JP2021144988A - 磁気抵抗効果素子 - Google Patents

磁気抵抗効果素子 Download PDF

Info

Publication number
JP2021144988A
JP2021144988A JP2020041166A JP2020041166A JP2021144988A JP 2021144988 A JP2021144988 A JP 2021144988A JP 2020041166 A JP2020041166 A JP 2020041166A JP 2020041166 A JP2020041166 A JP 2020041166A JP 2021144988 A JP2021144988 A JP 2021144988A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
magnetic
magnetoresistive element
ferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020041166A
Other languages
English (en)
Other versions
JP7435057B2 (ja
Inventor
祥吾 米村
Shogo Yonemura
祥吾 米村
智生 佐々木
Tomoo Sasaki
智生 佐々木
心人 市川
Muneto Ichikawa
心人 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2020041166A priority Critical patent/JP7435057B2/ja
Priority to US17/194,694 priority patent/US11927649B2/en
Publication of JP2021144988A publication Critical patent/JP2021144988A/ja
Application granted granted Critical
Publication of JP7435057B2 publication Critical patent/JP7435057B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1292Measuring domain wall position or domain wall motion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

【課題】RAを低減した磁気抵抗効果素子を提供する。【解決手段】この磁気抵抗効果素子は、第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間にある非磁性層と、前記第1強磁性層と前記非磁性層との間または前記第2強磁性層と前記非磁性層との間の少なくとも一方に配置された挿入層と、を備え、前記非磁性層は、MgおよびGaを含む酸化物であり、前記挿入層は、Gaを含む強磁性体である。【選択図】図1

Description

本発明は、磁気抵抗効果素子に関する。
磁気抵抗効果素子は、磁気抵抗効果により積層方向の抵抗値が変化する素子である。磁気抵抗効果素子は、2つの強磁性層とこれらに挟まれた非磁性層とを備える。非磁性層に導体が用いられた磁気抵抗効果素子は、巨大磁気抵抗(GMR)素子と言われ、非磁性層に絶縁層(トンネルバリア層、バリア層)が用いられた磁気抵抗効果素子は、トンネル磁気抵抗(TMR)素子と言われる。磁気抵抗効果素子は、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)等の様々な用途への応用が可能である。
特許文献1には、MgGaを含む非磁性層を用いた磁気抵抗効果素子が記載されている。特許文献1においてGaを含む非磁性層は、逆スピネル構造を有し、面積抵抗(RA)が低いことが記載されている。
特許第6365901号公報
近年の磁気記録媒体の低電圧化、省電力化の要求に伴って、磁気ヘッドではさらなる低消費電力化が望まれている。しかしながら、特許文献1に記載の磁気抵抗効果素子のように、非磁性層がGaを含む場合でもRAが十分に小さくならない場合がある。
本発明は上記事情に鑑みてなされたものであり、RAを低減した磁気抵抗効果素子を提供することを目的とする。
本発明者らは、Gaを含む非磁性層を用いた磁気抵抗効果素子においてGaが他の層へ拡散することで、RAが十分小さくならないことを見出した。従って、本発明は、上記課題を解決するために以下の手段を提供する。
(1)第1の態様にかかる磁気抵抗効果素子は、第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間にある非磁性層と、前記第1強磁性層と前記非磁性層との間または前記第2強磁性層と前記非磁性層との間の少なくとも一方に配置された挿入層と、を備え、前記非磁性層は、MgおよびGaを含む酸化物であり、前記挿入層は、Gaを含む強磁性体である。
(2)上記態様にかかる磁気抵抗効果素子において、前記非磁性層は、MgとAlとGaとを含む酸化物であってもよい。
(3)上記態様にかかる磁気抵抗効果素子において、前記挿入層の厚さは、2nm以下であってもよい。
(4)上記態様にかかる磁気抵抗効果素子は、前記挿入層と前記第1強磁性層と前記第2強磁性層は、CoまたはFeの少なくとも1つの元素を含んでいてもよい。
(5)上記態様にかかる磁気抵抗効果素子は、前記挿入層がGaを含むホイスラー合金を含んでいてもよい。
(6)上記態様にかかる磁気抵抗効果素子において、前記ホイスラー合金は、下記の一般式(1)で表される合金であってもよい
CoFeαGaβGeγ ・・・(1)
(式(1)中、α、β及びγは、2.3≦α+β+γ、α≦β+γ、かつ0.5<α<1.9、0.1≦β、0.1≦γを満足する数を表す)。
(7)上記態様にかかる磁気抵抗効果素子は、前記挿入層と前記第1強磁性層との間と、前記挿入層と前記第2強磁性層との間と、の少なくとも一方に金属粒子層を備え、前記金属粒子層は、Ta、W、Moからなる群から選択されるいずれか一つの元素を含んでいてもよい。
(8)上記態様にかかる磁気抵抗効果素子において、前記金属粒子層の厚さが1nm以下であってもよい。
(9)上記態様にかかる磁気抵抗効果素子において、前記第1挿入層及び前記第2挿入層のGa濃度は、前記非磁性層のGa濃度よりも小さくてもよい。
(10)上記態様にかかる磁気抵抗効果素子は、積層方向のいずれかの位置に、前記挿入層と逆向きの磁歪を示す磁歪低減層をさらに備えてもよい。
(11)上記態様にかかる磁気抵抗効果素子において、前記磁歪低減層は、前記挿入層に隣接してもよい。
本発明に係る磁気抵抗効果素子は、RAを低減できる。
第1実施形態に係る磁気抵抗効果素子の断面図である。 変形例1に係る磁気抵抗効果素子の断面図である。 変形例2に係る磁気抵抗効果素子の断面図である。 変形例3に係る磁気抵抗効果素子の断面図である。 適用例1に係る磁気記録素子の断面図である。 適用例2に係る磁気記録素子の断面図である。 適用例3に係る磁気記録素子の断面図である。 適用例4に係る磁壁移動素子の断面図である。 適用例5に係る高周波デバイスの断面図である。
以下、本実施形態について、図面を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本実施形態の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。また、明細書中に記載の組成式は、化学量論組成で記載しているが、構造を維持できる範囲での化学量論組成からのブレは容認される。
[第1実施形態]
図1は、第1実施形態にかかる磁気抵抗効果素子の断面図である。まず方向について定義する。各層が積層されている方向を積層方向という場合がある。また積層方向と交差し、各層が広がる方向を面内方向という場合がある。
図1に示す磁気抵抗効果素子10は、第1強磁性層1と第2強磁性層2と非磁性層3と第1挿入層4Aと第2挿入層4Bを備える。非磁性層3は、第1挿入層4Aと第2挿入層4Bとの間にある。第1強磁性層1と第2強磁性層2とは、第1挿入層4A、非磁性層3及び第2挿入層4Bを積層方向に挟む。第1挿入層4Aは、第1強磁性層1と非磁性層3とに挟まれる。第2挿入層4Bは、第2強磁性層2と非磁性層3とに挟まれる。以下、第1強磁性層1及び第2強磁性層2のそれぞれを区別しない場合に、単に強磁性層という場合がある。
磁気抵抗効果素子10は、第1強磁性層1の磁化と第2強磁性層2の磁化の相対角の変化を抵抗値変化として出力する。第2強磁性層2の磁化は、例えば、第1強磁性層1の磁化より動きやすい。所定の外力を加えた場合に、第1強磁性層1の磁化の向きは変化せず(固定され)、第2強磁性層2の磁化の向きは変化する。第1強磁性層1の磁化の向きに対して第2強磁性層2の磁化の向きが変化することで、磁気抵抗効果素子10の抵抗値は変化する。この場合、第1強磁性層1は磁化固定層と言われ、第2強磁性層2は磁化自由層と言われる場合がある。
以下、第1強磁性層1が磁化固定層、第2強磁性層2が磁化自由層として説明するが、この関係は逆でもよい。すなわち、第1強磁性層1が磁化自由層、第2強磁性層が磁化固定層であってもよい。また磁気抵抗効果素子10は、第1強磁性層1の磁化と第2強磁性層2の磁化の相対角の変化を抵抗値変化として出力するため、第1強磁性層1の磁化と第2強磁性層2の磁化がいずれも動く構成(すなわち、第1強磁性層1と第2強磁性層2がいずれも磁化自由層)でもよい。
所定の外力を印加した際の第1強磁性層1の磁化と第2強磁性層2の磁化との動きやすさの差は、第1強磁性層1と第2強磁性層2との保磁力の違いにより生じる。例えば、第2強磁性層2の厚みを第1強磁性層1の厚みより薄くすると、第2強磁性層2の保磁力が第1強磁性層1の保磁力より小さくなる。また例えば、磁化固定層である第1強磁性層1の第1挿入層4Aと反対側の面に、反強磁性層を設けてもよい。反強磁性層が第1強磁性層1と交換結合することにより、第1強磁性層1の磁化方向に一方向異方性を付与することが可能となる。この場合、反強磁性層を設けない場合よりも高い保磁力を一方向に有する第1強磁性層1を得られる。反強磁性層は、例えば、IrMn,PtMn等である。さらに、第1強磁性層1は漏れ磁場を第2強磁性層2に影響させないようにするためにスペーサ層を挟む2つの磁性層からなるシンセティック反強磁性構造(SAF構造)としても良い。スペーサ層は、例えば、Ru、Ir、Rhからなる群より選ばれる少なくとも一つを含む。
(強磁性層)
第1強磁性層1及び第2強磁性層2は、強磁性体を含む。図1に示す磁気抵抗効果素子10の第1強磁性層1は、例えば、Cr、Mn、Co、Fe及びNiからなる群より選ばれる金属、これらの金属を一以上含む合金、これらの金属とB、C及びNのうち少なくとも一種の元素とが含まれる合金を含む。第1強磁性層1は、例えばFe、Co−Fe、Co−Fe−Bである。第1強磁性層1及び第2強磁性層2は、ホイスラー合金からなっていてもよい。第1強磁性層1及び第2強磁性層2は、詳細を後述する挿入層と同じ金属元素を含むことが好ましい。例えば、CoまたはFeのうち少なくとも1つの元素を含むことが好ましい。
ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物である。XYZで表記される強磁性のホイスラー合金は、フルホイスラー合金と言われ、XYZで表記される強磁性のホイスラー合金は、ハーフホイスラー合金と言われる。ハーフホイスラー合金は、フルホイスラー合金のXサイトの原子の一部が空格子となったものである。何れも典型的にはbcc構造を基本とした金属間化合物である。
ここでXは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。フルホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoFeAl、CoFeGeGa1−x、CoMnGeGa1−x、CoMnSi、CoMnGe、CoMnGa、CoMnSn、CoMnAl、CoCrAl、CoVAl、CoMn1−aFeAlSi1−b等である。ハーフホイスラー合金は、例えば、NiMnSe、NiMnTe、NiMnSb、PtMnSb、PdMnSb、CoFeSb、NiFeSb、RhMnSb、CoMnSb、IrMnSb、NiCrSbである。
(非磁性層)
非磁性層3は、非磁性の絶縁体または半導体である。より具体的には、非磁性層3は、Mg及びGaを含む酸化物である。非磁性層3は、例えば、MgとAlとGaとを含む酸化物であってもよい。非磁性層3は、例えば、MgGa、Mg(AlGa1−xである。xは0<x<1、Yは0<Y≦4の範囲の数である。非磁性層3は、例えば、MgO/Ga、MgO/MgGa、MgAl/MgGaのような積層体を含んでいてもよい。また、上記に加えて、Zn、Cu、Cd、Ag、Pt、Inなどの元素が添加されていても良い。これらの材料は、バンドギャップが大きく、絶縁性に優れる。これらの材料は、非磁性層中にGaを含むためMgOやMgAlと比較するとバンドギャップが小さく、RAの低減に有利である。
非磁性層3は、例えば、厚みが0.5nm以上3nm以下の範囲内である。非磁性層3は、第1強磁性層1と第2強磁性層2との磁気的な結合を阻害する。非磁性層3は、トンネルバリア層と言われる場合もある。
(挿入層)
第1挿入層4A及び第2挿入層4Bは、Gaを含む強磁性体である。第1挿入層4Aは、非磁性層3に含まれるGaが第1強磁性層1へ拡散することを抑制する。第2挿入層4Bは、非磁性層3に含まれるGaが第2強磁性層2へ拡散することを抑制する。第1挿入層4A及び第2挿入層4BのGa濃度は、例えば、非磁性層3のGa濃度よりも低い。Ga濃度は、例えば、非磁性層3から積層方向へ離間するに従い、小さくなる。第1挿入層4A及び第2挿入層4BのGa濃度が非磁性層3のGa濃度よりも低いと、第1挿入層4Aから第1強磁性層1、及び第2挿入層4Bから第2強磁性層2へのGa元素の拡散を抑制できる。
第1挿入層4A及び第2挿入層4BのGa濃度は、例えばエネルギー分散型X線分析(EDS)を用いて行うことができる。またEDS分析は、膜厚方向のGa濃度を測定することもできる。またEDS分析は、磁気抵抗効果素子を構成する他の層の組成分析、他の元素の組成分析もできる。
以下、第1挿入層4A及び第2挿入層4Bのそれぞれを区別しない場合に、単に挿入層という場合がある。
挿入層は、例えば、第1強磁性層1及び第2強磁性層2と同じ金属元素を含む。挿入層と第1強磁性層1及び第2強磁性層2とが同じ元素を含むと、格子ミスマッチが抑制され、Vhalf特性が向上する。例えば、挿入層はCoまたはFeのうち少なくとも1つの元素を含む。挿入層は、例えば、Fe−Ga、Fe−Co−Gaである。
挿入層は、例えば、Fe1−xGaである。xは、例えば0<x<0.2であり、0.01≦x≦0.1が好ましい。xの範囲が上記範囲内であれば、挿入層の磁歪が低減される。
また挿入層は、Gaを含むホイスラー合金でもよい。挿入層は、例えば、Xα(GaβZ1γ)、XYα(GaβZ2γ)で表記される。α、β、γは、結晶構造を維持できる範囲で選択できる添え字である。γ=0でもよい。また0.1≦βを満たすと、低温度でも結晶構造が規則化し、他の層への元素拡散が抑制される。
挿入層は、例えば、下記一般式(1)で表されるホイスラー合金である。
CoFeαGaβGeγ ・・・(1)
(式(1)中、α、β及びγは、2.3≦α+β+γ、α≦β+γ、かつ0.5<α<1.9、0.1≦β、0.1≦γを満足する数を表す。)
一般式(1)のホイスラー合金は、GaとGeとの相乗効果によって、ハーフメタルとしての特性が強くなりスピン分極率が向上する。挿入層は、非磁性層3に接するため、挿入層のスピン分極率が高いと、磁気抵抗効果素子10のMR比が高まる。
第1挿入層4A及び第2挿入層4Bの厚みは、例えば、2nm以下である。磁気抵抗効果素子10の磁気抵抗変化は、非磁性層3に接する2つの強磁性の磁化の相対角の差で生じる。第1挿入層4A及び第2挿入層4Bの厚みが厚いと、第1挿入層4A及び第2挿入層4Bが磁気抵抗変化に及ぼす影響が大きくなる。また第1挿入層4A及び第2挿入層4Bの厚さが薄いと磁歪を低減できる。
第1挿入層4Aおよび第2挿入層4Bの組成及び厚さは同じであってもよく、それぞれ異なっていてもよい。
[磁気抵抗効果素子の製造方法]
次いで、磁気抵抗効果素子10の製造方法について説明する。第1実施形態に係る磁気抵抗効果素子10の製造方法は、まず成膜の下地となる基板を準備する。基板は、結晶性を有しても、アモルファスでもよい。結晶性を有する基板としては、例えば、金属酸化物単結晶、シリコン単結晶、サファイア単結晶、セラミックがある。アモルファスの基板としては、例えば、熱酸化膜付シリコン単結晶、ガラス、石英がある。
次いで、基板上に、第1強磁性層1、第1挿入層4、非磁性層3、第2挿入層4B、第2強磁性層2を順に成膜する。これらの層は、例えば、スパッタリング法で成膜される。また、これらの層はフォトリソグラフィにより所定の形に形成され、アニール処理される。
尚、基板の磁気抵抗効果素子側の面には、下地層が形成されていてもよい。下地層は例えば、(001)配向したNaCl構造を有し、Ti,Zr,Nb,V,Hf,Ta,Mo,W,B,Al,Ceの群から選択される少なくとも1つの元素を含む窒化物の層や、ABOの組成式で表される(002)配向したペロブスカイト系導電性酸化物の層や、(001)配向したNaCl構造を有し、かつMg、Al、Ceの群から選択される少なくとも1つの元素を含む酸化物の層や、(001)配向した正方晶構造または立方晶構造を有し、かつAl、Cr、Fe、Co、Rh、Pd、Ag、Ir、Pt、Au、Mo、Wの群から選択される少なくとも1つの元素を含む層である。
本実施形態に係る磁気抵抗効果素子10は、RAが小さい。Gaを含む第1挿入層4A及び第2挿入層4Bが、非磁性層3からのGaの拡散を抑制するためと考えられる。
また非磁性層3がMgとAlとGaとを含む酸化物の場合、非磁性層3は安定なMgAlを選択し、余ったGaを他の層へ排出する場合がある。この場合でも、Gaを含む第1挿入層4A及び第2挿入層4Bが、非磁性層3からのGaの拡散を抑制し、磁気抵抗効果素子10のRAを小さくできる。
[変形例1]
図2は、変形例1に係る磁気抵抗効果素子20の断面模式図である。磁気抵抗効果素子20は、第1金属粒子層5Aおよび第2金属粒子層5Bを有する点が磁気抵抗効果素子10と異なる。磁気抵抗効果素子10と同一の構成は、同一の符号を付し、説明を省略する。
第1金属粒子層5Aは、第1強磁性層1と第1挿入層4Aとの間にある。第2金属粒子層5Bは、第2強磁性層2と第2挿入層4Bとの間にある。第1金属粒子層5A及び第2金属粒子層5Bの厚みは、例えば1nm以下である。第1金属粒子層5A及び第2金属粒子層5Bの厚みは、面内方向の平均厚みである。平均厚みが1nm以下の場合、第1金属粒子層5A及び第2金属粒子層5Bの厚みは、均質な層となりにくい。第1金属粒子層5A及び第2金属粒子層5Bは、金属粒子が点在する層でも、金属層の一部に開口を有する層でもよい。
第1金属粒子層5A及び第2金属粒子層5Bは、Ta、W、Moからなる群から選択されるいずれか一つの元素を含む。
変形例1にかかる磁気抵抗効果素子20を用いた場合であっても、第1実施形態に係る磁気抵抗効果素子10を用いた場合と同様な効果を得ることができる。また、第1金属粒子層5A及び第2金属粒子層5Bに備えられるTa、W、Moからなる群から選択される元素は、いずれも重金属である。そのため、上記第1金属粒子層5A及び第2金属粒子層5Bの重金属元素は、非磁性層3及び挿入層に含まれるGaの障壁となる。すなわち、磁気抵抗効果素子20は、非磁性層3及び挿入層のGaが拡散することを抑制できる。
また第1金属粒子層5A及び第2金属粒子層5Bの厚みが十分薄いことで、第1強磁性層1と第1挿入層4A及び第2強磁性層2と第2挿入層4Bの磁気的な結合が維持される。
[変形例2]
図3は、変形例2に係る磁気抵抗効果素子30の断面模式図である。磁気抵抗効果素子30は、第1磁歪低減層6A及び第2磁歪低減層6Bを有する点が磁気抵抗効果素子10と異なる。磁気抵抗効果素子10と同一の構成は、同一の符号を付し、説明を省略する。以下、第1磁歪低減層6A及び第2磁歪低減層6Bのそれぞれを区別しない場合に、単に磁歪低減層という場合がある。
第1磁歪低減層6Aおよび第2磁歪低減層6Bは、磁気抵抗効果素子30の積層方向の任意の位置に配置される。第1磁歪低減層6Aは、例えば、第1強磁性層1と第1挿入層4Aとの間にある。第2磁歪低減層6Bは、例えば、第2強磁性層2と第2挿入層4Bとの間にある。
第1磁歪低減層6A及び第2磁歪低減層6Bは、挿入層と反対向きの磁歪を引き起こす材料が用いられる。挿入層は、例えば、Fe−Gaであり、正の磁歪を有する。第1磁歪低減層6A及び第2磁歪低減層6Bは、例えば、負の磁歪を有する。第1磁歪低減層6A及び第2磁歪低減層6Bは、例えば、Ni−Fe合金、Ni、SmFe、ErFe、TmFe、CoSiB等である。
変形例2にかかる磁気抵抗効果素子30を用いた場合であっても、第1実施形態に係る磁気抵抗効果素子10を用いた場合と同様な効果を得ることができる。また第1磁歪低減層6A及び第2磁歪低減層6Bには、第1挿入層4A及び第2挿入層4Bの磁歪と対向する向きに磁歪が生じうる。そのため、磁気抵抗効果素子30は、第1挿入層4A及び第2挿入層4B、第1磁歪低減層6A及び第2磁歪低減層6Bのそれぞれが平坦になるように力が加わり、磁歪が抑制される。磁歪は、磁気センサのノイズの原因となるため、本実施形態に係る磁気抵抗効果素子30によれば、感度の高い磁気センサを得ることができる。
[変形例3]
図4は、変形例3に係る磁気抵抗効果素子40の断面模式図である。磁気抵抗効果素子40は、第1磁歪低減層6A及び第2磁歪低減層6Bを有する点が磁気抵抗効果素子20と異なる。磁気抵抗効果素子20と同一の構成は、同一の符号を付し、説明を省略する。
第1磁歪低減層6Aは、例えば第1金属粒子層5Aと第1挿入層4Aとの間にある。第2磁歪低減層6Bは、例えば第2金属粒子層5Bと第2挿入層4Bとの間にある。
変形例3にかかる磁気抵抗効果素子40を用いた場合であっても、変形例1に係る磁気抵抗効果素子20と同様な効果を得ることができる。また磁気抵抗効果素子40は、第1磁歪低減層6A及び第2磁歪低減層6Bを備えるため、第1挿入層4A及び第2挿入層4Bの磁歪を抑制できる。磁歪は、磁気センサのノイズの原因となるため、本実施形態に係る磁気抵抗効果素子40によれば、感度の高い磁気センサを得ることができる。
尚、図4では第1磁歪低減層6Aが第1金属粒子層5Aと第1挿入層4Aとの間にあり、第2磁歪低減層6Bが第2金属粒子層5Bと第2挿入層4Bとの間にある場合を例示した。しかしながら、変形例3はこの例に限定されず、第1磁歪低減層6Aが第1強磁性層1と第1金属粒子層5Aとの間にあってもよく、第2磁歪低減層6Bが第2強磁性層2と第2金属粒子層5Bとの間にあってもよい。
以上、本発明の好ましい実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
上記では、磁気抵抗効果素子10が第1挿入層4Aと第2挿入層4Bを同時に有する例を示したが、いずれか一方のみでもよい。また第1金属粒子層5Aと第2金属粒子層5B、第1磁歪低減層6Aと第2磁歪低減層6Bも、いずれか一方のみでもよい。
上記の磁気抵抗効果素子10、20、30、40は、様々な用途に用いることができる。磁気抵抗効果素子10、20、30、40は、例えば、磁気ヘッド、磁気センサ、磁気メモリ、高周波フィルタなどに適用できる。
次に、本実施形態に係る磁気抵抗効果素子の適用例について説明する。なお、以下の適用例では、磁気抵抗効果素子として、磁気抵抗効果素子10を用いているが、磁気抵抗効果素子はこれに限定されるものではない。
図5は、適用例1にかかる磁気記録素子の断面図である。図5は、積層方向に沿って磁気抵抗効果素子を切断した断面図である。
図5に示すように、磁気記録素子100は、磁気ヘッドMHと磁気記録媒体Wとを有する。図5において、磁気記録媒体Wが延在する一方向をX方向とし、X方向と垂直な方向をY方向とする。XY面は、磁気記録媒体Wの主面と平行である。磁気記録媒体Wと磁気ヘッドMHとを結ぶ方向であって、XY平面に対して垂直な方向をZ方向とする。
磁気ヘッドMHは、エアベアリング面(Air Bearing Surface:媒体対向面)Sが磁気記録媒体Wの表面と対向している。磁気ヘッドMHは、磁気記録媒体Wから一定の距離で離れた位置にて、磁気記録媒体Wの表面に沿って、矢印+Xと矢印−Xの方向に移動する。磁気ヘッドMHは、磁気センサとして作用する磁気抵抗効果素子10と磁気記録部(付図示)とを有する。抵抗測定器21は、磁気抵抗効果素子10の積層方向と抵抗値を測定する。
磁気記録部は、磁気記録媒体Wの記録層W1に磁場を印加し、記録層W1の磁化の向きを決定する。すなわち、磁気記録部は、磁気記録媒体Wの磁気記録を行う。磁気抵抗効果素子10は、磁気記録部によって書き込まれた記録層W1の磁化の情報を読み取る。
磁気記録媒体Wは、記録層W1と裏打ち層W2とを有する。記録層W1は磁気記録を行う部分であり、裏打ち層W2は書込み用の磁束を再び磁気ヘッドMHに還流させる磁路(磁束の通路)である。記録層W1は、磁気情報を磁化の向きとして記録している。
磁気抵抗効果素子10の第2強磁性層2は、例えば、磁化自由層である。このため、エアベアリング面Sに露出した第2強磁性層2は、対向する磁気記録媒体Wの記録層W1に記録された磁化の影響を受ける。例えば、図4においては、記録層W1の+Z方向に向いた磁化の影響を受けて、第2強磁性層2の磁化の向きが+Z方向を向く。この場合、磁化固定層である第1強磁性層1と第2強磁性層2の磁化の向きが平行となる。
ここで、第1強磁性層1と第2強磁性層2の磁化の向きが平行の場合の抵抗と、第1強磁性層1と第2強磁性層2の磁化の向きが反平行の場合の抵抗とは異なる。平行の場合の抵抗値と反平行の場合の抵抗値の差が大きいほど、磁気抵抗効果素子10のMR比は大きくなる。本実施形態に係る磁気抵抗効果素子10は、Gaを含む非磁性層3、第1挿入層4A及び第2挿入層4Bを備え、RAが小さい。従って、抵抗測定器21によって、記録層W1の磁化の情報を抵抗値変化として低出力で読み出すことができる。
磁気ヘッドMHの磁気抵抗効果素子10の形状は特に制限はない。例えば、磁気抵抗効果素子10の第1強磁性層1に対する磁気記録媒体Wの漏れ磁場の影響を避けるために、第1強磁性層1を磁気記録媒体Wから離れた位置に設置してもよい。
図6は、適用例2にかかる磁気記録素子101の断面図である。図6は、積層方向に沿って磁気記録素子101を切断した断面図である。
図6に示すように、磁気記録素子101は、磁気抵抗効果素子10と電源22と測定部23とを有する。電源22は、磁気抵抗効果素子10の積層方向に電位差を与える。電源22は、例えば、直流電源である。測定部23は、磁気抵抗効果素子10の積層方向の抵抗値を測定する。
電源22により第1強磁性層1と第2強磁性層2との間に電位差が生じると、磁気抵抗効果素子10の積層方向に電流が流れる。電流は、第1強磁性層1を通過する際にスピン偏極し、スピン偏極電流となる。スピン偏極電流は、非磁性層3を介して、第2強磁性層2に至る。第2強磁性層2の磁化は、スピン偏極電流によるスピントランスファートルク(STT)を受けて磁化反転する。第1強磁性層1の磁化の向きと第2強磁性層2の磁化の向きとの相対角が変化することで、磁気抵抗効果素子10の積層方向の抵抗値が変化する。磁気抵抗効果素子10の積層方向の抵抗値は、測定部23で読み出される。すなわち、図6に示す磁気記録素子101は、スピントランスファートルク(STT)型の磁気記録素子である。
図6に示す磁気記録素子101は、非磁性層3、第1挿入層4A及び第2挿入層4BがGaを含むため、RAが小さく、低出力でデータの読み出しが可能である。
図7は、適用例3に係る磁気記録素子102の断面図である。図7は、積層方向に沿って磁気記録素子102を切断した断面図である。
図7に示すように、磁気記録素子102は、磁気抵抗効果素子10とスピン軌道トルク配線8と電源22と測定部23とを有する。スピン軌道トルク配線8は、例えば、第2強磁性層2に接する。スピン軌道トルク配線8は、面内方向の一方向に延びる。電源22はスピン軌道トルク配線8の第1端と第2端とに接続されている。第1端と第2端とは、平面視で磁気抵抗効果素子10を挟む。電源22は、スピン軌道トルク配線8に沿って書込み電流を流す。測定部23は、磁気抵抗効果素子10の積層方向の抵抗値を測定する。
電源22によりスピン軌道トルク配線8の第1端と第2端との間に電位差を生み出すと、スピン軌道トルク配線8の面内方向に電流が流れる。スピン軌道トルク配線8は、電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する。スピン軌道トルク配線8は、例えば電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかを含む。例えば、配線は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号を有する非磁性金属を含む。
スピン軌道トルク配線8の面内方向に電流が流れると、スピン軌道相互作用によりスピンホール効果が生じる。スピンホール効果は、移動するスピンが電流の流れ方向と直交する方向に曲げられる現象である。スピンホール効果は、スピン軌道トルク配線8内にスピンの偏在を生み出し、スピン軌道トルク配線8の厚み方向にスピン流を誘起する。スピンは、スピン流によってスピン軌道トルク配線8から第2強磁性層2に注入される。
第2強磁性層2に注入されたスピンは、第2強磁性層2の磁化にスピン軌道トルク(SOT)を与える。第2強磁性層2は、スピン軌道トルク(SOT)を受けて、磁化反転する。第1強磁性層1の磁化の向きと第2強磁性層2の磁化の向きとの相対角が変化することで、磁気抵抗効果素子10の積層方向の抵抗値が変化する。磁気抵抗効果素子10の積層方向の抵抗値は、測定部23で読み出される。すなわち、図7に示す磁気記録素子102は、スピン軌道トルク(SOT)型の磁気記録素子である。
図7に示す磁気記録素子102は、非磁性層3、第1挿入層4A及び第2挿入層4BがGaを含み、RAが小さいため、低出力でデータの読み出しが可能である。
図8は、適用例4に係る磁壁移動素子(磁壁移動型磁気記録素子)の断面図である。磁壁移動素子103は、磁気抵抗効果素子10と第1磁化固定層24と第2磁化固定層25とを有する。磁気抵抗効果素子10は、第1強磁性層1と第2強磁性層2と非磁性層3と第1挿入層4Aと第2挿入層4Bとを備える。図8において、第2強磁性層2が伸びる方向をX方向とし、X方向と垂直な方向をY方向とし、XY平面に対して垂直な方向をZ方向とする。
第1磁化固定層24及び第2磁化固定層25は、第2強磁性層2の第1端と第2端に接続されている。第1端と第2端は、X方向に第1強磁性層1及び非磁性層3を挟む。
第2強磁性層2は、内部の磁気的な状態の変化により情報を磁気記録可能な層である。第2強磁性層2は、内部に第1磁区MD1と第2磁区MD2とを有する。第2強磁性層2のうち第1磁化固定層24又は第2磁化固定層25とZ方向に重なる位置の磁化は、一方向に固定される。第1磁化固定層24とZ方向に重なる位置の磁化は例えば+Z方向に固定され、第2磁化固定層25とZ方向に重なる位置の磁化は例えば−Z方向に固定される。その結果、第1磁区MD1と第2磁区MD2との境界に磁壁DWが形成される。第2強磁性層2は、磁壁DWを内部に有するができる。図7に示す第2強磁性層2は、第1磁区MD1の磁化MMD1が+Z方向に配向し、第2磁区MD2の磁化MMD2が−Z方向に配向している。
磁壁移動素子103は、第2強磁性層2の磁壁DWの位置によって、データを多値又は連続的に記録できる。第2強磁性層2に記録されたデータは、読み出し電流を印加した際に、磁壁移動素子103の抵抗値変化として読み出される。
第2強磁性層2における第1磁区MD1と第2磁区MD2との比率は、磁壁DWが移動すると変化する。第1強磁性層1の磁化Mは、例えば、第1磁区MD1の磁化MMD1と同じ方向(平行)であり、第2磁区MD2の磁化MMD2と反対方向(反平行)である。磁壁DWが+X方向に移動し、Z方向からの平面視で第1強磁性層1と重畳する部分における第1磁区MD1の面積が広くなると、磁壁移動素子103の抵抗値は低くなる。反対に、磁壁DWが−X方向に移動し、Z方向からの平面視で第1強磁性層1と重畳する部分における第2磁区MD2の面積が広くなると、磁壁移動素子103の抵抗値は高くなる。
磁壁DWは、第2強磁性層2のX方向に書込み電流を流す、又は、外部磁場を印加することによって移動する。例えば、第2強磁性層2の+X方向に書込み電流(例えば、電流パルス)を印加すると、電子は電流と逆の−X方向に流れるため、磁壁DWは−X方向に移動する。第1磁区MD1から第2磁区MD2に向って電流が流れる場合、第2磁区MD2でスピン偏極した電子は、第1磁区MD1の磁化MMD1を磁化反転させる。第1磁区MD1の磁化MMD1が磁化反転することで、磁壁DWが−X方向に移動する。
図8に示す磁壁移動素子103は、非磁性層3、第1挿入層4A及び第2挿入層4BがGaを含むため、データの安定性が向上する。
図9は、適用例5にかかる高周波デバイス104の模式図である。図9に示すように、高周波デバイス104は、磁気抵抗効果素子10と直流電源26とインダクタ27とコンデンサ28と出力ポート29と配線31,32を有する。
配線32は、磁気抵抗効果素子10と出力ポート29とを繋ぐ。配線31は、配線32から分岐し、インダクタ27及び直流電源26を介し、グラウンドGへ至る。直流電源26、インダクタ27、コンデンサ28は、公知のものを用いることができる。インダクタ27は、電流の高周波成分をカットし、電流の不変成分を通す。コンデンサ28は、電流の高周波成分を通し、電流の不変成分をカットする。インダクタ27は高周波電流の流れを抑制したい部分に配設し、コンデンサ28は直流電流の流れを抑制したい部分に配設する。
磁気抵抗効果素子10に含まれる強磁性層に交流電流または交流磁場を印加すると、第2強磁性層2の磁化は歳差運動する。第2強磁性層2の磁化は、第2強磁性層2に印加される高周波電流又は高周波磁場の周波数が、第2強磁性層2の強磁性共鳴周波数の近傍の場合に強く振動し、第2強磁性層2の強磁性共鳴周波数から離れた周波数ではあまり振動しない。この現象を強磁性共鳴現象という。
磁気抵抗効果素子10の抵抗値は、第2強磁性層2の磁化の振動により変化する。直流電源26は、磁気抵抗効果素子10に直流電流を印加する。直流電流は、磁気抵抗効果素子10の積層方向に流れる。直流電流は、配線32,31、磁気抵抗効果素子10を通りグラウンドGへ流れる。磁気抵抗効果素子10の電位は、オームの法則に従い変化する。磁気抵抗効果素子10の電位の変化(抵抗値の変化)に応じて高周波信号が出力ポート29から出力される。
図9に示す高周波デバイス104は、非磁性層3、第1挿入層4A及び第2挿入層4BがGaを含むため、RAが小さく、高周波信号を容易に出力できる。
[実施例1]
MgO基板の(001)面に、まず下地層として40nmのCrを成膜し、800℃でアニールした。下地層は、磁気抵抗効果素子に接続される配線を兼ねる。次いで、下地層上に、第1強磁性層と第1挿入層を順に積層し、300℃でアニールした。第1強磁性層は、30nm厚みのFeであり、第1挿入層は1.5nm厚みのFe0.9Ga0.1とした。
次いで、第1挿入層上に、0.3nm厚みのMgと0.7nm厚みのMgGaを成膜し、500℃でアニールした。アニールにより酸素が拡散することで、Mg層とMgGa層とがまとめて非磁性層となった。
次いで、非磁性層上に、第2挿入層と第2強磁性層を成膜した。第2挿入層は1.5nm厚みのFe0.9Ga0.1とし、第2強磁性層は6nm厚みのFeとした。その後、第2強磁性層上に、反強磁性層として12nmのIrMnを積層した。最後に、キャップ層として10nm厚みのRuを積層し、15kOeの磁場中で、300℃3時間アニールした。
実施例1の磁気抵抗効果素子は、基板、下地層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Fe0.9Ga0.9(1.5nm)、Mg(0.3nm)、MgGa2(0.7nm)、Fe0.9Ga0.1(1.5nm)、Fe(6nm)、IrMn(12nm)、Ru(10nm)である。実施例1では、第1強磁性層が磁化自由層で、第2強磁性層が磁化固定層である。
実施例1の磁気抵抗効果素子のMR比及びRAを測定した。
MR比は、磁気抵抗効果素子の積層方向に一定電流を流した状態で、外部から磁気抵抗効果素子に磁場を掃引しながら磁気抵抗効果素子10の抵抗値変化を測定した。MR比の測定は、300K(室温)で行った。MR比は、第1強磁性層1と第2強磁性層2の磁化の向きが平行の場合の抵抗値と、第1強磁性層1と第2強磁性層2の磁化の向きが反平行の場合の抵抗値とを測定し、得られた抵抗値から下記の式より算出した。
MR比(%)=(RAP−R)/R×100
は、第1強磁性層1と第2強磁性層2の磁化の向きが平行の場合の抵抗値であり、RAPは、第1強磁性層1と第2強磁性層2の磁化の向きが反平行の場合の抵抗値である。
RAは、第1強磁性層と第2強磁性層の磁化の向きが平行の場合の抵抗Rと、磁気抵抗効果素子の面内方向の面積の積により求めた。
実施例1の磁気抵抗効果素子のMR比は70%であり、RAは0.82Ωμmであった。
[実施例2]
実施例2は、非磁性層を成膜する際に、0.3nm厚みのMgと0.7nm厚みのMg(Al0.5Ga0.5を成膜し、500℃でアニールした点が、実施例1と異なる。その他の構成は、実施例1と同様とした。
実施例2の磁気抵抗効果素子は、基板、下地層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Fe0.9Ga0.1(1.5nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、Fe0.9Ga0.1(1.5nm)、Fe(6nm)、IrMn(12nm)、Ru(10nm)である。
実施例2の磁気抵抗効果素子のMR比は72%であり、RAは0.94Ωμmであった。
[実施例3]
実施例3は、第2強磁性層を成膜した後に、磁歪低減層を成膜した点が実施例1と異なる。磁歪低減層は、2nmのNi0.85Fe0.15とした。磁歪低減層を成膜後に500℃でアニールした。その他の構成は、実施例1と同様とした。
実施例3の磁気抵抗効果素子は、基板、下地層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、磁歪低減層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Fe0.9Ga0.1(1.5nm)、Mg(0.3nm)、MgGa2(0.7nm)、Fe0.9Ga0.1(1.5nm)、Fe(6nm)、Ni0.85Fe0.15(2nm)、IrMn(12nm)、Ru(10nm)である。
実施例3の磁気抵抗効果素子のMR比は67%であり、RAは0.8Ωμmであった。
[実施例4]
実施例4は、第2強磁性層を成膜した後に、磁歪低減層を成膜した点が実施例2と異なる。磁歪低減層は、2nmのNi0.85Fe0.15とした。その他の構成は、実施例2と同様とした。
実施例4の磁気抵抗効果素子は、基板、下地層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、磁歪低減層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Fe0.9Ga0.1(1.5nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、Fe0.9Ga0.1(1.5nm)、Fe(6nm)、Ni0.85Fe0.15(2nm)、IrMn(12nm)、Ru(10nm)である。
実施例4の磁気抵抗効果素子のMR比は70%であり、RAは0.94Ωμmであった。
[実施例5]
実施例5は、第1挿入層及び第2挿入層を成膜する際に、1.5nm厚みのCo2FeGa0.5Ge0.5を成膜し、300℃でアニールした点が実施例1と異なる。その他の構成は、実施例1と同様とした。
実施例5の磁気抵抗効果素子は、基板、下地層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Co2Fe0.5Ga0.5Ge0.5(1.5nm)、Mg(0.3nm)、MgGa2(0.7nm)、Co2Fe0.5Ga0.5Ge0.5(1.5nm)、Fe(6nm)、IrMn(12nm)、Ru(10nm)である。
実施例5の磁気抵抗効果素子のMR比は90%であり、RAは0.81Ωμmであった。
[実施例6]
実施例6は、非磁性層を成膜する際に、第1挿入層及び第2挿入層を成膜する際に、1.5nm厚みのCo2FeGa0.5Ge0.5を成膜し、300℃でアニールした点が実施例2と異なる。その他の構成は、実施例2と同様とした。
実施例6の磁気抵抗効果素子は、基板、下地層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Co2FeGa0.5Ge0.51.5nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、Co2FeGa0.5Ge0.5(1.5nm)、Fe(6nm)、IrMn(12nm)、Ru(10nm)である。
実施例6の磁気抵抗効果素子のMR比は92%であり、RAは0.93Ωμmであった。
[比較例1]
比較例1は、第1挿入層及び第2挿入層を成膜しなかった点が、実施例1と異なる。その他の構成は、実施例1と同様とした。
比較例1の磁気抵抗効果素子は、基板、下地層、第1強磁性層、非磁性層、第2強磁性層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Mg(0.3nm)、MgGa2(0.7nm)、Fe(6nm)、IrMn(12nm)、Ru(10nm)である。
比較例1の磁気抵抗効果素子のMR比は80%であり、RAは1.31Ωμmであった。
[比較例2]
比較例2は、第1挿入層及び第2挿入層を成膜しなかった点が、実施例2と異なる。その他の構成は、実施例2と同様とした。
比較例2の磁気抵抗効果素子は、基板、下地層、第1強磁性層、非磁性層、第2強磁性層、反強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、MgO(001)、Cr(40nm)、Fe(30nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、Fe(6nm)、IrMn(12nm)、Ru(10nm)である。
比較例2の磁気抵抗効果素子のMR比は85%であり、RAは1.45Ωμmであった。
上述した実施例1〜6及び比較例1、2の条件の要旨及び結果を表1にまとめる。表1には、各層の組成とあわせて各層の厚みを示す。表1に示す厚みの単位は、いずれもnmである。
Figure 2021144988
[実施例7]
Si基板に、下地層、反強磁性層、第1強磁性層、第1挿入層を成膜した。次いで、第1挿入層上に、0.3nm厚みのMgと0.7nm厚みのMgGaを成膜した。次いで、この上に第2挿入層、第2強磁性層、キャップ層を成膜した。次いで、15kOeの磁場中で、300℃3時間アニールした。
下地層は、基板側から順に2nmのTa及び2nmのRuである。反強磁性層は8.5nmのIrMnである。第1強磁性層は、基板側から順に厚み3nmのCoFe、厚み0.8nmのRu、厚み1.5nmのCoFeBである。第1挿入層は1.5nm厚みのCo0.45Fe0.45Ga0.1である。
第1挿入層上成膜した、0.3nm厚みのMgと0.7nm厚みのMgGaとは、アニールにより酸素が拡散することで、Mg層とMgGa層とがまとめて非磁性層となった。
第2挿入層は1.5nm厚みのCo0.45Fe0.45Ga0.1とし、第2強磁性層は1.5nm厚みのCoFeBである。キャップ層は5nm厚みのTa及び10nm厚みのRuである。
実施例7の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(1.5nm)、Co0.45Fe0.45Ga0.1(1.5nm)、Mg(0.3nm)、MgGa(0.7nm)、Co0.45Fe0.45Ga0.1(1.5nm)、CoFeB(1.5nm)、Ta(5nm)、Ru(10nm)である。実施例7では、第1強磁性層が磁化固定層で、第2強磁性層が磁化自由層である。
実施例7の磁気抵抗効果素子のMR比及びRAを測定した。MR比の測定及びRAの測定は、実施例1と同様の方法で行った。
実施例7の磁気抵抗効果素子のMR比は57%であり、RAは0.88Ωμmであった。
[実施例8]
実施例8は、非磁性層を成膜する際に、0.3nm厚みのMgと0.7nm厚みのMg(Al0.5Ga0.5を成膜した点が、実施例7と異なる。その他の構成は、実施例7と同様とした。
実施例8の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(1.5nm)、CoFeGa(1.5nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、CoFeGa(1.5nm)、CoFeB(1.5nm)、Ta(5nm)、Ru(10nm)である。
実施例8の磁気抵抗効果素子のMR比は57%であり、RAは0.92Ωμmであった。
[実施例9]
実施例9は、第1挿入層及び第2挿入層を成膜する際に、1.5nm厚みのCo2FeGa0.5Ge0.5を成膜した点が実施例7と異なる。その他の構成は、実施例7と同様とした。
実施例9の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(1.5nm)、Co2FeGa0.5Ge0.5(1.5nm)、Mg(0.3nm)、MgGa(0.7nm)、Co2FeGa0.5Ge0.5(1.5nm)、CoFeB(1.5nm)、Ta(5nm)、Ru(10nm)である。
実施例9の磁気抵抗効果素子のMR比は84%であり、RAは0.87Ωμmであった。
[実施例10]
実施例10は、第1挿入層及び第2挿入層を成膜する際に、1.5nm厚みのCo2FeGa0.5Ge0.5を成膜した点が実施例8と異なる。その他の構成は、実施例8と同様とした。
実施例10の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、第1挿入層、非磁性層、第2挿入層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(1.5nm)、Co2FeGa0.5Ge0.5(1.5nm)、Mg(0.3nm)、Mg(Al0.5Ga0.5(0.7nm)、Co2FeGa0.5Ge0.5(1.5nm)、CoFeB(1.5nm)、Ta(5nm)、Ru(10nm)である。
実施例10の磁気抵抗効果素子のMR比は86%であり、RAは0.92Ωμmであった。
[実施例11]
実施例11は、第1強磁性層を成膜した後に第1金属粒子層を成膜した点、及び第2挿入層を成膜した後に、第2金属粒子層を成膜した点が実施例9と異なる。その他の構成は、実施例9と同様とした。
実施例11の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、第1金属粒子層、第1挿入層、非磁性層、第2挿入層、第2金属粒子層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(1.5nm)、W(0.6nm)、Co2FeGa0.5Ge0.5(1.5nm)、Mg(0.3nm)、MgGa2(0.7nm)、Co2FeGa0.5Ge0.5(1.5nm)、W(0.6nm)、CoFeB(1.5nm)、Ta(5nm)、Ru(10nm)である。
実施例11の磁気抵抗効果素子のMR比は90%であり、RAは0.47Ωμmであった。
[実施例12]
実施例12は、第1強磁性層を成膜した後に第1金属粒子層を成膜した点、及び第2挿入層を成膜した後に、第2金属粒子層を成膜した点が実施例10と異なる。その他の構成は、実施例10と同様とした。
実施例12の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、第1金属粒子層、第1挿入層、非磁性層、第2挿入層、第2金属粒子層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(1.5nm)、W(0.6nm)、Co2FeGa0.5Ge0.5(1.5nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、Co2FeGa0.5Ge0.5(1.5nm)、W(0.6nm)、CoFeB(1.5nm)、Ta(5nm)、Ru(10nm)である。
実施例12の磁気抵抗効果素子のMR比は94%であり、RAは0.51であった。
[比較例3]
比較例3は、第1挿入層及び第2挿入層を成膜しなかった点と、第1強磁性層及び第2強磁性層の厚みを変更した点とが、実施例7と異なる。その他の構成は、実施例7と同様とした。
比較例3の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、非磁性層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(3nm)、Mg(0.3nm)、MgGa2(0.7nm)、CoFeB(3nm)、Ta(5nm)、Ru(10nm)である。
比較例3の磁気抵抗効果素子のMR比は70%であり、RAは1.41Ωμmであった。
[比較例4]
比較例4は、第1挿入層及び第2挿入層を成膜しなかった点と、第1強磁性層及び第2強磁性層の厚みを変更した点とが、実施例8と異なる。その他の構成は、実施例8と同様とした。
比較例4の磁気抵抗効果素子は、基板、下地層、反強磁性層、第1強磁性層、非磁性層、第2強磁性層、キャップ層を有する。成膜時の各層の構成は、上記の順に、Si、Ta(2nm)、Ru(2nm)、IrMn(8.5nm)、CoFe(3nm)、Ru(0.8nm)、CoFeB(3nm)、Mg(0.3nm)、Mg(Al0.5Ga0.52(0.7nm)、CoFeB(3nm)、Ta(5nm)、Ru(10nm)である。
比較例4の磁気抵抗効果素子のMR比は73%であり、RAは1.52Ωμmであった。
上述した実施例7〜12及び比較例3、4の条件の要旨及び結果を表2にまとめる。表2には、各層の組成とあわせて各層の厚みを示す。表1に示す厚みの単位は、いずれもnmである。
Figure 2021144988
1:第1強磁性層、2:第2強磁性層、3:非磁性層、4A:第1挿入層、4B:第2挿入層、5A:第1金属粒子層、5B:第2金属粒子層、6A:第1磁歪低減層、6B:第2磁歪低減層、10,20,30,40:磁気抵抗効果素子

Claims (11)

  1. 第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層との間にある非磁性層と、前記第1強磁性層と前記非磁性層との間または前記第2強磁性層と前記非磁性層との間の少なくとも一方に配置された挿入層と、を備え、
    前記非磁性層は、MgおよびGaを含む酸化物であり、
    前記挿入層は、Gaを含む強磁性体である、磁気抵抗効果素子。
  2. 前記非磁性層は、MgとAlとGaとを含む酸化物である、請求項1に記載の磁気抵抗効果素子。
  3. 前記挿入層の厚さは、2nm以下である、請求項1または2に記載の磁気抵抗効果素子。
  4. 前記挿入層と前記第1強磁性層と前記第2強磁性層とは、CoまたはFeの少なくとも1つの元素を含む、請求項1〜3のいずれか一項に記載の磁気抵抗効果素子。
  5. 前記挿入層がGaを含むホイスラー合金を含む、請求項1〜4のいずれか一項に記載の磁気抵抗効果素子。
  6. 前記ホイスラー合金が、下記の一般式(1)で表される合金である、請求項5に記載の磁気抵抗効果素子。
    CoFeαGaβGeγ ・・・(1)
    (式(1)中、α、β及びγは、2.3≦α+β+γ、α≦β+γ、かつ0.5<α<1.9、0.1≦β、0.1≦γを満足する数を表す。)
  7. 前記挿入層と前記第1強磁性層との間と、前記挿入層と前記第2強磁性層との間と、の少なくとも一方に金属粒子層を備え、
    前記金属粒子層は、Ta、W、Moから選択されるいずれか一つの元素を含む、請求項1〜6のいずれか一項に記載の磁気抵抗効果素子。
  8. 前記金属粒子層の厚さが1nm以下である、請求項7に記載の磁気抵抗効果素子。
  9. 前記挿入層のGa濃度は、前記非磁性層のGa濃度よりも小さい、請求項1〜8のいずれか一項に記載の磁気抵抗効果素子。
  10. 積層方向のいずれかの位置に、前記挿入層と逆向きの磁歪を示す磁歪低減層をさらに備える、請求項1〜9のいずれか一項に記載の磁気抵抗効果素子。
  11. 前記磁歪低減層は、前記挿入層に隣接する、請求項10に記載の磁気抵抗効果素子。
JP2020041166A 2020-03-10 2020-03-10 磁気抵抗効果素子 Active JP7435057B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020041166A JP7435057B2 (ja) 2020-03-10 2020-03-10 磁気抵抗効果素子
US17/194,694 US11927649B2 (en) 2020-03-10 2021-03-08 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020041166A JP7435057B2 (ja) 2020-03-10 2020-03-10 磁気抵抗効果素子

Publications (2)

Publication Number Publication Date
JP2021144988A true JP2021144988A (ja) 2021-09-24
JP7435057B2 JP7435057B2 (ja) 2024-02-21

Family

ID=77767086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041166A Active JP7435057B2 (ja) 2020-03-10 2020-03-10 磁気抵抗効果素子

Country Status (2)

Country Link
US (1) US11927649B2 (ja)
JP (1) JP7435057B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060263A (ja) * 2001-08-15 2003-02-28 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
JP2010146650A (ja) * 2008-12-19 2010-07-01 Hitachi Global Storage Technologies Netherlands Bv 磁気リード・ヘッド
WO2016158849A1 (ja) * 2015-03-31 2016-10-06 Tdk株式会社 磁気抵抗効果素子
US20170018703A1 (en) * 2015-07-13 2017-01-19 HGST Netherlands B.V. Magnetoresistive device with laminate insertion layer in the free layer
JP2017059690A (ja) * 2015-09-16 2017-03-23 株式会社東芝 磁気素子及び記憶装置
US9773972B1 (en) * 2016-07-12 2017-09-26 Samsung Electronics Co., Ltd. Magnetic device
JP2018056272A (ja) * 2016-09-28 2018-04-05 株式会社東芝 磁気抵抗素子及び磁気記憶装置
JP2018147998A (ja) * 2017-03-03 2018-09-20 Tdk株式会社 磁気抵抗効果素子
JP2019012810A (ja) * 2017-06-29 2019-01-24 Tdk株式会社 磁気抵抗効果素子、磁気ヘッド、センサ、高周波フィルタ及び発振素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738220B1 (en) * 1998-06-30 2010-06-15 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic head assembly, magnetic storage system
US8575674B2 (en) 2009-04-16 2013-11-05 National Institute For Materials Science Ferromagnetic tunnel junction structure, and magneto-resistive element and spintronics device each using same
JP5588019B2 (ja) 2010-01-28 2014-09-10 トムソン ライセンシング 信頼性のあるデータ通信のためにネットワーク抽象化レイヤを解析する方法および装置
US8760818B1 (en) * 2013-01-09 2014-06-24 Western Digital (Fremont), Llc Systems and methods for providing magnetic storage elements with high magneto-resistance using heusler alloys
SG10201501339QA (en) * 2014-03-05 2015-10-29 Agency Science Tech & Res Magnetoelectric Device, Method For Forming A Magnetoelectric Device, And Writing Method For A Magnetoelectric Device
US8922953B1 (en) * 2014-07-15 2014-12-30 HGST Netherlands B.V. Dual current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with antiparallel-free (APF) structure and integrated reference layers/shields
US11107976B2 (en) 2017-06-14 2021-08-31 National Institute For Materials Science Magnetic tunnel junction, spintronics device using same, and method for manufacturing magnetic tunnel junction
JP7022766B2 (ja) * 2017-12-26 2022-02-18 アルプスアルパイン株式会社 トンネル磁気抵抗効果膜ならびにこれを用いた磁気デバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060263A (ja) * 2001-08-15 2003-02-28 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
JP2010146650A (ja) * 2008-12-19 2010-07-01 Hitachi Global Storage Technologies Netherlands Bv 磁気リード・ヘッド
WO2016158849A1 (ja) * 2015-03-31 2016-10-06 Tdk株式会社 磁気抵抗効果素子
US20170018703A1 (en) * 2015-07-13 2017-01-19 HGST Netherlands B.V. Magnetoresistive device with laminate insertion layer in the free layer
JP2017059690A (ja) * 2015-09-16 2017-03-23 株式会社東芝 磁気素子及び記憶装置
US9773972B1 (en) * 2016-07-12 2017-09-26 Samsung Electronics Co., Ltd. Magnetic device
JP2018056272A (ja) * 2016-09-28 2018-04-05 株式会社東芝 磁気抵抗素子及び磁気記憶装置
JP2018147998A (ja) * 2017-03-03 2018-09-20 Tdk株式会社 磁気抵抗効果素子
JP2019012810A (ja) * 2017-06-29 2019-01-24 Tdk株式会社 磁気抵抗効果素子、磁気ヘッド、センサ、高周波フィルタ及び発振素子

Also Published As

Publication number Publication date
JP7435057B2 (ja) 2024-02-21
US20210318394A1 (en) 2021-10-14
US11927649B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CN108292703A (zh) 自旋流磁化反转元件、磁阻效应元件及磁存储器
EP1450177A2 (en) Magnetoresistive device with exchange-coupled structure having half-metallic ferromagnetic Heusler alloy in the pinned layer
JP6806199B1 (ja) 磁気抵抗効果素子およびホイスラー合金
CN112349833B (zh) 磁阻效应元件以及惠斯勒合金
JP7380743B2 (ja) 磁気抵抗効果素子
JP2012151213A (ja) 記憶素子、メモリ装置
JP2012151213A5 (ja)
US20230210016A1 (en) Magnetoresistance effect element
WO2018101028A1 (ja) スピン流磁化反転素子とその製造方法、磁気抵抗効果素子、磁気メモリ
US20230337549A1 (en) Magnetoresistive effect element
JP4674498B2 (ja) 磁気検出素子
JP2021125551A (ja) 磁気抵抗効果素子
WO2021199233A1 (ja) 磁気抵抗効果素子
JP2023013057A (ja) 磁気抵抗効果素子
JP7435057B2 (ja) 磁気抵抗効果素子
CN111512456B (zh) 铁磁性层叠膜、自旋流磁化旋转元件、磁阻效应元件和磁存储器
WO2023228308A1 (ja) 磁気抵抗効果素子
JP2021103771A (ja) 磁気抵抗効果素子
JP2021097217A (ja) 磁気抵抗効果素子
CN116806115A (zh) 磁阻效应元件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150