができない程度の低エネルギのHIFUを使用して、癌細胞を破壊することができる。ナノ液滴が存在しない領域の組織は、このような低エネルギのHIFUによってほとんど加温されないので、ナノ液滴が存在する領域の組織のみを選択的に治療することができる。
特許第5340728号公報
 しかしながら、特許文献1に記載の超音波装置では、HIFUが照射されている生体組織の温度やマイクロバブルの発生状況を把握することができないため、生体組織に与えるHIFUの照射量を適切に制御することが難しいという問題がある。HIFUの照射量が足りない場合には、マイクロバブルを発生させることができなかったり、生体組織を必要な温度まで加温することができなかったりする。HIFUの照射量が過剰である場合には、生体組織の温度が過剰に高くなってしまう。さらに、超音波の適切な照射量は、臓器や部位によって異なる。
 本発明は、上述した事情に鑑みてなされたものであって、治療対象の臓器や部位にかかわらず超音波の照射量を過不足無く制御することができる超音波医療装置を提供することを目的とする。
 本発明は、生体組織内にバブルを発生させるための第1の超音波と、前記生体組織を加温するための第2の超音波と、を超音波素子から出力するように該超音波素子を駆動する駆動部と、前記バブルを検出するバブル検出部と、該バブル検出部による前記バブルの検出結果に基づいて、前記第1の超音波および前記第2の超音波のうちの少なくとも一方の出力値を調整するように前記駆動部を制御する制御部とを備える超音波医療装置を提供する。
 本発明によれば、治療対象の臓器や部位にかかわらず超音波の照射量を過不足無く制御することができるという効果を奏する。
本発明の一実施形態に係る超音波医療装置の全体構成図である。 図1の超音波医療装置における第1の超音波素子および第2の超音波素子の構成と、各超音波素子から出力される超音波パルスとを説明する図である。 図1の超音波医療装置の動作を示すフローチャートである。 図1の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の一例を示す図である。 図1の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の他の例を示す図である。 図1の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の他の例を示す図である。 図1の超音波医療装置の第1の変形例の全体構成図である。 図7の超音波医療装置の動作を示すフローチャートである。 図7の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の一例を示す図である。 図7の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の他の例を示す図である。 図7の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の他の例を示す図である。 図1の超音波医療装置の第2の変形例の全体構成図である。 図12の超音波医療装置の動作を示すフローチャートである。 図12の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の一例を示す図である。 図12の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の他の例を示す図である。 図12の超音波医療装置による相変化超音波パルスおよび治療超音波パルスの出力タイミング、ならびに、相変化超音波パルスおよび治療超音波パルスの出力の時間変化の他の例を示す図である。 図1の超音波医療装置の第3の変形例の動作を示すフローチャートである。 第3の変形例における癌組織の温度の時間変化の一例を示す図である。 図1の超音波医療装置の第4の変形例の動作を示すフローチャートである。 図19のフローチャートの続きである。 治療超音波パルスの制御方法の変形例を説明する図である。 治療超音波パルスの制御方法の他の変形例を説明する図である。
 以下に、本発明の一実施形態に係る超音波医療装置100について図面を参照して説明する。
 本実施形態に係る超音波医療装置100は、図1に示されるように、相変化超音波パルスW1(第1の超音波)および治療超音波パルスW2(第2の超音波)を出力する治療ユニット1と、生体組織Aの超音波画像を取得する診断ユニット2と、治療ユニット1および診断ユニット2を制御する制御ユニット3とを備えている。符号4は、体内に挿入される細長いプローブを示し、符号5は、プローブ4の基端に接続された筐体を示している。
 治療ユニット1は、第1のパルス電気信号を生成する第1のパルス生成部(駆動部)11と、該第1のパルス生成部11によって生成された第1のパルス電気信号を増幅する第1の増幅部12と、該第1の増幅部12によって増幅された第1のパルス電気信号が印加されることによって相変化超音波パルスW1または治療超音波パルスW2を発生させる第1の超音波素子13とを備えている。
 診断ユニット2は、第2のパルス電気信号を生成する第2のパルス生成部21と、該第2のパルス生成部21によって生成された第2のパルス電気信号を増幅する第2の増幅部22と、該第2の増幅部22によって増幅された第2のパルス電気信号が印加されることによって診断超音波パルスW3を発生させる第2の超音波素子23とを備えている。第2の超音波素子23は、診断超音波パルスW3の生体組織Aからの反射エコーを受信し、反射エコーを電気信号(エコー信号)に変換し、エコー信号を第3の増幅部24(後述)に出力する。
 図2は、第1の超音波素子13および第2の超音波素子23の、形状および配置を示している。第1の超音波素子13および第2の超音波素子23は、プローブ4の先端部に設けられている。図2に示されるように、第1の超音波素子13は、凹状の放射面13aから焦点Fに集束する集束超音波(HIFU)を、相変化超音波パルスW1および治療超音波パルスW2として出力する。第2の超音波素子23は、凸状の放射面23aから発散超音波を、診断超音波パルスW3として出力する。第1の超音波素子13は環状であり、第1の超音波素子13の中央に第2の超音波素子23が配置されている。上記の構成により、相変化超音波パルスW1および治療超音波パルスW2の焦点Fを含む範囲に診断超音波パルスW3が照射され、焦点Fを含む範囲の超音波画像が診断ユニット2よって取得されるようになっている。
 相変化超音波パルスW1は、ナノ液滴(バブル化材料)Cを気泡化させてマイクロバブルを発生させるためのものである。ナノ液滴Cは、脂質膜、蛋白質または高分子等の膜からなり、液体を封入したナノメートルサイズのカプセルである。膜には、生体内の特定の成分と特異的に結合するリガンドが保持されている。液体は、体温(37℃)よりも高く、かつ、水の沸点(100℃)よりも低い沸点を有する。
 ナノ液滴Cは、所定値以上の振幅を有する超音波が照射されることによって気泡化する。したがって、相変化超音波パルスW1は、所定値以上の振幅を有する。ナノ液滴Cに相変化超音波パルスW1が照射されると、圧力低下によりナノ液滴Cが気泡化し、マイクロメートルサイズの気泡であるマイクロバブルが発生する。マイクロバブルは、診断超音波パルスW3に対して生体組織Aよりも高い反射率を有する。したがって、超音波画像において、マイクロバブルの領域は生体組織Aの領域よりも高い輝度値を有する。
 治療超音波パルスW2は、生体組織Aの治療対象部位を加温して治療するためのものであり、治療超音波パルスW2によってナノ液滴Cが気泡化することがないように、ナノ液滴Cが気泡化する所定値未満の振幅を有する。本実施形態においては、治療超音波パルスW2によって癌組織Bを治療することを想定している。したがって、ナノ液滴Cにおいて、癌細胞と特異的に結合するリガンドと、癌細胞が死滅する温度(例えば、50℃)の沸点を有する液体と、が使用される。
 診断ユニット2はさらに、第2の超音波素子23から出力されたエコー信号を増幅する第3の増幅部24と、該第3の増幅部24によって増幅されたエコー信号の振幅を輝度値Yに変換する輝度値変換部25と、該輝度値変換部25によって変換された輝度値Yに基づいて超音波画像を形成する画像構築部26と、該画像構築部26によって形成された超音波画像を表示する表示部27と、輝度値変換部25によって変換された輝度値Yを記憶する記憶部28と、該記憶部28に記憶された輝度値Ythと輝度値変換部25から受信した最新の輝度値Yとに基づいてマイクロバブルを検出するバブル検出部29とを備える。
 輝度値変換部25は、エコー信号から得られた輝度値Yを画像構築部26に送信する。さらに、輝度値変換部25は、最初に得られた輝度値Yを記憶部28に送信し、2番目以降に得られた輝度値Yをバブル検出部29に送信する。
 記憶部28は、輝度値変換部25から受信した輝度値Yを記憶する。以下、記憶部28に記憶された輝度値Yを「輝度値Yth」と記す。
 バブル検出部29は、輝度値変換部25から受信した最新の輝度値Yを輝度値Ythと比較する。バブル検出部29は、輝度値Yが輝度値Ythよりも大きい場合には、マイクロバブルが存在すると判断する。一方、バブル検出部29は、輝度値Yが輝度値Yth以下である場合には、マイクロバブルが存在しないと判断する。バブル検出部29は、マイクロバブルの検出結果を、制御ユニット3内の出力制御部31および強度制御部32に送信する。
 さらに、バブル検出部29は、第2の超音波素子23から診断超音波パルスW3が出力されて超音波画像が取得されている間、第2の超音波素子23によって受信された超音波の中からナノ液滴Cが放射する超音波を検出し、相変化超音波パルスW1の照射標的位置(焦点Fおよび該焦点Fの近傍)にナノ液滴Cが存在するか否かを判定し、判定結果を出力制御部31に送信する。
 制御ユニット3は、第1の超音波素子13および第2の超音波素子23からの超音波パルスの出力のタイミングを制御する出力制御部31と、第1の超音波素子13から出力される相変化超音波パルスW1および治療超音波パルスW2の強度を制御する強度制御部32とを備えている。
 出力制御部31は、第1のパルス生成部11に第1の超音波素子13を駆動するための第1のパルス電気信号を生成させるタイミングを制御することによって、第1の超音波素子13から相変化超音波パルスW1および治療超音波パルスW2が出力されるタイミングを制御する。同様に、出力制御部31は、第2のパルス生成部21に第2の超音波素子23を駆動するための第2のパルス電気信号を生成させるタイミングを制御することによって、第2の超音波素子23から診断超音波パルスW3が出力されるタイミングを制御する。
 出力制御部31は、相変化超音波パルスW1と治療超音波パルスW2とを順番に繰り返し出力させる。
 ここで、出力制御部31は、最初の相変化超音波パルスW1の出力に先立ち、第2の超音波素子23から1番目の診断超音波パルスW3を出力させる。これにより、相変化超音波パルスW1および治療超音波パルスW2が生体組織Aに照射される前の超音波画像が取得され、当該超音波画像の輝度値Yが輝度値Ythとして記憶部28に記憶される。さらに、超音波画像取得時において、ナノ液滴Cが相変化超音波パルスW1の照射標的位置に存在するとバブル検出部29によって判定された場合、出力制御部31は、続いて相変化超音波パルスW1の照射を実行する。一方、ナノ液滴Cが相変化超音波パルスW1の照射標的位置に存在しないとバブル検出部29によって判定された場合、出力制御部31は、相変化超音波パルスW1の照射を実行せずに、ナノ液滴Cが存在しない旨の表示を表示部27に表示させる。
 また、出力制御部31は、相変化超音波パルスW1の出力直後に、バブル検出部29によるマイクロバブルの検出結果に基づいて、相変化超音波パルスW1の出力を続けるか、または、終了するかの判断を行う。すなわち、出力制御部31は、相変化超音波パルスW1の出力直後に2番目の診断超音波パルスW3を出力させる。これにより、輝度値変換部25によって輝度値Yが取得され、バブル検出部29によってマイクロバブルの有無が判断される。以下、2番目の診断超音波パルスW3によって取得された輝度値Yを「輝度値Y1」と記す。
 マイクロバブルが検出されなかった場合、出力制御部31は、相変化超音波パルスW1を繰り返し出力させ続ける。その間、相変化超音波パルスW1の出力直前には、診断超音波パルスW3が出力され、バブル検出部29によって、ナノ液滴が相変化超音波パルスW1の照射位置に存在しているか否かが判定される。ナノ液滴が相変化超音波パルスW1の照射位置に存在している場合、出力制御部31は、相変化超音波パルスW1の照射を実行する。一方、ナノ液滴が相変化超音波パルスW1の照射位置に存在しない場合、出力制御部31は、以降、相変化超音波パルスW1の照射を実行せずに、ナノ液滴が存在しない旨の表示を表示部27に表示させる。
 一方、マイクロバブルが検出された場合、出力制御部31は、相変化超音波パルスW1の出力を終了する。これにより、マイクロバブルが発生してバブル検出部29によって検出されるまで、相変化超音波パルスW1が繰り返し出力され続ける。
 さらに、出力制御部31は、相変化超音波パルスW1の出力終了後に、バブル検出部29によるマイクロバブルの検出結果に基づいて、続いて治療超音波パルスW2の出力を実行するか否かの判断を行う。すなわち、出力制御部31は、相変化超音波パルスW1の出力を終了してから所定の時間後に3番目の診断超音波パルスW3を出力させる。これにより、輝度値変換部25によって輝度値Yが取得され、バブル検出部29によってマイクロバブルの有無が判断される。以下、3番目の診断超音波パルスW3によって取得された輝度値Yを「輝度値Y2」と記す。
 ここで、バブル検出部29は、相変化超音波パルスW1の照射位置分布とマイクロバブルの分布とを比較し、相変化超音波パルスW1の照射位置とマイクロバブルが生成された位置とが一致するか否かを判定する。両者の位置が一致しなかった場合、ナノ液滴が相変化超音波パルスW1の照射位置に存在しない可能性があるため、出力制御部31は、以降の相変化超音波パルスW1および治療超音波パルスW2の照射は実行せずに、ナノ液滴が存在しない旨の表示を表示部27に表示させる。
 マイクロバブルが検出された後、マイクロバブルは徐々に消滅する。所定の時間経過後にマイクロバブルが検出されなかった場合、出力制御部31は、続いて治療超音波パルスW2を出力させる。一方、マイクロバブルが検出された場合、出力制御部31は、治療超音波パルスW2を出力させずに、一連の超音波パルスによる治療動作を終了する。
 強度制御部32は、第1の増幅部12による第1のパルス電気信号の増幅率を調整することによって、第1の超音波素子13から出力される相変化超音波パルスW1および治療超音波パルスW2の振幅を制御する。
 強度制御部32は、バブル検出部29によるマイクロバブルの検出結果に基づいて、相変化超音波パルスW1および治療超音波パルスW2の振幅を増大させる。すなわち、相変化超音波パルスW1の出力直後にマイクロバブルが検出されなかった場合には、強度制御部32は、次に出力される相変化超音波パルスW1の振幅を増大させる。さらに、強度制御部32は、相変化超音波パルスW1の出力終了から所定の時間後にマイクロバブルが検出されなかった場合には、次に出力される治療超音波パルスW2の振幅を増大させる。
 次に、このように構成された超音波医療装置100の作用について説明する。
 まず、ユーザは、ナノ液滴を含む薬剤を生体に投与する。生体内に投与されたナノ液滴は、図2に示されるように、癌組織Bに集積する。次に、ユーザは、焦点Fが癌組織Bに位置するように、プローブ4を生体組織Aに対して位置合わせし、生体組織Aへの超音波パルスの照射を開始する。
 まず、図3に示されるように、癌組織Bを含む生体組織Aに1番目の診断超音波パルスW3が照射され、超音波画像が取得され、記憶部28に輝度値Ythが記憶される(ステップS1)。次に、マイクロバブルを発生させるために癌組織Bに相変化超音波パルスW1が照射される(ステップS2)。
 相変化超音波パルスW1の照射直後、生体組織Aに2番目の診断超音波パルスW3が照射され、超音波画像が取得され、輝度値Y1が取得される(ステップS3)。ステップS2の相変化超音波パルスW1の照射によってマイクロバブルが発生している場合には、輝度値Y1が輝度値Ythよりも大きくなり、マイクロバブルが発生していない場合には、輝度値Y1が輝度値Yth以下となる。
 次に、輝度値Y1が輝度値Ythよりも大きいか否かに基づいて、マイクロバブルが発生したか否かがバブル検出部29によって判断される(ステップS4)。マイクロバブルが発生していない場合(ステップS4のNO)、出力制御部31は、相変化超音波パルスW1を癌組織Bにもう一度照射させ(ステップS2)、マイクロバブルが発生するまで相変化超音波パルスW1の照射を繰り返す(ステップS2~S4)。ここで、相変化超音波パルスW1の照射が繰り返される過程において、強度制御部32によって相変化超音波パルスW1の振幅が段階的に増大される(ステップS5)。
 マイクロバブルの発生後(ステップS4のYES)、所定の時間が経過したときに(ステップS6)、生体組織Aに3番目の診断超音波パルスW3が照射され、超音波画像が取得され、輝度値Y2が取得される(ステップS7)。所定の時間経過時にマイクロバブルが癌組織Bに残存している場合には、輝度値Y2が輝度値Ythよりも高くなり、マイクロバブルが消滅している場合には、輝度値Y2が輝度値Yth以下となる。
 発生したマイクロバブルは、時間の経過にしたがって消滅する。マイクロバブルの消滅速度は、ナノ液滴の液体の沸点と気泡化時のマイクロバブルの周囲の癌組織Bの温度との関係に依存する。気泡化時のマイクロバブルの周囲の温度が液体の沸点と等しいときのマイクロバブルの消滅速度を閾値とすると、癌組織Bの温度が液体の沸点以上であるときには、マイクロバブルが安定的に存在し続けるため消滅速度が所定の閾値以下となる。一方、癌組織Bの温度が沸点よりも低いときには、マイクロバブルが速やかに消滅するため消滅速度が所定の閾値よりも大きく速くなる。したがって、ステップS8において、癌組織Bの温度が液体の沸点である50℃以上である場合にはマイクロバブルが検出され、一方、癌組織Bの温度が50℃未満である場合にはマイクロバブルが検出されない。
 ステップS8においてマイクロバブルが検出されなかった場合(ステップS8のNO)、出力制御部31は、治療超音波パルスW2を癌組織Bに照射させ(ステップS10)、ステップS8においてマイクロバブルが検出されるまで、すなわち癌組織Bの温度が50℃以上になるまで、相変化超音波パルスW1および治療超音波パルスW2の照射を繰り返す(ステップS2~S9)。ここで、治療超音波パルスW2の照射が繰り返される過程において、図4に示されるように、強度制御部32によって治療超音波パルスW2の振幅が段階的に増大される(ステップS9およびS10)。
 ステップS8においてマイクロバブルが検出された場合(ステップS8のYES)、出力制御部31は治療超音波パルスW2を出力させず、超音波パルスの照射による治療を終了する。
 このように、本実施形態によれば、超音波画像の輝度値Y1に基づいてマイクロバブルが発生したか否かが検出され、マイクロバブルの発生が検出されるまで相変化超音波パルスW1が繰り返し出力され続けるので、マイクロバブルを確実に発生させることができる。また、相変化超音波パルスW1の振幅が漸次増大されることによって、ナノ液滴の気泡化を促進し、マイクロバブルをさらに確実に発生させることができる。また、マイクロバブルが発生した後は、相変化超音波パルスW1の繰り返し出力が迅速に停止される。このように、相変化超音波パルスW1の照射量を過不足のないように制御することができるという利点がある。
 さらに、マイクロバブルが発生してから所定の時間後の超音波画像の輝度値Y2に基づいて、マイクロバブルの消滅速度が所定の閾値以下になったか否か、すなわち癌組織Bがマイクロバブルの液体の沸点である50℃以上に加温されたか否かが検出され、癌組織Bの温度が50℃以上になるまで治療超音波パルスW2が繰り返し出力され続けるので、癌組織Bを確実に治療することができる。また、治療超音波パルスW2の振幅が漸次増大されることによって、癌組織Bの加温を促進し、癌組織Bをさらに確実に治療することができる。また、癌組織Bが所定の温度まで加温された後は、治療超音波パルスW2の繰り返し出力が迅速に停止される。このように、治療超音波パルスW2の照射量を過不足のないように制御することができるという利点がある。
 また、マイクロバブルを検出するために必要な素子は、第2の超音波素子23のみであり、特別な装置や大掛かりな装置を必要としない。
 また、超音波画像の輝度値Y1,Y2を利用することによって、癌組織Bに限らず任意の生体組織Aにおいてマイクロバブルの発生状況を正確に検出することができる。したがって、治療対象の臓器や部位にかかわらず、相変化超音波パルスW1および治療超音波パルスW2の照射量を過不足のないように制御することができるという利点がある。
 本実施形態においては、相変化超音波パルスW1および治療超音波パルスW2を増強させるために、相変化超音波パルスW1および治療超音波パルスW2の出力値のうち振幅を増大させることとしたが、これに代えて、相変化超音波パルスW1および治療超音波パルスW2の波高値または出力時間を増大させてもよい。さらに、振幅、波高値および照射時間のうちの2つ以上を同時に増大させてもよい。
 図5は、治療超音波パルスW2の振幅および波高値の両方を増大させる場合の一例を示している。図6は、治療超音波パルスW2の出力時間を増大させる場合の一例を示している。波高値および出力時間は、第1のパルス生成部11および第2のパルス生成部21が生成するパルス電気信号の波形を出力制御部31が制御することによって、それぞれ制御される。
 次に、本実施形態に係る超音波医療装置の変形例について説明する。
(第1の変形例)
 第1の変形例に係る超音波医療装置101において、図7に示されるように、制御ユニット301が、相変化超音波パルスW1および治療超音波パルスW2の出力値を記憶する記憶部33をさらに備えている。出力値は、相変化超音波パルスW1および治療超音波パルスW2の振幅値、波高値および出力時間のうちの少なくとも1つである。
 本変形例において、出力制御部31および強度制御部32は、図8に示されるように、ステップ8においてマイクロバブルが検出された場合には、直前に出力された治療超音波パルスW2の出力値を記憶部33に記憶させる(ステップS11)。記憶部33に出力値が記憶された後、出力制御部31および強度制御部32は、記憶部33に記憶されている出力値を有する治療超音波パルスW2を発生させる(ステップS12)。
 すなわち、癌組織Bが一度50℃以上に加温されると、その直前に出力された治療超音波パルスW2の出力値が記憶部33に記憶され、図9から図11に示されるように、ステップS1~S10が省略され、癌組織Bを50℃以上に加温するために必要な一定の出力値を有する治療超音波パルスW2が出力される。図9、図10および図11はそれぞれ、出力値が振幅、波高値および出力時間である場合の一例を示している。したがって、ステップS11の後は、癌組織Bに対して焦点Fを移動させることによって、広範囲を効率的にかつ過不足無く加温して治療することができるという利点がある。
(第2の変形例)
 第2の変形例に係る超音波医療装置102は、超音波医療装置101をさらに変形したものである。超音波医療装置102において、図12に示されるように、制御ユニット302が、もう1つの記憶部34をさらに備えている。記憶部34は、ステップS8においてマイクロバブルの発生が検出されるまでに出力された治療超音波パルスW2のエネルギ積算値を記憶する。なお、記憶部33および記憶部34は、1つの記憶部に共通化されていてもよい。
 本変形例において、出力制御部31および強度制御部32は、治療超音波パルスW2の出力が実行される度に、そのときの治療超音波パルスW2の振幅、波高値および出力時間を記憶部34にそれぞれ記憶させて蓄積させる。出力制御部31および強度制御部32は、図13に示されるように、ステップ8においてマイクロバブルが検出された場合には、記憶部34に蓄積された治療超音波パルスW2の出力値から、それまでに出力された治療超音波パルスW2のエネルギ積算値を算出し、算出されたエネルギ積算値を記憶部34に記憶させる。
 次に、出力制御部31および強度制御部32は、1回の出力当たりの治療超音波パルスW2の出力エネルギ量が記憶部34に記憶されたエネルギ積算値と等しくなるように、治療超音波パルスW2の出力値を算出し、算出された出力値を固定設定値として記憶部34に記憶させる(ステップS13)。
 例えば、強度制御部32は、エネルギ積算値に係数を乗算してオフセット値を算出し、オフセット値を振幅値に加算することによって固定振幅値を算出し、固定振幅値を記憶部34に記憶させる。オフセット値が加算される振幅値は、ステップ8においてマイクロバブルが検出される直前に出力された治療超音波パルスW2の振幅値である。
 記憶部34に固定設定値が記憶された後、出力制御部31および強度制御部32は、記憶部34に記憶されている固定設定値を有する治療超音波パルスW2を発生させる(ステップS14)。
 本変形例によれば、図14から図16に示されるように、癌組織Bが一度50℃以上に加温されると、その後はステップS1~S10が省略され、癌組織Bを50℃まで加温するために必要なエネルギと等しいエネルギを有する治療超音波パルスW2が1回の出力で出力される。図14、図15および図16はそれぞれ、出力値が振幅、波高値および出力時間である場合の一例を示している。これにより、第1の変形例と比較して、癌組織Bを適切な温度にさらに確実に加温して治療することができるという利点がある。
(第3の変形例)
 第3の変形例に係る超音波医療装置は、図17に示されるように、ステップS8においてマイクロバブルが検出された後の動作において、上述した超音波医療装置100と異なっている。本変形例の超音波医療装置の装置構成は、図1の超音波医療装置100と同一である。
 ステップS8においてマイクロバブルが最初に検出された後、すなわち癌組織Bが50℃以上に一度加温された後、出力制御部31は、所定の時間Tにわたって(ステップS16,S17)治療超音波パルスW2および相変化超音波パルスW1の出力を続行する(ステップS2~S10)。このときに、輝度値Y2が輝度値Ythよりも大きいときには、すなわちマイクロバブルの消滅速度が所定の閾値以下であり癌組織Bの温度が50℃以上である間は、出力制御部31および強度制御部32の少なくとも一方が、治療超音波パルスW2の出力値を段階的に低下させる(ステップS15)。
 図18は、本変形例における癌組織Bの温度の時間変化を示している。治療超音波パルスW2の出力値が低下すると、治療超音波パルスW2の照射による癌組織Bの温度の上昇幅が小さくなる。その結果、癌組織Bの温度が50℃未満まで低下し得る。癌組織Bの温度が50℃未満になると、マイクロバブルの消滅速度が閾値よりも大きくなるためステップS8において癌組織Bの温度が50℃未満に低下したことが検知され、ステップS9において再び治療超音波パルスW2の出力値が増大させられる。
 このように、マイクロバブルの消滅速度に基づいて癌組織Bの温度を推定し、癌組織Bの温度が50℃以上であるときには治療超音波パルスW2を弱め、癌組織Bの温度が50℃未満であるときには治療超音波パルスW2を強めることによって、癌組織Bの温度を50℃近傍に収束させ、癌組織Bの温度を略一定に維持することができるという利点がある。
(第4の変形例)
 第4の変形例に係る超音波医療装置は、第3の変形例を変形したものであり、図19および図20に示されるように、ステップS8においてマイクロバブルが検出された後、輝度値Y2と輝度値Ythとの差|Y2-Yth|に基づいて、治療超音波パルスW2の出力値の増減幅を設定する点で、第3の変形例と異なる。本変形例の超音波医療装置の装置構成は、図1の超音波医療装置100と同一である。
 ステップS8においてマイクロバブルが検出された場合に、続くステップS18において、輝度値Y2と輝度値Ythとの差|Y2-Yth|が算出され、|Y2-Yth|が大きい程、出力値の低下幅が大きくなるように、出力値の低下幅が設定され、設定された低下幅だけ出力値が低下される。
 ステップS18の後は、治療超音波パルスW2が出力され(ステップS19)、続いてステップS2~S10と同様の動作が実行される(ステップS20~S28)。ただし、ステップS20~S26,S28はそれぞれステップS2~S8,S10と同一であるが、ステップS27がステップS9とは異なる。ステップS27において、|Y2-Yth|に基づき、|Y2-Yth|が大きい程、出力値の増大幅が小さくなるように、出力値の増大幅が設定される。
 所定の時間Tが経過すると(ステップS17のYES)、ステップS11,S12と同様に、直前に出力された治療超音波パルスW2の出力値が記憶部33に記憶され(ステップS29)、記憶部33に記憶されている出力値の治療超音波パルスW2が出力される(ステップS30)。
 差|Y2-Yth|は、癌組織Bに存在しているマイクロバブルの量を表す値であり、癌組織Bの温度が高くマイクロバブルの量が多いときには、差|Y2-Yth|が大きくなる。本変形例によれば、癌組織Bの温度が高いときには治療超音波パルスW2を減弱させ、癌組織Bの温度が低いときには治療超音波パルスW2を増強させるように、治療超音波パルスW2の出力値の増減幅が調整される。これにより、治療超音波パルスW2の照射量をさらに厳密に調整することができるという利点がある。
 なお、治療超音波パルスW2の照射開始時の癌組織Bの温度は一定ではないため、治療超音波パルスW2の照射による癌組織Bの到達温度も一定とはならない。したがって、第3および第4の変形例において、癌組織Bの温度の低下速度が十分に大きい場合には、図21に示されるように、癌組織Bの温度が平温に戻るまで治療超音波パルスW2の出力を停止し、その後に治療超音波パルスW2を癌組織Bに照射してもよい。これにより、1回の治療超音波パルスW2の照射による癌組織Bの温度上昇量を把握することができる。温度上昇量が不足している場合には、治療超音波パルスW2の出力値を増大すればよい。
 癌組織Bの温度の低下速度が小さい場合には、治療超音波パルスW2の停止時間が長くなる。その場合には、図22に示されるように、1回当たりの治療超音波パルスW2の出力値を固定としつつ、治療超音波パルスW2の照射回数を増減させることによって、癌組織Bを50℃以上に加温してもよい。このようにすることで、治療時間が長くなることを防ぐことができる。
 上述した実施形態および変形例において、バブル検出部29が、エコー信号の振幅から得られる輝度値Yに基づいてマイクロバブルを検出することとしたが、このマイクロバブルの検出方法は一例であり、他の方法を用いてマイクロバブルを検出してもよい。例えば、バブル検出部29が、第2の超音波素子23からエコー信号を直接受信し、エコー信号の振幅値に基づいてマイクロバブルを検出する方法や、公知のパルスインバージョン法など造影用ハーモニックイメージングで用いられるバブルからの周波数成分を強調する処理を行った値を用いる方法を採用してもよい。
100,101,102 超音波医療装置
1 治療ユニット
2 診断ユニット
3 制御ユニット
4 プローブ
5 筐体
11 第1のパルス生成部(駆動部)
12 第1の増幅部
13 第1の超音波素子(超音波素子)
21 第2のパルス生成部
22 第2の増幅部
23 第2の超音波素子(超音波画像取得部)
24 第3の増幅部
25 輝度値変換部(超音波画像取得部)
26 画像構築部(超音波画像取得部)
27 表示部
28,33,34 記憶部
29 バブル検出部
31 出力制御部(制御部)
32 強度制御部(制御部)

Claims (14)

  1.  生体組織内にバブルを発生させるための第1の超音波と、前記生体組織を加温するための第2の超音波と、を超音波素子から出力するように該超音波素子を駆動する駆動部と、
     前記バブルを検出するバブル検出部と、
     該バブル検出部による前記バブルの検出結果に基づいて、前記第1の超音波および前記第2の超音波のうちの少なくとも一方の出力値を調整するように前記駆動部を制御する制御部とを備える超音波医療装置。
  2.  前記出力値が、振幅、波高値および出力時間のうちの少なくとも1つである請求項1に記載の超音波医療装置。
  3.  前記生体組織の超音波画像を取得する超音波画像取得部を備え、
     前記バブル検出部が、前記超音波画像取得部によって取得された前記超音波画像の輝度値に基づいて前記バブルを検出する請求項1または請求項2に記載の超音波医療装置。
  4.  前記バブル検出部は、前記バブルを検出した後に時間間隔をあけて前記バブルの有無の検出を実行することによって、前記バブルの消滅速度を検出する請求項1から請求項3のいずれかに記載の超音波医療装置。
  5.  前記制御部は、前記バブルの消滅速度が所定の閾値よりも大きい場合には前記第2の超音波の出力値を増大させ、前記バブルの消滅速度が前記所定の閾値以下である場合には前記第2の超音波の出力を停止させるように、前記駆動部を制御する請求項4に記載の超音波医療装置。
  6.  前記制御部は、前記バブルの消滅速度が所定の閾値よりも大きい場合には前記第2の超音波の出力値を増大増強させ、前記バブルの消滅速度が前記所定の閾値以下である場合には前記第2の超音波の出力値を一定に維持するように、前記駆動部を制御する請求項4に記載の超音波医療装置。
  7.  前記制御部は、前記バブルの消滅速度が所定の閾値よりも大きい場合には前記第2の超音波の出力値を増大させ、前記バブルの消滅速度が前記所定の閾値以下である場合には前記第2の超音波の出力値を低下させるように、前記駆動部を制御する請求項4に記載の超音波医療装置。
  8.  前記制御部は、前記バブル検出部によって前記バブルが検出されるまで前記第1の超音波を繰り返し出力し続けるように、前記駆動部を制御する請求項1から請求項7のいずれかに記載の超音波医療装置。
  9.  前記バブル検出部は、前記超音波素子から前記第1の超音波および前記第2の超音波が出力される前に、前記バブルを発生させるためのバブル化材料が放射する超音波を検出する請求項1から請求項8のいずれかに記載の超音波医療装置。
  10.  前記バブル検出部は、前記バブルを検出したときに、前記第1の超音波の照射位置分布と前記バブルの存在分布とを比較する請求項1から請求項9のいずれかに記載の超音波医療装置。
  11.  前記制御部は、前記第1の超音波の出力値を増大させながら該第1の超音波を繰り返し出力し続けるように、前記駆動部を制御する請求項10に記載の超音波医療装置。
  12.  前記超音波素子から出力された前記第2の超音波の出力値を記憶する記憶部を備え、
     前記制御部が、前記記憶部に記憶された前記出力値に基づいて次の前記第2の超音波の出力値を設定する請求項1から請求項11のいずれかに記載の超音波医療装置。
  13.  前記記憶部が、直前に出力された前記第2の超音波の出力値を記憶する請求項12に記載の超音波医療装置。
  14.  前記記憶部が、それまでに出力された前記第2の超音波のエネルギ積算値を記憶する請求項12に記載の超音波医療装置。
PCT/JP2015/081070 2015-11-04 2015-11-04 超音波医療装置 WO2017077605A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/081070 WO2017077605A1 (ja) 2015-11-04 2015-11-04 超音波医療装置
JP2017548565A JPWO2017077605A1 (ja) 2015-11-04 2015-11-04 超音波医療装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081070 WO2017077605A1 (ja) 2015-11-04 2015-11-04 超音波医療装置

Publications (1)

Publication Number Publication Date
WO2017077605A1 true WO2017077605A1 (ja) 2017-05-11

Family

ID=58661730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081070 WO2017077605A1 (ja) 2015-11-04 2015-11-04 超音波医療装置

Country Status (2)

Country Link
JP (1) JPWO2017077605A1 (ja)
WO (1) WO2017077605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210169515A1 (en) * 2019-12-06 2021-06-10 Korea Institute Of Science And Technology Apparatus and method for precise mechanical tissue ablation using pressure modulated focused ultrasound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520307A (ja) * 2004-02-06 2007-07-26 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド 微小気泡局所形成方法、強化超音波の使用によるキャビテーション効果制御および加熱効果制御
WO2011125991A1 (ja) * 2010-04-09 2011-10-13 株式会社日立製作所 超音波診断治療装置
JP2013005940A (ja) * 2011-06-24 2013-01-10 Olympus Corp 超音波照射装置及び超音波の照射方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771359B2 (en) * 2004-05-10 2010-08-10 Venousonics Ltd. Enhancement of ultrasonic cavitation
JP5775751B2 (ja) * 2011-06-15 2015-09-09 オリンパス株式会社 超音波照射装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520307A (ja) * 2004-02-06 2007-07-26 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド 微小気泡局所形成方法、強化超音波の使用によるキャビテーション効果制御および加熱効果制御
WO2011125991A1 (ja) * 2010-04-09 2011-10-13 株式会社日立製作所 超音波診断治療装置
JP2013005940A (ja) * 2011-06-24 2013-01-10 Olympus Corp 超音波照射装置及び超音波の照射方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210169515A1 (en) * 2019-12-06 2021-06-10 Korea Institute Of Science And Technology Apparatus and method for precise mechanical tissue ablation using pressure modulated focused ultrasound

Also Published As

Publication number Publication date
JPWO2017077605A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
US20220080226A1 (en) Methods and systems for removal of a targeted tissue from the body
US11185719B2 (en) Methods and systems for controlling and acoustic energy deposition in various media
US10624660B2 (en) Methods and systems for removal of a foreign object from tissue
US8876740B2 (en) Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound therapy
US20150375014A1 (en) Methods and Systems for Tattoo Removal
US10806952B2 (en) Therapeutic ultrasound apparatus and method
Xu et al. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy-histotripsy
US9220476B2 (en) Ultrasound systems
EP3016594B1 (en) Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
WO2017126037A1 (ja) 超音波医療装置
WO2004100811A1 (ja) 超音波治療装置
Asai et al. Analysis of temperature rise induced by high-intensity focused ultrasound in tissue-mimicking gel considering cavitation bubbles
KR102320038B1 (ko) 가변음압 집속초음파를 이용한 생체조직 정밀 제거 장치 및 방법
JP5775751B2 (ja) 超音波照射装置
WO2017077605A1 (ja) 超音波医療装置
JP5851127B2 (ja) 超音波照射装置及び超音波照射装置の作動方法
KR102085220B1 (ko) 매개체를 이용한 비침습적 치료시스템
JP4387947B2 (ja) 超音波治療装置
CN110300550B (zh) 超声波医疗装置
KR20240057314A (ko) 생체조직 파쇄 장치 및 이를 이용한 생체조직 파쇄 범위 조절 방법
Mashiko et al. 1P5-9 Estimation of sonodynamic treatment region with chemosonoluminescence in gel phantom
Nishitaka et al. 1P5-5 Enhancement of Efficiency in Ultrasonic Generation of Reactive Oxygen Species by Scanning Focus
Takagi et al. Enhancement of ultrasonic heating by ultrasonically localized cavitation for high intensity focused ultrasound treatment
Focused 2P5-1
Yoshizawa et al. Cavitation detection with subharmonic emissions by low intensity sustaining ultrasound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907791

Country of ref document: EP

Kind code of ref document: A1