JP2021535613A - ウェハレベルパッケージ方法及びパッケージ構造 - Google Patents

ウェハレベルパッケージ方法及びパッケージ構造 Download PDF

Info

Publication number
JP2021535613A
JP2021535613A JP2021511562A JP2021511562A JP2021535613A JP 2021535613 A JP2021535613 A JP 2021535613A JP 2021511562 A JP2021511562 A JP 2021511562A JP 2021511562 A JP2021511562 A JP 2021511562A JP 2021535613 A JP2021535613 A JP 2021535613A
Authority
JP
Japan
Prior art keywords
chip
oxide layer
oxide
wafer
device wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021511562A
Other languages
English (en)
Inventor
海龍 羅
クリフォード イアン ドロウィレイ
Original Assignee
中芯集成電路(寧波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811027610.5A external-priority patent/CN110875192A/zh
Application filed by 中芯集成電路(寧波)有限公司 filed Critical 中芯集成電路(寧波)有限公司
Publication of JP2021535613A publication Critical patent/JP2021535613A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80003Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/80006Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80009Pre-treatment of the bonding area
    • H01L2224/8001Cleaning the bonding area, e.g. oxide removal step, desmearing
    • H01L2224/80013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80053Bonding environment
    • H01L2224/80054Composition of the atmosphere
    • H01L2224/80075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/802Applying energy for connecting
    • H01L2224/80201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80909Post-treatment of the bonding area
    • H01L2224/80948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9202Forming additional connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9205Intermediate bonding steps, i.e. partial connection of the semiconductor or solid-state body during the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

ウェハレベルパッケージ方法及びパッケージ構造であって、ウェハレベルパッケージ方法は、第1チップが集積されるデバイスウェハーを提供するステップであって、前記デバイスウェハーは、第1チップが集積される第1正面と、第1正面と背向する第1背面とを含むステップと、第1正面に第1酸化層を形成するステップと、被接合面を有する集積すべき第2チップを提供するステップと、被接合面上に第2酸化層を形成するステップと、支持基板を提供するステップと、第2チップの被接合面と背向する表面を支持基板上に仮接合するステップと、第2酸化層及び第1酸化層を介して、溶融接合プロセスを用いて第2チップとデバイスウェハーとを接合するステップと、第2チップとデバイスウェハーとを接合した後、第2チップ及びキャリアウェハーに対して剥離処理を行うステップと、第2チップに被覆されるパッケージ層を第1酸化層上に形成するステップとを含む。本発明は、溶融接合プロセスによって、第1酸化層と第2酸化層との接合強度を向上させ、それにより、パッケージ歩留まりを向上させる。【選択図】図6

Description

本発明の実施例は、半導体の製造分野に関し、特にウェハレベルパッケージ方法及びパッケージ構造に関する。
超大規模集積回路の発展傾向に伴い、集積回路の特徴サイズが縮小し続けており、それに応じて集積回路のパッケージ技術に対する人々の要求が高まっている。従来のパッケージ技術は、ボールグリッドアレイパッケージ(Ball Grid Array、BGA)、チップスケールパッケージ(Chip Scale Package、CSP)、ウェハレベルパッケージ(Wafer Level Package、WLP)、三次元パッケージ(3D)及びシステムインパッケージ(System in Package、SiP)などを含む。
現在、集積回路パッケージの低コスト、信頼性、高速化、高密度化という目的を満たすように、進んだパッケージ方法は、主にウェハレベルパッケージシステムインパッケージ(Wafer Level Package System in Package、WLPSiP)を用い、従来のシステムインパッケージに比べて、ウェハレベルパッケージシステムインパッケージは、ウェハーにおいてパッケージ集積製造プロセスを完了することにより、パッケージ構造の面積を大幅に減少させ、製造コストを低減させ、電気特性を最適化し、バッチ製造可能であるなどの利点を有し、作業負荷及び設備の要件を顕著に低下させることができる。
ウェハレベルパッケージシステムインパッケージは、主に物理的接続及び電気的な接続という2つの重要なプロセスを含み、通常、有機接合層(たとえば、ダイアタッチフィルム)を用いて前記デバイスウェハーと集積すべきチップとの物理的接続を実現し、貫通孔エッチングプロセス(たとえば、スルーシリコンビアエッチングプロセス)及びメッキ技術によって半導体デバイス間の電気的な接続を実現する。
本発明の実施例が解決する課題は、ウェハレベルパッケージ方法及びパッケージ構造を提供し、パッケージ歩留まりを向上させることである。
上記課題を解決するために、本発明の実施例によれば、第1チップが集積されるデバイスウェハーを提供するステップであって、前記デバイスウェハーは、前記第1チップが集積される第1正面と、前記第1正面と背向する第1背面とを含むステップと、前記第1正面に第1酸化層を形成するステップと、被接合面を有し集積すべき第2チップを提供するステップと、前記被接合面に第2酸化層を形成するステップと、支持基板を提供するステップと、前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合するステップと、前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合した後に、前記第2酸化層及び前記第1酸化層を介して、溶融接合プロセスを用いて前記第2チップと前記デバイスウェハーとを接合するステップと、前記第2チップと前記デバイスウェハーとを接合した後に、前記第2チップ及び前記デバイスウェハーに対して剥離処理を行うステップと、前記剥離処理の後に、前記第2チップを被覆するパッケージ層を前記第1酸化層上に形成するステップとを含むウェハレベルパッケージ方法が提供される。
任意選択的で、前記溶融接合プロセスを行うステップは、前記第1酸化層の表面及び前記第2酸化層の表面に対してプラズマ活性化処理、脱イオン水洗浄処理及び乾燥処理を順に行うステップと、前記乾燥処理を行った後に、前記第2チップと前記第1チップとの所定の相対位置関係に基づいて、前記第2酸化層及び前記第1酸化層を貼り合わせるように対向させて設けて、前記デバイスウェハー及び前記第2チップに接合圧力を印加し、予備接合処理を行うステップと、前記予備接合処理を行った後に、前記デバイスウェハー及び前記第2チップに対してアニーリング処理を行うステップとを含む。
任意選択的で、
前記被接合面上に前記第2酸化層を形成した後に、前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合し、又は、前記第2チップの前記被接合面と背向する表面を前記支持基板に仮接合した後に、前記被接合面上に前記第2酸化層を形成する。
任意選択的で、前記パッケージ層を形成した後に、前記第1背面に対して薄型化処理を行うステップと、前記薄型化処理を行った後に、前記第1チップに電気的に接続される第1相互接続構造、及び前記第2チップに電気的に接続される第2相互接続構造を前記デバイスウェハー内に形成するステップをさらに含む。
任意選択的で、前記第1酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、前記第2酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、前記第1酸化層と第2酸化層との材料は、同じである。
任意選択的で、前記プラズマ活性化処理に用いられる反応ガスは、Ar、N2、O2及びSF6のうちの一つまたは複数を含む。
任意選択的で、前記プラズマ活性化処理のパラメータは、RF電力が20W〜200Wであり、プロセス圧力が0.1mBar〜10mBarであり、処理時間が0.1分間〜10分間である。
任意選択的で、前記予備接合処理は、接合圧力が1ニュートン〜20ニュートンであり、処理時間が1秒〜60秒である。
任意選択的で、前記アニーリング処理は、プロセス温度が200℃〜500℃であり、プロセス時間が20分間〜200分間である。
任意選択的で、前記第1酸化層及び第2酸化層のうちのいずれかを形成するプロセスは、原子層堆積プロセス、低圧化学気相堆積プロセス、金属有機化学気相堆積、物理気相堆積プロセスまたはパルスレーザー堆積プロセスである。
任意選択的で、前記第2チップの前記被接合面と背向する表面を接着層または静電接合を介して前記支持基板上に仮接合する。
任意選択的で、前記第2チップは、パッドが形成される第2正面と、前記第2正面と背向する第2背面とを含み、前記被接合面が前記第2正面または第2背面である。
対応して、本発明によれば、第1チップが集積されるデバイスウェハーであって、前記第1チップが集積されるとともに第1酸化層が形成される第1正面と、前記第1正面と背向する第1背面とを含むデバイスウェハーと、前記デバイスウェハーに接合される第2チップであって、第2酸化層が形成される被接合面を有し、前記第2酸化層と前記第1酸化層とが溶融接合プロセスで接続される第2チップと、前記第2チップを被覆するように前記第1酸化層上に位置するパッケージ層と、を含むウェハレベルパッケージ構造がさらに提供される。
任意選択的で、前記ウェハレベルパッケージ構造は、前記デバイスウェハー内に位置するとともに、前記第1チップに電気的に接続される第1相互接続構造と、前記デバイスウェハー内に位置するとともに、前記第2チップに電気的に接続される第2相互接続構造とをさらに含む。
任意選択的で、前記第1酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、前記第2酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、前記第1酸化層と前記第2酸化層との材料は、同じである。
任意選択的で、前記第1酸化層の厚さは、1000Å〜30000Åであり、前記第2酸化層の厚さは、1000Å〜30000Åである。
任意選択的で、前記第2チップは、パッドが形成される第2正面と、前記第2正面と背向する第2背面とを含み、前記被接合面は、前記第2正面または第2背面である。
本発明の実施例は、デバイスウェハーの第1正面に第1酸化層を形成し、集積すべき第2チップの被接合面上に第2酸化層を形成した後、前記第2酸化層及び前記第1酸化層を介して、溶融接合プロセスを用いて前記第2チップとデバイスウェハーとを接合し、前記溶融接合プロセスの過程において、前記第1酸化層と第2酸化層との接触面を共有結合によって接合することができ、前記第1酸化ケイ素層と第2酸化ケイ素層とが高い接合強度を有し、接合プロセスの信頼性を向上させ、それにより、前記デバイスウェハーと第2チップとの接合強度を向上させ、これに対応してパッケージ歩留まりを向上させる。
任意選択的な技術案では、デバイスウェハーと第2チップとの電気的な接続を実現するために、前記第2チップとデバイスウェハーとを接合した後に、前記第1チップに電気的に接続される第1相互接続構造、及び前記第2チップに電気的に接続される第2相互接続構造を前記デバイスウェハー内に形成するステップをさらに含み、前記第2相互接続構造を形成するプロセスは、通常、貫通孔エッチングプロセスを含み、前記貫通孔エッチングプロセスでは、前記デバイスウェハー及び第2酸化層を順にエッチングし、前記第2酸化層が無機材料であり、デバイスウェハーの材料も無機材料であり、従って、前記第1酸化層及び第2酸化層を接合層として用いる技術案によって、さらに後続貫通孔エッチングプロセスの難易度の低減に寄与し、それにより、前記第2相互接続構造との電気的な接続性能の向上に寄与する。
本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。 本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。
従来のウェハレベルパッケージシステムインパッケージのパッケージ歩留まりが低い。分析によれば、その製造効率が低い原因は、以下のとおりである。
デバイスウェハーと集積すべきチップとは、通常、粘着層(たとえば、ダイアタッチフィルムまたはドライフィルム)を介して物理的接続されるが、前記粘着層の耐温性が低く、後続の製造プロセスでのプロセス温度が高すぎるとき、前記粘着層が不良になりやすいため、前記粘着層の接着性を低下させ、さらに、前記デバイスウェハー及び集積すべきチップが欠落してしまうという課題が生じて、ウェハレベルパッケージシステムインパッケージのパッケージ歩留まりに深刻な影響を与える。
前記技術課題を解決するために、本発明の実施例は、第1チップが集積されるデバイスウェハーを提供するステップであって、前記デバイスウェハーは、前記第1チップが集積される第1正面と、前記第1正面と背向する第1背面とを含むステップと、前記第1正面に第1酸化層を形成するステップと、被接合面を有する集積すべき第2チップを提供するステップと、前記被接合面上に第2酸化層を形成するステップと、支持基板を提供するステップと、前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合するステップと、前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合した後に、前記第2酸化層及び前記第1酸化層を介して、溶融接合プロセスを用いて前記第2チップとデバイスウェハーとを接合するステップと、前記第2チップとデバイスウェハーとを接合した後に、前記第2チップ及びキャリアウェハーに対して剥離処理を行うステップと、前記剥離処理の後に、前記第2チップに被覆されるパッケージ層を前記第1酸化層上に形成するステップとを含む、ウェハレベルパッケージ方法を提供する。
本発明の実施例は、デバイスウェハーの第1正面に第1酸化層を形成し、集積すべき第2チップの被接合面上に第2酸化層を形成した後に、前記第2酸化層及び前記第1酸化層を介して、溶融接合プロセスを用いて前記第2チップとデバイスウェハーとを接合し、前記溶融接合プロセスの過程において、前記第1酸化層と第2酸化層との接触面を共有結合によって接合することができ、前記第1酸化ケイ素層と第2酸化ケイ素層とが高い接合強度を有し、接合プロセスの信頼性を向上させ、それにより、前記デバイスウェハーと第2チップとの接合強度を向上させ、これに対応してパッケージ歩留まりを向上させる。
本発明の上記目的、特徴及び利点をより顕著かつ理解しやすくするために、以下、図面を用いて本発明の具体的な実施例について詳細に説明する。
図1〜図9は、本発明のウェハレベルパッケージ方法の一実施例での各ステップに対応する構成概略図である。
図1を参照し、第1チップ310が集積されるデバイスウェハー(CMOS Wafer)300を提供し、前記デバイスウェハー300は、前記第1チップ310が集積される第1正面301と、前記第1正面301と背向する第1背面302とを含む。
本実施例では、前記ウェハレベルパッケージ方法は、ウェハレベルパッケージシステムインパッケージを実現するために用いられ、前記デバイスウェハー300は、後続のプロセスにおいて集積すべきチップに接合するために用いられる。
前記デバイスウェハー300は、デバイス製作済みのウェハーであり、前記デバイスウェハー300は、集積回路製作技術で製造されてもよく、たとえば、堆積、エッチングなどのプロセスにより、N型金属酸化膜半導体(N−Metal−Oxide−Semiconductor、NMOS)デバイス及びP型金属酸化膜半導体(P−Metal−Oxide−Semiconductor、PMOS)デバイスなどのデバイスを半導体基板上に形成し、誘電体層、金属相互接続構造及び金属相互接続構造に電気的に接続されるパッドなどの構造を前記デバイス上に形成し、それにより、前記デバイスウェハー300に少なくとも1つの第1チップ310を集積し、前記第1チップ310に第1パッド(Pad)320を形成する。
なお、前記第1チップ310が複数ある場合、前記複数の第1チップ310は、同じタイプまたは異なるタイプのチップであってもよい。
ただし、容易に図示するために、本実施例では、前記デバイスウェハー300に3つの第1チップ310が集積されることを例として説明するが、前記第1チップ310の数量が3つに限られない。
本実施例では、前記デバイスウェハー300の半導体基板は、シリコン基板である。他の実施例では、前記半導体基板の材料は、さらに、ゲルマニウム、シリコンゲルマニウム、炭化ケイ素、砒化ガリウムまたはガリウム化インジウムなどの他の材料であってもよく、前記半導体基板は、さらに、絶縁体上シリコン基板又は絶縁体上ゲルマニウム基板などの他のタイプの基板であってもよい。前記半導体基板の材料は、プロセス需要を満たすまたは集積されやすい材料であってもよい。
本実施例では、前記デバイスウェハー300は、前記第1チップ310が集積される第1正面301と、前記第1正面301と背向する第1背面302とを含み、前記第1正面301から前記第1パッド320を露出させる。前記第1パッド320は、前記デバイスウェハー300のワイヤボンドパッド(Bond Pad)であり、前記第1チップ310と他の回路との電気的な接続を実現するために用いられ、前記第1背面302とは、前記デバイスウェハー300における、前記第1パッド320から離れる側の半導体基板の底部面である。
本実施例では、実際のプロセスの需要に応じて、前記デバイスウェハー300の厚さT1が10ミクロン〜100ミクロンである。
続いて図1を参照し、前記第1正面301に第1酸化層350を形成する。
前記第1酸化層350は、後続の溶融接合(Fusion Bonding)プロセスの接合層として、前記デバイスウェハー300と接合すべきチップとの間の物理的接続を実現するために用いられる。前記溶融接合プロセスの後に、前記デバイスウェハー300と集積すべきチップとの間の接合強度が高い。
本実施例では、前記第1酸化層350の材料は、酸化ケイ素である。酸化ケイ素材料を選択することで、後続の溶融接合プロセスの過程において、前記デバイスウェハー300と集積すべきチップをSi−O−Siの共有結合によって接合することができ、ケイ素−酸素結合の結合エネルギーが大きいため、前記デバイスウェハー300と集積すべきチップとの接合強度をさらに向上させることに寄与し、酸化ケイ素材料は、高いプロセス互換性を有し、さらにプロセスに一般的に使用されている、コストが低い材料であるため、酸化ケイ素材料を選択することで、プロセスの難易度及びプロセスコストの低減に寄与し、形成されるパッケージ構造の性能への影響の低減に寄与する。他の実施例では、前記第1酸化層は、さらに、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであってもよい。
具体的には、原子層堆積(Atomic Layer Deposition、ALD)プロセスを用いて前記第1酸化層350を形成する。原子層堆積プロセスとは、気相前駆体を交互にパルスで反応キャビティ内に導入し、堆積すべきベースに化学吸着して表面反応が生じる堆積プロセスである。原子層堆積プロセスによって、前記第1酸化層350が原子層の形態で前記第1正面301に形成され、従って、堆積レートの均一性、前記第1酸化層350の厚さ均一性及び前記第1酸化層350における構造均一性の向上に寄与し、前記第1酸化層350が良好な被覆能力を有し、原子層堆積プロセスのプロセス温度が通常低く、従って、さらに、サーマルバジェット(Thermal Budget)を減少させ、ウェハー歪み(Wafer Distortion)、デバイスの性能偏差の確率を低下させることに寄与する。
他の実施例では、前記第1酸化層の材料に基づいて、前記第1酸化層を形成するプロセスは、さらに、低圧化学気相堆積(Low Pressure Chemical Vapor Deposition、LPCVD)プロセス、金属有機化学気相堆積(Metal Organic Chemical Vapor Deposition、MOCVD)プロセス、物理気相堆積(Physical Vapor Deposition、PVD)プロセスまたはパルスレーザー堆積(Pulsed Laser Deposition、PLD)プロセスであってもよい。
図2を参照し、被接合面(図示せず)を有する集積すべき第2チップ200を提供する。
前記第2チップ200は、ウェハレベルパッケージシステムインパッケージでの集積すべきチップとして用いられ、前記第2チップ200の数量が少なくとも1つであるとともに、前記第1チップ310(図1に示す)の数量と同じである。
前記第2チップ200は、能動素子、受動素子、微小電気機械システム、光学素子などの素子のうちの1種または複数種であってもよい。具体的には、前記第2チップ200は、記憶チップ、通信チップ、プロセスチップ、フラッシュメモリチップまたはロジックチップであってもよい。他の実施例では、前記第2チップは、さらに、他の機能チップであってもよい。
本実施例では、前記ウェハレベルパッケージシステムインパッケージは、異なる機能の複数の第2チップ200を1つのパッケージ構造に組合せるために用いられる、従って、前記複数の第2チップ200は、異なる機能タイプの複数のウェハーを切断することで取得される。他の実施例では、実際のプロセスの需要に応じて、前記複数の第2チップの機能タイプは、さらに同じであってもよい。
複数の第2チップ200を前記デバイスウェハー300(図1に示す)に集積し、前記デバイスウェハー300においてパッケージ集積製造プロセスを完了することにより、パッケージ構造の面積を大幅に減少させ、製造コストを低減させ、電気特性を最適化させ、バッチ製造可能であるなどの利点を有し、作業負荷及び設備の要件を顕著に低下させることができる。
なお、本実施例のウェハレベルパッケージ方法は、ヘテロ集積を実現するために用いられ、従って、前記複数の第2チップ200は、シリコンウェハーで製造されるチップである。他の実施例では、前記第2チップは、他の材質で形成されるチップであってもよい。
ただし、容易に図示するために、本実施例では、前記第2チップ200の数量が3つであることを例として説明するが、前記第2チップ200の数量が3つに限られない。
前記第2チップ200は、集積回路製作技術で製造されてもよく、前記第2チップ200は、通常、半導体基板上に形成されるNMOSデバイスまたはPMOSデバイスなどのデバイスを含み、誘電体層、金属相互接続構造及びパッドなどの構造をさらに含む。
本実施例では、前記第2チップ200は、第2パッド210が形成される第2正面201と、前記第2正面201と背向する第2背面202とを含み、前記第2正面201から前記第2パッド210を露出させる。前記第2パッド210は、ワイヤボンドパッドであり、前記第2チップ200と他の回路との電気的な接続を実現するために用いられ、前記第2背面202とは、前記第2チップ200における、前記第2パッド210から離れる側の半導体基板の底部面である。
本実施例では、前記第2チップ200の被接合面が前記第2正面201であり、すなわち、この後、前記第2正面201を前記デバイスウェハー300に対向させ、それにより、この後、前記デバイスウェハー300を貫通するとともに、前記第2チップ200に電気的に接続される相互接続構造(たとえば、スルーシリコンビアの相互接続構造)を形成するとき、前記相互接続構造の厚さを減少させることに寄与し、前記相互接続構造を形成するプロセスの難易度を低減させ、プロセスコストを低減させることに寄与する。他の実施例では、実際のプロセスの需要に応じて、前記被接合面は、さらに、前記第2背面であってもよく、すなわち、この後、前記第2背面を前記デバイスウェハーに対向させる。
続いて図2を参照し、前記被接合面(図示せず)上に第2酸化層250を形成する。
前記第2酸化層250は、後続の溶融接合プロセスの接合層として、前記デバイスウェハー300(図1に示す)と前記第2チップ200との間の物理的接続を実現するために用いられ、それにより、前記第2チップ200と前記デバイスウェハー300との接合強度を顕著に向上させる。
また、この後、前記デバイスウェハー300を貫通するとともに、前記第2チップ200に電気的に接続される相互接続構造を形成するとき、前記相互接続構造を形成するプロセスは、通常、貫通孔エッチングプロセスを含み、前記貫通孔エッチングプロセスでは、前記デバイスウェハー300及び第2酸化層250を順にエッチングし、前記第2酸化層250が無機材料であり、デバイスウェハー300の材料も無機材料であるため、有機粘着層を接合層として用いる技術案に比べて、前記第2酸化層250を接合層として用いる技術案によって、さらに後続の貫通孔エッチングプロセスの難易度を低減させることに寄与し、前記貫通孔エッチングプロセスの後、前記第2酸化層250内のエッチング穴径が大きすぎるという課題を回避することができ、それにより、前記貫通穴構造との電気的な接続性能の向上に寄与する。
本実施例では、前記第2酸化層250は、材料が前記第1酸化層350の材料と同じであり、それにより、前記第2酸化層250と第1酸化層350との接合強度をさらに向上させることに寄与する。具体的には、原子層堆積プロセスを用いて前記第2酸化層250を形成し、前記第2酸化層250の材料が酸化ケイ素である。
他の実施例では、前記第2酸化層は、さらに、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであってもよく、前記第2酸化層を形成するプロセスは、さらに、前記第2酸化層の材料に応じて、低圧化学気相堆積プロセス、金属有機化学気相堆積プロセス、物理気相堆積プロセスまたはパルスレーザー堆積プロセスであってもよい。
前記第2酸化層250についての具体的な説明は、前記第1酸化層350についての前記関連する説明を参照することができ、本実施例では、ここで繰り返し説明しない。
本実施例では、前記第2チップ200の被接合面が前記第2正面201であり、これに対応して、前記第2酸化層250が前記第2正面201上に形成される。他の実施例では、前記被接合面が第2背面である場合、前記第2酸化層が前記第2背面上に対応して形成される。
なお、前記複数の第2チップ200がウェハーを切断することで取得され、従って、前記第2酸化層250の形成効率及び形成品質を向上させるために、前記第2チップ200が集積されるウェハー上に前記第2酸化層250を形成した後、前記第2酸化層250が形成されるウェハーを切断することで、前記第2酸化層250が形成される第2チップ200を取得する。
続いて図2を参照し、支持基板100を提供し、前記第2チップ200の前記接合すべき面(図示せず)と背向する表面を前記支持基板100上に仮接合する。
前記支持基板100は、前記複数の第2チップ200に対して支持役割を果たすために用いられ、それにより、後続のプロセスを容易に行い、後続のプロセスの操作可能性を向上させ、仮接合(Temporary Bonding)によって、この後、前記第2チップ200と支持基板100とを容易に分離することができる。
本実施例では、前記支持基板100は、キャリアウェハー(Carrier Wafer)である。具体的には、前記支持基板100は、半導体基板(たとえば、シリコン基板)、有機ガラスウェハー、無機ガラスウェハー、樹脂ウェハー、半導体材料ウェハー、酸化物結晶ウェハー、セラミックウェハー、金属ウェハー、有機プラスチックウェハー、無機酸化物ウェハーまたはセラミック材料ウェハーであってもよい。
本実施例では、前記支持基板100上に接着層150が形成され、前記第2チップ200の前記被接合面と背向する表面が前記接着層150を介して前記支持基板100上に仮接合される。
具体的には、前記接着層150は、ダイアタッチフィルム(Die Attach Film、DAF)及びドライフィルム(Dry Film)のうち1種または2種である。
ドライフィルムは、半導体チップのパッケージまたはプリント基板の製造に用いられた、粘性を有するフォトレジスト膜であり、ドライフィルムフォトレジストの製造は、無溶媒型フォトレジストをポリエステルベース上にコーティングし、次にポリエチレンフィルムを被覆することであり、使用するとき、ポリエチレンフィルムを剥がし、無溶媒型フォトレジストをベースに押し、露光現像処理によれば、前記ドライフィルムフォトレジスト内にパターンを形成することができる。
ダイアタッチフィルムは、半導体パッケージプロセスにおいて半導体チップとパッケージ基板、チップとチップを接続する超薄型フィルム接着剤であり、高い信頼性及び使用しやすいプロセス性を有し、半導体パッケージの積層化及び薄型化の実現に寄与する。
なお、他のいくつかの実施例では、前記第2チップ200の前記被接合面と背向する表面がさらに静電接合を介して前記支持基板上に仮接合されてもよい。静電接合技術は、いかなる接着剤も使用せずに接合する方法であり、接合過程において、接合しようとする第2チップ及び支持基板をそれぞれ異なる電極に接続し、電圧作用で第2チップ及び支持基板の表面に電荷を形成し、前記第2チップと支持基板の表面での電荷の電気特性が異なり、それにより、第2チップと支持基板との接合過程において大きい静電引力が生じ、両者の物理的接続を実現する。
本実施例では、前記第2チップ200の被接合面が前記第2正面201であり、これに対応して、前記接着層150を介して前記第2チップ200の第2背面202を前記支持基板100上に仮接合する。他の実施例では、前記第2チップの被接合面が第2背面である場合、前記接着層を介して前記第2チップの第2正面を前記支持基板上に仮接合する。
本実施例では、前記第2チップ200の被接合面上に前記第2酸化層250を形成した後、前記第2チップ200の前記被接合面と背向する表面を前記支持基板100上に仮接合し、それにより、前記第2酸化層250を形成するプロセスの難易度を簡単にすることに寄与する。
他の実施例では、実際のプロセスの状況に応じて、さらに、前記第2チップの前記被接合面と背向する表面を前記支持基板に仮接合した後、前記被接合面上に前記第2酸化層を形成してもよい。
図3〜図4を参照し、前記第2チップ200の前記被接合面(図示せず)と背向する表面を前記支持基板100上に仮接合した後、前記第2酸化層250及び前記第1酸化層350を介して、溶融接合プロセスを用いて前記第2チップ200とデバイスウェハー300とを接合する。
溶融接合は、主に界面化学力で接合するプロセスである。前記溶融接合プロセスの過程において、前記第1酸化層350及び第2酸化層250の表面に不飽和結合のSi原子を形成し、共有結合の結合を実現することができ、従って、前記溶融接合プロセスによって、前記第1酸化層350と第2酸化層250との接触面を共有結合によって接合することができ、前記第1酸化層350と第2酸化層250とが高い接合強度を有し、それにより、接合プロセスの信頼性を向上させ、前記デバイスウェハー300と第2チップ200との接合強度をさらに向上させ、前記接合強度への後続のプロセスの影響が小さく、これに対応して、パッケージ歩留まりを向上させる。
具体的には、図3及び図4を参照し、前記溶融接合プロセスのステップは、前記第1酸化層350の表面(図3に示す)及び第2酸化層250(図4に示す)の表面に対してプラズマ活性化処理110を行うステップを含む。
一方、前記プラズマ活性化処理110によって、前記第1酸化層350及び第2酸化層250の表面の汚染物及び不純物などがガス状になり、プラズマシステムの真空ポンプから排出され、それにより、汚染物及び不純物を除去する役割を果たし、たとえば金属汚染及び有機汚染物を良好に除去することができる。
他方、前記プラズマ活性化処理110のプラズマが前記第1酸化層350の表面及び第2酸化層250の表面に衝撃し、安定しない非ブリッジ接続の酸素原子にエネルギーを与え、前記酸素原子が結合された原子から離れ、それにより、この後、前記第1酸化層350と第2酸化層250との接触面に共有結合を形成することに良好な基礎を提供する。
本実施例では、前記第1酸化層350及び第2酸化層250の材料は、酸化ケイ素であり、従って、前記プラズマ活性化処理110の後、前記第1酸化層350及び第2酸化層250の表面に不飽和結合のSi原子を形成する。
前記プラズマ活性化処理110に用いられる反応ガスは、Ar、N2、O2及びSF6のうちの1種または複数種を含んでもよい。
本実施例では、前記プラズマ活性化処理110に用いられる反応ガスは、O2であり、すなわち、前記プラズマ活性化処理110は、酸素プラズマ活性化処理である。
前記プラズマ活性化処理110のRF電力は、小さすぎたり大きすぎたりしてはならない。前記プラズマ活性化処理110の過程において、RF電力源の生じたRF電場を利用して電子を加速し、各電子を反応気体分子と衝撃させて運動エネルギーを移し、それにより、各反応気体分子がイオン化されてプラズマを生じる。
RF電力が小さすぎると、前記反応ガスがプラズマ化されにくく、プラズマが足らず、プラズマ安定性が低くなるという問題を引き起こしやすく、そのため、前記プラズマ活性化処理110の効果を低下させ、さらに前記第1酸化層350と第2酸化層250とのこの後の接合強度の低下を招いてしまい、前記RF電力が大きすぎると、前記反応ガスがプラズマされた後に取得される運動エネルギーが大きすぎ、前記第1酸化層350及び第2酸化層250への衝撃作用が強すぎることを招きやすく、それにより、前記第1酸化層350及び第2酸化層250の表面を破損しやすくなり、前記第1酸化層350及び第2酸化層250の表面に微小欠陥(Micro−defect)を形成し、後続のアニーリング処理の後にアニーリングによる欠けが生じやすく、逆に、前記第1酸化層350と第2酸化層250とのこの後の接合強度の低下を招きやすく、RF電力が大きすぎると、多すぎるエネルギーを消費するため、プロセスコストを増加させてしまう。
このため、本実施例では、前記プラズマ活性化処理110のRF電力が20W〜200Wである。
前記プラズマ活性化処理110のプロセス圧力は、小さすぎたり大きすぎたりしてはならない。前記プロセス圧力が前記RF電力に影響を与え、前記プロセス圧力が大きければ、プラズマの平均自由行程が短くなり、前記プラズマ間が衝撃する確率が大きくなり、それにより、前記プラズマ活性化処理110の効果が低くなってしまい、これに対応して、前記プラズマ活性化処理110の効果を確保するために、所要のRF電力が高くなり、また、前記プロセス圧力が小さすぎると、前記プラズマの安定性を低下させやすく、これに対応して、プラズマの不安定さの抑制に必要なRF電力が高くなる。
このため、本実施例では、前記プラズマ活性化処理110のRF電力に基づいて、前記プロセス圧力をマッチングする数値範囲に調整する。具体的には、前記プロセス圧力が0.1mBar〜10mBarである。
前記プラズマ活性化処理110の処理時間は、短すぎたり長すぎたりしてはならない。前記処理時間が短すぎると、RF電力及び反応ガスの流量が一定の場合に、前記プラズマ活性化処理110の効果も低くなり、それにより、前記第1酸化層350と第2酸化層250とのこの後の接合強度を低下させてしまい、前記処理時間が長すぎると、前記第1酸化層350及び第2酸化層250の表面を破損しやすいため、前記第1酸化層350及び第2酸化層250の表面に微小欠陥を形成し、処理時間が長すぎると、さらに、過剰のヒドロキシ基が生じ、後続のアニーリング処理の後に、過剰の副産物(H2O及びH2など)が生じやすく、それにより、アニーリングによる欠けが生じ、逆に、前記第1酸化層4350と第2酸化層250とのこの後の接合強度を低下させやすく、また、プロセス時間が長すぎると、プロセスコストの増加を招きやすい。このため、本実施例では、前記プラズマ活性化処理110の処理時間が0.1分間〜10分間である。
本実施例では、前記プラズマ活性化処理110のRF電力、プロセス圧力、反応ガスの流量及び処理時間を合理的な範囲に統括的に設定し、それにより、処理効率及び安定性を向上させ、プロセスコストを低減させるとともに、前記第1酸化層350と第2酸化層250との活性化効果を向上させる。
本実施例では、前記溶融接合プロセスのステップは、前記プラズマ活性化処理110(図3及び図4に示す)の後に、前記第1酸化層350の表面及び第2酸化層250の表面を脱イオン水で洗浄処理するステップと、前記脱イオン水による予備洗浄処理の後に、第1酸化層350の表面及び第2酸化層250の表面に対して乾燥処理を行うステップとをさらに含む。
前記脱イオン水洗浄処理及び乾燥処理によって、前記第1酸化層350及び第2酸化層250の表面品質を向上させ、それにより、前記第1酸化層350と第2酸化層250のとの接合強度を向上させる。
具体的には、脱イオン水を用いて前記第1酸化層350及び第2酸化層250の表面を洗浄することで、前記脱イオン水洗浄処理が完了され、前記脱イオン水洗浄処理の後に、N2を用いて前記第1酸化層350及び第2酸化層250を吹くことで、前記乾燥処理が完了される。
図5を参照し、本実施例では、前記溶融接合プロセスのステップは、前記乾燥処理の後に、前記第2チップ200及び第1チップ310の予め設定される相対位置関係に基づいて、前記第2酸化層250と第1酸化層450とを対向して設けて、貼り合わせ、前記デバイスウェハー300及び第2チップ200に接合圧力を印加し、予備接合処理120を行うステップとをさらに含む。
前記プラズマ活性化処理110の後に、前記第1酸化層350及び第2酸化層250の表面に不飽和結合のSi原子を形成し、従って、前記予備接合処理120によって、前記第1酸化層350と第2酸化層250とが界面の化学結合で連結される。
本実施例では、実際のプロセスの需要に応じて、前記第2酸化層250と第1酸化層350とを対向して設けて、貼り合わせた後に、前記第2チップ200が対応する第1チップ310と上下に1つずつ対応し、前記第1酸化層350での前記第2チップ200及び第1チップ310の投影が相互にずれており、前記デバイスウェハー300の第1背面302、及び前記支持基板100の前記第2チップ200と背向する表面に接合圧力を印加して、予備接合処理120を行う。
前記第2チップ200の第2背面202を前記支持基板100に仮接合してから、前記予備接合処理120を行うことで、前記複数の第2チップ200の受力均一性の向上に寄与し、直接前記第2チップ200に接合圧力を印加する技術案に比べて、前記予備接合処理120による前記第2チップ200への破損の低減に寄与する。
なお、前記予備接合処理120の接合圧力を増加させることで、前記第1酸化層350と第2酸化層250との界面の化学結合の連結効果及び強度の向上に寄与するが、前記接合圧力が大きすぎると、逆に、前記デバイスウェハー300、第1酸化層350、第2酸化層250及び第2チップ200へ悪影響を与えやすくなり、たとえば、歪みの問題などが生じる。このため、本実施例では、前記第1酸化層350と第2酸化層250が界面の化学結合の連結を効果的に実現するとともに、プロセスリスクを低下させるために、前記予備接合処理120の接合圧力が1ニュートン〜20ニュートンである。
ただし、前記予備接合処理120の処理時間を延長させることにより、前記第1酸化層350と第2酸化層250との接触面の化学結合の連結効果及び強度の向上に寄与し、しかし、前記処理時間が長すぎると、逆に、プロセス時間の浪費、効率の低下を招いてしまう。このため、本実施例では、前記第1酸化層350と第2酸化層250が界面の化学結合の連結を効果的に実現するとともに、プロセス効率を向上させるために、前記予備接合処理120の処理時間が1秒〜60秒である。
本実施例では、前記溶融接合プロセスのステップは、前記予備接合処理120の後に、前記デバイスウェハー300及び第2チップ200に対してアニーリング処理を行うステップをさらに含む。
前記アニーリング処理によって、前記第1酸化層350と第2酸化層250との接触面が脱水縮合反応し、それにより、前記第1酸化層350と第2酸化層250がSi−O−Siの共有結合の結合を形成し、ケイ素−酸素結合の結合エネルギーが大きいため、前記第1酸化層350と第2酸化層250との接合強度をさらに向上させる。
前記アニーリング処理のプロセス温度は、低すぎたり高すぎたりしてはならない。前記プロセス温度が低すぎると、脱水縮合反応の効果を低下させやすく、前記第1酸化層350と第2酸化層250との接合強度を向上させることに不利であり、前記プロセス温度が高すぎると、前記デバイスウェハー300及び第2チップ200内に形成されるデバイスの性能へ悪影響を与えやすい。このため、本実施例では、前記アニーリング処理のプロセス温度が200℃〜500℃である。
本実施例では、前記アニーリング処理のプロセス温度が低く、従って、デバイスウェハー300及び第2チップ200内に形成されるデバイスの性能への影響を減少させることに寄与する。
前記アニーリング処理のプロセス時間は、短すぎたり長すぎたりしてはならない。前記プロセス時間が短すぎると、前記脱水縮合反応を十分に行うことが困難であり、それにより、前記第1酸化層350と第2酸化層250との接合強度を向上させることに不利であり、前記プロセス時間が長すぎると、逆に、プロセス時間の浪費、効率低下の問題を引き起こし、前記デバイスウェハー300及び第2チップ200をアニーリング環境に長い間放置すると、プロセスリスクが増加してしまう。このため、本実施例では、前記アニーリング処理のプロセス時間が20分間〜200分間である。
本実施例では、前記アニーリング処理のプロセス温度及びプロセス時間を合理的な範囲に統括的に設定し、それにより、接合強度を向上させるとともに、副作用の発生確率を低下させる。
なお、前記第2チップ200は、数量が複数であるとともに、相互に独立し、従って、前記溶融接合プロセスの過程において、前記支持基板100は、前記複数の第2チップ200に対して支持役割を果たすために用いられ、前記第2チップ200が欠落する確率を低下させ、さらに前記溶融接合プロセスを容易に行う。
このため、図6を参照し、前記第2チップ200とデバイスウェハー300とを接合した後、前記第2チップ200と支持基板100(図5に示す)に対して剥離(De−bonding)処理を行い、それにより、前記第2チップ200と支持基板100を分離させて、前記支持基板100及び接着層150(図5に示す)を除去する。
具体的には、前記剥離処理のプロセスは、化学的腐食、機械的剥離、機械的研磨、熱ベーキング、紫外線照射、レーザーアブレーション、化学的機械的研磨及び湿式剥離のうちの1種または複数種であってもよく、前記粘着層150の材料に応じて適宜なプロセスを選択してもよい。
図7を参照し、前記剥離処理の後に、前記第2チップ200に被覆されるパッケージ層400を前記第1酸化層350上に形成する。
前記パッケージ層400は、前記第2チップ200及び第1酸化層350に被覆され、密封及び防水の役割を果たし、前記第1チップ310及び第2チップ200を保護することができ、それにより、前記第1チップ310及び第2チップ200が破損、汚染または酸化される確率を低下させ、さらに取得されるパッケージ構造の性能を最適化させることに寄与する。
また、前記第2チップ200に被覆されるパッケージ層400を前記第1酸化層350上に形成した後、前記パッケージ層400が前記第1酸化層350と接触し、パッケージ層400の吸水率及び化学安定性が高いため、パッケージ構造の良率及び信頼性をさらに向上させることに寄与する。
また、前記パッケージ層400が前記溶融接合プロセスの後に形成され、従って、前記溶融接合プロセスにおいてアニーリング処理のプロセス温度が前記パッケージ層400に悪影響を与えることを回避し、前記パッケージ層400の品質及び性能を確保することができる。
本実施例では、前記パッケージ層400の材料は、エポキシ樹脂(Epoxy)である。エポキシ樹脂は、収縮率が低く、粘着性が高く、耐食性が高く、電気特性に優れ及びコストが低いなどの利点を有し、従って、電子デバイス及び集積回路のパッケージ材料として広く用いられている。
本実施例では、射出成形プロセスによって、液体のモールドコンパウンド又は固体のモールドコンパウンドを用い、前記パッケージ層400を形成する。具体的には、前記射出成形プロセスは、ホットプレス射出成形プロセスであってもよい。
本実施例では、前記パッケージ層400の形状がウェハー状であってもよく、前記ウェハー状パッケージ層400の直径が前記デバイスウェハー300の直径と同じである。他の実施例では、前記パッケージ層は、他の適宜な形状であってもよい。
図8を参照し、前記パッケージ方法は、前記パッケージ層400を形成した後、前記デバイスウェハー300の第1背面302に対して薄型化処理を行うステップをさらに含む。
前記第1背面302に対して薄型化処理を行うことで、前記デバイスウェハー300の厚さを減少させ、それにより、前記デバイスウェハー300の放熱効果を改善し、後続のパッケージ製造プロセスの実行に寄与し、パッケージ後に取得されるパッケージ構造の全体厚さを減少させ、それにより、前記パッケージ構造の性能を向上させる。
本実施例では、前記薄型化処理に用いられるプロセスは、背部研磨プロセス、化学的機械的研磨(Chemical Mechanical Polishing、CMP)プロセス及びウエットエッチングプロセスのうちの1種または複数種であってもよい。
前記薄型化処理の停止位置を効果的に制御するために、前記デバイスウェハー300の製造プロセスにおいて、通常、前記停止位置を制限するためのディープトレンチ分離構造を前記デバイスウェハー300の半導体基板内に形成することで、前記薄型化処理を前記ディープトレンチ分離構造の底部に停止する。
他の実施例では、さらに前記デバイスウェハーの製造プロセスにおいて、中性のドーピングイオン(たとえば、酸素イオン及び窒素イオンのうち1種または2種)を用いて前記デバイスウェハー300の半導体基板内に停止領域を形成してもよく、それにより、前記薄型化処理を前記停止領域の底部に停止する。
他の実施例では、前記デバイスウェハーの半導体基板が絶縁体上シリコン基板又は絶縁体上ゲルマニウム基板である場合、さらに前記半導体基板の底部基板層に対して薄型化処理を行ってもよく、それにより、前記絶縁体層の底部に良好に停止することができる。
なお、前記薄型化処理の後に、前記デバイスウェハー300の厚さは、薄すぎたり厚すぎたりしてはならない。前記デバイスウェハー300の厚さが薄すぎると、前記デバイスウェハー300の機械的性質が低く、前記デバイスウェハー300内に形成されるデバイスなどの構造に対して悪影響を生じやすく、前記デバイスウェハー300の厚さが薄すぎると、形成されるパッケージ構造の性能を向上させることに不利である。このため、本実施例では、前記薄型化処理の後に、前記デバイスウェハー300の厚さが5μm〜10μmである。
図9を参照し、前記薄型化処理の後に、前記デバイスウェハー300内に前記第1チップ310に電気的に接続される第1相互接続構造410、及び前記第2チップ200に電気的に接続される第2相互接続構造420を形成する。
前記第1相互接続構造410及び第2相互接続構造420によって、前記第1チップ310及び第2チップ200と他の回路との電気的な接続、及び前記第1チップ310と第2チップ200との電気的な接続を実現する。
本実施例では、前記第1相互接続構造410及び第2相互接続構造420がスルーシリコンビア相互接続構造であり、すなわち、前記第1相互接続構造410及び第2相互接続構造420がスルーシリコンビア(Through−Silicon Via、TSV)エッチングプロセス及びメッキプロセスにより形成される。具体的には、前記第1相互接続構造410と前記第1チップ310内の金属相互接続構造とが電気的に接続され、前記第2相互接続構造420と前記第2チップ200内の第2パッド210とが電気的に接続される。
本実施例では、前記第1相互接続構造410及び第2相互接続構造420の材料は、銅である。他の実施例では、前記第1相互接続構造及び第2相互接続構造の材料は、さらに、アルミニウム、タングステン及びチタンなどの導電性材料であってもよい。
対応して、本発明は、ウェハレベルパッケージ構造をさらに提供する。続いて図9を参照し、本発明のウェハレベルパッケージ構造の一実施例の構成概略図が示される。
前記ウェハレベルパッケージ構造は、第1チップ310が集積されるデバイスウェハー300であって、前記デバイスウェハー300は、前記第1チップ310が集積される第1正面301と、前記第1正面301と背向する第1背面302とを含み、前記第1正面301に第1酸化層350が形成されるデバイスウェハー300と、前記デバイスウェハー300に接合される第2チップ200であって、前記第2チップ200は、被接合面(図示せず)を有し、前記被接合面上に第2酸化層250が形成され、前記第2酸化層250と前記第1酸化層350とが溶融接合プロセスで接続される第2チップ200と、前記第1酸化層350に位置するとともに、前記第2チップ200に被覆されるパッケージ層400とを備える。
本実施例では、前記ウェハレベルパッケージ構造がウェハレベルシステムパッケージ構造であり、それにより、前記パッケージ構造の面積を大幅に減少させ、製造コストを低減させ、電気特性を最適化させ、バッチ製造可能であるなどの利点を有し、作業負荷及び設備の要件を顕著に低下させることができる。
前記デバイスウェハー300は、デバイス製作済みのウェハーであり、前記デバイスウェハー300は、半導体基板上に位置するNMOSデバイス及びPMOSデバイスなどのデバイスを含んでもよく、さらに誘電体層、金属相互接続構造及び前記金属相互接続構造に電気的に接続されるパッドなどの構造を含んでもよい。従って、前記デバイスウェハー300に少なくとも1つの第1チップ310が集積され、前記第1チップ310に第1パッド320が形成される。
本実施例では、前記デバイスウェハー300は、前記第1チップ310が集積される第1正面301と、前記第1正面301と背向する第1背面302とを含み、前記第1正面301から前記デバイスウェハー300の第1パッド320を露出させる。前記第1背面302とは、前記デバイスウェハー300における、前記第1パッド320から離れる側の半導体基板の底部面である。
本実施例では、前記デバイスウェハー300の厚さが5μm〜10μmである。前記デバイスウェハー300の厚さが薄いため、前記デバイスウェハー300の放熱効果を改善することができ、パッケージ製造プロセスの実行に寄与し、前記パッケージ構造の全体厚さを減少させ、それにより、前記パッケージ構造の性能を向上させる。
前記デバイスウェハー300についての具体的な説明は、前述した実施例での対応する説明を参照することができ、本実施例では、ここで繰り返し説明しない。
前記第2チップ200の数量が少なくとも1つであり、前記第2チップ200の数量が前記第1チップ310の数量と同じである。前記第2チップ200は、能動素子、受動素子、微小電気機械システム、光学素子などの素子のうちの1種または複数種であってもよい。具体的には、前記第2チップ200は、記憶チップ、通信チップ、プロセスチップ、フラッシュメモリチップまたはロジックチップであってもよい。他の実施例では、前記第2チップは、さらに、他の機能チップであってもよい。
本実施例では、前記第2チップ200の数量が複数であり、前記複数の第2チップ200は、異なる機能タイプの複数のウェハーを切断することで取得される。他の実施例では、実際のプロセスの需要に応じて、前記複数の第2チップの機能タイプは、さらに同じであってもよい。
本実施例では、実際のプロセスの需要に応じて、前記第2チップ200が対応する第1チップ310と上下に1つずつ対応し、前記第1酸化層350での前記第2チップ200及び第1チップ310の投影が相互にずれている。
前記第2チップ200は、集積回路製作技術で製造されてもよく、前記第2チップ200は、通常、半導体基板に形成されるNMOSデバイスまたはPMOSデバイスなどのデバイスを含み、誘電体層、金属相互接続構造及びパッドなどの構造をさらに含む。
具体的には、前記第2チップ200は、第2パッド210が形成される第2正面201と、前記第2正面201と背向する第2背面202とを含み、前記第2正面201から前記第2パッド210を露出させる。前記第2背面202とは、前記第2チップ200における、前記第2パッド210から離れる側の半導体基板の底部面である。
本実施例では、前記第2チップ200の被接合面が前記第2正面201であり、すなわち、前記第2正面201が前記デバイスウェハー300に向いており、これに対応して、前記ウェハレベルパッケージ構造の製造過程において、相互接続構造(たとえば、スルーシリコンビア相互接続構造)を形成するプロセスの難易度を低減させ、プロセスコストを低減させることに寄与し、さらに、前記相互接続構造の厚さの減少に寄与する。他の実施例では、前記被接合面は、実際のプロセスの需要に応じて、さらに、前記第2背面であってもよい。
前記第2チップ200についての具体的な説明は、前述した実施例での対応する説明を参照することができ、本実施例では、ここで繰り返し説明しない。
前記第2酸化層250と前記第1酸化層350とが溶融接合プロセスにより接続され、前記デバイスウェハー300と前記第2チップ200との間の物理的接続を実現するために用いられる。
溶融接合は、主に界面化学力で接合するプロセスであり、前記第1酸化層350と第2酸化層250との接触面を共有結合によって接続し、従って、前記第1酸化層350と第2酸化層250とが高い接合強度を有し、それにより、前記ウェハレベルパッケージ構造の製造効率の向上に寄与する。
また、前記ウェハレベルパッケージ構造の製造過程において、通常、貫通孔エッチングプロセスが含まれ、前記貫通孔エッチングプロセスでは、前記デバイスウェハー300及び第2酸化層250を順にエッチングするため、前記第2酸化層250が無機材料であり、デバイスウェハー300の材料も無機材料であり、従って、有機粘着層を接合層として用いる技術案に比べて、前記第2酸化層250を接合層として用いる技術案によって、さらに前記貫通孔エッチングプロセスの難易度の低減に寄与し、前記貫通孔エッチングプロセスの後に、前記第2酸化層250内のエッチング穴径が大きすぎるという課題を回避でき、それにより、前記貫通穴構造の電気的な接続性能の向上に寄与する。
本実施例では、前記第2酸化層250の材料が前記第1酸化層350の材料と同じであり、それにより、共有結合の結合を良好に実現することができ、前記第2酸化層250と第1酸化層350との接合強度をさらに向上させることに寄与する。
具体的には、前記第1酸化層350の材料は、酸化ケイ素であり、前記第2酸化層250の材料は、酸化ケイ素である。これに応じて、前記第1酸化層350と第2酸化層250とがSi−O−Siの共有結合で結合され、ケイ素−酸素結合の結合エネルギーが大きいため、前記第1酸化層350と第2酸化層250との接合強度を効果的に向上させることができる。
また、酸化ケイ素材料は、高いプロセス互換性を有し、プロセスに一般的に使用されている、コストが低い材料であるため、酸化ケイ素材料を選択することで、プロセスの難易度及びプロセスコストの低減に寄与し、形成されるパッケージ構造の性能への影響の低減に寄与する。
他の実施例では、前記第1酸化層は、さらに、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであってもよく、前記第2酸化層は、さらに、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであってもよい。
本実施例では、プロセスの難易度を低減させるために、前記第1酸化層350と第2酸化層250との厚さが同じである。
しかし、前記第1酸化層350及び第2酸化層250の厚さは、薄すぎたり厚すぎたりしてはならない。前記厚さが薄すぎると、前記第1酸化層350及び第2酸化層250の厚さ均一性及び品質を低減させやすくなり、前記厚さが厚すぎると、前記パッケージ構造の全体厚さが厚すぎてしまい、プロセス集積度の向上に不利であり、さらに、前記パッケージ構造の製造過程において、貫通孔エッチングプロセスの難易度及び貫通穴構造の厚さを増加させる。このため、本実施例では、前記第1酸化層350の厚さが1000Å〜30000Åであり、前記第2酸化層250の厚さが1000Å〜30000Åである。
前記パッケージ層400が前記第2チップ200及び前記デバイスウェハー300の正面301に被覆され、密封及び防水の役割を果たすことができ、以保護前記第1チップ310及び第2チップ200、それにより、前記第1チップ310及び第2チップ200が破損、被汚染または酸化される確率を低下させ、さらに前記パッケージ構造の性能を最適化させることに寄与する。
また、前記パッケージ層400が前記第1酸化層350と接触し、パッケージ層400の吸水率及び化学安定性が高い、従って、パッケージ構造の良率及び信頼性の良率及び信頼性をさらに向上させることに寄与する。
本実施例では、前記パッケージ層400の材料は、エポキシ樹脂である。エポキシ樹脂は、収縮率が低く、粘着性が高く、耐食性が高く、電気特性に優れ及びコストが低いなどの利点を有するため、電子デバイス及び集積回路のパッケージ材料として広く用いられている。他の実施例では、前記パッケージ層の材料は、さらに、ポリミイドまたはシリコンなどの熱硬化性材料であってもよい。
本実施例では、前記パッケージ層400の形状がウェハー状であり、前記ウェハー状パッケージ層400の直径が前記デバイスウェハー300の直径と同じである。他の実施例では、前記パッケージ層は、他の適宜な形状であってもよい。
なお、前記ウェハレベルパッケージ構造は、前記デバイスウェハー300内に位置するとともに、前記第1チップ310に電気的な接続される第1相互接続構造410と、前記デバイスウェハー300内に位置するとともに、前記第2チップ200に電気的な接続される第2相互接続構造420とをさらに含む。
前記第1相互接続構造410及び第2相互接続構造420は、前記第1チップ310及び第2チップ200と他の回路との電気的な接続、及び前記第1チップ310と第2チップ200との電気的な接続を実現するために用いられる。
具体的には、前記第1相互接続構造410と前記第1チップ310内の金属相互接続構造とが電気的に接続され、前記第2相互接続構造420と前記第2チップ200内の第2パッド210とが電気的に接続される。
本実施例では、前記第1相互接続構造410及び第2相互接続構造420は、スルーシリコンビア構造であり、すなわち、前記第1相互接続構造410及び第2相互接続構造420は、スルーシリコンビアエッチングプロセス及びメッキプロセスによって形成される。
本実施例では、前記第1相互接続構造410及び第2相互接続構造420の材料は、銅である。他の実施例では、前記第1相互接続構造及び第2相互接続構造の材料は、さらに、アルミニウム、タングステン及びチタンなどの導電性材料であってもよい。
本実施例の前記ウェハレベルパッケージ構造は、前述した実施例に記載のウェハレベルパッケージ方法で形成されてもよいし、他のパッケージ方法で形成されてもよい。本実施例では、前記ウェハレベルパッケージ構造についての具体的な説明は、前述した実施例での対応する説明を参照することができ、本実施例では、ここで繰り返し説明しない。
本発明は、以上のように開示されているが、本発明は、これに限定されていない。当業者であれば、本発明の要旨及び範囲から逸脱することなく、さまざまな変更や修正を行うことができるため、本発明の請求範囲は、特許請求の範囲で限定される範囲を基準とする。

Claims (17)

  1. 第1チップが集積されるデバイスウェハーを提供するステップであって、前記デバイスウェハーは、前記第1チップが集積される第1正面と、前記第1正面と背向する第1背面とを含むステップと、
    前記第1正面に第1酸化層を形成するステップと、
    被接合面を有し集積すべき第2チップを提供するステップと、
    前記被接合面に第2酸化層を形成するステップと、
    支持基板を提供するステップと、
    前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合するステップと、
    前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合した後に、前記第2酸化層及び前記第1酸化層を介して、溶融接合プロセスを用いて前記第2チップと前記デバイスウェハーとを接合するステップと、
    前記第2チップと前記デバイスウェハーとを接合した後に、前記第2チップ及び前記デバイスウェハーに対して剥離処理を行うステップと、
    前記剥離処理の後に、前記第2チップを被覆するパッケージ層を前記第1酸化層上に形成するステップとを含む、
    ことを特徴とするウェハレベルパッケージ方法。
  2. 前記溶融接合プロセスを行うステップは、前記第1酸化層の表面及び前記第2酸化層の表面に対してプラズマ活性化処理、脱イオン水洗浄処理及び乾燥処理を順に行うステップと、
    前記乾燥処理を行った後に、前記第2チップと前記第1チップとの所定の相対位置関係に基づいて、前記第2酸化層及び前記第1酸化層を貼り合わせるように対向させて設けて、前記デバイスウェハー及び前記第2チップに接合圧力を印加し、予備接合処理を行うステップと、
    前記予備接合処理を行った後に、前記デバイスウェハー及び前記第2チップに対してアニーリング処理を行うステップとを含む、
    ことを特徴とする請求項1に記載のウェハレベルパッケージ方法。
  3. 前記被接合面上に前記第2酸化層を形成した後に、前記第2チップの前記被接合面と背向する表面を前記支持基板上に仮接合し、
    又は、
    前記第2チップの前記被接合面と背向する表面を前記支持基板に仮接合した後に、前記被接合面上に前記第2酸化層を形成する、
    ことを特徴とする請求項1に記載のウェハレベルパッケージ方法。
  4. 前記パッケージ層を形成した後に、前記第1背面に対して薄型化処理を行うステップと、
    前記薄型化処理を行った後に、前記第1チップに電気的に接続される第1相互接続構造、及び前記第2チップに電気的に接続される第2相互接続構造を前記デバイスウェハー内に形成するステップをさらに含む、
    ことを特徴とする請求項1に記載のウェハレベルパッケージ方法。
  5. 前記第1酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、
    前記第2酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、
    前記第1酸化層と前記第2酸化層との材料は、同じである、
    ことを特徴とする請求項1または2に記載のウェハレベルパッケージ方法。
  6. 前記プラズマ活性化処理に用いられる反応ガスは、Ar、N2、O2及びSF6のうちの一つまたは複数を含む、
    ことを特徴とする請求項2に記載のウェハレベルパッケージ方法。
  7. 前記プラズマ活性化処理のパラメータは、
    RF電力が20W〜200Wであり、
    プロセス圧力が0.1mBar〜10mBarであり、
    処理時間が0.1分間〜10分間である、
    ことを特徴とする請求項2に記載のウェハレベルパッケージ方法。
  8. 前記予備接合処理は、前記接合圧力が1ニュートン〜20ニュートンであり、処理時間が1秒〜60秒である、
    ことを特徴とする請求項2に記載のウェハレベルパッケージ方法。
  9. 前記アニーリング処理は、プロセス温度が200℃〜500℃であり、プロセス時間が20分間〜200分間である、
    ことを特徴とする請求項2に記載のウェハレベルパッケージ方法。
  10. 前記第1酸化層及び第2酸化層のいずれかを形成するプロセスは、原子層堆積プロセス、低圧化学気相堆積プロセス、金属有機化学気相堆積、物理気相堆積プロセスまたはパルスレーザー堆積プロセスである、
    ことを特徴とする請求項1に記載のウェハレベルパッケージ方法。
  11. 前記第2チップの前記被接合面と背向する表面を接着層または静電接合を介して前記支持基板上に仮接合する、
    ことを特徴とする請求項1に記載のウェハレベルパッケージ方法。
  12. 前記第2チップは、パッドが形成される第2正面と、前記第2正面と背向する第2背面とを含み、
    前記被接合面が前記第2正面または第2背面である、
    ことを特徴とする請求項1に記載のウェハレベルパッケージ方法。
  13. 第1チップが集積されるデバイスウェハーであって、前記第1チップが集積されるとともに第1酸化層が形成される第1正面と、前記第1正面と背向する第1背面とを含むデバイスウェハーと、
    前記デバイスウェハーに接合される第2チップであって、第2酸化層が形成される被接合面を有し、前記第2酸化層と前記第1酸化層とが溶融接合プロセスで接続される第2チップと、
    前記第2チップを被覆するように前記第1酸化層上に位置するパッケージ層と、を含む、
    ことを特徴とするウェハレベルパッケージ構造。
  14. 前記デバイスウェハー内に位置するとともに、前記第1チップに電気的に接続される第1相互接続構造と、
    前記デバイスウェハー内に位置するとともに、前記第2チップに電気的に接続される第2相互接続構造とをさらに含む、
    ことを特徴とする請求項13に記載のウェハレベルパッケージ構造。
  15. 前記第1酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、前記第2酸化層の材料は、酸化ケイ素、酸化ハフニウム、酸化アルミニウムまたは酸化ランタンであり、
    前記第1酸化層と前記第2酸化層との材料は、同じである、
    ことを特徴とする請求項13に記載のウェハレベルパッケージ構造。
  16. 前記第1酸化層の厚さは、1000Å〜30000Åであり、
    前記第2酸化層の厚さは、1000Å〜30000Åである、
    ことを特徴とする請求項13または15に記載のウェハレベルパッケージ構造。
  17. 前記第2チップは、パッドが形成される第2正面と、前記第2正面と背向する第2背面とを含み、
    前記被接合面は、前記第2正面または第2背面である、
    ことを特徴とする請求項13に記載のウェハレベルパッケージ構造。
JP2021511562A 2018-09-04 2018-10-31 ウェハレベルパッケージ方法及びパッケージ構造 Pending JP2021535613A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811027610.5 2018-09-04
CN201811027610.5A CN110875192A (zh) 2018-09-04 2018-09-04 晶圆级封装方法及封装结构
PCT/CN2018/113103 WO2020047973A1 (zh) 2018-09-04 2018-10-31 晶圆级封装方法及封装结构

Publications (1)

Publication Number Publication Date
JP2021535613A true JP2021535613A (ja) 2021-12-16

Family

ID=69639642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021511562A Pending JP2021535613A (ja) 2018-09-04 2018-10-31 ウェハレベルパッケージ方法及びパッケージ構造

Country Status (2)

Country Link
US (2) US10790211B2 (ja)
JP (1) JP2021535613A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020140212A1 (en) * 2019-01-02 2020-07-09 Yangtze Memory Technologies Co., Ltd. Plasma activation treatment for wafer bonding
US11315789B2 (en) * 2019-04-24 2022-04-26 Tokyo Electron Limited Method and structure for low density silicon oxide for fusion bonding and debonding
US11063022B2 (en) * 2019-09-17 2021-07-13 Taiwan Semiconductor Manufacturing Company, Ltd. Package and manufacturing method of reconstructed wafer
US20230026052A1 (en) * 2021-07-22 2023-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition bonding layer for joining two semiconductor devices
FR3131469A1 (fr) * 2021-12-23 2023-06-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé d’assemblage par collage direct de composants électroniques
CN116053202B (zh) * 2023-02-11 2023-09-29 浙江嘉辰半导体有限公司 一种空腔结构晶圆级封装工艺方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517344A (ja) * 2003-02-07 2006-07-20 ジプトロニクス・インコーポレイテッド 室温金属直接ボンディング
JP2008060406A (ja) * 2006-08-31 2008-03-13 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2009239288A (ja) * 2009-04-13 2009-10-15 Univ Waseda 接合方法及び接合装置
CN102072967A (zh) * 2010-12-14 2011-05-25 东南大学 基于金金键合工艺的热式风速风向传感器及其制备方法
WO2012133760A1 (ja) * 2011-03-30 2012-10-04 ボンドテック株式会社 電子部品実装方法、電子部品実装システムおよび基板
JP2013077711A (ja) * 2011-09-30 2013-04-25 Sony Corp 半導体装置および半導体装置の製造方法
US20130207098A1 (en) * 2012-02-10 2013-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Soft material wafer bonding and method of bonding
US20130307165A1 (en) * 2012-05-18 2013-11-21 Lexvu Opto Microelectronics Technology (Shanghai) Ltd. Method for low temperature wafer bonding and bonded structure
WO2014046052A1 (ja) * 2012-09-23 2014-03-27 国立大学法人東北大学 チップ支持基板、チップ支持方法、三次元集積回路、アセンブリ装置及び三次元集積回路の製造方法
WO2014196105A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
US20150111329A1 (en) * 2011-07-25 2015-04-23 Industrial Technology Research Institute Transfer-bonding method for light emitting devices
US20150255505A1 (en) * 2014-03-05 2015-09-10 Lg Electronics Inc. Display device using semiconductor light emitting device
US20150311188A1 (en) * 2014-04-24 2015-10-29 Shanghai Lexvu Opto Microelectronics Technology Co., Ltd. Methods of Fabrication and Testing of Three-Dimensional Stacked Integrated Circuit System-In-Package
CN105140143A (zh) * 2015-07-30 2015-12-09 武汉新芯集成电路制造有限公司 一种晶圆键合工艺
JP2016092190A (ja) * 2014-11-04 2016-05-23 株式会社東芝 半導体装置の製造方法
CN108346639A (zh) * 2017-09-30 2018-07-31 中芯集成电路(宁波)有限公司 一种晶圆级系统封装方法以及封装结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670927B2 (en) 2006-05-16 2010-03-02 International Business Machines Corporation Double-sided integrated circuit chips
US9735113B2 (en) 2010-05-24 2017-08-15 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming ultra thin multi-die face-to-face WLCSP
CN104925748B (zh) 2014-03-19 2017-06-13 中芯国际集成电路制造(上海)有限公司 一种提高晶圆间键合强度的方法
CN105185720B (zh) 2015-08-03 2018-05-08 武汉新芯集成电路制造有限公司 一种增强键合强度的超薄热氧化晶圆键合工艺
US10032751B2 (en) 2015-09-28 2018-07-24 Invensas Corporation Ultrathin layer for forming a capacitive interface between joined integrated circuit components
US9773768B2 (en) 2015-10-09 2017-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure of three-dimensional chip stacking
US10665582B2 (en) * 2017-11-01 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor package structure
US10930633B2 (en) * 2018-06-29 2021-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Buffer design for package integration

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517344A (ja) * 2003-02-07 2006-07-20 ジプトロニクス・インコーポレイテッド 室温金属直接ボンディング
JP2008060406A (ja) * 2006-08-31 2008-03-13 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2009239288A (ja) * 2009-04-13 2009-10-15 Univ Waseda 接合方法及び接合装置
CN102072967A (zh) * 2010-12-14 2011-05-25 东南大学 基于金金键合工艺的热式风速风向传感器及其制备方法
WO2012133760A1 (ja) * 2011-03-30 2012-10-04 ボンドテック株式会社 電子部品実装方法、電子部品実装システムおよび基板
US20150111329A1 (en) * 2011-07-25 2015-04-23 Industrial Technology Research Institute Transfer-bonding method for light emitting devices
JP2013077711A (ja) * 2011-09-30 2013-04-25 Sony Corp 半導体装置および半導体装置の製造方法
US20130207098A1 (en) * 2012-02-10 2013-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Soft material wafer bonding and method of bonding
US20130307165A1 (en) * 2012-05-18 2013-11-21 Lexvu Opto Microelectronics Technology (Shanghai) Ltd. Method for low temperature wafer bonding and bonded structure
WO2014046052A1 (ja) * 2012-09-23 2014-03-27 国立大学法人東北大学 チップ支持基板、チップ支持方法、三次元集積回路、アセンブリ装置及び三次元集積回路の製造方法
WO2014196105A1 (ja) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
US20150255505A1 (en) * 2014-03-05 2015-09-10 Lg Electronics Inc. Display device using semiconductor light emitting device
US20150311188A1 (en) * 2014-04-24 2015-10-29 Shanghai Lexvu Opto Microelectronics Technology Co., Ltd. Methods of Fabrication and Testing of Three-Dimensional Stacked Integrated Circuit System-In-Package
JP2016092190A (ja) * 2014-11-04 2016-05-23 株式会社東芝 半導体装置の製造方法
CN105140143A (zh) * 2015-07-30 2015-12-09 武汉新芯集成电路制造有限公司 一种晶圆键合工艺
CN108346639A (zh) * 2017-09-30 2018-07-31 中芯集成电路(宁波)有限公司 一种晶圆级系统封装方法以及封装结构

Also Published As

Publication number Publication date
US10790211B2 (en) 2020-09-29
US20200075444A1 (en) 2020-03-05
US11450582B2 (en) 2022-09-20
US20200402876A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP2021535613A (ja) ウェハレベルパッケージ方法及びパッケージ構造
US9040346B2 (en) Semiconductor package and methods of formation thereof
US10784229B2 (en) Wafer level package structure and wafer level packaging method
KR101589782B1 (ko) 쓰루-실리콘 비아들을 노출 및 접촉시키는 고-수율 방법
KR20210039444A (ko) 웨이퍼 레벨 패키지 방법 및 패키지 구조
WO2020047973A1 (zh) 晶圆级封装方法及封装结构
CN110875198A (zh) 晶圆级封装方法及封装结构
US11855067B2 (en) Integrated circuit package and method
US10804177B2 (en) Wafer-level packaging method and package structure thereof
JP7106753B2 (ja) ウェハレベルパッケージング方法及びパッケージング構造
CN110875205B (zh) 晶圆级封装方法及封装结构
CN110875207B (zh) 晶圆级封装方法及封装结构
CN110875232A (zh) 晶圆级封装方法及封装结构
CN110875199B (zh) 晶圆级封装方法及封装结构
CN111370328B (zh) 晶圆级封装方法
CN114203690A (zh) 扇出式堆叠芯片的封装方法及封装结构
US10756051B2 (en) Wafer-level system packaging method and package structure
CN110875193B (zh) 晶圆级封装方法及封装结构
CN111370330B (zh) 晶圆级封装方法
KR20230117689A (ko) 집적 회로 패키지 및 방법
CN113471160A (zh) 芯片封装结构及其制作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206