JP2021123680A - 複合材料およびそれを成形してなる電磁波吸収体 - Google Patents

複合材料およびそれを成形してなる電磁波吸収体 Download PDF

Info

Publication number
JP2021123680A
JP2021123680A JP2020019713A JP2020019713A JP2021123680A JP 2021123680 A JP2021123680 A JP 2021123680A JP 2020019713 A JP2020019713 A JP 2020019713A JP 2020019713 A JP2020019713 A JP 2020019713A JP 2021123680 A JP2021123680 A JP 2021123680A
Authority
JP
Japan
Prior art keywords
conductive filler
composite material
electromagnetic wave
molding
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020019713A
Other languages
English (en)
Inventor
悠也 松▲崎▼
Yuya Matsuzaki
悠也 松▲崎▼
一浩 福家
Kazuhiro Fukuya
一浩 福家
丈裕 宇井
Takehiro Ui
丈裕 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2020019713A priority Critical patent/JP2021123680A/ja
Priority to US17/796,938 priority patent/US20230077842A1/en
Priority to EP21750353.1A priority patent/EP4101898A1/en
Priority to CN202180011840.6A priority patent/CN115003761A/zh
Priority to PCT/JP2021/000948 priority patent/WO2021157309A1/ja
Publication of JP2021123680A publication Critical patent/JP2021123680A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0047Casings being rigid plastic containers having conductive particles, fibres or mesh embedded therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】優れた電磁波吸収機能を発揮することができ、しかも電磁波吸収体そのものの機械的特性の低下を抑制することができる複合材料およびそれを成形してなる電磁波吸収体を提供することを目的とする。
【解決手段】1種類の熱可塑性樹脂と、上記熱可塑性樹脂中に分散状態で含有される導電性フィラーとを有する複合材料であって、上記複合材料には、導電性フィラー含有割合の異なる部分Aと部分Bとが混在し、上記部分Aの導電性フィラー含有割合は、上記部分Bの導電性フィラー含有割合に対しその比が1.0を超える複合材料およびそれを成形してなる電磁波吸収体とした。
【選択図】図1

Description

本発明は、電磁波障害を防止するための電磁波吸収体に用いられる複合材料およびそれを成形してなる電磁波吸収体に関するものである。
近年、電磁波(特にミリ波)を情報通信媒体とした情報検知手段の検討が、自動車、家電、ライフサイエンス分野等の分野において進んでいる。例えば、自動車の技術分野において、例えば、28〜81GHzの周波数の電波を用いたレーダーにより障害物を検知して自動でブレーキをかけたり、周辺車両の速度や車間距離を測定して自車の速度や車間距離を制御したりする、衝突予防システムがある。衝突予防システム等が正常に動作するには、誤認防止のため、不要な電磁波(ノイズ)をできるだけ受信しないようにすることが重要である。そこで、不要な電磁波を吸収して排除することのできる電磁波吸収体が各種提案されている。
例えば、特許文献1には、導電性フィラーが樹脂(B)に分散した状態で、この樹脂(B)と相溶性がない樹脂(A)に孤立して分散されている樹脂組成物からなる電磁波吸収体が開示されている。このものは、導電性フィラーをあえて樹脂(B)に偏在させることで、少量の導電性フィラーで効率よく導電ネットワークが形成できるとされている。
しかし、特許文献1のものは、相溶性のない少なくとも2種類の樹脂を用いるため、互いの樹脂の特性の違いに基づき、電磁波吸収体そのものの機械的特性が低下するという問題がある。
一方で、樹脂材料中に含有させる導電性フィラーの量を増やすことでも優れた電磁波吸収性能を得られることが知られているが、この場合は、ベースとする樹脂本来の物性が変わってしまうだけでなく、得られる電磁波吸収体そのものの機械特性が低下することが懸念される。
特開2017−179315号公報
本発明はこのような事情に鑑みなされたもので、導電性フィラーの添加量を不必要に増加させることなく、優れた吸収機能を発揮することができ、しかも電磁波吸収体そのものの機械的特性の低下を抑制し、電磁波吸収機能の永続性と信頼性に優れる複合材料およびそれを成形してなる電磁波吸収体を提供することを目的とする。
上記の目的を達成するため、本発明は、以下の[1]〜[4]を提供する。
[1] 1種類の熱可塑性樹脂と、上記熱可塑性樹脂中に分散状態で含有される導電性フィラーとを有する複合材料であって、上記複合材料には、導電性フィラー含有割合の異なる部分Aと部分Bとが混在し、上記部分Aの導電性フィラー含有割合は、上記部分Bの導電性フィラー含有割合に対してその比が1.0を超えることを特徴とする複合材料。
[2] 上記複合材料を成形してなる成形体断面において、その断面の単位面積当たりの上記部分Aの占める面積割合が0.1〜50%である[1]記載の複合材料。
[3] 上記複合材料を成形してなる成形体断面において、上記部分Aが島状に複数認められており、上記部分Aが、走査型電子顕微鏡の倍率を50倍にしたときの、縦960ピクセルおよび横1280ピクセルの全視野に5〜2000個認められる[1]または[2]記載の複合材料。
[4] [1]〜[3]のいずれかに記載の複合材料を成形してなる電磁波吸収体。
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、導電性フィラーの含有割合の異なる部分Aと部分Bとが生じるようにするために、従来のように互いに相溶性のない複数種類の樹脂を用いるのではなく、単独(一種類)の熱可塑性樹脂を用いるようにし、しかも、その熱可塑性樹脂に含有させる導電性フィラーの分散状態を制御し、上記部分Aの導電性フィラー含有割合は、上記部分Bの導電性フィラー含有割合に対してその比が1.0を超えるように設定することにより機械的特性の低下を抑制し、電磁波吸収機能を充分に発揮することができることを見出し、本発明を完成させた。
本発明によれば、樹脂として単独(一種類)の熱可塑性樹脂を用い、かつ、導電性フィラー含有割合の異なる部分Aと部分Bとが生じるようにし、上記部分Aの導電性フィラー含有割合が、上記部分Bの導電性フィラー含有割合に対してその比が1.0を超えるように設定されているため、充分な電磁波吸収機能を発揮することができる。また、熱可塑性樹脂として単独の種類のものを用いているため、これを成形してなる電磁波吸収体の機械的特性を損なうことがなく、耐久性に優れるものとすることができる。さらに、本発明の複合材料を成形してなる電磁波吸収体は一体的に成形されるため、導電性フィラーの脱落を防止でき、電磁波吸収能の永続性と信頼性に優れる。
また、一般的に、導電性フィラーの含有量を多くすることにより、電磁波吸収能を向上させることが知られているが、導電性フィラーの含有量を多くすると機械的特性が低下するという問題が発生する。本発明は、導電性フィラーの含有率を増加させて電磁波吸収能を高めるのものではないため、この点においても、複合材料およびそれを成形してなる電磁波吸収体として優れている。
本願発明の一実施の形態である複合材料からなる成形体断面を走査型電子顕微鏡(SEM)で撮影した画像である。 図1のSEM画像を二値化処理した画像である。 上記成形体断面における導電性フィラー含有割合が高い部分Aを拡大したSEM画像である。 上記成形体断面における導電性フィラー含有割合が低い部分Bを拡大したSEM画像である。 上記部分Aの一部を高倍率で観察したSEM画像を二値化処理した画像である。 上記部分Bの一部を高倍率で観察したSEM画像を二値化処理した画像である。 (a)は実施例1の断面をSEMで撮影した画像であり、(b)はそれを二値化処理した画像である。 (a)は実施例2の断面をSEMで撮影した画像であり、(b)はそれを二値化処理した画像である。 (a)は実施例3の断面をSEMで撮影した画像であり、(b)はそれを二値化処理した画像である。 (a)は図7の部分Aを高倍率で観察したSEM画像であり、(b)はそれを二値化処理した画像である。 (a)は図7の部分Bを高倍率で観察したSEM画像であり、(b)はそれを二値化処理した画像である。 (a)は図8の部分Aを高倍率で観察したSEM画像であり、(b)はそれを二値化処理した画像である。 (a)は図8の部分Bを高倍率で観察したSEM画像であり、(b)はそれを二値化処理した画像である。 (a)は図9の部分Aを高倍率で観察したSEM画像であり、(b)はそれを二値化処理した画像である。 (a)は図9の部分Bを高倍率で観察したSEM画像であり、(b)はそれを二値化処理した画像である。
本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<複合材料>
本発明の一態様である複合材料は、熱可塑性樹脂および導電性フィラーを有するものであり、導電性フィラー含有割合の異なる部分Aと部分Bとが混在し、上記部分Aにおける導電性フィラー含有割合は、上記部分Bにおける導電性フィラー含有割合に対してその比が1.0を超えることを特徴とする。
以下、「複合材料」に関する「熱可塑性樹脂」、「導電性フィラー」等の内容について詳細に説明する。
上記複合材料に用いる熱可塑性樹脂としては、特に限定するものではないが、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、エチレン・酢酸ビニル共重合樹脂、ポリスチレン、アクリロニトリルスチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合合成樹脂、ASA樹脂、AES樹脂、PMMA等のアクリル樹脂、MS樹脂、MBS樹脂、シクロオレフィン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、液晶ポリマー、PPS、PEEK、PPE、ポリサルフォン系樹脂、ポリイミド系樹脂、フッ素系樹脂、熱可塑性エラストマー等があげられ、なかでも、ポリプロピレンやポリエチレンが好ましく用いられる。
上記ポリプロピレンは、コモノマーの共重合の構造として、ホモポリマー、ランダムコポリマー、ブロックコポリマーの3種類に分類されるが、なかでも、上記部分Aおよび上記部分Bにおける導電性フィラー含有割合を所望の範囲に設定しやすい点から、ホモポリマーに分類されるものが好ましく用いられる。また、同様の理由により上記ポリエチレンは結晶化度の高いものが好ましく用いられ、なかでも結晶化度が30%以上のものがより好ましく、40%以上のものがさらに好ましい。
上記複合材料に用いる熱可塑性樹脂のメルトフローレート(MFR)は、例えば、0.1〜80g/10minの範囲にあることが好ましく、0.2〜30g/10minであることがより好ましく、0.3〜20g/10minであることがさらに好ましい。上記熱可塑性樹脂のMFRが上記範囲内にあると、上記部分Aおよび上記部分Bにおける導電性フィラー含有割合を所望の範囲に設定しやすい傾向がみられる。
上記熱可塑性樹脂は、単独(一種類)で用いられるものであり、複数種類のものを併用しない(異種の樹脂を共存させない)ことが本発明の特徴の一つである。すなわち、導電性フィラー含有割合の差を設けるため等に、相溶性のない樹脂の一方の樹脂にのみ導電性フィラーを含有させた後にこれらを混合することもできるが、このようにすると、部分的に異なる性質の樹脂を有することになり、成形してなる電磁波吸収体の機械的特性が損なわれるため、本発明においては、このようなものを排除し、耐久性、機械的特性に優れるものとしている。
上記複合材料に用いる導電性フィラーとしては、特に限定するものではないが、例えば、金属系粒子、金属酸化物系粒子、カーボン系粒子、導電性高分子からなる粒子、金属被覆粒子等があげられ、なかでも軽量で取り扱いが容易である点からカーボン系粒子が好ましく用いられる。これらは単独でまたは複数種類を併用して用いることができる。
上記導電性フィラーの形状は、特に限定するものではないが、例えば、球状、棒状、平板状、繊維状、中空状、角状、塊状、それらが凝集したもの等があげられ、なかでも、複合材料における導電性フィラー含有割合の制御が容易な点から、球状粒子が一次凝集したものを用いることが好ましい。
上記金属系粒子としては、例えば、銅、アルミニウム、ニッケル、鉄、銀、金、ステンレス、およびこれらの合金等からなる粒子があげられる。また、上記金属酸化物系粒子としては、例えば、酸化亜鉛、酸化インジウム、酸化スズ、酸化チタン、酸化ジルコニウム等からなる粒子があげられる。
上記カーボン系粒子としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノファイバー、カーボンナノチューブ、グラフェン、フラーレン、カーボンナノコイル、カーボンマイクロコイル、カーボンビーズ、炭素繊維等があげられ、なかでも低コストであり、入手が容易である点からカーボンブラックが好ましく用いられる。
上記カーボンブラックとしては、特に限定するものではないが、例えば、粒子径が50nm以下のもの、比表面積が50m2/100g以上のもの、DBP吸着量が100cm3/100g以上のもの等が好ましく用いられる。このようなカーボンブラックとしては、例えば、TOKABLACK♯5500,#4500,Seast116HM(東海カーボン社)、#2600,#3400B(三菱ケミカル社)、VULCAN P,VULCAN XC72(キャボット社)、旭AX−015,旭♯200−GS,旭♯60HN(旭カーボン社)等があげられる。
上記カーボンブラックとしては、特に限定するものではないが、その表面処理が行われていないものが好ましく用いられる。また、表面処理が行われているものを用いる場合には、その表面にカルボキシ基等の揮発成分となり得るものが多く付与されていないものが好ましく、例えば、表面処理により付与されたものの重量は、カーボンブラック重量に対して15重量%以下であることが好ましく、3重量%以下であることがより好ましい。
上記カーボンブラックとしては、特に限定するものではないが、複数の粒子が結合して粒子同士が繋がっているものが好ましく用いられ、その大きさ(ストラクチャー)が0.02〜1μmの範囲であるものがより好ましく、0.03〜0.5μmの範囲にあるものがさらに好ましく用いられる。
本発明の複合材料は、導電性フィラー含有割合の異なる部分Aと部分Bとが混在するものであるが、上記部分Aと部分Bとは、例えば、つぎのように判別するものである。まず、複合材料を板状に成形し、板状の成形体(試験片)を作製する。この試験片の流動方向の中央(流動方向がないものは平面視における中心を通りその面積を二分割する線)近傍を精密高速切断機等で切断し、その断面に対しイオンミリング装置等の試料前処理装置を用いて試験片の断面を研磨、コーティング等の処理を行って、SEMで試験片の断面の観察をし易くする。この処理が行われた試験片の断面を倍率50倍のSEMで観察し、その断面を撮影する(図1参照)。上記撮影画像(SEM画像)において、白色で島状に認められる箇所(導電性フィラーを密に含有している部分)を部分Aとし、それ以外の黒色で海状に認められる箇所(導電性フィラーを粗に含有している部分)を部分Bとする(以下の図において同じ)。上記部分Aの一部を部分的に100000倍に拡大して観察したものを図3に示し、上記部分Bの一部を部分的に100000倍に拡大して観察したものを図4に示す。これらの図において、符号αは導電性フィラーであり、部分A(図3)の方が、部分B(図4)よりも導電性フィラーαを密に含有しており、その含有割合が多いことがわかる。
なお、上記SEM画像は、S−4800(日立製作所社)の装置を用い、ワークディスタンス8mm、照射電力3kVの条件で二次電子像を用いて観察を行うことができる。また、部分Aと部分Bの判別は、上記得られた撮影画像からも目視で行うこともできるが、画像解析ソフト(例えば、「ImageJ」)を用いて色調に基づいて二値化することにより容易に行うことができる(図2参照)。さらに、試験片の断面を倍率50倍のSEMで観察した際に部分Aが認められない場合は、その断面において3mm×3mm四方を隈なく観察し、部分Aが認められる箇所を選択する。
上記二値化は、例えば、つぎのようにして行うことができる。
すなわち、SEMの画面全体を試験片の断面が占めるように撮影した倍率50倍のSEM画像を上記ImageJに取り込み、解析画像を準備する。上記解析画像をグレースケール画像に変換し、上記図2の二値化と同様に島状の部分Aの輪郭が明確になるように輝度値を調整して、二値化する。
なお、上記倍率50倍のSEM画像において、部分Aと部分Bとのコントラストが明確に現れないことや、導電性フィラー以外の成分が導電性フィラーとして認識されること等の理由により、上記の手順で二値化ができない場合には、つぎのような前処理を行うことにより部分Aを特定することができる。すなわち、上記SEM画像において、導電性フィラーが凝集している箇所のみを黒色に着色し、それ以外の箇所を白色に着色する。この処理を行ったのち、上記ImageJに取り込むことで二値化することができる。
一方で、後述する倍率20000倍のSEM画像の二値化は、倍率50倍のSEM画像の二値化と同様の手順で行うが、0から255までの256段階で表させる輝度値の閾値を151とした。仮に256段階で表されない装置の場合は、上記同等の閾値としてもよい。
上記倍率50倍のSEM画像またはその二値化処理画像において、通常、部分Aは島状に複数現れており、上記SEM画像に対する部分Aが占める面積は0.1〜50面積%であることが好ましく、0.5〜30面積%であることがより好ましく、さらに好ましくは1〜20面積%である。すなわち、本発明の複合材料においては、これを成形してなる成形体断面において、その断面の単位面積当たりの上記部分Aの占める面積割合が上記の範囲内であると、電磁波吸収能と機械的特性とのバランスに優れる傾向がみられる。
また、上記部分Aの各島の面積は、電磁波吸収性能と機械的特性とのバランスに優れる点から、1〜100000μm2であることが好ましく、より好ましくは2〜50000μm2、さらに好ましくは3〜30000μm2である。上記各島の面積の平均は、上記倍率50倍のSEM画像の二値化処理画像で確認された部分Aの各島の面積の和をそれらの島の数で除したものである。なお、上記部分Aの各島は、計測誤差を排除するため、島の面積が3μm2未満のもの、および30000μm2を超えるものを排除している。これらもまた、通常、上記画像解析ソフトを用いることにより算出することができる。
上記SEM画像およびその二値化処理画像において、上述のとおり、通常、部分Aは島状に複数現れているため、その個数を数えることができる。上記部分Aの個数は、5以上あることが好ましく、100以上あることがより好ましく、1000以上あることがさらに好ましく、2000以上あることがより一層好ましい。
上記個数が少なすぎると導電性が低下することにより、透過減衰量が低下する傾向がみられ、多すぎると導電性が高くなり過ぎることにより反射減衰量が低下する傾向がみられる。なお、上記部分Aの島の形状は、円状、楕円状、多角形状、不定形状等、様々である。また、上記部分Aの個数は上記二値化処理画像を用い、通常、上記画像解析ソフトを用いることにより算出することができる。
上記部分Aおよび部分Bの導電性フィラーの含有割合は、例えば、つぎのように算出することができる。上記得られた撮影画像において上記部分Aまたは部分Bとされた部分のうち、任意の複数箇所(例えば、3〜5箇所)をそれぞれ選定し、これらを倍率20000万倍で観察および画像撮影を行う。すると、倍率50倍のときには確認できなかった熱可塑性樹脂と導電性フィラーとの混練状態が詳細にわかるようになり、その撮影画像を二値化処理すると、それぞれ図5(部分A)および図6(部分B)に示すように白色と黒色とが入り混じった画像が得られる。上記二値化処理画像においては、導電性フィラーの含有割合をより正確に算出するため、SEM画像では通常、白で示される箇所と黒で示される箇所の色調を反転させている。そして、それぞれの画像において、導電性フィラーが確認される箇所(図5および図6において黒で示される箇所)の面積が、二値化処理画像全体の面積に占める割合を算出し、各部分の導電性フィラー含有割合とする。これらの値も、通常、上記画像解析ソフトを用いることにより算出することができる。
上記部分Aの導電性フィラー含有割合(面積%)は、例えば、上記倍率20000倍の画像全体の30〜80面積%の範囲に設定され、好ましくは40〜70面積%の範囲であり、50〜65面積%の範囲にあることがより好ましい。また、上記部分Bの導電性フィラー含有割合は、例えば、上記倍率20000倍の画像全体の5〜70面積%の範囲に設定され、好ましくは10〜60面積%の範囲であり、15〜50面積%の範囲にあることがより好ましい。すなわち、本発明においては、部分Aの導電性フィラー含有割合は、部分Bの導電性フィラー含有割合より高いものであるが、導電性フィラー含有割合の低い部分Bにおいても、一定量以上の導電性フィラーを含有していることが特徴の一つである。
上記部分Bの導電性フィラー含有割合(面積%)に対する上記部分Aの導電性フィラー含有割合は、上記部分Aと部分Bにおいて、任意の3〜5箇所で導電性フィラー含有割合をそれぞれ算出し、部分Aにおいては得られた値のうち最小値を採用し、部分Bにおいては得られた値のうちの最大値を採用して算出したものである。
また、本発明の複合材料は、上記部分Bの導電性フィラー含有割合(面積%)をCとし、これを成形してなる成形体断面における単位面積当たりの上記部分Aの占める面積割合(面積%)をDとし、上記部分Aにおける各島の面積の平均(μm2)をEとしたときに、下記の式(1)で算出される値βが0.1〜500の範囲にあることが好ましく、0.2〜300の範囲にあることがより好ましく、0.3〜200の範囲にあることがさらに好ましい。すなわち、上記部分Aにおいて、一個当たりの島の面積が大きい場合は島の個数が少なくてよく、逆に、一個当たりの島の面積が小さい場合は島の個数が多い方がよい傾向がみられる。
C×D×E=β・・・(1)
上記構成によると、複合材料において導電性フィラー含有割合の異なる部分Aと部分Bとが混在しており、しかも、上記部分Aの導電性フィラー含有割合は、上記部分Bの導電性フィラー含有割合に対しその比が1.0を超えるように設定されているため、導電性フィラーを樹脂中に均一に分散させたものに比べて、より優れた電磁波吸収機能を有する電磁波吸収体を製造することができる。また、熱可塑性樹脂として単独(一種類)の種類のものを用いているため、これを成形してなる電磁波吸収体全体の機械的特性が均質となる。したがって、機械的特性が不均一であることに基づく部分的な破損を防止することができ、耐久性に優れる。また、上記複合材料を成形してなる電磁波吸収体は一体的に成形されるため、熱可塑性樹脂から導電性フィラーが脱落することがなく、電磁波吸収能の永続性と信頼性に優れる。
このような複合材料は、例えば、熱可塑性樹脂と導電性フィラーの組み合わせを選択し、これらを同時に配合し、混合を制御することによって得ることができる。また、熱可塑性樹脂に加える導電性フィラー量を変えて、導電性フィラーの含有割合が異なる単独(一種類)の熱可塑性樹脂を複数準備し、これらを同時にまたは順次、制御しながら混合することによっても得ることができる。
ちなみに、本発明の複合材料として、とりわけ好ましい組み合わせとしては、熱可塑性樹脂としてポリプロピレン、ポリエチレンを用い、導電性フィラーとしてカーボンブラックを用いたもの、もしくは熱可塑性樹脂としてポリプロピレン、ポリエチレンを用い、導電性フィラーとして炭素繊維を用いたもの、あるいは熱可塑性樹脂としてポリプロピレン、ポリエチレンを用い、導電性フィラーとしてカーボンナノチューブを用いたものがあげられる。
そして、熱可塑性樹脂中の導電性フィラーの分散状態を観察し、熱可塑性樹脂と導電性フィラーの混合条件(例えば、温度、せん断力等)を制御する。混合方法としては、一軸あるいは多軸の混練機、ラボプラストミル等のバッチ式ミキサー、ロール混練機等で所定の配合で混練する方法や、溶媒を用いて、溶解あるいは懸濁した状態で混合する方法等があげられるが、生産性の点で、とりわけ混練機やバッチ式ミキサーで混合する方法が好ましい。
上記混合温度(混練温度)は、上記熱可塑性樹脂と導電性フィラーとが混合(混練)できる温度であればよいが、上記熱可塑性樹脂の融点より高い温度であることが好ましく、上記熱可塑性樹脂の融点より20℃以上高いことがより好ましく、上記熱可塑性樹脂の融点より40℃以上高いことがさらに好ましく、上記熱可塑性樹脂の融点より60℃以上高いことがより一層好ましい。
上記混練における混練回転数は、上記熱可塑性樹脂と導電性フィラーとが混合(混練)できる速度であればよいが、できるだけ低い方が好ましく、例えば、70rpm以下であることが好ましく、50rpm以下であることがより好ましく、20rpm以下であることがさらに好ましい。また、その混練時間は、特に限定するものではないが、例えば、2〜10分間であることが好ましく、3〜7分間であることがより好ましく、4〜6分間であることがさらに好ましい。
上記混合方法において、好ましい導電性フィラーの分散状態を得るためには、複合材料全体の体積中に、導電性フィラー3〜30体積%が含有されていることが好ましく、5〜20体積%が含有されていることがより好ましい。
本発明の複合材料は、本発明の目的を損なわない範囲で、上記熱可塑性樹脂および導電性フィラー以外の添加剤を含有していてもよい。このような添加剤としては、例えば、難燃剤、耐衝撃性改善剤、補強剤、相溶化剤、耐候性改善剤、酸化防止剤、顔料、染料等があげられる。
<電磁波吸収体>
本発明の複合材料は、プレス成形、射出成形、押出成形、圧縮成形、ブロー成形等によって成形することができ、例えば、板状、シート状、その他の三次元形状の電磁波吸収体とすることができる。
本発明の電磁波吸収体は、例えば、その厚みが0.5〜10mmの範囲にあることが好ましく、1〜5mmの範囲にあることがより好ましく、2〜4mmの範囲にあることがさらに好ましい。すなわち、厚みが薄すぎると強度が不足する傾向がみられ、厚みが厚すぎると重量が重くなりすぎる傾向がみられる。
本発明の電磁波吸収体は、通常、透過減衰量および反射減衰量がそれぞれ3〜75dBの範囲にあるものである。また、本発明の電磁波吸収体は、透過減衰量と反射減衰量のバランスに優れることから、上記透過減衰量および反射減衰量はいずれも4〜50dBの範囲にあることが好ましく、5〜30dBの範囲にあることがより好ましい。
さらに、本発明の電磁波吸収体においては、導電性フィラー当りの透過減衰量[(透過減衰量(db)/導電性フィラーの含有量(体積%)]が0.6〜15の範囲にあることが好ましく、0.7〜12の範囲にあることがより好ましく、0.8〜10の範囲にあることがさらに好ましい。
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
熱可塑性樹脂としてポリプロピレン(ノバテックEA9HD、日本ポリプロ社)を、導電性フィラーとしてカーボンブラック(TOKABLACK♯5500、東海カーボン社)を用い、後記の表1に示す量を全量投入口から外付けフィーダを用いてポリプロピレン3kg/h、カーボンブラック0.5kg/hで同時投入し、ラボプラストミル(登録商標)(100C100、東洋精機製作所)および二軸セグメント押出機(2D30W2、東洋精機製作所)を用いて、後記の表1に示す条件で溶融混練し、押出したストランドをペレット状に加工し、目的とする複合材料を得た。
表1に示すカーボンブラックの含有量(体積%)は、複合材料全体体積に対する体積%で示している。なお、混練において、二度練り(二度練り:上記方法で一度ペレット状に加工した複合材料を、もう一度二軸押出機投入口から投入し、同一条件でペレット加工まで実施することを指す)すると、一度練りのものに対して熱履歴およびシェアエネルギーが約2倍となる。
得られた複合材料を、エアープレス機(FCP-500、富士コントロールズ社)を用いて、熱板温度220℃、押圧時間3分間の条件でプレス成形し、厚み3mmの板状の電磁波吸収体を得た。
[実施例2]
混練において、二度練りをせずにそのペレット状に加工して複合材料を得たこと、および得られた複合材料を、ハイブリッド式射出成形機(FNX140、日精樹脂工業社:型締圧140tf,スクリュ径Φ40,フルフライトスクリュ)を用いて、成形温度220℃、金型温度50℃、射出速度157mm/s、射出圧力111MPa、保圧120MPaの条件で射出成形し、150mm×150mm×3mmのサイズに成形したこと以外は、実施例1と同様にして電磁波吸収体を得た。
[実施例3]
カーボンブラックの配合量を11体積%に変更したこと以外は、実施例1と同様にして電磁波吸収体を得た。
[比較例1]
ポリアミド6にガラスファイバーが20重量%配合された熱可塑性樹脂(T−401、東洋紡社)を用い、導電性フィラーとしてカーボンブラック(TOKABLACK♯5500、東海カーボン社)を用いて、後記の表1に示す量を投入口から外付けフィーダを用いてポリアミド6(ガラスファイバー20重量%含有)を3kg/h、カーボンブラック0.66kg/hで同時投入し、ラボプラストミル(登録商標)(100C100、東洋精機製作所)および二軸セグメント押出機(東洋精機製作所、2D30W2)を用いて、後記の表1に示す条件で溶融混練し、押出したストランドをペレット状に加工し、目的とする複合材料を得た。
この複合材料をハイブリッド式射出成形機(FNX140、日精樹脂工業社:型締圧140tf,スクリュ径Φ40,フルフライトスクリュ)を用いて、成形温度260℃、金型温度81℃、射出速度158mm/s、射出圧力57MPa、保圧50MPaの条件で射出成形し、150mm×150mm×3mmのサイズに成形して板状の電磁波吸収体を得た。すなわち、このものは、カーボンブラックの分散が均一になっており、カーボンブラックの含有割合の異なる部分Aおよび部分Bが存在していない。
<実施例1〜3および比較例1>
実施例1〜3および比較例1の電磁波吸収体について、透過減衰量はJIS R 1679に基づき、ベクトルネットワークアナライザー(キーサイトテクノロジー社)を用い、周波数70〜90GHzにて、送信アンテナと受信アンテナが板状試料平面に対し対向するよう一直線上に設置して測定した。反射減衰量は、基準金属板を設置しない点を除き、JIS R 1679に基づいて測定した。測定した値を後記の表2に合わせて示す。なお、表2において透過減衰量および反射減衰量は絶対値で示している。
<実施例1〜3>
そして、実施例1〜3の断面のSEM画像(倍率50倍)およびこれらを先に説明した手順に従って二値化した画像を図7(a),(b)、図8(a),(b)、図9(a),(b)にそれぞれ示した。また、これらの画像に基づいて、部分Aの各島の面積の和(μm2)と、部分Aの占める面積割合(部分Aが全体面積に占める面積割合:単位面積当たりの部分Aの占める面積割合)を算出し、縦960ピクセルおよび横1280ピクセルの全視野に認められる部分Aの島の数をカウントし、表2に合わせて示す。なお、実施例1〜3では、上記SEM撮影を任意の3箇所に対して行い、それぞれの箇所について各値を算出およびカウントし、その平均値を採用している。
<実施例1>
さらに、図7(a)において部分Aと認められた箇所をさらに高倍率で観察したSEM画像(倍率20000倍)を図10(a)に示し、これを先に説明した手順に従って二値化した画像を図10(b)に示す。また、図7(a)において部分Bと認められた箇所をさらに高倍率で観察したSEM画像(倍率20000倍)を図11(a)に示し、これを先に説明した手順に従って二値化した画像を図11(b)に示す。
これらの画像に基づいて、先に説明した手順に従って、部分Aおよび部分Bのカーボンブラック含有割合(面積%)と、これらの比(部分Aのカーボンブラック含有割合/部分Bのカーボンブラック含有割合)を算出し、下記の表1に合わせて示す。
なお、上記SEM撮影は、各部分の任意の3箇所に対して行い、それぞれの箇所について各値を算出し、上述の手法に従って「部分Aのカーボンブラック含有割合/部分Bのカーボンブラック含有割合」を算出した。
<実施例2>
図8(a)において部分Aと認められた箇所をさらに高倍率で観察したSEM画像(倍率20000倍)を図12(a)に示し、これを先に説明した手順に従って二値化した画像を図12(b)に示す。そして、図8(a)において部分Bと認められた箇所をさらに高倍率で観察したSEM画像(倍率20000倍)を図13(a)に示し、これを先に説明した手順に従って二値化した画像を図13(b)に示す。
これらの画像に基づいて、先に説明した手順に従って、部分Aおよび部分Bのカーボンブラック含有割合(面積%)と、これらの比(部分Aのカーボンブラック含有割合/部分Bのカーボンブラック含有割合)を算出し、下記の表1に合わせて示す。
なお、上記SEM撮影は、各部分の任意の3箇所に対して行い、それぞれの箇所について各値を算出し、上述の手法に従って「部分Aのカーボンブラック含有割合/部分Bのカーボンブラック含有割合」を算出した。
<実施例3>
図9(a)において部分Aと認められた箇所をさらに高倍率で観察したSEM画像(倍率20000倍)を図14(a)に示し、これを先に説明した手順に従って二値化した画像を図14(b)に示す。そして、図9(a)において部分Bと認められた箇所をさらに高倍率で観察したSEM画像(倍率20000倍)を図15(a)に示し、これを先に説明した手順に従って二値化した画像を図15(b)に示す。
これらの画像に基づいて、先に説明した手順に従って、部分Aおよび部分Bのカーボンブラック含有割合(面積%)と、これらの比(部分Aのカーボンブラック含有割合/部分Bのカーボンブラック含有割合)を算出し、下記の表1に合わせて示す。
なお、上記SEM撮影は、各部分の任意の3箇所に対して行い、それぞれの箇所について各値を算出し、上述の手法に従って「部分Aのカーボンブラック含有割合/部分Bのカーボンブラック含有割合」を算出した。
なお、実施例1および3は、プレス成形により成形されたものであるため、試験片の平面視における中心を通りその面積を二分割する線で垂直方向に精密高速切断機で切断して断面としている。また、実施例2および比較例1は、射出成形により成形されたものであるため、流動方向が明確に認識できる。このため、試験片の流動方向の中央近傍を垂直方向に精密高速切断機で切断して断面としている。そして、これらの断面に対しイオンミリング装置を用いて試験片の断面を研磨、コーティング処理を行っている。一方、比較例1は、カーボンブラックが均一に分散された状態になったため、SEMによる撮像を行っていない。
Figure 2021123680
Figure 2021123680
上記表1および表2に示す結果から、実施例1〜3はいずれも優れた電磁波吸収能を発揮できるが、とりわけ透過減衰量に優れることがわかる。また、技術常識に照らせば、カーボンブラック含有量が多い比較例1の電磁波吸収能が優れるところ、本発明の電磁波吸収体は、少ないカーボンブラック含有量で優れた電磁波吸収能を得られるものであり、とりわけ、カーボンブラック量当りの透過減衰量に優れる。
本発明の一態様である複合材料は、長期間にわたり不要な電磁波を吸収する性能を発揮することができるため、自動車衝突防止システムに用いるミリ波レーダーの電磁波吸収体として好適に利用できる。また、ミリ波を用いた次世代移動通信システム(5G)や、家電やライフサイエンス分野においても、電滋波干渉抑制やノイズ低減の目的で用いることができる。
A 導電性フィラー含有割合の高い部分
B 導電性フィラー含有割合の低い部分

Claims (4)

  1. 1種類の熱可塑性樹脂と、上記熱可塑性樹脂中に分散状態で含有される導電性フィラーとを有する複合材料であって、
    上記複合材料には、導電性フィラー含有割合の異なる部分Aと部分Bとが混在し、
    上記部分Aの導電性フィラー含有割合は、上記部分Bの導電性フィラー含有割合に対してその比が1.0を超えることを特徴とする複合材料。
  2. 上記複合材料を成形してなる成形体断面において、その断面の単位面積当たりの上記部分Aの占める面積割合が0.1〜50%である請求項1記載の複合材料。
  3. 上記複合材料を成形してなる成形体断面において、上記部分Aが島状に複数認められており、上記部分Aが、走査型電子顕微鏡の倍率を50倍にしたときの、縦960ピクセルおよび横1280ピクセルの全視野に5〜2000個認められる請求項1または2記載の複合材料。
  4. 請求項1〜3のいずれか一項に記載の複合材料を成形してなる電磁波吸収体。
JP2020019713A 2020-02-07 2020-02-07 複合材料およびそれを成形してなる電磁波吸収体 Pending JP2021123680A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020019713A JP2021123680A (ja) 2020-02-07 2020-02-07 複合材料およびそれを成形してなる電磁波吸収体
US17/796,938 US20230077842A1 (en) 2020-02-07 2021-01-14 Composite material and electromagnetic wave absorber made by molding same
EP21750353.1A EP4101898A1 (en) 2020-02-07 2021-01-14 Composite material and electromagnetic wave absorber molded from same
CN202180011840.6A CN115003761A (zh) 2020-02-07 2021-01-14 复合材料和将其成形而成的电磁波吸收体
PCT/JP2021/000948 WO2021157309A1 (ja) 2020-02-07 2021-01-14 複合材料およびそれを成形してなる電磁波吸収体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019713A JP2021123680A (ja) 2020-02-07 2020-02-07 複合材料およびそれを成形してなる電磁波吸収体

Publications (1)

Publication Number Publication Date
JP2021123680A true JP2021123680A (ja) 2021-08-30

Family

ID=77199260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019713A Pending JP2021123680A (ja) 2020-02-07 2020-02-07 複合材料およびそれを成形してなる電磁波吸収体

Country Status (5)

Country Link
US (1) US20230077842A1 (ja)
EP (1) EP4101898A1 (ja)
JP (1) JP2021123680A (ja)
CN (1) CN115003761A (ja)
WO (1) WO2021157309A1 (ja)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010049028A1 (en) * 2000-01-11 2001-12-06 Mccullough Kevin A Metal injection molding material with high aspect ratio filler
US7372006B2 (en) * 2001-02-15 2008-05-13 Integral Technologies, Inc Low cost heating devices manufactured from conductive loaded resin-based materials
TWI318855B (en) * 2003-08-06 2009-12-21 Hon Hai Prec Ind Co Ltd Housing of portable electronic equipment and method of making same
CN101003701B (zh) * 2006-12-31 2010-07-28 大连理工大学 填料颗粒梯度分散的功能性涂层的改性方法
WO2013100174A1 (ja) * 2011-12-27 2013-07-04 パナソニック株式会社 熱伝導性樹脂組成物
US10597508B2 (en) * 2012-12-03 2020-03-24 Sekisui Chemical Co., Ltd. Electromagnetic wave shielding material and layered body for electromagnetic wave shielding
US9835390B2 (en) * 2013-01-07 2017-12-05 Nanotek Instruments, Inc. Unitary graphene material-based integrated finned heat sink
JP2015015373A (ja) * 2013-07-05 2015-01-22 株式会社Kri 電磁波吸収性樹脂組成物及びその成形品
KR101800486B1 (ko) * 2013-12-06 2017-11-22 주식회사 엘지화학 전도성이 개선된 복합재 및 이를 함유하는 성형품
JP6779784B2 (ja) * 2014-08-07 2020-11-04 デンカ株式会社 導電性高分子材料およびそれを用いた成形品
EP3187526B1 (en) * 2014-08-29 2021-09-29 LG Chem, Ltd. Composite with improved mechanical properties and molded product containing same
JP2017141370A (ja) * 2016-02-10 2017-08-17 デンカ株式会社 導電性高分子材料およびそれを用いた成形品
JP2017179315A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 導電性樹脂成形体
US11396564B2 (en) * 2017-02-28 2022-07-26 Mitsui Chemicals, Inc. Electroconductive resin composition, method for manufacturing same and molded article obtained therefrom
JP6616344B2 (ja) * 2017-03-24 2019-12-04 株式会社豊田中央研究所 熱伝導性複合材料
WO2019088062A1 (ja) * 2017-10-30 2019-05-09 ダイセルポリマー株式会社 電磁波遮蔽性成形体
US20200107479A1 (en) * 2018-09-27 2020-04-02 Tdk Corporation Metal magnetic film and magnetic sheet

Also Published As

Publication number Publication date
CN115003761A (zh) 2022-09-02
EP4101898A1 (en) 2022-12-14
US20230077842A1 (en) 2023-03-16
WO2021157309A1 (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
JP5214313B2 (ja) 選択的レーザー焼結用複合材料粉末
CN107400289B (zh) 复合树脂成型体及其制造方法以及使用了该成型体的筐体构件
CN108329583B (zh) 复合树脂组合物和粒料
DE102012213314B4 (de) Verbundwerkstoff zum Abschirmen breitbandiger elektromagnetischer Wellen und Verfahren zum Ausbilden des Verbundwerkstoffes
WO2013111862A1 (ja) 導電性樹脂用マスターバッチの製造方法およびマスターバッチ
US11891500B2 (en) Composite resin molded article
US20230271359A1 (en) Molded article of composite resin containing fibers
JP2015015373A (ja) 電磁波吸収性樹脂組成物及びその成形品
JP2011208123A (ja) 導電性樹脂組成物、及びその成形体
JP2021143344A (ja) 繊維複合樹脂組成物
WO2021157309A1 (ja) 複合材料およびそれを成形してなる電磁波吸収体
JP5970276B2 (ja) 炭素系機能性複合材料の製造方法
KR102581385B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법
KR950012656B1 (ko) 전자파 실드용 도전성(導電性) 수지 조성물
KR20070084217A (ko) 초조시트, 다층시트 및 연료전지용 세퍼레이터
JP2001261975A (ja) 導電性熱可塑性樹脂組成物
WO2020129269A1 (ja) 樹脂組成物および樹脂成形部品
JP2003155412A (ja) 樹脂成形体
Sazali et al. Khairul Amali Hamzah, Cheow Keat Yeoh, Mazlee Mohd Noor, Pei Leng Teh, Yah Yun Aw
KR101420620B1 (ko) 전자파 차폐용 복합체 및 이의 제조방법
JP2023181832A (ja) 電磁波抑制シート、積層型電磁波抑制シート、電磁波抑制シートの反射損失調整方法及び積層型電磁波抑制シートの反射損失調整方法
CN109593295A (zh) 一种pvc导电脚轮材料及其制备方法
JPH08199075A (ja) 導電性樹脂組成物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200207