JP2021175367A - 電気自動車のac充電システム - Google Patents

電気自動車のac充電システム Download PDF

Info

Publication number
JP2021175367A
JP2021175367A JP2021066493A JP2021066493A JP2021175367A JP 2021175367 A JP2021175367 A JP 2021175367A JP 2021066493 A JP2021066493 A JP 2021066493A JP 2021066493 A JP2021066493 A JP 2021066493A JP 2021175367 A JP2021175367 A JP 2021175367A
Authority
JP
Japan
Prior art keywords
power
local
charging
electric vehicle
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021066493A
Other languages
English (en)
Other versions
JP7271596B2 (ja
Inventor
熾昌 ▲葛▼
Chih-Chan Ger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2021175367A publication Critical patent/JP2021175367A/ja
Application granted granted Critical
Publication of JP7271596B2 publication Critical patent/JP7271596B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/30Preventing theft during charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】電気自動車のAC充電システム及びその運用方法を提供する。【解決手段】電気自動車22a〜22nのAC充電システム10は、送配電網20によって応用され、電力検出モジュール11、ローカル給電モジュール12a〜12n及びローカル充電制御モジュール13を備える。電力検出モジュールは、送配電網の第二ローカル電力変換装置202に接続され、電力パラメータを生じる。ローカル給電モジュールは、送配電網の第二ローカル電力変換装置の電力出力側に接続され、制御可能な電力を電気自動車に出力する。ローカル充電制御モジュールは、電力検出モジュール及びローカル給電モジュールに接続され、電力パラメータに基づいてローカル給電モジュールからの制御可能な電力を制御する。【効果】これにより、数多くの電気自動車にAC充電作業を同時に行う際、電気の過負荷が原因で送配電網の給電状況に影響を与えることを避けることができる。【選択図】図1A

Description

本発明は、充電システム、特に電気自動車のAC充電システムに関するものである。
電気エネルギーは使用上の利便性を有するだけでなく、世界中では分布範囲および密度が最も大きく、使用率が最も高いエネルギーである。電気を使用する電気自動車は走行中に排気ガスを排出しないことが特徴であり、ガソリンを使用する自動車と比べて燃費がよく、化石燃料の消耗を緩和することができる。また電気自動車はモーターの運転に伴って生じる音および廃熱が極めて少ないため、騒音問題およびヒートアイランドを効果的に改善することができる。従って、電気自動車に関わる議題は近年注目されるようになってきた。
電気自動車はモーターを駆動するための電気が充電式バッテリーによって供給される。バッテリーが切れた時、電気を維持するにはバッテリーの充電または交換作業を行わなければならない。現今の充電仕組みに基づいて電気自動車に充電作業を行う際、送配電網を介して電気自動車に低速充電または急速充電作業を行うことが一般的である。
電気自動車にAC充電を充電スタンドで行う際、まず充電スタンド、送配電網および電気自動車を接続する。続いてドライバーの設定に従って充電を開始し、充電量が設定値に到るまで充電を持続させる。つまり、充電スタンドは設定した充電量に到るまで充電を自動的に停止することがない。現今の充電構成は以下の二つの問題がある。一つは充電スタンドの単価および設置費用を値下げしなければ充電スタンドの普及が難しいことである。もう一つは電気自動車の普及化に伴って充電に必要な電気自動車の台数が増加すれば送配電網の電気負荷が増大することである。とくに給電が厳しい状態下で一般の暮らし、都市機能および産業に給電すると同時に膨大な数の電気自動車に給電することを維持すれば、送配電網を崩壊させてしまう可能性がある。
台湾では、電気自動車に対応する3KWのAC充電スタンドは単価が800から1200アメリカドル、即ち高単価商品であるため、充電スタンドを広範囲に設置することが難しい。
発電形態は発電および給電を同調する方式である。送配電網の送電状況は日常生活によって一日、週間および年間の変化を表示する。ピーク時間帯およびオフピーク時間帯の電力消費量の差は30%が一般的であり、気候によって150%まで上がることもある。送配電網全体、発電の計画及び建設はピーク時間帯の負荷率を基づいて余裕が持てるように考慮されるが、電気消費の比較的大きい電気自動車に給電することが管理および制御できなければ、ピーク時間帯の送配電網を崩壊させる可能性がある。
百年近く持続していった電力施設建設は事業内容が土地確保、環境保護評価、建設費用予算および建設期間予定計画に明確に分けられ、計画から実行までの期間がかなり長い。つまり、給電が必要な電気自動車の台数が大幅に増加するために現有の発電構成の変更計画を立て、実行することは不可能である。それに対し、膨大な数の電気自動車に同時給電したことが原因で給電状況に深刻な影響を与えることを抑制できる自動車のAC充電システムおよび充電管理を現有の送配電網構築の下で提供することは現今の重要な課題の一つである。
一方、2018年の中国の充電状況により、電気自動車および充電スタンドの比は3.8対1であった。つまり、駐車場は数少ない充電スタンドしか提供できなかった。駐車場で電気自動車を充電する際、ステップは下記のとおりである、
ステップ1は駐車場内の充電スタンドがある場所を確保し、充電スタンドの機能および支払いの機能が正常であるか否かを確認することである。確認ができたら、ステップ2に進む。ステップ2は電気スタンドのプラグを電気自動車に差し込む。続いて、ステップ3は充電パワーおよび充電量を確認し、支払い手続きを完了させる。ステップ4は電気自動車に充電を開始し、充電が満タンになると充電を停止する。
一般の電気製品に対し、電気自動車はバッテリー容量が大きいため、大きい充電力が必要であるだけでなく、充電時間が長い。電気自動車の充電技術はDC(Direct current)を採用する急速充電方式およびAC(Alternating current)を採用する低速充電方式に分けられる。急速充電方式は主に急速充電ステーションに応用される。低速充電方式は個別の充電スタンドに応用される。容量が30KWHのバッテリーを80%充電する場合、急速充電方式の充電時間は30分から50分である。容量が30KWHのバッテリーを100%充電する場合、低速充電方式の充電時間は5時間から10時間である。
駐車場を出るときに電気自動車の電力を十分に保てれば走行中の電池切れを心配することがなくなる。一般の車両は運転停止時間が走行時間より長いため、運転停止時間帯に低速充電(即ちAC充電)を行うことが合理的である。到るところで充電できることを実現させるために、充電スタンドの設置範囲を拡大しなければならない。
一日に運転時間が2時間前後、走行距離が80キロ前後であることは多くの乗用車に求められる条件である。上述した条件を満足したうえで5Km/KWhの電気自動車に80キロを走行できる電力を提供することを例とすれば、16KWhが必要である。電力量が3KWであれば、充電時間が5.3時間以上である。つまり、電池の切れた電気自動車を満タンに充電する所要時間は一日の運転停止時間(22時間)の24%である。
電気自動車にAC充電を行う場合、交流を直流に変換する車載AC−DC変換器が必要である。3KWの車載AC−DC変換器の重さが7Kgである。交流電流を増大させて充電速度を上げる場合、AC−DC変換器の容量を増大させなければならないため、車両の価額が高くなり、車両の重量および体積が大きくなる。3KWの充電スタンドは24%の運転停止時間、即ち5.3時間で電気自動車を満タンに充電できるため、充電力の高い車両用AC−DC変換器を車両に別途で搭載する必要なく、電気自動車の価額を下げ、機能を高めることができる。
高速道路を走行する電気自動車の充電形態がDC急速充電方式またはバッテリー交換であることに対し、本発明は通勤および日常の買い物に使う電気自動車に対応し、単独稼働のAC充電スタンドの代わりに複数の充電スタンドおよび一つの制御ユニットからなる電気自動車のAC充電システムを提供することを主な目的とする。本発明の技術特徴により、駐車場の充電スタンドを完備させ、駐車中の電気自動車を充電し、電気自動車にバッテリーを満タンにさせた上で駐車場からでることが実現できる。AC充電システムは予め設定した作動方式によって送配電網の情報を統合するため、使用上の利便性を向上させ、送配電網および充電スタンドに不備であるという問題を解決することができる。
本発明は上述した電気自動車のAC充電システムによる電気自動車のAC充電システムの運用方法を提供することをもう一つの目的とする。
上述した課題を解決するため、電気自動車のAC充電システムは送配電網によって応用される。送配電網は相互に接続する第一ローカル電力変換装置および第二ローカル電力変換装置を有する。第一ローカル電力変換装置の電力は第二ローカル電力変換装置の電力より大きい。電気自動車のAC充電システムは電力検出モジュール、複数のローカル給電モジュールおよびローカル充電制御モジュールを備える。電力検出モジュールは第二ローカル電力変換装置に接続され、電力パラメータを生じる。複数のローカル給電モジュールはそれぞれローカル電源配線によって第二ローカル電力変換装置の電力出力側に接続され、電力出力ユニット、切替ユニットおよび電流検出ユニットを有する。電力出力ユニットは制御可能な電力を電気自動車に出力する。切替ユニットは電力出力ユニットおよび複数のローカル電源配線の間に別々に接続される。電流検出ユニットは電力出力ユニットの電流を検出する。ローカル充電制御モジュールは電力検出モジュールおよび複数のローカル給電モジュールに接続され、第二ローカル電力変換装置の電力に基づいて複数のローカル給電モジュールに制御可能な電力を出力させることを別々に制御する。
一実施形態において、複数の電気自動車がそれぞれケーブルによってローカル給電モジュールの電力出力ユニットに接続される際、ローカル充電制御モジュールは電力出力ユニットによって電気自動車に制御可能な電力を出力し、充電作業を行う。
一実施形態において、電力検出モジュールは第二ローカル電力変換装置の電力入力側に接続され、電力パラメータを生じる。電力パラメータは第二ローカル電力変換装置の電力を表示する。
一実施形態において、送配電網制御センターはグローバル充電制御モジュールによってそれぞれのローカル充電制御モジュールの総充電電力を制御し、第二ローカル電力変換装置の電力を調整する。
一実施形態において、ローカル給電モジュールはさらに接続検出ユニットを有する。外部電源コネクタを接続検出ユニットに差し込めば、接続検出ユニットはローカル充電制御モジュールに接続信号を送信する。ローカル充電制御モジュールは接続信号に基づいて切替ユニットに電力出力ユニットと送配電網とを接続させるため、電気ショックの発生を抑制することができる。接続検出ユニットは機械式スイッチ、磁気スイッチまたは電子接点などによる検出方式を採用する。電子接点は専用充電ケーブルの信号コネクタであってもよい。充電ケーブルを接続する際、信号コネクタは電子接点になり、回路を構成して接続信号を生じる。
一実施形態において、ローカル給電モジュールおよびローカル充電制御モジュールは有線または無線方式によって通信を行う。有線通信は電力線通信(Power Line Communication , PLC)などである。無線通信はWi-Fiやzigbee(登録商標)などである。
一実施形態において、充電システムはさらにローカル充電制御モジュールと接続するグローバル充電制御モジュールを有する。グローバル充電制御モジュールはローカル充電制御モジュールに接続されて遠隔制御情報をローカル充電制御モジュールに伝達する。ローカル充電制御モジュールは電力パラメータ、ローカル制御情報、車両状態情報および遠隔制御情報に基づいて複数のローカル給電モジュールの制御可能な電力を制御する。
一実施形態において、第一ローカル電力変換装置は変電所、配電用変電所または変圧器から構成される。第二ローカル電力変換装置は変圧器から構成される。
一実施形態において、電力出力ユニットはAC電源出力ジャックである。AC電源出力ジャックは現地(国または地域)の電源電圧、例えば220Vから240Vに対応する。
一実施形態において、電力出力ユニットと電気自動車を接続するケーブルは電気自動車内に用意されたコードリールである。
一実施形態において、それぞれのローカル給電モジュールはローカル充電制御モジュールの制御を受けたうえで電気自動車を順番に充電する。
一実施形態において、それぞれの電力出力ユニットに制御可能な電力を出力させる方法は、下記のステップを含む。一つはローカル充電制御モジュールによって一つの電気自動車に一つの充電段階の電流情報を伝達することである。一つは指定した電気自動車によって一つの車載AC−DC変換器を制御することである。一つは充電段階の電流情報に基づいて充電指令を行うことである。一つは指定したローカル給電モジュールの電流検出ユニットによって指定した電気自動車の充電電流をローカル充電制御モジュールが受けることである。一つは指定した電気自動車の充電電流および充電段階の電流情報に関わる指令の誤差が許容範囲内であるか否かを確認し、誤差が許容範囲を超えた場合、ローカル充電制御モジュールが切替ユニットによって指定した電気自動車の充電作業を停止することである。
一実施形態において、充電作業を行う前にもう一つの作業は電気自動車とローカル充電制御モジュールの車両状態情報とを相互に対応させるか否かを確認することである。
ローカル充電制御モジュールは有線通信および無線通信によってユーザーまた車両とコミュニケーションを取ることができる。一方、マンマシンインタフェース(コンソール)はユーザーと対話したうえでローカル充電制御モジュールによって起動、中断、支払い手続きなどを完成させることができる。
一実施形態において、任意の一つのローカル電源配線の電力が一つの配線容量増大制御値まで上昇する際、ローカル充電制御モジュールはローカル電源配線に接続されるローカル給電モジュールの総充電電力を自動的に下げる。任意の一つのローカル電源配線の電力が一つの配線容量減少制御値まで降下し、充電が必要になる際、ローカル充電制御モジュールはローカル電源配線に接続されるローカル給電モジュールの総充電電力を自動的に上げる。
一実施形態において、配線容量の上昇制御値は配線容量の上限を超えないかそれに等しい。配線容量の降下制御値は配線容量の上昇制御値を超えないかそれに等しい。
上述した課題を解決するため、上述した電気自動車のAC充電システムによる電気自動車のAC充電システムの運用方法は下記のステップを含む。一つは電力検出モジュールによって第二ローカル電力変換装置の電力入力側の電力パラメータを検出することである。一つはローカル充電制御モジュールが起動信号に基づいて電気自動車との連絡ルードを作成することである。一つは外部パラメータに基づいて充電スケジュールを設定し、充電作業を行うことである。一つはローカル充電制御モジュールが中断信号に基づいて費用請求作業を行うことである。外部パラメータにおいて、遠隔制御情報は送配電網の制御センターおよび充電システムの制御センターがグローバル充電制御モジュールを介して提供するものである。
一実施形態において、電力パラメータが電力増大制御値まで上昇する際、ローカル充電制御モジュールはローカル給電モジュールの総充電電力を自動的に下げる。電力パラメータが電力減少制御値まで降下し、充電が必要になる際、ローカル充電制御モジュールはローカル給電モジュールの総充電電力を自動的に上げる。電力上昇制御値および電力降下制御値は第二ローカル電力変換装置の容量または遠隔制御情報の終端段階の給電容量情報によって決まり、数値が同じであってもよい。総充電電力の増減によって第二ローカル電力変換装置の安全性を確保したり、電力ネットワークの崩壊を抑制したりすることができる。
充電負荷の総電力を降下させる方法は下記のとおりであるが、下記に限定されない。一つは複数のローカル給電モジュールの導通するモジュールの数を減らすことによって総充電電力を下げることである。一つは複数のローカル給電モジュールのそれぞれのモジュールの充電電力を下げることによって総充電電力を下げることである。一つはローカル給電モジュールの一部分の導通するモジュールの数を減らし、別の一部分のモジュールの充電電力を下げることによって総充電電力を下げることである。
充電負荷の総電力を増大させる方法は下記のとおりであるが、下記に限定されない。一つは複数のローカル給電モジュールの導通するモジュールの数を増やすことによって充電負荷の総電力を上げることである。一つは複数のローカル給電モジュールのそれぞれのモジュールの充電電力を上げることによって充電負荷の総電力を上げることである。一つはローカル給電モジュールの一部分の導通するモジュールの数を増やし、別の一部分のモジュールの充電電力を上げることによって充電負荷の総電力を上げることである。
上述した課題を解決するため、別の一つの電気自動車のAC充電システムは送配電網および住宅によって応用される。送配電網は相互に接続する第一ローカル電力変換装置および第二ローカル電力変換装置を有する。第一ローカル電力変換装置の電力は第二ローカル電力変換装置の電力より大きい。電気自動車のAC充電システムは電力検出モジュール、一つ以上のローカル給電モジュール、ローカル充電制御モジュールおよび住宅電力メーターを備える。電力検出モジュールは第二ローカル電力変換装置に接続され、電力パラメータを生じる。ローカル給電モジュールはローカル電源配線によって第二ローカル電力変換装置の電力出力側に接続され、電力出力ユニット、切替ユニットおよび電流検出ユニットを有する。電力出力ユニットは電気自動車に制御可能な電力を出力し、充電作業を行う。切替ユニットは対応する電力出力ユニットおよびローカル電源配線の間に別々に接続される。電流検出ユニットは電力出力ユニットの電流情報を検出する。ローカル充電制御モジュールは電力検出モジュールに接続され、第二ローカル電力変換装置の電力に基づいてローカル給電モジュールに制御可能な電力を出力させることを別々に制御する。ローカル充電制御モジュールは電流検出ユニットで検出した電流情報に基づいて住宅用総充電電力量を算出する。住宅電力メーターは所在地のローカル給電モジュールと第二ローカル電力変換装置との間に設置され、住宅用総消費電力量を計量する。住宅用総消費電力量は住宅用総充電電力量および非住宅用総充電電力量に区別される。住宅用総充電電力量および非住宅用総充電電力量は別々に精算される。計算式は「非住宅用総充電電力量=住宅用総消費電力量−住宅用総充電電力量」である。
一実施形態において、自家用車識別情報はローカル充電制御モジュールに記録される。ローカル充電制御モジュールは電力出力ユニットに接続された電気自動車が自家用車識別情報に対応するか否かを判断する。電力出力ユニットに接続された電気自動車が自家用車識別情報に対応すれば、ローカル充電制御モジュールは充電作業を開始する。
一実施形態において、第二ローカル電力変換装置と住宅電力メーターとの間の電源配線は既有の電源配線である。
上述した課題を解決するため、電気自動車のAC充電システムの運用方法は電気自動車のAC充電システムと送配電網とを組み合わせ、第二ローカル電力変換装置の電力を検出することである。電気自動車のAC充電システムはそれぞれの電気自動車の充電電力を自動的に下げ、総出力電力を第二ローカル電力変換装置の容量より低くするか、出力電力を設定電力より低くすることによって送配電網の安定性を確保する。
一実施形態において、第二ローカル電力変換装置の総給電電力はユーザーの非総充電電力および電気自動車のAC充電システムの総充電電力を含む。
一実施形態において、ローカル給電モジュールの出力電力は0と設定電力の範囲内に調整される。
上述した技術特徴をまとめてみると、本発明による電気自動車のAC充電システムは電力検出モジュールによってローカル電力変換装置の電力パラメータを検出し、負荷状態を把握する。続いて、電力パラメータに基づいてAC充電システムのローカル給電モジュールからの制御可能な電力の出力電力を制御する。電力パラメータが所定値まで増大する際、ローカル充電制御モジュールはローカル給電モジュールの総充電電力を自動的に下げる。電力パラメータが所定値まで減少し、充電が必要になる際、ローカル充電制御モジュールはローカル給電モジュールの総充電電力を自動的に上げる。上述した運用方式により、本発明はローカル電力変換装置を保護し、送配電網の使用効率を向上させることができる。また、本発明はローカル充電制御モジュールによって複数の電気自動車充電ジャックを制御するため、配電ネットワークを保護し、低単価の充電ジャックを使用し、オフピーク時間帯の電力を十分に利用することができる。
本発明の第1実施形態による電気自動車のAC充電システムと送配電網を組み合わせる構築を示す模式図である。 本発明の第1実施形態での詳細な電力配線を示す模式図である。 図2Aおよび図2Bは、本発明において電力検出モジュールと第二ローカル電力変換装置を組み合わせる構築を示す模式図である。 本発明の第2実施形態による電気自動車のAC充電システムの運用状態を示す模式図である。 本発明の第2実施形態による電気自動車のAC充電システムの運用状態を示す模式図である。 本発明においての第二ローカル電力変換装置の給電仕組みを示す模式図である。 本発明においての第二ローカル電力変換装置の給電仕組みを示す模式図である。 本発明による電気自動車のAC充電システムの仕組みを示す模式図である。 本発明による電気自動車のAC充電システムの仕組みを示す模式図である。 本発明による電気自動車のAC充電システムの仕組みを示す模式図である。 本発明において第二ローカル電力変換装置の総電力と総充電電力の制御方法を示す関係図である。 図9Aは、本発明の実施形態において時間、リアルタイム電力、平均電力および実効電力の関連性を示すグラフである。図9Bは、本発明の実施形態において時間、リアルタイム電力、平均電力および実効電力の関連性を示す表である。
以下、本発明による電気自動車のAC充電システムを図面に基づいて説明する。
以下の実施形態において、接続方式は電気的接続方式を含む。電気的接続方式は電子部材、無線伝送または媒介装置によって電気的接続を行うことである。充電負荷は本発明による電気自動車のAC充電システムが充電作業を行う際の負荷である。それ以外の電力負荷は非充電負荷である。総充電電力は電気自動車のAC充電システムの充電作業に伴って発生する消費電力である。それ以外の消費電力、即ち非総充電電力および非充電負荷は一般向け消費電力および工業向け消費電力を含むが、これらに限定されない。
(第1実施形態)
図1に示すように、本発明の第1実施形態による電気自動車のAC充電システム10は送配電網(power grid)20および複数の電気自動車22aから22nによって応用される。電気自動車のAC充電システム10は電力検出モジュール11、複数のローカル給電モジュール12aから12n、ローカル充電制御モジュール13およびグローバル充電制御モジュール14を備える。
送配電網20は一つ以上の給電システムを有する。給電システム、即ちローカル電力配送ネットワークは発電システム、電力輸送システムおよび配電システムを含む。本実施形態において、送配電網20は第一ローカル電力変換装置201、第二ローカル電力変換装置202および制御センター203を有する。
第一ローカル電力変換装置201および第二ローカル電力変換装置202は変圧器であり、それぞれ電力入力側および電力出力側を有する。図2Aおよび図2Bに示すように、電力入力側は変圧器の一次巻線(primary winding)W1である。電力出力側は変圧器の二次巻線(secondary winding)W2である。第一ローカル電力変換装置201の電力出力側は第二ローカル電力変換装置202の電力入力側に接続される。第一ローカル電力変換装置201は第二ローカル電力変換装置202に22KV級の第一電力PW1を出力する。第二ローカル電力変換装置202は22KV級の第一電力PW1を第二電力PW2まで降下させた後、出力する。第二電力PW2は電圧レベルが380V、220Vおよび110Vであるが、これに限定されない。第一電力PW1および第二電力PW2はそれぞれ電力配線に対応するように配置される。
本実施形態において、電力レベルは上述に限定されず、国および地域の電力用規格によって違う。第一ローカル電力変換装置201および第二ローカル電力変換装置202は変圧器に限定されず、配電所または変電所であってもよい。
既有の電力配線に接続される電気設備は必ずしも同時に使用されるものではないため、電力配線の容量はそれに接続される電気設備の総容量より小さい。相互に接続する配線容量および負荷容量の関係、即ち配線と負荷の容量比は経験に基づいて適切な許容範囲を設計することによって決まる。それに対し、本発明は上述した技術特徴により本発明は充電設備の稼働状態を精密に制御し、電気自動車のAC充電システムを一回の設置工事で完成させることができる。本発明において、電気配線は容量が比較的小さいが、これに限定されず、電気自動車の台数が増えれば配線の容量を増大させてもよいため、システムのイニシャルコストを節約することができる。言い換えれば、配線と負荷の容量比が比較的小さい配線を選択し、ローカル充電制御モジュールによって負荷電力を制御する方式は安全性の確保およびコストの節約が実現できる。図1Bに示すように、ローカル給電モジュールはローカル充電制御モジュールに制御される。本発明の技術特徴により、一つのローカル充電制御モジュールおよび複数のローカル給電モジュールを複数の駐車位置がある駐車場に設置し、電気自動車のAC充電システムを構成する際、一回の工事ですべての駐車位置にローカル給電モジュールを配置することができるため、配置コストを削減することができる。電力配線PW2、PW21、PW211、PW3に容量の比較的小さい配線を使用し、配線設置のための空間を保留すればコストを抑えることができる。詳しく言えば、電気自動車を3KW@220Vで充電する際、電力配線PW2の容量は57KW@260Aが必要である。電力配線PW21の容量は30KW@136Aが必要である。電力配線PW23の容量は12KW@55Aが必要である。電力配線PW22の容量は15KW@68Aが必要である。電力配線PW3の容量は12KW@55Aが必要である。充電負荷装置の容量は69KW@315Aである。既有の第二ローカル電力変換装置202の容量が50KWである場合、充電負荷への供給上限、即ち充電負荷の許容容量は50KWの50%、即ち25KWに設定される。充電負荷の許容容量即ち25KWが充電負荷装置の容量、即ち69KWの36%である際、満車状態下で36%の電気自動車は充電作業を受けることができる。ほかの64%の電気自動車は「充電待ち」に維持される。従って、配線は負荷装置の容量の34%を段階的に設計する、即ち、電力配線PW2を91A、電力配線PW21を48A、電力配線PW211を19A、電力配線PW22を24A、電力配線PW3を19Aに設定する方式を採用できる。配線の電力は配線に接続されるローカル給電モジュールの総充電電力であるため、すべての配線の負荷容量の上限を設定すれば、ローカル充電制御モジュールはすべての配線に対して充電待ちの電気自動車の台数および充電中の電気自動車の台数を制御し、設備コストの削減および安全性の保障を実現させることができる。
ローカル給電モジュール12kから12oに対応する駐車位置が駐車しやすい場所ですぐ満車状態になる場合、電力配線PW22の容量を24Aから68Aに増大させ、ローカル充電制御モジュール13の設定を変更する、即ち、異なる電源配線によって異なる充電容量比を設定することができる。本実施形態において、電力配線PW22および別の電源配線は容量比が明らかに異なる。ローカル充電制御モジュールによって負荷電力を制御する方式は安全性の確保およびコストの節約が実現できる。
任意の一つの電源配線の電力が配線容量増大制御値まで上昇する際、ローカル充電制御モジュールは電源配線に接続されるローカル給電モジュールの総充電電力を自動的に下げる。任意の一つの電源配線の電力が配線容量減少制御値まで降下し、充電が必要になる際、ローカル充電制御モジュールは電源配線に接続されるローカル給電モジュールの総充電電力を自動的に上げる。配線容量増大制御値は配線容量上限に等しいまたはそれ以下である。配線容量減少制御値は配線容量増大制御値に等しいかそれ以下である。
新たな充電作業が増えれば配線容量が足りなくなる。また充電中の電気自動車のバッテリー容量の比較的大きいか、所有者が会員ランクの上の電気自動車を優先させることがよくあれば配線容量が足りなくなる。それに対し、任意の電源配線に対応するローカル給電モジュールの総充電電力を車両状態情報に基づいて増減させる方法は充電の順序を立てる方法より合理的である。本発明において、ローカル充電制御モジュールは通信方式によってすべての駐車位置にある車両状態情報を把握するため、すべての充電待ちの電気自動車の車両状態情報を比較し、指定した車両に対して充電電力の増減を決めることができる。言い換えれば、会員ランク、バッテリー容量、バッテリーの残量、駐車予定などの車両状態情報に基づいて充電電力の増減を決めることができる。
充電が必要な電気自動車の台数が増える際、第二ローカル電力変換装置202または電源配線の容量を増大させると同時にローカル充電制御モジュール13の配線容量情報、配線容量増大制御値または配線容量減少制御値を変更し、系統性および拡大性を向上させれば、電気自動車の漸増に対応することができる。
図1Aに示すように、送配電網制御センター203は総負荷情報I04に基づいて負荷制御情報I03を生じる。総負荷情報I04は第一ローカル電力変換装置201および第二ローカル電力変換装置202の負荷状態またはいずれか一つの負荷状態を含む。送配電網制御センター203は送配電網20の正常な作動を維持し、電力を適宜に調整することができる。送配電網制御センター203は単一段階の制御センターであるが、これに限定されず、複数の段階を含む制御センターであってもよい。
図1Aおよび図2Aに示すように、電力検出モジュール11は第二ローカル電力変換装置202の入力側、即ち変圧器の一次巻線W1に電気的に接続されて第一ローカル電力変換装置201の総負荷電力(または電力パラメータ)を検出する。計算式はP=V(部品の両端の電位差)×I(電流)である。送配電網20、即ち電源は電圧が定数値であり、電力が電流に比例するため、電流パラメータに基づいて電力パラメータを算出することができる。
電気自動車のAC充電システム10は充電総電力を制御して第二ローカル電力変換装置を保護することが目的である。そのために第二ローカル電力変換装置202の電力および総充電電力に関連する電力出力ユニットの充電電力を把握すれば、充電電力を変化させる必要がある際、正確な判断を下すことができる。総充電電力、非総充電電力および第二ローカル電力変換装置の電力の関係式はエリア電力変換装置の電力=総充電電力+非総充電電力である。上述した三つのパラメータのうちの二つのパラメータを明確にすれば計算式に基づいて第二ローカル電力変換装置の電力および総充電電力を算出することができる。また第二ローカル電力変換装置に充電負荷しかない場合、一つのパラメータを明確にすれば電力検出モジュールによって算出するか、それぞれの電流検出ユニットの電流の総計によって算出することができる。
第二ローカル電力変換装置202の電力および総充電電力は下記の方法に基づいて求められる。
図1A、図2A、図2Bおよび図4Aに示すように、第二ローカル電力変換装置202の電力は電力検出モジュール11によって検出される。総充電電力は電力出力ユニットに対応する電流検出ユニットの電流をローカル充電制御モジュール13で合計することによって算出される。
図4Bに示すように、総充電電力は電力出力ユニットに対応する電流検出ユニットの電流をローカル充電制御モジュール13で合計することによって算出される。電力検出モジュール11aは非総充電電力を検出する。第二ローカル電力変換装置202の電力は電力検出モジュール11aで検出した非総充電電力と総充電電力の合計によって算出される。
図4Bに示すように、総充電電力は電力検出モジュール11bによって検出される。第二ローカル電力変換装置202の電力は電力検出モジュール11aで検出した非総充電電力および電力検出モジュール11bで検出した総充電電力の合計によって算出される。この方法が二つの電力検出モジュールさえあればローカル給電モジュール内の電流検出ユニットが必要でなくなる。しかし、総充電電力を正確に制御できず、すべてのローカル給電モジュールの電流を確認できないことがこの方法の欠点である。
送配電網20において、ローカル電力変換装置は伝送電力に対する消耗電力の比が非常に小さいため、総入力電力がほぼ総出力電力と同じである。図2Bに示すように、電力検出モジュール11は第二ローカル電力変換装置202の出力側、即ち変圧器の二次巻線W2に接続されてもよいため、同様にローカル電力変換装置の総電力を検出する機能を果たすことができる。第二ローカル電力変換装置202の出力側が多次巻線である場合、第二ローカル電力変換装置202の総電力はすべての出力側の電力の合計によって算出される。
図2Aに示すように、電力検出モジュール11は第二ローカル電力変換装置202の入力側の一次巻線W1に接続されて送配電網20を介して第二ローカル電力変換装置202の入力電圧、総入力電流、総入力負荷電力などの情報を取得する。言い換えれば、電力検出モジュール11は第二ローカル電力変換装置202の総入力負荷状態を検出する。図2Bに示すように、電力検出モジュール11は第二ローカル電力変換装置202の出力側の二次巻線W2に接続されて送配電網20を介して第二ローカル電力変換装置202の二組の出力電圧、出力電流、算出した総出力負荷電力などの情報を取得する。言い換えれば、電力検出モジュール11は第二ローカル電力変換装置202の総出力負荷状態を検出する。本実施形態において、電力検出モジュール11は計器用変流器(current transformer)、ホール電流センサー(Hall current sensor)または電流検出抵抗器(current sense resistor)である。
図8に示すように、非総充電電力、即ちX軸において、x1は20KW、x2は25KW、x3は30KW、x4は35KWである。総充電電力、即ちY軸において、y1は15KW、y2は20KW、y3は25KW、y4は30KWである。変圧器定格電力S1は55KW、電力増大制御値S2は50KW、電力減少制御値S3は40KWである。本発明のもう一つの目的は第二ローカル電力変換装置202を保護することである。第二ローカル電力変換装置202、即ち変圧器は定格電力(または定格容量)S1によって保護される。第二ローカル電力変換装置202が正常に作動する際、第二ローカル電力変換装置202の負荷は容量を超えず、許容範囲内に電力増大制御値S2を生じる。許容範囲が0である際、S2はS1に等しい。ローカル電力変換装置の電力が電力増大制御値まで上昇する際、ローカル電力変換装置を保護するには充電負荷を下げることが必要である。例えば、図8に示すように、20KW(y2)の総充電電力に対し、非総充電電力が30KW(x3)まで増大する、即ち電力関係が座標(x3,y2)で表示される際、総充電電力を下げなければならない。
変圧器はコイルおよび鉄心から構成されるため、極めて短い時間内に負荷が容量を超えたことが原因で損壊することは発生しない。また非充電負荷の増減および時間は確実に予測できない。電力はリアルタイム電力(測定値)を採用するほかに単位時間あたりの電力を異なる方式に基づいて計算する方法を採用してもよい。例えば、平均電力(単位時間あたりの最大値および最小値の平均値)、実効電力(単位時間(time-based)内累積した電力の平均値)に基づいて計算する方法も採用できる。図9Aに示すように、X軸時間が−60sから+60sのリアルタイム電力は20KWである。X軸時間が+60sから+120sのリアルタイム電力は20KWから40KWに上昇する。X軸時間が+120sから+180sのリアルタイム電力は40KWから20KWに降下する。X軸時間が+180s以降のリアルタイム電力は20KWに維持される。120秒の単位時間で電力を異なる方式によって計算する。
図8、図9Aおよび図9Bに示すように、X軸は時間であるのに対し、Y軸は非リアルタイム充電電力である(図9A参照)。電力増大制御値S2は50KWである。X軸時間が+60sの前の総充電電力は20KWである。図9Bに示すように、非総充電電力を制御する際、下記の三つの方法を採用することができる。一つ目の方法は、リアルタイム電力に基づいて非総充電電力を制御する際、X軸時間が+90sの時に充電負荷を降下させることが必要であり、X軸時間が+150s以降、状況に応じて充電負荷を20KWに復元させることができる。二つ目の方法は、平均電力に基づいて非総充電電力を制御する際、X軸時間が+120sの時に充電負荷を降下させることが必要であり、X軸時間が+240s以降、状況に応じて充電負荷を20KWに復元させることができる。三つ目の方法は、実効電力に基づいて非総充電電力を制御する際、充電負荷を変化させず20KWに維持すればよい。上述をまとめてみると、本発明は総充電電力を制御することによってローカル電力変換装置を保護し、異なる方式によって電力を計算し、最良の効果を求めることができる。
図1Aに示すように、ローカル給電モジュール12aから12nはそれぞれローカル電源配線LPLを介して第二ローカル電力変換装置202の電力出力側に接続され、第二ローカル電力変換装置202からの第二電力PW2によって電気自動車22aから22nに制御可能な電力APaからAPnを出力し、電気自動車22aから22nの搭載バッテリーの充電作業を行う。
続いて、複数のローカル給電モジュールのうちの一つのローカル給電モジュール12aを挙げて説明を進める。ローカル給電モジュール12aは電力出力ユニット121a、切替ユニット122a、接続検出ユニット123aおよび電流検出ユニット124aを有する。
電力出力ユニット121aはAC電源コンセント(power outlet)であり、充電が必要な電気自動車22aに電気的に接続されて電力APa出力し、電気自動車22aの搭載バッテリーの充電作業を行う。切替ユニット122aは電力出力ユニット121aおよび第二ローカル電力変換装置202の電力出力側の間に接続され、ローカル充電制御モジュールの指令に基づいて制御可能な電力の出力を制御する。接続検出ユニット123aは電力出力ユニット121aに接続され、電力出力ユニット121aが別の物体に電気的に接続されるか否かを検出し、ローカル充電制御モジュール13に検出結果を送信する。本実施形態において、別の物体は外部電源コネクタ、例えば電気自動車から引き出す電源ケーブルであってもよい。電流検出ユニット124aは電力出力ユニット121aとローカル電源配線LPLとの間に接続され、電力出力ユニット121aの電流を検出し、電力出力ユニット121aの充電電流に対応する情報をローカル充電制御モジュール13に送信する。
本実施形態において、切替ユニット122aは機械または半導体による接点からなる。機械による接点は継電器である。半導体による接点はトランジスタ、サイリスタおよび金属酸化物半導体電界効果トランジスタである。接続検出ユニット123aは機械式スイッチ、磁気スイッチまたは電子接点などによって電気的接触を行う方式を採用する。電流検出ユニット124aは電力検出モジュール11と同じように計器用変流器、ホール電流センサーまたは電流検出抵抗器を採用する。
ローカル給電モジュール12bから12nの仕組みおよび機能はローカル給電モジュール12aと同じであるため、説明を省略する。
ローカル充電制御モジュール13は電力検出モジュール11およびローカル給電モジュール12aから12nに別々に接続されると同時にローカル制御情報を記録する。ローカル制御情報は第二ローカル電力変換装置の容量および電源配線の容量などの情報を含むが、これに限定されない。ローカル充電制御モジュール13はローカル電源配線LPLによってローカル給電モジュール12aから12nに電気的に接続される。本実施形態において、相互に対応する切替ユニットおよび電力出力ユニットは単独でローカル充電制御モジュール13に制御されたうえで制御可能な電力を出力する。つまり、それぞれのローカル給電モジュールから出力された制御可能な電力は同じであるか、異なる。ローカル充電制御モジュール13とローカル給電モジュール12aから12nの間は電力線通信技術に基づいて情報が伝送される。言い換えれば、電気自動車と電力出力ユニットとを電気的に接続した後、ローカル充電制御モジュール13は電力線通信技術に基づいて電気自動車の車両状態情報を取得することができる。車両状態情報は車両識別情報、会員ランク、支払い情報、バッテリー容量、バッテリー残量、バッテリーの最大電力、駐車予定および充電表示などを含む。
ローカル充電制御モジュール13はエリア内の電気自動車の充電作業に関わる情報(情報読み取り、料金比較、コスト計算、充電スケジュールなど)をプロセッサによって処理する。数百台の電気自動車を収容できる大型駐車場でも、電気自動車の充電作業に関わる情報量は限られる。現今のプロセッサの演算処理および演算速度は大幅に向上する。つまり、一つのローカル充電制御モジュール13は大量のローカル給電モジュールに接続され、大量のローカル給電モジュールを制御できるため、充電コンセントを増やしたいとき、ローカル給電モジュールさえ増設すればよい。言い換えれば、充電コンセントを増やせば増やすほど平均単価が安くなる。
グローバル充電制御モジュール14はローカル充電制御モジュール13および送配電網20に接続される。グローバル充電制御モジュール14は送配電網制御センター203からの負荷制御情報I03を受信し、ローカル充電制御モジュール13に遠隔制御情報I02を伝達する。ローカル充電制御モジュール13は電力パラメータI01、車両状態情報、ローカル制御情報および遠隔制御情報I02に基づいてローカル給電モジュール12aから12nの制御可能な電力APaからAPnを別々に制御する。送配電網制御センター203は負荷制御情報I03に基づいてグローバル充電制御モジュール14を介してローカル給電モジュール12aから12nの出力電力を間接的に制御するため、送配電網20の崩壊を避けることができる。別の実施形態において、グローバル充電制御モジュール14およびローカル充電制御モジュール13は統合式モジュールであってもよい。
遠隔制御情報I02は終端段階の給電容量情報、時間と電気料金の情報、車両識別情報、会員ランク、支払い情報などを含む。ローカル充電制御モジュール13はグローバル充電制御モジュール14を介して遠隔制御情報I02を取得する。終端段階の給電容量情報および時間と電気料金の情報などは送配電網制御センター203から発信される。車両識別情報、会員ランクおよび支払い情報などは充電システム制御センター15から発信される。充電システム制御センター15はすべての電気自動車のAC充電システム情報を統合し、登録した新規加入の情報をそれぞれのAC充電システムに伝送する。上述した技術特徴により、ローカル充電制御モジュール13およびグローバル充電制御モジュール14は会員ランクの一番上の電気自動車の充電権益を確保し、送配電網20の総負荷を維持し、過負荷(overload)が原因で送配電網20を崩壊させることを抑制することができる。
(第2実施形態)
第1実施形態による電気自動車のAC充電システム10は独立の駐車場または一つのエリア内の駐車場所などに応用される。電気自動車のAC充電システム10の配線およびすべてのユニットは数多くの駐車場所に対応するように配置される。続いて、本発明の第2実施形態による電気自動車のAC充電システム10の運用方法はステップP01からステップP06を含む。電気自動車では、対応するAC充電システムと、車両識別情報、会員ランク、支払い情報、信号起動方式などを確認するハードウェアとを設置することが必要である。
ステップP01は電源ケーブルと通信通路とを接続する接続作業である。詳しく言えば、電源ケーブルによって電気自動車22aと電力出力ユニット121aとを接続する。本発明は充電コンセントの数を電気自動車の台数の二倍以上に設定する。しかし既有の充電スタンドはコード付きプラグを使用するため、管理が難しい。従って、電気自動車側にコード付きプラグ、例えばコードリール(ケーブルを自動的に巻き取るリール)を備えれば最も好ましい。コードリールは電源ケーブルを所定の部位に自動的に巻き取って収容するユニットである。
ローカル充電制御モジュールが起動信号をキャッチすると信号の接続を開始する。詳しく言えば、ローカル充電制御モジュールは起動信号に基づいて充電の設定および操作を開始する。起動信号は作業員によって発信される。詳しく言えば、作業員は電源コネクタを電力出力ユニットに差し込んで接続検出ユニットを介して起動信号を発信する方式、携帯電話またはヒューマンマシンインターフェースによって起動信号を発信する方式、電力線通信技術に基づいて電気自動車の充電ケーブルを介して起動信号を発信する方式または無線通信に基づいて電気自動車を介して起動信号を発信する方式を採用することができる。
ステップP02は連絡ルードを立ち上げることである。詳しく言えば、ローカル充電制御モジュール13は起動信号に基づいて有線伝送方式または無線伝送方式を介して電気自動車22aとの連絡ルードを立ち上げる。本発明はローカル充電制御モジュール13および電気自動車の車両制御ユニット(Vehicle Control Unit)によって充電の設定および操作を自動的に進めることができるため、使用に便利である。
本実施形態において、起動信号を発信する際、電源コネクタを電力出力ユニットに差し込んで接続検出ユニットを介して起動信号を発信する。続いて、電気自動車が駐車位置に入った後、電気自動車と充電ケーブルとを接続すれば、ローカル充電制御モジュールはすべての充電作業および費用精算などを自動的に完了させるため、使用上の利便性を向上させることができる。
ローカル充電制御モジュールと電気自動車は電力線通信技術などの有線通信、またはWi-Fi、zigbee(登録商標)、基地局などの無線通信によって連絡ルードを立ち上げる。ローカル充電制御モジュール13は連絡ルードによって電気自動車22aとのコミュニケーションを取ることができる。電気自動車のドライバーはモバイルアプリを使用し、電気自動車を介して連絡ルードを通って充電請求を提出することができる。
ステップP03はパラメータを整合することである。詳しく言えば、ローカル充電制御モジュール13は連絡ルードによって電気自動車22aの車両状態情報を取得し、車両状態情報中の車両識別情報がローカル充電制御モジュール13内の車両識別情報と一致し、有効であるか否かを確認する。続いて電力パラメータI01、遠隔制御情報I02、ローカル制御情報および車両状態情報などを整合する。続いて予め設定した演算方法に基づいて充電スケジュールを作成し、充電スケジュールに従って電気自動車22aから22nに制御可能な電力APaからAPnを順番に提供すれば、送配電網20の全体負荷に応え、それぞれの電気自動車のニーズを満たすことができる。充電スケジュールを作成する演算方法はシステム内に予め設定され、後続作業においてグローバル充電制御モジュール14の遠隔操作によって修正されることができる。演算方法は会員ランクの順に従って充電スケジュールを作成することもできる。例えば、充電作業全体の前半において会員ランクが上位の電気自動車を優先し、すべての電気自動車のバッテリーを満タンの半分まで充電し、充電作業全体の後半において会員ランクが上位の電気自動車を優先し、すべての電気自動車のバッテリーを満タンになるまで充電する。
ローカル充電制御モジュール13は充電スケジュールに従ってそれぞれの電気自動車に充電作業の開始および停止、充電電力の増減を行う。本実施形態において、電力パラメータI01、電力出力ユニットに対応する車両の台数、ローカル制御情報I05、車両状態情報または遠隔制御情報I02は即時更新されるため、充電スケジュールは常に情報の更新に伴って更新される。詳しく言えば、駐車場内の任意の電気自動車が満タンになるまで充電され、駐車位置から出るまで、「充電待ち/充電許可/充電待ち/充電許可など」の表示は持続的に繰り返される。
充電スケジュールはそれぞれの電気自動車に充電開始、充電停止、充電電力の増減などを行う順序を表示する。充電スケジュールによって電気自動車の総充電電力を制御し、非電気自動車向け総電力をローカル電力変換装置の容量または終端段階の給電容量より小さくすれば、送配電網20の安全性を確保することができる。ローカル電力変換装置のリアルタイム電力は電力検出モジュールによって検出される。
ステップP04は充電作業を行うことである。ローカル充電制御モジュール13は電力検出モジュール11からの電力パラメータI01に基づいて第一ローカル電力変換装置201の電力を判断する。第一ローカル電力変換装置201の電力が電力増大制御値まで上昇する際、ローカル充電制御モジュール13はローカル給電モジュール12aから12nの総充電電力(即ち電気自動車22aから22nに供給する制御可能な電力APaからAPn)を自動的に下げる。総充電電力はローカル給電モジュール12の総出力電力を0まで降下させることができる。言い換えれば、ローカル給電モジュール12の出力電力は0と設定電力の範囲内に調整される。設定電力はローカル電力変換装置の容量であってもよい。或いは人員で設定される。ローカル充電制御モジュール13は総充電電力の最大値と0の範囲内に総充電電力を調整し、ローカル電力変換装置および送配電網20の安全性を確保する。つまり、送配電網が過負荷になる際、ローカル充電制御モジュール13は出力電力が0になるまで総充電電力を自動的に下げ、送配電網20の過負荷を解除し、送配電網20の安全性を確保する。電気自動車22aから22nのバッテリーが満タンになる前に、ローカル充電制御モジュール13は電気自動車22aから22nに対する充電電流を下げたり、充電作業を停止したりすることによって充電効率を最良の状態に維持することができる。
ローカル充電制御モジュール13は電力検出モジュール11からの電力パラメータI01に基づいて第二ローカル電力変換装置202の電力を判断する。第二ローカル電力変換装置202の電力が電力減少制御値まで降下する際、ローカル充電制御モジュール13はローカル給電モジュール12aから12nの総充電電力(即ち電気自動車22aから22nに供給する制御可能な電力APaからAPn)を自動的に上げる。
ローカル充電制御モジュール13によって電力出力ユニットの充電電流(電力)を制御する際、ローカル給電モジュールの電力出力ユニットは電気自動車を指定し、指定駐車位置に駐車させる。続いてローカル充電制御モジュール13は指定した電気自動車に一つの段階の充電電流情報を連絡ルードによって伝送する。続いて指定した電気自動車は車載AC−DC変換器を制御すると同時に充電段階の電流情報による充電指令を執行する。続いてローカル充電制御モジュール13はローカル給電モジュールの電流検出ユニットを指定し、指定した電気自動車の充電電流を検出すると同時に、指定した電気自動車の充電電流および充電段階の電流情報に関わる指令の誤差が許容範囲内であることを確認できたら、充電電流の制御作業を完了させる。誤差が許容範囲を超えた場合、ローカル充電制御モジュールは指定した電気自動車の充電作業を切替ユニットによって停止する。つまり、ローカル充電制御モジュールは充電電流を制御することによってそれぞれの充電コンセントを制御することができる。
ローカル充電制御モジュールは指定した電力出力ユニットを順番に制御する。電力出力ユニット121aから121nからの制御可能な電力APaからAPnはローカル充電制御モジュールに求められた電力まで調整される。第二ローカル電力変換装置202は電源である。電力出力ユニット121の電流および電力は直線状関係を保つため、取得した電流情報は取得した電力情報に対応する。
電気自動車のAC充電システムは充電作業を順番に行う。詳しく言えば、それぞれの電気自動車との間に連絡ルードが立ち上がった後、駐車位置の状態は「充電待ち」と「充電許可」の間に維持され、「充電許可(満タンまで充電する)/充電待ち」、「充電待ち/充電許可(満タンまで充電する)/充電待ち」、「充電待ち/充電許可/充電待ち/充電許可(満タンまで充電する)/充電待ち」、「充電許可(満タンまで充電する)/充電待ち/充電許可」などを表示する。「充電許可」とは電気自動車を電力出力ユニットに接続し、充電できることである。「充電待ち」とは電気自動車を電力出力ユニットに接続してもまだ充電できないことである。上述をまとめてみると、本発明によるAC充電システムによって電気自動車を充電する際、電気自動車は本発明によるAC充電システムに制御されたうえで「充電待ち」と「充電許可」の間の状態に維持される。
「充電許可(満タンまで充電する)/充電待ち/充電許可」は特殊状態である。詳しく言えば、燃料車の空調を起動するには燃料車のエンジンを起動しなければならない。遠隔操作によってエンジンを起動する方法は排気ガスが発生し、ある程度のリスクが残るため、採用できない。それに対し、電気自動車の空調システムはバッテリーによって稼働するため、電気自動車を運転する前に遠隔操作によって空調および充電モジュールを同調起動し、バッテリー容量の消耗を減少させることができる。しかし、電気自動車のバッテリーが満タンに充電された後、電気自動車が充電状態に入ることが発生する。それに対し、「充電許可(満タンまで充電する)/充電待ち/充電許可」はこのような現象に対応するために設計される。
本実施形態において、充電スケジュールが充電作業を順番に行う方式である際、AC充電システムの電力出力ユニット121aから121nの総容量は第二ローカル電力変換装置202の容量より大きいため、過負荷は発生しない。AC充電システムは充電作業を順番に行う方式であるため、システム内の配線容量は接続した電力出力ユニット121aから121nの総容量より小さい。上述した技術特徴により、充電コンセントの平均単価および設置コストを下げることができる。
ローカル充電制御モジュール13によって電気自動車の総充電電力を電力0に降下させる際、電気自動車のAC充電システムは負荷が0になり、電源が切られる。このとき電気自動車のAC充電システムを既有の送配電網に加えて応用することができる。同時にローカル電力変換装置の安全性を確保し、送配電網の崩壊を避け、送配電網の余分な電力を効率よく利用し、電気自動車を充電することができる。
電力出力ユニットの充電電流を最大電力(on)または0電力(off)に維持するか、0電力と最大電力の間に維持することができる。
ステップP05は充電作業を中断することである。詳しく言えば、電気自動車のドライバーが充電作業終了を決めれば、中断信号を発信し、充電作業を終了させる。信号が中断される際、電気自動車22aおよび電力出力ユニット121aの電源ケーブルの接続は中断される。中断信号を発信する際、人員は電力出力ユニットから電源ケーブルを抜き出す。続いて接続検出ユニット、携帯電話、ヒューマンマシンインターフェースを介して中断信号を発信するか、電気自動車から無線方式または有線方式によって中断信号を発信する。或いは電気自動車が駐車位置を出て連絡ルードを中断すればよい。
ステップP06は費用請求作業を行うことである。充電作業が終了すれば、ローカル充電制御モジュール13は費用請求作業を行う。費用請求作業は電気自動車の充電電力、充電時間、時間率などの充電情報に基づいて費用を計算し、費用情報を作成することである。費用を支払する際、ローカル充電制御モジュール13に接続されるヒューマンマシンインターフェースを介して支払する方式、携帯電話を介して支払する方式、グローバル充電制御モジュールに費用情報を送信し、指定した口座から費用を支払する方式などを選択できる。
上述した技術特徴により、本発明は設置コストおよび充電コンセントの平均単価を下げ、すべての駐車位置に充電コンセントを備えることができるため、燃料車が充電可能な駐車位置を占有する、充電が完了した電気自動車が駐車位置を占有するという問題は解決される。駐車場を管理する側は管理の便をはかり、充電サービスの提供に伴って収入を増加させることができる。またすべての駐車位置に充電コンセントを備えれば、駐車位置から車両を移動させる前に充電費用の支払いを完了させることができる。言い換えれば、ドライバーが充電ケーブルの接続および中断さえ行えば、ローカル充電制御モジュールは充電作業を自動的に処理し、使用上の利便性を向上させることができる。
本発明に対して、既有の充電スタンドの費用請求作業は下記のとおりである。充電作業を行う前に充電金額を決めて入金する。続いて充電作業を開始し、充電金額に相当する容量に至ると充電作業が終了する。本発明のもう一つの課題は充電コンセントが足りないという問題を解決することである。既有のローカル電力変換装置の容量が足りなく、安全性を確保できない場合、ピーク時間帯の発電容量および配電容量が足りない場合、または発電容量および配電容量を増大させるには時間がかなり掛かる場合、すべての駐車位置に充電コンセントを備えても大量の電気自動車の充電作業を同時に行うことが難しい。上述した問題を解決する方法は充電作業を順番に行い、容量が足りないという問題を解除することである。本発明の技術特徴の一つは充電コンセントに接続された充電待ちの電気自動車を順番に充電できることである。充電作業が順番に行われるため、充電作業が完了しなければ充電費用を計算できない。従って、充電作業が終了した後、充電容量に基づいて充電費用を計算することが本発明のもう一つの技術特徴である。上述した技術特徴により、連絡ルードが立ち上がった後、充電作業を行う前にローカル充電制御モジュールに接続された車両の車両状態情報が有効であるか否かを確認し、費用を請求できないという問題を排除することができる。
電気自動車のAC充電システムの技術特徴は下記のとおりである。一つは電力検出モジュールによってターミナルデバイス(第二ローカル電力変換装置)の電力(または電流)を確認することである。一つは充電負荷を制御する、即ちそれぞれのローカル給電モジュールの充電電力を順番に制御することによって第二ローカル電力変換装置の安全性を確保することである。一つはすべてのローカル給電モジュールに電流検出ユニットおよび切替ユニットを配置することによってすべての電力出力ユニットの充電負荷電力を調整し、総充電電力を制御することである。
電気自動車のAC充電システムを運用すれば下記の問題を解決できる。一つは一つの充電制御モジュールと複数の給電モジュールとを組み合わせることによって充電コンセントが足りないという問題を解決でき、充電コンセントの平均単価が下がることである。一つは電力検出モジュールによって第二ローカル電力変換装置の電力を検出し、送配電網の安全性を確保することができる。一つは充電作業を順番に行い、総充電電力の増減を自動的に行うことによって送配電網の容量に関わる問題を解決することができる。一つは電力出力ユニットおよび電流検出ユニットによってすべてのコンセントの電力を検出し、充電電力の制御に関わる問題を解決することができる。一つは充電ケーブルの接続が中断される時に費用計算を開始する方式によって充電費用の計算に関わる問題を解決することができる。
通勤用車両は職場および住宅の駐車場を利用することが一般的である。住宅の駐車場は自宅の車庫およびその周辺の駐車場を含む。すべての住宅の駐車場に電気自動車用充電コンセントを完備すれば電気自動車を普及させることができる。電気自動車のAC充電システムは住宅の駐車場にも適用できる。電気自動車のAC充電システムは住宅向け充電サポートを提供し、住宅の電気自動車を順番に充電することによってローカル電力変換装置または送配電網の安全性を確保し、ユーザーにお得な電気料金で電気自動車を充電させることができる。住宅向け給電配置方式は一つのローカル電力変換装置によって複数の住宅に給電することが一般的である。ローカル電力変換装置と住宅との間の配線は十分に利用できるため、電気自動車のAC充電システムの設置コストの削減が実現できる。
(第3実施形態)
図3Aに示すように、本発明の第3実施形態による電気自動車のAC充電システム30は住宅に応用され、構造が第1実施形態による電気自動車のAC充電システム10とほぼ同じである。電気自動車のAC充電システム30は電力検出モジュール31、ローカル給電モジュール32a、ローカル充電制御モジュール33およびグローバル充電制御モジュール34を備える。既有の住宅配線PW3および住宅向け電力量計装置(即ち住宅電力メーター)35の前の配線はローカル給電モジュール32aに接続される。
図3Bに示すように、本実施形態において、電力検出モジュール31およびローカル充電制御モジュール33は住宅周辺のローカル電力変換装置402に接続される。ローカル電力変換装置402は第1実施形態においての第二ローカル電力変換装置202と同じである。ローカル給電モジュール32aは既有の住宅配線PW3によって住宅電力メーター35に設置され、設置場所が屋内、車庫、住宅の駐車場の所定の位置またはよく利用する駐車位置の近くである。電気自動車のAC充電システム30はローカル電力変換装置402と住宅との間の住宅配線によって運用される。住宅配線はローカル電力変換装置402から住宅電力メーター35を通って住宅電力メーター35からさらに広がっていく内部電源配線であってもよい。ローカル給電モジュール32aはローカル電力変換装置402に電気的に接続される。
ローカル給電モジュール32aはローカル充電制御モジュール33に制御されたうえで電力出力ユニット121および送配電網を相互に導通させ、自家用車識別情報をローカル充電制御モジュール33に記録する。ローカル充電制御モジュール33は住宅の駐車場の電源コンセントによって記録した自家用車に充電作業を行う。住宅の駐車場の電源コンセントは充電専用コンセントになる。自家用車識別情報はグローバル充電制御モジュール34によって即時更新される。
住宅の駐車場が住宅の敷地に近い任意の場所である場合、延長コード36をローカル給電モジュール32aの電力出力ユニット121に接続すれば電気自動車52aを充電することができる。ローカル充電制御モジュール33は接続検出ユニット123a、電流検出ユニット124aおよび連絡ルードによって安全充電を確保することができる。
電力量計装置を設置する際、スマートメーターの設置条件を満たせばスマートメーターを選択することもできる。スマートメーターは費用が時間帯割引であり、計算方法が累積計算方法である。それに対して、本発明はローカル充電制御モジュール33によって充電時間を制御するため、スマートメーターを設置しなくても、使用料金は時間帯割引によって計算される。また総充電電力量と非総充電力は別々に精算されるため、累積計算方法によって費用が増加することを排除することができる。
本発明は電気自動車のAC充電システム30と住宅電力配線とを組み合わせて使用し、ローカル給電モジュール32aを住宅電力メーター35の後に設置する、即ちローカル給電モジュール32aとローカル電力変換装置402との間に住宅電力メーター35を位置させることができる。ローカル充電制御モジュール33はローカル給電モジュール32aの電流検出ユニットによって車両充電電力を検出する。続いてローカル充電制御モジュール33は充電電力、充電時間、時間率などの情報に基づいて住宅用総充電電力量および住宅用充電費用などの情報を作成し、続いて住宅用充電費用情報をグローバル充電制御モジュール34に伝送し、指定の口座から自動的に引き落とすことを通知させる。上述した技術特徴により、電気自動車を住宅で充電する際、時間帯割引を利用することができるだけでなく、送配電網を崩壊させず送配電網の使用効率を向上させることができる。
住宅用総消費電力量は住宅電力メーターの記録に基づいて取得され、住宅用総充電電力量および非住宅用総充電電力量に区別される。住宅用総充電電力量および非住宅用総充電電力量は別々に精算される。計算式は「非住宅用総充電電力量=住宅用総消費電力量−住宅用総充電電力量」である。それぞれの総電力量は同じ時間帯によって計算される。
グローバル充電制御モジュール34は電気自動車の充電費用および住宅用総充電電力量を別々に計算すると同時に住宅用総充電電力量を送配電網制御センターに伝送する。送配電網制御センターは住宅用総消費電力量から住宅用総充電電力量を引いて非住宅用総充電電力量を算出し、非住宅用総充電電力量に基づいて電気料金を計算するため、電気自動車に使った充電電力を住宅用消費電力量に加算することがない。
上述した運用方式により、時間帯割引を利用し、電気料金を別々に計算し、既有の電気配線を利用することができるだけでなく、設置コストを低減し、ローカル給電モジュールを簡単に設置することができる。言い換えれば、電気自動車のAC充電システムを住宅の駐車場の充電コンセントに応用する方式は電気自動車の充電費用が安くなるだけでなく、オフピークの送配電網の電力使用率を増大させることができる。
図4Aに示すように、第二ローカル電力変換装置202の二次巻線W2はローカル給電モジュール12の充電負荷および第三者向け電力消費者24に別々に接続される。第三者向け電力消費者24は一般向け電力消費者241または工業向け電力消費者242などであり、本発明による電気自動車のAC充電システム30の制御範囲内ではないため、一つの変圧器として説明される。その構築は一つの都市または一つの国のローカル送配電網に広がってもよい。
図5に示すように、グローバル充電制御モジュール14は複数のローカル充電制御モジュール13に接続される。すべてのローカル充電制御モジュール13は複数のローカル給電モジュール12に接続される。上述した構造特徴により、地域管理を構成することができる。
図6に示すように、複数のグローバル充電制御モジュール14は相互に接続され、AC充電システムを構成する。上述した構造特徴により、大量の電気自動車を同時に充電する際、送配電網の負荷を効果的に調整することができる。
図7に示すように、別の一つの実施形態において、複数のグローバル充電制御モジュール14と複数のローカル充電制御モジュール13は結合し、統合型モジュールになる。別のローカル充電制御モジュールは有線または無線方式によって統合型モジュールと連絡を取ることができる。統合型モジュールのグローバル充電制御モジュールは有線または無線方式によって別のグローバル充電制御モジュールと接続することができる。
本発明による電気自動車のAC充電システムおよび充電管理方法により、送配電網制御センターはグローバル充電制御モジュールを介して終端のローカル電力変換装置の充電電力を制御し、送配電網の負荷状態を調整することができる。詳しく言えば、ローカル充電制御モジュールは電力検出モジュールによってローカル電力変換装置の電力を検出する。続いてローカル充電制御モジュールはグローバル充電制御モジュールを介してローカル電力変換装置の電力および総充電電力などの情報を送配電網制御センターに伝送する。送配電網制御センターは取得した情報および送配電網の給電量に基づいて分配し、送配電網の各段階の給電容量情報をグローバル充電制御モジュールに伝送する。続いてグローバル充電制御モジュールは分配処理を終了させ、終端段階の給電容量情報をローカル充電制御モジュールに伝送する。続いて、ローカル充電制御モジュールは取得した情報に基づいて総充電電力を制御する。上述したシステムおよび管理方法により、送配電網制御センターはすべての充電負荷を調節し、消費電力の比較的大きい電気自動車およびその充電電力量をピーク時間帯およびオフピーク時間帯において制御し、送配電網の崩壊を避けることができるだけでなく、経済効果を最大化することができる。
本発明による電気自動車のAC充電システムおよび充電管理方法は下記の効果を達成できる。一つ目は、給電側は各地の電気自動車のAC充電システムを介して全ての充電負荷および非充電負荷に関連する情報を取得し、すべての充電負荷を制御することができる。電力消費側は送配電網の発電力および電力分配機能を十分に利用し、エネルギーの使用効率を向上させることができる。二つ目は、ローカル充電制御モジュールは電力検出モジュールによって第二ローカル電力変換装置の電力を検出し、ローカル給電モジュールの電流検出ユニットによって総充電電力を検出し、充電作業を順番に行い、充電作業を自動的に停止するため、ローカル電力変換装置の安全性を確保することができる。三つ目は、電力消費側の設置コストおよび充電コンセントの単価が低いため、すべての駐車位置に充電コンセントを完備し、充電作業を順番に行うことが実現できる。四つ目は、充電設定操作の自動化を実現させて操作を簡単化することができると同時に駐車場の管理側に管理の利便性を提供することができる。五つ目は、電気自動車の充電作業を行う際、送配電網に必要な電力に応じて充電作業の停止および開始を自動的に制御し、電力を柔軟的に調整することができる。
電気自動車を普及させるには、送配電網の端末変圧器の容量が足りない、ピーク時間帯およびオフピーク時間帯において送配電網の電力使用量を調整する、充電コンセントが足りないという問題を解決しなければならない。その解決方法は下記の通りである。
端末変圧器(第二ローカル電力変換装置)の容量が足りないという問題を解決する方法は、電気自動車のAC充電システムによってローカル電力変換装置の出力電力を監視し、電気自動車の総充電電力を自動的に降下させるか遮断することである。総充電電力が電力0に降下する、即ち電気自動車のAC充電システムが静止状態になる際、充電システムと任意の端末変圧器とを接続しても端末変圧器の過負荷が発生し、安全問題を引き起こすことはない。
ピーク時間帯およびオフピーク時間帯において送配電網の電力使用量を調整する方法は下記の通りである。送配電網の給電容量が足りないピーク時間帯には、電気自動車のAC充電システムは送配電網情報に基づいて電気自動車の充電負荷を自動的に降下させる(または遮断する)ため、大量の電気自動車が充電コンセントに接続されても送配電網を崩壊させることはない。オフピーク時間帯には、電気自動車のAC充電システムは送配電網情報に基づいて電気自動車の充電負荷を自動的に増大させ、発電および送配電網の効率を増加させる。
充電コンセントが足りないという問題を解決する方法は下記の通りである。一つのローカル充電制御モジュールで複数のコンセントを制御し、電気自動車側に充電ケーブルを配置させる方式を採用すれば充電コンセントを低コストで設置できる。既有の配線回路を利用すれば設置コストの削減、充電ステップおよびそれに関連する設備の簡単化が実現できる。
本発明は従来の応用技術に優れた特徴が下記の通りである。1)、本発明は充電中の充電コンセントを非充電負荷電力に対応させ、第二ローカル電力変換装置の容量および送配電網の容量に基づいて送配電網の任意の端子を介して充電負荷の増減を自動的に行い、送配電網との連結によってシステム化を実現させるため、単独稼働の充電スタンドに比べて、送配電網の安全性および効率が高い。2)、本発明の充電方式は電気自動車側から電源ケーブルを引き出し、充電コンセントに接続し、充電作業を順番に行うことである。充電作業を順番に行う際、案内ランプは「充電待ち」と「充電許可」を交互に持続的に表示する。つまり、一つの充電作業が終わってから次の充電作業が始まる。3)、本発明の費用請求方法は充電作業が完了した後、費用精算作業を起動することであるため、入金金額に応じて充電する先払い方式の充電スタンドと比べて柔軟性がある。4)、本発明は外部で稼働する制御センターによって複数のコンセントを制御する方式を採用するため、単独稼働の充電スタンドと比べて設置コストが低く、環境にやさしい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
10、30:AC充電システム、
11、11a、11b:電力検出モジュール、
12、12aから12w:ローカル給電モジュール、
121、121a、121b、121n:電力出力ユニット、
122、122a、122b、122n:切替ユニット、
123a:接続検出ユニット、
124a:電流検出ユニット、
13:ローカル充電制御モジュール、
14、34:グローバル充電制御モジュール、
15:充電システム制御センター、
20:送配電網、
201:第一ローカル電力変換装置
202:第二ローカル電力変換装置
203:送配電網制御センター
22、22a、22b、22n、52a:電気自動車
24:第三者向け電力消費者
241:一般向け電力消費者
242:工業向け電力消費者
35:住宅電力メーター
36:延長コード
402:ローカル電力変換装置
APa、APb、APn:制御可能な電力
I01:電力パラメータ
I02:遠隔制御情報
I03:負荷制御情報
I04:総負荷情報
I05:ローカル制御情報
LPL:ローカル電源配線
PW1:第一電力
PW2:第二電力
PW21、PW22、PW211,PW23:電力配線
PW3:住宅配線
S1:変圧器定格電力
S2:電力増大制御値
S3:電力減少制御値
W1:一次巻線
W2:二次巻線
X軸(x1、x2、x3、x4):非総充電電力
Y軸(y1、y2、y3、y4):総充電電力

Claims (10)

  1. 送配電網によって応用され、電力検出モジュール、複数のローカル給電モジュールおよびローカル充電制御モジュールを備える電気自動車のAC充電システムであって、
    前記送配電網は相互に接続する第一ローカル電力変換装置および第二ローカル電力変換装置を有し、前記第一ローカル電力変換装置の電力は前記第二ローカル電力変換装置の電力より大きく、
    前記電力検出モジュールは前記第二ローカル電力変換装置に接続され、電力パラメータを生じ、
    複数の前記ローカル給電モジュールはそれぞれローカル電源配線によって前記第二ローカル電力変換装置の電力出力側に接続され、電力出力ユニット、切替ユニットおよび電流検出ユニットを有し、前記電力出力ユニットは制御可能な電力を出力し、前記切替ユニットは対応する前記電力出力ユニットおよび前記ローカル電源配線の間に別々に接続され、前記電流検出ユニットは前記電力出力ユニットの電流を検出し、
    前記ローカル充電制御モジュールは前記電力検出モジュールに接続され、前記第二ローカル電力変換装置の電力に基づいて複数の前記ローカル給電モジュールに可能な電力を出力させることを別々に制御し、
    数多くの電気自動車はケーブルによって前記ローカル給電モジュールの前記電力出力ユニットに接続され、前記電力出力ユニットは前記ローカル充電制御モジュールに制御されたうえで数多くの前記電気自動車に制御可能な電力を出力し、充電作業を行うことを特徴とする電気自動車のAC充電システム。
  2. 前記第二ローカル電力変換装置の電力が電力増大制御値まで上昇する際、前記ローカル充電制御モジュールは前記ローカル給電モジュールの総充電電力を自動的に下げ、
    前記第二ローカル電力変換装置の電力が電力減少制御値まで降下し、充電が必要になる際、前記ローカル充電制御モジュールは前記ローカル給電モジュールの総充電電力を自動的に上げることを特徴とする請求項1に記載の電気自動車のAC充電システム。
  3. さらに送配電網制御センターを備え、
    前記送配電網制御センターは、グローバル充電制御モジュールによって前記ローカル充電制御モジュールの総充電電力を制御し、前記第二ローカル電力変換装置の電力を調整することを特徴とする請求項1に記載の電気自動車のAC充電システム。
  4. 前記ローカル給電モジュールはさらに接続検出ユニットを有し、
    前記接続検出ユニットは前記電力出力ユニットが外部電源コネクタに接続されるか否かを検出し、
    前記電力出力ユニットが前記外部電源コネクタに接続されなければ、前記ローカル給電モジュールは制御可能な電力を供給できないことを特徴とする請求項1に記載の電気自動車のAC充電システム。
  5. 前記電力出力ユニットと前記電気自動車を接続する前記ケーブルは前記電気自動車内に用意されたコードリールであることを特徴とする請求項1に記載の電気自動車のAC充電システム。
  6. 前記ローカル給電モジュールは前記ローカル充電制御モジュールに制御されたうえで前記電気自動車に前記充電作業を順番に行い、
    前記充電作業を順番に行う際、前記電気自動車は対応する前記電力出力ユニットに電気的に接続され、前記電力出力ユニットは充電執行待ちまたは充電執行中の状態に維持されることを特徴とする請求項1に記載の電気自動車のAC充電システム。
  7. それぞれの前記電力出力ユニットに制御可能な電力を出力させる方法は、
    前記ローカル充電制御モジュールによって数多くの前記電気自動車から一つの前記電気自動車を指定し、充電段階の電流情報を伝達するステップと、
    指定した前記電気自動車によって車載AC−DC変換器を制御すると同時に、前記充電段階の前記電流情報に基づいて充電指令を行うステップと、
    指定した前記ローカル給電モジュールの前記電流検出ユニットによって指定した前記電気自動車の充電電流を前記ローカル充電制御モジュールが受けるステップと、
    指定した前記電気自動車の充電電流および前記充電段階の前記電流情報に関わる指令の誤差が許容範囲内であるか否かを確認し、前記誤差が前記許容範囲を超えた場合、指定した前記電気自動車の前記充電作業を前記ローカル充電制御モジュールが前記切替ユニットによって停止するステップと、
    を含むことを特徴とする請求項6に記載の電気自動車のAC充電システム。
  8. さらに前記充電作業を行う前に、数多くの前記電気自動車の車両状態情報が正確であるか否か、有効であるか否かを前記ローカル充電制御モジュールによって確認する作業を含むことを特徴とする請求項1に記載の電気自動車のAC充電システム。
  9. 任意の一つの前記ローカル電源配線の電力が一つの配線容量増大制御値まで上昇する際、前記ローカル充電制御モジュールは前記ローカル電源配線に接続される前記ローカル給電モジュールの総充電電力を自動的に下げ、
    任意の一つの前記ローカル電源配線の電力が一つの配線容量減少制御値まで降下し、充電が必要になる際、前記ローカル充電制御モジュールは前記ローカル電源配線に接続される前記ローカル給電モジュールの総充電電力を自動的に上げることを特徴とする請求項1に記載の電気自動車のAC充電システム。
  10. 送配電網および住宅によって応用され、電力検出モジュール、一つ以上のローカル給電モジュール、ローカル充電制御モジュールおよび住宅電力メーターを備える電気自動車のAC充電システムであって、
    前記送配電網は相互に接続する第一ローカル電力変換装置および第二ローカル電力変換装置を有し、前記第一ローカル電力変換装置の電力は前記第二ローカル電力変換装置の電力より大きく、
    前記電力検出モジュールは前記第二ローカル電力変換装置に接続され、電力パラメータを生じ、
    一つ以上の前記ローカル給電モジュールはローカル電源配線によって前記第二ローカル電力変換装置の電力出力側に接続され、電力出力ユニット、切替ユニットおよび電流検出ユニットを有し、前記電力出力ユニットは電気自動車に制御可能な電力を出力し、充電作業を行い、前記切替ユニットは対応する前記電力出力ユニットおよび前記ローカル電源配線の間に別々に接続され、前記電流検出ユニットは前記電力出力ユニットの電流情報を検出し、
    前記ローカル充電制御モジュールは前記電力検出モジュールに接続され、前記第二ローカル電力変換装置の電力に基づいて一つ以上の前記ローカル給電モジュールに制御可能な電力を出力させることを別々に制御し、
    前記ローカル充電制御モジュールは前記電流検出ユニットで検出した電流情報に基づいて住宅用総充電電力量を算出し、
    前記住宅電力メーターは所在地の前記ローカル給電モジュールと前記第二ローカル電力変換装置との間に設置され、住宅用総消費電力量を計量し、
    前記住宅用総消費電力量は前記住宅用総充電電力量および非住宅用総充電電力量に区別され、前記住宅用総充電電力量および前記非住宅用総充電電力量は別々に精算され、計算式は「前記非住宅用総充電電力量=前記住宅用総消費電力量−前記住宅用総充電電力量」であることを特徴とする電気自動車のAC充電システム。
JP2021066493A 2020-04-24 2021-04-09 電気自動車のac充電システム Active JP7271596B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010333319.1A CN112421739B (zh) 2020-04-24 2020-04-24 电动车交流充电系统
CN202010333319.1 2020-04-24

Publications (2)

Publication Number Publication Date
JP2021175367A true JP2021175367A (ja) 2021-11-01
JP7271596B2 JP7271596B2 (ja) 2023-05-11

Family

ID=74844107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021066493A Active JP7271596B2 (ja) 2020-04-24 2021-04-09 電気自動車のac充電システム

Country Status (5)

Country Link
US (1) US20210331598A1 (ja)
EP (1) EP3904147A1 (ja)
JP (1) JP7271596B2 (ja)
CN (1) CN112421739B (ja)
TW (1) TWI799843B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919009B (zh) * 2018-07-16 2024-04-05 江苏特创科技有限公司 一种车载电子设备测试装置及其测试系统
KR20220115168A (ko) * 2021-02-10 2022-08-17 현대자동차주식회사 전동 운송차량의 충전 제어 시스템 및 방법
TWI813034B (zh) * 2021-10-06 2023-08-21 勤力合實業股份有限公司 智能充電裝置管理系統與方法
US12068632B2 (en) 2023-01-17 2024-08-20 Delta Electronics, Inc. Charging system
CN116494814B (zh) * 2023-06-30 2023-09-05 四川金信石信息技术有限公司 一种有序充电转接集成装置及新能源汽车充电系统
CN117601700B (zh) * 2023-11-28 2024-08-20 深圳市优优绿能股份有限公司 一种充电站的能量流管理方法、装置和系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042984A (ja) * 2006-08-02 2008-02-21 Tokai Rika Co Ltd 充電システム
JP2011509648A (ja) * 2008-01-07 2011-03-24 クーロン テクノロジーズ インコーポレイテッド 電気自動車のためのネットワーク制御式充電システム
JP2011120347A (ja) * 2009-12-02 2011-06-16 Konica Minolta Holdings Inc 電力需給改善システム
JP2011125178A (ja) * 2009-12-14 2011-06-23 Toyota Motor Corp 電力管理システム
JP2011209869A (ja) * 2010-03-29 2011-10-20 Hitachi Ltd 配電線の監視制御装置および配電線の運用方法
JP2012048286A (ja) * 2010-08-24 2012-03-08 Hitachi Ltd 電気自動車の充電制御方法、充電監視制御センタ、車載カーナビ装置、および電力系統安定化システム
JP2012060834A (ja) * 2010-09-10 2012-03-22 Panasonic Electric Works Co Ltd 充電制御装置
WO2012081120A1 (ja) * 2010-12-17 2012-06-21 トヨタ自動車株式会社 コード格納部を備えた車両およびその制御方法
JP2012191843A (ja) * 2011-03-09 2012-10-04 General Electric Co <Ge> 電気自動車に充電する方法及びシステム
JP2014512795A (ja) * 2011-04-28 2014-05-22 エルジー・ケム・リミテッド バッテリー充電のための充電方法および充電装置
JP2014519299A (ja) * 2011-04-27 2014-08-07 イーエー テクノロジー リミテッド 電力需要の管理
JP2015015801A (ja) * 2013-07-03 2015-01-22 パナソニックIpマネジメント株式会社 電力管理システム、通知装置、制御装置、監視装置
JP2016131432A (ja) * 2015-01-13 2016-07-21 パナソニックIpマネジメント株式会社 集合用電気自動車充電装置
CN108928249A (zh) * 2018-06-04 2018-12-04 四川能投光电有限公司 电动车辆充电灯杆及充电灯杆管理系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100082464A1 (en) * 2008-10-01 2010-04-01 Keefe Robert A System and Method for Managing the Consumption and Discharging of Power of Electric Vehicles
US8134848B2 (en) * 2009-08-12 2012-03-13 Alcatel Lucent Closed-loop efficiency modulation for use in AC powered applications
US20140015319A1 (en) * 2011-03-03 2014-01-16 Nec Corporation Charged power control system
US9000721B2 (en) * 2011-06-29 2015-04-07 General Electric Company Systems and methods for charging
US9637017B2 (en) * 2013-10-25 2017-05-02 Korea Institute Of Energy Research Power-sharing charging system, charging device, and method for controlling the same
FR3013514B1 (fr) * 2013-11-19 2016-09-09 Commissariat Energie Atomique Dispositif et procede de recharge de vehicules electriques ou hybrides
KR101567648B1 (ko) * 2013-12-18 2015-11-10 현대자동차주식회사 배터리 충전 시스템 및 장치
KR20150117121A (ko) * 2014-04-09 2015-10-19 삼성전기주식회사 범용 전원 공급 장치
CN105437987B (zh) * 2014-09-02 2020-10-13 葛炽昌 电动车、电力供应站及电动车的电力维持方法
US20170008414A1 (en) * 2015-07-08 2017-01-12 Chan Hee HAN Billing system for electric vehicle charging
DE102015122217A1 (de) * 2015-12-18 2017-06-22 Rwe Ag Sicherheitsmodul und Ladestation mit Sicherheitsmodul
WO2017205690A1 (en) * 2016-05-25 2017-11-30 Chargepoint, Inc. Dynamic allocation of power modules for charging electric vehicles
TWI601353B (zh) * 2016-07-12 2017-10-01 Distributed module type grid connection conversion device and its control method
US10183583B2 (en) * 2016-08-03 2019-01-22 Solarcity Corporation Energy generation and storage system with electric vehicle charging capability
US10377260B2 (en) * 2017-01-13 2019-08-13 Uber Technologies, Inc. Charge control system for mobile energy storage fleet
DE102017208599B4 (de) * 2017-05-22 2022-02-03 Audi Ag Kraftwagen mit einer Anschlusseinrichtung
CN107672469A (zh) * 2017-10-10 2018-02-09 蔚来汽车有限公司 基于凭证管理的电动车充电方法和系统
US11400822B2 (en) * 2019-05-24 2022-08-02 Abb Schweiz Ag Suspended charging cable system for electric vehicles
DE102019130337A1 (de) * 2019-11-11 2021-05-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Lastverwaltungssystem und Verfahren zur Regelung eines solchen Lastverwaltungssystems

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042984A (ja) * 2006-08-02 2008-02-21 Tokai Rika Co Ltd 充電システム
JP2011509648A (ja) * 2008-01-07 2011-03-24 クーロン テクノロジーズ インコーポレイテッド 電気自動車のためのネットワーク制御式充電システム
JP2011120347A (ja) * 2009-12-02 2011-06-16 Konica Minolta Holdings Inc 電力需給改善システム
JP2011125178A (ja) * 2009-12-14 2011-06-23 Toyota Motor Corp 電力管理システム
JP2011209869A (ja) * 2010-03-29 2011-10-20 Hitachi Ltd 配電線の監視制御装置および配電線の運用方法
JP2012048286A (ja) * 2010-08-24 2012-03-08 Hitachi Ltd 電気自動車の充電制御方法、充電監視制御センタ、車載カーナビ装置、および電力系統安定化システム
JP2012060834A (ja) * 2010-09-10 2012-03-22 Panasonic Electric Works Co Ltd 充電制御装置
WO2012081120A1 (ja) * 2010-12-17 2012-06-21 トヨタ自動車株式会社 コード格納部を備えた車両およびその制御方法
JP2012191843A (ja) * 2011-03-09 2012-10-04 General Electric Co <Ge> 電気自動車に充電する方法及びシステム
JP2014519299A (ja) * 2011-04-27 2014-08-07 イーエー テクノロジー リミテッド 電力需要の管理
JP2014512795A (ja) * 2011-04-28 2014-05-22 エルジー・ケム・リミテッド バッテリー充電のための充電方法および充電装置
JP2015015801A (ja) * 2013-07-03 2015-01-22 パナソニックIpマネジメント株式会社 電力管理システム、通知装置、制御装置、監視装置
JP2016131432A (ja) * 2015-01-13 2016-07-21 パナソニックIpマネジメント株式会社 集合用電気自動車充電装置
CN108928249A (zh) * 2018-06-04 2018-12-04 四川能投光电有限公司 电动车辆充电灯杆及充电灯杆管理系统

Also Published As

Publication number Publication date
CN112421739B (zh) 2024-01-02
CN112421739A (zh) 2021-02-26
TWI799843B (zh) 2023-04-21
EP3904147A1 (en) 2021-11-03
US20210331598A1 (en) 2021-10-28
JP7271596B2 (ja) 2023-05-11
TW202141885A (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
JP2021175367A (ja) 電気自動車のac充電システム
JP6019222B2 (ja) 大容量直流−直流コンバータを活用した直流配電網用電気自動車の多機能充電装置
JP5240765B2 (ja) 駐車システム
CN111201691B (zh) 一种特别是用于电动车辆的移动充电单元及其用于按照请求输送电量的管理系统
US20140249976A1 (en) Accounting system and ev charging system
KR101262166B1 (ko) 전기자동차 충전을 위한 시스템
US10263461B2 (en) Smart DC microgrid parking structures using power line communications
CN105109357A (zh) 一种电动汽车智能充电系统及方法
JP2012191843A (ja) 電気自動車に充電する方法及びシステム
CN105337331A (zh) 一种电动汽车群充电方法及系统
JP2017046398A (ja) 充電システム
EP3598603B1 (en) Charging device, system, and method for controlling a charging device
KR20180032371A (ko) 차량 예약 충전 방법 및 장치
JP2021016243A (ja) 充放電システム
JP3224156U (ja) 電気自動車充電システム
WO2015001701A1 (ja) 電力管理システム及び制御装置
KR102415686B1 (ko) 충전위치 선택형 전기자동차 충전 방법 및 시스템
CN202009256U (zh) 一体式充电机
KR102699776B1 (ko) 전기자동차용 상용전원 충전장치
CN115313464A (zh) 一种三相交流充电装置、系统及方法
KR102186878B1 (ko) 충전용 콘센트 장치
EP4454932A1 (en) A method and system for charging two or more electric vehicles
JP2019205278A (ja) 車両用充電装置、駐車場及び充電方法
WO2022181192A1 (ja) 充放電ステーション
KR20210124043A (ko) 교류형 충전위치 선택형 전기자동차 충전 방법 및 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7271596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150