JP2021088730A - 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法 - Google Patents

酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法 Download PDF

Info

Publication number
JP2021088730A
JP2021088730A JP2019217933A JP2019217933A JP2021088730A JP 2021088730 A JP2021088730 A JP 2021088730A JP 2019217933 A JP2019217933 A JP 2019217933A JP 2019217933 A JP2019217933 A JP 2019217933A JP 2021088730 A JP2021088730 A JP 2021088730A
Authority
JP
Japan
Prior art keywords
oxide
particle size
sputtering target
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019217933A
Other languages
English (en)
Inventor
雄也 陸田
Yuya Rikuta
雄也 陸田
啓太 梅本
Keita Umemoto
啓太 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019217933A priority Critical patent/JP2021088730A/ja
Priority to CN202080075120.1A priority patent/CN114616218A/zh
Priority to PCT/JP2020/043983 priority patent/WO2021111970A1/ja
Priority to KR1020227009902A priority patent/KR20220110169A/ko
Priority to TW109141992A priority patent/TW202126838A/zh
Publication of JP2021088730A publication Critical patent/JP2021088730A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】高出力でスパッタ成膜した場合であっても割れの発生を抑制でき、安定して生産効率良くスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供する。【解決手段】金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、酸化ジルコニウム相11の最大粒径が10μm以下とされている。酸化ジルコニウム相11の平均粒径をDZrO、その他の酸化物相12,13の平均粒径をDMOとした場合に、0.6≦DMO/DZrO≦1.8、を満足することが好ましい。【選択図】図1

Description

本発明は、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法に関するものである。
金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物膜は、抵抗が高く、例えば、液晶ディスプレイ、有機ELディスプレイ、及び、タッチパネル等のディスプレイパネルにおいて、液晶素子や有機EL素子等の帯電による誤動作を防止するためのシールド層として使用されている。
ここで、上述のシールド層には、インセル型のタッチパネルにおいては外部からのノイズは排除しながら、タッチ信号をパネル内部のセンサー部分に到達させる作用も求められる。さらに、このシールド層においては、ディスプレイパネルの視認性を確保するために、可視光の透過性が高いことも求められる。
また、上述の金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物膜は、情報記録媒体として用いられる相変化形光ディスクの誘電体層や保護膜としても利用されている。
ここで、特許文献1〜4には、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物膜を成膜する際に用いられる酸化物スパッタリングターゲットが提案されている。
特開2013−142194号公報 特開2007−327103号公報 特開2009−062585号公報 特開2018−040032号公報
ところで、最近では、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物膜を、大面積でかつ生産効率良く成膜することが求められている。このため、スパッタリングターゲットの大型化、及び、スパッタ成膜時の高出力化に対応する必要がある。
しかしながら、金属成分として、ジルコニウム、ケイ素およびインジウムを含有する酸化物スパッタリングターゲットにおいては、高出力でスパッタ成膜した際に割れが生じやすく、安定してスパッタ成膜を行うことができないことがあった。特に、大型のスパッタリングターゲットにおいては、割れが発生しやすい傾向にあった。
この発明は、前述した事情に鑑みてなされたものであって、高出力でスパッタ成膜した場合であっても割れの発生を抑制でき、安定して生産効率良くスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供することを目的とする。
上記課題を解決するために、本発明者らが鋭意検討した結果、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物スパッタリングターゲットにおいては、酸化ジルコニウム相が存在しており、この酸化ジルコニウム相が1000℃付近で相転移し、その際の体積変化によって割れが生じることを確認した。
また、酸化物スパッタリングターゲットの原料となる酸化ジルコニウム粉は、酸化インジウム粉及び酸化ケイ素粉とともに粉砕混合すると、酸化ジルコニウム粉の粒径が酸化インジウム粉及び酸化ケイ素粉よりも大きくなり、粗大な酸化ジルコニウム相が形成され、割れの発生の原因となることが分かった。
本発明は、上述の知見に基づいてなされたものであって、本発明の酸化物スパッタリングターゲットは、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、酸化ジルコニウム相の最大粒径が10μm以下とされていることを特徴としている。
本発明の酸化物スパッタリングターゲットによれば、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されているので、抵抗が高く、かつ、可視光の透過性に優れた酸化物膜を成膜することが可能となる。
そして、酸化ジルコニウム相の最大粒径が10μm以下に制限されているので、高出力でスパッタ成膜した際に、酸化ジルコニウム相が相転移して体積変化しても、割れの発生を抑制できる。また、スパッタリングターゲットを大型化した場合であっても、スパッタ時の割れの発生を抑制できる。よって、安定して生産効率良くスパッタ成膜を行うことが可能となる。
ここで、本発明の酸化物スパッタリングターゲットにおいては、酸化ジルコニウム相の平均粒径をDZrO、その他の酸化物相の平均粒径をDMOとした場合に、0.6≦DMO/DZrO≦1.8、を満足することが好ましい。
この場合、酸化ジルコニウム相と、その他の酸化物相との粒径差が小さくなり、ターゲットの強度を確保することができる。よって、高出力でスパッタ成膜した際の割れの発生をさらに抑制できる。
また、本発明の酸化物スパッタリングターゲットにおいては、ターゲット組織全体において、最大粒径が7μm以下、かつ、平均粒径が4μm以下とされていることが好ましい。
この場合、ターゲット組織全体で粒径が均一化するとともに微細化されているので、均一にスパッタ成膜を行うことができる。また、ターゲットの強度を確保することができ、高出力でスパッタ成膜した際の割れの発生をさらに抑制できる。
本発明の酸化物スパッタリングターゲットの製造方法は、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットの製造方法であって、酸化ジルコニウム粉を最大粒径が4μm以下となるように粉砕する予備粉砕工程と、最大粒径が4μm以下の酸化ジルコニウム粉と酸化ケイ素粉および酸化インジウム粉を混合した焼結原料粉を得る焼結原料粉形成工程と、得られた前記焼結原料粉を、酸素を導入しながら加熱して焼成し、焼結体を得る焼結工程と、を有することを特徴としている。
この構成の酸化物スパッタリングターゲットの製造方法によれば、酸化ジルコニウム粉を最大粒径が4μm以下となるように粉砕する予備粉砕工程を備えているので、焼結後の酸化ジルコニウム相の最大粒径を10μm以下に抑えることができる。
よって、高出力でスパッタ成膜した際の割れの発生を抑制することができ、安定して生産効率良くスパッタ成膜を行うことが可能な酸化物スパッタリングターゲットを製造することができる。
ここで、本発明の酸化物スパッタリングターゲットの製造方法においては、最大粒径が4μm以下の酸化ジルコニウム粉の平均粒径をdZr、酸化インジウム粉の平均粒径をdInO、酸化ケイ素粉の平均粒径をdSiOとした場合に、0.7≦dInO/dZrO≦1.6、及び、0.7≦dSiO/dZrO≦1.6を満足することが好ましい。
この場合、酸化ジルコニウム粉と、酸化インジウム粉及び酸化ケイ素粉との粒径差が小さくなり、高強度の酸化物スパッタリングターゲットを製造することが可能となる。
また、本発明の酸化物スパッタリングターゲットの製造方法においては、酸化ジルコニウム粉と、酸化ケイ素粉および酸化インジウム粉を混合して得られた焼結原料粉全体において、最大粒径が3μm以下、かつ、平均粒径が1μm以下とされていることが好ましい。
この場合、ターゲット組織全体で粒径が微細化及び均一化し、均一にスパッタ成膜を行うことが可能な酸化物スパッタリングターゲットを製造することができる。
本発明によれば、高出力でスパッタ成膜した場合であっても割れの発生を抑制でき、安定して生産効率良くスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供することができる。
本発明の一実施形態に係る酸化物スパッタリングターゲットの組織観察写真である。 本発明の一実施形態に係る酸化物スパッタリングターゲットの製造方法を示すフロー図である。
以下に、本発明の実施形態である酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法について添付した図面を参照して説明する。
本実施形態に係る酸化物スパッタリングターゲットは、液晶ディスプレイパネル、有機ELディスプレイパネル、及び、タッチパネル等のディスプレイパネルにおいて、帯電防止のために配設されるシールド層、あるいは、情報記録媒体である相変化形光ディスクの誘電体層や保護膜として適した酸化物膜を成膜する際に用いられるものである。
なお、本実施形態である酸化物スパッタリングターゲットにおいては、その形状に特に限定はなく、スパッタ面が矩形状をなす矩形平板型スパッタリングターゲットであってもよいし、スパッタ面が円形をなす円板型スパッタリングターゲットとしてもよい。あるいは、スパッタ面が円筒面とされた円筒型スパッタリングターゲットであってもよい。また、スパッタ面の面積には特に制限はないが、大面積の基板に効率良く成膜するためには、スパッタ面の面積が2.0m以上の大型のスパッタリングターゲットとすることが好ましい。
本実施形態に係る酸化物スパッタリングターゲットは、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されている。
この酸化物スパッタリングターゲットにおいては、図1に示すように、酸化ジルコニウム相11と、酸化インジウム相12と、上述の金属元素の少なくとも一部を含む複合酸化物相13と、を有している。本実施形態では、複合酸化物相13は、InとSiの複合酸化物(例えば、InSi相)とされている。
そして、本実施形態に係る酸化物スパッタリングターゲットにおいては、酸化ジルコニウム相11の最大粒径が10μm以下とされている。
また、本実施形態では、酸化ジルコニウム相11の平均粒径DZrOと、その他の酸化物相である酸化インジウム相12の平均粒径DInO及び複合酸化物相13の平均粒径DInSiOの比DInO/DZrO及びDInSiO/DZrOが、それぞれ0.6以上1.8以下の範囲内とすることが好ましい。
さらに、本実施形態では、ターゲット組織全体において、最大粒径が7μm以下、かつ、平均粒径が4μm以下とされていることが好ましい。
以下に、本実施形態の酸化物スパッタリングターゲットにおいて、酸化物の組成、酸化ジルコニウム相11の最大粒径、酸化ジルコニウム相11とその他の酸化物相(酸化インジウム相12及び複合酸化物相13)との平均粒径比、ターゲット組織全体の最大粒径及び平均粒径を、上述のように規定した理由を示す。
(酸化物組成)
本実施形態である酸化物スパッタリングターゲットにおいては、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されている。このような組成の酸化物スパッタリングターゲットにおいては、抵抗値が十分に高く、かつ、可視光の透過性に優れた酸化物膜を成膜することが可能となる。
ここで、本実施形態においては、金属成分の合計を100mass%として、Zrの含有量が2mass%以上27mass%以下の範囲内、Inの含有量が65mass%以上95mass%以下の範囲内、Siの含有量が0.5mass%以上15mass%以下の範囲内、残部が不可避不純物金属元素とされていることが好ましい。また、ZrとInとSiの合計含有量が95mass%以上であることが好ましい。
Zrの含有量を2mass%以上とした場合には、成膜した酸化物膜の耐久性を向上させることができるとともに、硬度が硬くなり、ひっかき傷に強くなる。一方、Zrの含有量を27mass%以下とした場合には、屈折率が増大することを抑制でき、不要な反射の発生を抑制できるので、可視光の透過率が低下することを抑制できる。
なお、金属成分の合計を100mass%として、Zrの含有量の下限は5mass%以上とすることが好ましく、Zrの含有量の上限は20mass%以下とすることが好ましい。
Inの含有量を65mass%以上とした場合には、酸化物スパッタリングターゲットの導電性を確保でき、直流(DC)スパッタによって酸化物膜を安定して成膜することが可能となる。一方、Inの含有量を95mass%以下とした場合には、短波長の透過率が低下することを抑制でき、視認性を確保することができる。
なお、金属成分の合計を100mass%として、Inの含有量の下限は75mass%以上とすることが好ましく、Inの含有量の上限は90mass%以下とすることが好ましい。
Siの含有量を0.5mass%以上とした場合には、酸化物スパッタリングターゲットの柔軟性を確保でき、膜の割れ耐性が向上する。一方、Siの含有量を15mass%以下とした場合には、膜の導電性が低下することを抑制でき、直流(DC)スパッタによって酸化物膜を安定して成膜することが可能となる。
なお、金属成分の合計を100mass%として、Siの含有量の下限は2mass%以上とすることが好ましく、Siの含有量の上限は7mass%以下とすることが好ましい。
(酸化ジルコニウム相11の最大粒径)
この酸化ジルコニウム相11においては、1000℃付近で相転移して体積変化することになる。よって、粗大な酸化ジルコニウム相11が存在した場合、高出力でスパッタ成膜した際に、相転移によって大きな体積変化が生じ、割れが生じるおそれがあった。
そこで、本実施形態においては、酸化ジルコニウム相11の最大粒径を10μm以下に制限している。
なお、酸化物スパッタリングターゲットの割れの発生をさらに抑制するためには、酸化ジルコニウム相11の最大粒径を8μm以下とすることが好ましく、7μm以下とすることがさらに好ましい。
(酸化ジルコニウム相11とその他の酸化物相との平均粒径比)
本実施形態である酸化物スパッタリングターゲットにおいては、酸化ジルコニウム相11とその他の酸化物相(酸化インジウム相12及び複合酸化物相13)との粒径差を小さくすることにより、酸化物スパッタリングターゲットの強度を向上させることができ、割れの発生をさらに抑制することが可能となる。
そこで、本実施形態においては、酸化ジルコニウム相11の平均粒径DZrOと、その他の酸化物相である酸化インジウム相12の平均粒径DInO及び複合酸化物相13の平均粒径DInSiOの比DInO/DZrO及びDInSiO/DZrOを、それぞれ0.6以上1.8以下の範囲内とすることが好ましい。
なお、酸化ジルコニウム相11の平均粒径DZrOと、その他の酸化物相である酸化インジウム相12の平均粒径DInO及び複合酸化物相13の平均粒径DInSiOの比DInO/DZrO及びDInSiO/DZrOの下限は、0.63以上であることがさらに好ましく、0.65以上であることがより好ましい。一方、DInO/DZrO及びDInSiO/DZrOの上限は、1.75以下であることがさらに好ましく、1.7以下であることがより好ましい。
(ターゲット組織全体の最大粒径及び平均粒径)
本実施形態である酸化物スパッタリングターゲットにおいて、ターゲット組織全体で粒径が微細化及び均一化することにより、均一にスパッタ成膜を行うことができるとともに、ターゲットの強度を確保することができ、高出力でスパッタ成膜した際の割れの発生をさらに抑制することが可能となる。
そこで、本実施形態においては、ターゲット組織全体において、最大粒径が7μm以下、かつ、平均粒径が4μm以下であることが好ましい。
なお、ターゲット組織全体での最大粒径は6.5μm以下であることがさらに好ましく、6μm以下であることがより好ましい。また、ターゲット組織全体での平均粒径は3μm以下であることがさらに好ましく、2μm以下であることがより好ましい。
次に、上述した本実施形態である酸化物スパッタリングターゲットの製造方法について、図2を参照して説明する。
(予備粉砕工程S01)
まず、酸化ジルコニウム粉(ZrO粉)を準備する。ここで、この酸化ジルコニウム粉は、Fe,SiO,TiO,NaO及び不可避不純物を除いた純度が99.9mass%以上とされていることが好ましい。なお、不可避不純物の中には、酸化ハフニウム(HfO)が最大2.5mass%含まれることがある。
この酸化ジルコニウム粉(ZrO粉)を粉砕して、最大粒径が4μm以下とする。なお、粉砕方法について特に限定はなく、既存の粉砕方法から適宜選択すればよい。
(焼結原料粉形成工程S02)
次に、酸化ケイ素粉(SiO粉)および酸化インジウム粉(In粉)を準備する。ここで、酸化ケイ素粉(SiO粉)および酸化インジウム粉(In粉)は、それぞれ、純度が99.9mass%以上であることが好ましい。
これら酸化ケイ素粉(SiO粉)および酸化インジウム粉(In粉)をと、予備粉砕によって最大粒径が4μm以下とされた酸化ジルコニウム粉(ZrO粉)を、所定の組成比となるように秤量し、粉砕混合装置を用いて混合し、焼結原料粉を形成する。なお、粉砕混合して得られたスラリーの乾燥方法に特に制限はなく、通常の乾燥機やスプレードライなどで実施することができる。均質な混合粉を得る観点から、スプレードライを用いることが好ましい。
ここで、予備粉砕工程S01で最大粒径が4μm以下とされた酸化ジルコニウム粉(ZrO粉)の平均粒径をdZrO、酸化インジウム粉(In粉)の平均粒径をdInO、酸化ケイ素粉(SiO粉)の平均粒径をdSiOとした場合に、0.7≦dInO/dZrO≦1.6、及び、0.7≦dSiO/dZrO≦1.6を満足することが好ましい。
なお、上述の平均粒径比dInO/dZrO及びdSiO/dZrOの下限は、0.7以上とすることがさらに好ましく、0.75以上とすることがより好ましい。また、上述の平均粒径比dInO/dZrO及びdSiO/dZrOの上限は、1.55以下とすることがさらに好ましく、1.5以下とすることがより好ましい。
また、得られた焼結原料粉全体において、最大粒径が3μm以下、かつ、平均粒径が1μm以下とされていることが好ましい。
なお、焼結原料粉全体の最大粒径は2.8μm以下であることがさらに好ましく、2.6μm以下であることがより好ましい。また、焼結原料粉全体の平均粒は0.9μm以下であることがさらに好ましく、0.8μm以下であることがより好ましい。
(成形工程S03)
次に、得られた焼結原料粉を、成形型に充填して加圧することによって、所定形状の成形体を得る。このときの加圧圧力は20MPa以上35MPa以下の範囲内とすることが好ましい。また、温度は常温でもよいが、900℃以上950℃以下の範囲の温度で加圧成形を行った方が、ネック形成が促進され、成形体の強度が向上するため好ましい。
(焼結工程S04)
この成形体を、酸素導入機能を有する焼成装置内に装入し、酸素を導入しながら加熱して焼結し、焼結体を得る。
このとき、酸素の導入量は3L/分以上10L/分以下の範囲内とすることが好ましい。また、昇温速度は50℃/h以上200℃/h以下の範囲内とすることが好ましい。
(機械加工工程S05)
次に、上述の焼結体に対して旋盤加工等の機械加工を行い、所定サイズの酸化物スパッタリングターゲットを得る。
上述の工程により、本実施形態である酸化物スパッタリングターゲットが製造されることになる。
以上のような構成とされた本実施形態である酸化物スパッタリングターゲットによれば、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されているので、抵抗値が高く、かつ、可視光の透過率に優れた酸化物膜を成膜することが可能となる。
そして、酸化ジルコニウム相11の最大粒径が10μm以下に制限されているので、高出力でスパッタ成膜した際に、酸化ジルコニウム相11が相転移して体積変化した場合であっても、割れの発生を抑制できる。よって、安定して生産効率良くスパッタ成膜を行うことが可能となる。
また、本実施形態において、酸化ジルコニウム相11の平均粒径DZrOと、その他の酸化物相である酸化インジウム相12の平均粒径DInO及び複合酸化物相13の平均粒径DInSiOの比DInO/DZrO及びDInSiO/DZrOが、それぞれ0.6以上1.8以下の範囲内である場合には、酸化ジルコニウム相11と、その他の酸化物相その他の酸化物相である酸化インジウム相12及び複合酸化物相13との粒径差が小さくなり、ターゲットの強度を確保することができる。よって、高出力でスパッタ成膜した際の割れの発生をさらに抑制できる。
また、本実施形態においてターゲット組織全体における最大粒径が7μm以下、かつ、平均粒径が4μm以下とされている場合には、ターゲット組織全体で粒径が均一化するとともに微細化されているので、均一にスパッタ成膜を行うことができる。また、ターゲットの強度を確保することができ、高出力でスパッタ成膜した際の割れの発生をさらに抑制できる。
また、本実施形態である酸化物スパッタリングターゲットの製造方法によれば、酸化ジルコニウム粉を最大粒径が4μm以下となるように粉砕する予備粉砕工程S01を備えているので、焼結後の酸化ジルコニウム相11の最大粒径を10μm以下に抑えることができる。
よって、高出力でスパッタ成膜した際の割れの発生を抑制することができ、安定して生産効率良くスパッタ成膜を行うことが可能な酸化物スパッタリングターゲットを製造することができる。
また、本実施形態において、最大粒径が4μm以下の酸化ジルコニウム粉の平均粒径をdZrO、酸化インジウム粉の平均粒径をdInO、酸化ケイ素粉の平均粒径をdSiOとした場合に、0.7≦dInO/dZrO≦1.6、及び、0.7≦dSiO/dZrO≦1.6を満足する場合には、酸化ジルコニウム粉と、酸化インジウム粉及び酸化ケイ素粉との粒径差が小さくなり、高強度の酸化物スパッタリングターゲットを製造することが可能となる。
さらに、本実施形態において、酸化ジルコニウム粉と、酸化ケイ素粉および酸化インジウム粉を混合して得られた焼結原料粉全体において、最大粒径が3μm以下、かつ、平均粒径が1μm以下とされている場合には、ターゲット組織全体で粒径が微細化及び均一化し、均一にスパッタ成膜を行うことが可能な酸化物スパッタリングターゲットを製造することができる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。
<酸化物スパッタリングターゲット>
原料粉末として、酸化インジウム粉末(In粉末:純度99.9mass%以上、平均粒径1μm)と、酸化シリコン粉末(SiO粉末:純度99.8mass%以上、平均粒径2μm)と、酸化ジルコニウム粉末(ZrO粉末:Fe,SiO,TiO,NaO及び不可避不純物を除いた純度99.9mass%以上,なお、不可避不純物の中にはHfOが最大2.5mass%含まれている、平均粒径2μm)と、を準備した。そして、これらを、表1に示す配合比となるように、秤量した。
予備粉砕工程として、上述の酸化ジルコニウム粉末を、直径0.5mmのジルコニアボールを粉砕媒体としたビーズミル装置を用いて、表1に示す条件で、湿式粉砕した。
粉砕後の酸化ジルコニウム粉について、レーザー回折散乱法により、最大粒径とメディアン径(D50)を測定した。
具体的には、ヘキサメタリン酸ナトリウム濃度0.2mol%の水溶液を100mL調製し、この水溶液に酸化ジルコニウム粉末を10mg加え、レーザー回折散乱法(測定装置:日機装株式会社製、Microtrac MT3000)を用いて、粒子径分布を測定した。得られた粒子径分布から累積粒度分布曲線を作成し、最大粒径と平均粒径(メディアン径(D50))を得た。
ここでのメディアン径(D50)とは、体積累積が50%となる粒子径を表す。
粉砕した酸化ジルコニウム粉末と、酸化インジウム粉末及び酸化シリコン粉末の各原料粉末を、表1に示すように、直径2mmのジルコニアボールを粉砕媒体としたバスケットミル装置、あるいは、直径0.5mmのジルコニアボールを粉砕媒体としたビーズミル装置を用いて、60分間、湿式粉砕混合した。
得られたスラリーを、乾燥機を用いて乾燥させ、焼結原料粉を得た。なお、得られた焼結原料粉の最大粒径と平均粒径(メディアン径(D50))を表1に示す。測定方法は酸化ジルコニウム粉末の場合と同様である。
また、酸化ジルコニウム粉末と、酸化インジウム粉末、酸化シリコン粉末の平均粒径比を測定した。測定結果を表1に示す。
焼結原料粉について、電子プローブマイクロアナライザ(EPMA)装置を用いて倍率3000倍のCOMPO像を3枚撮影し、画像解析により、酸化ジルコニウム粉末、酸化インジウム粉末、酸化シリコン粉末の平均粒径を求め、平均粒径比を算出した。
そして、本発明例1−6,10−12及び比較例1においては、得られた焼結原料粉をプレス成形して矩形平板型の成形体を得た。なお、成形型のサイズは、165mm×298mmとした。また、加圧圧力を98MPaとした。
本発明例7−9及び比較例2においては、得られた焼結原料粉をCIP(冷間静水圧プレス)して円筒型の成形体を得た。なお、成形型のサイズは、外径205mm、内径165mm、高さ200mmとした。また、加圧圧力を98MPaとした。
そして、得られた成形体を、酸素導入機能を有する焼成装置内(装置内容積27000cm)に装入し、酸素を導入しながら加熱して焼結する。このとき、酸素の導入量は6L/分とした。また、昇温速度は120℃/hとした。
そして、焼結の昇温時において、表2に示す条件で温度保持を行い、その後、表2に示す焼成条件で本焼成し、焼結体を得た。
上述のようにして得られた焼結体に対し、機械加工を施して、本発明例1−6,10−12及び比較例1においては、126mm×178mm×厚さ6mmの矩形平板型スパッタリングターゲットを得た。また、本発明例7−9及び比較例2においては、外径155mm、内径135mm、高さ150mmの円筒型スパッタリングターゲットを得た。
なお、比較例3においては、得られた焼結原料粉を直径200mmの金型に充填して、15MPaの圧力にてプレスすることにより、直径200mm、厚さ10mmの円板状の成形体を2枚作製した。
得られた2枚の成形体を、電気炉(炉内容積27000cm)に投入し、毎分4Lの流量で酸素を電気炉内に流通させながら表2に示す焼成温度で7時間保持することにより焼成して焼結体を生成させた。次いで、焼結体を、継続して酸素を電気炉内に流通させながら600℃まで冷却し、その後、酸素の流通を停止し、室温まで炉内放冷により冷却した後、焼結体を電気炉から取り出した。
上述のようにして得られた焼結体に対し、機械加工を施して、直径152.4mm、厚さ6mmの2枚の円板状のスパッタリングターゲットを得た。
得られた酸化物スパッタリングターゲットについて、以下の項目について評価した。評価結果を表2に示す。
(金属成分組成)
作製された酸化物スパッタリングターゲットからサンプルを切り出して粉砕し、酸で前処理した後、ICP−AESによってZr,Si,Inの金属成分を分析し、得られた結果から金属成分の含有量を計算した。
(焼結体の粒径)
作製された酸化物スパッタリングターゲットからサンプルを切り出し、湿式研磨にて研磨加工を行った後、電子プローブマイクロアナライザ(EPMA)装置を用いて倍率3000倍(30μm×40μm)のCOMPO像を撮影した。撮影は3枚実施し、3枚全体に対する各相(ZrO相、In相、InSiO相)の最大粒径及び平均粒径、ターゲット全体の最大粒径及び平均粒径を、撮影したCOMPO画像を元に、画像処理を用いて算出した。平均粒径比はIn相又は、InSi相の平均粒径をZrO相の平均粒径で割った値を示す。
ここでの粒径とは、円相当径(焼結体の粒径面積S=πD/4となるD)を表す。
(密度)
矩形平板型スパッタリングターゲットにおいては、中心部から切り出した10mm×10mmの試料について寸法密度を測定した。
円筒型スパッタリングターゲットにおいては、軸線方向中心部から切り出した10mm×10mmの試料について、寸法密度を測定した。測定結果を表2に示す。
(強度)
密度測定の場合と同様に、各スパッタリングターゲットから測定試料を採取し、JIS R 1601規格に基づいて三点曲げ強度を測定した。評価結果を表2に示す。
(スパッタ成膜の割れ)
スパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けし、これをマグネトロン式のスパッタ装置(ULVAC社製、SIH−450H)内に装着した。次いで、真空排気装置にてスパッタ装置内を5×10−5Pa以下まで排気した後、ArガスとOガスを導入して、スパッタガス圧を0.67Paに調整し、1時間のプレスパッタリングを実施し、これによりターゲット表面の加工層を除去した。この時のArガスとOガスの流量比は47対3、電力はDC1200Wとした。
酸化物膜の成膜後、スパッタ装置を大気開放した。そして、スパッタ装置からスパッタリングターゲットを取り出して、その外観を目視にて観察して、割れの発生の有無を確認した。その結果を表2に示す。
Figure 2021088730
Figure 2021088730
予備粉砕工程を実施せず、酸化ジルコニウム粉の最大粒径が4μmを超えた比較例1−3においては、いずれもZrO相の最大粒径が10μmを超えており、スパッタ成膜時に割れが発生した。
これに対して、予備粉砕工程を実施し、酸化ジルコニウム粉の最大粒径が4μm以下とされた本発明例1−12においては、いずれもZrO相の最大粒径が10μm以下であり、スパッタ成膜時に割れが発生せず、安定して成膜を行うことができた。
また、酸化ジルコニウム相の平均粒径DZrOと、その他の酸化物相である酸化インジウム相の平均粒径DInO及び複合酸化物相の平均粒径DInSiOの比DInO/DZrO及びDInSiO/DZrOが、それぞれ0.6以上1.8以下の範囲内とされるとともに、ターゲット組織全体での最大粒径が7μm以下で平均粒径が4μm以下とされた本発明例2−7,10,11においては、ターゲットの強度がさらに向上した。
以上のことから、本発明例によれば、高出力でスパッタ成膜した場合であっても割れの発生を抑制でき、安定して生産効率良くスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供可能であることが確認された。

Claims (6)

  1. 金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、
    酸化ジルコニウム相の最大粒径が10μm以下とされていることを特徴とする酸化物スパッタリングターゲット。
  2. 酸化ジルコニウム相の平均粒径をDZrO、その他の酸化物相の平均粒径をDMOとした場合に、0.6≦DMO/DZrO≦1.8、を満足することを特徴とする請求項1に記載の酸化物スパッタリングターゲット。
  3. ターゲット組織全体において、最大粒径が7μm以下、かつ、平均粒径が4μm以下とされていることを特徴とする請求項1又は請求項2に記載の酸化物スパッタリングターゲット。
  4. 金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットの製造方法であって、
    最大粒径が4μm以下の酸化ジルコニウム粉と、酸化ケイ素粉および酸化インジウム粉を混合した焼結原料粉を得る焼結原料粉形成工程と、
    得られた前記焼結原料粉を、酸素を導入しながら加熱して焼成し、焼結体を得る焼結工程と、
    を有することを特徴とする酸化物スパッタリングターゲットの製造方法。
  5. 酸化ジルコニウム粉の平均粒径をdZrO、酸化インジウム粉の平均粒径をdInO、酸化ケイ素粉の平均粒径をdSiOとした場合に、
    0.7≦dInO/dZrO≦1.6、及び、0.7≦dSiO/dZrO≦1.6
    を満足することを特徴とする請求項4に記載の酸化物スパッタリングターゲットの製造方法。
  6. 酸化ジルコニウム粉と、酸化ケイ素粉および酸化インジウム粉を混合して得られた焼結原料粉全体において、最大粒径が3μm以下、かつ、平均粒径が1μm以下とされていることを特徴とする請求項4又は請求項5に記載の酸化物スパッタリングターゲットの製造方法。
JP2019217933A 2019-12-02 2019-12-02 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法 Pending JP2021088730A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019217933A JP2021088730A (ja) 2019-12-02 2019-12-02 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
CN202080075120.1A CN114616218A (zh) 2019-12-02 2020-11-26 氧化物溅射靶及氧化物溅射靶的制造方法
PCT/JP2020/043983 WO2021111970A1 (ja) 2019-12-02 2020-11-26 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
KR1020227009902A KR20220110169A (ko) 2019-12-02 2020-11-26 산화물 스퍼터링 타깃, 및, 산화물 스퍼터링 타깃의 제조 방법
TW109141992A TW202126838A (zh) 2019-12-02 2020-11-30 氧化物濺射靶及氧化物濺射靶的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217933A JP2021088730A (ja) 2019-12-02 2019-12-02 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法

Publications (1)

Publication Number Publication Date
JP2021088730A true JP2021088730A (ja) 2021-06-10

Family

ID=76219499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019217933A Pending JP2021088730A (ja) 2019-12-02 2019-12-02 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法

Country Status (5)

Country Link
JP (1) JP2021088730A (ja)
KR (1) KR20220110169A (ja)
CN (1) CN114616218A (ja)
TW (1) TW202126838A (ja)
WO (1) WO2021111970A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116835965A (zh) * 2023-06-21 2023-10-03 芜湖映日科技股份有限公司 一种具有低体电阻率的高阻靶材及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015247A (ja) * 2003-06-24 2005-01-20 Sumitomo Metal Mining Co Ltd 強誘電体薄膜形成用の焼結体、その製造方法及びそれを用いたスパッタリングターゲット
JP5088464B2 (ja) 2006-06-08 2012-12-05 三菱マテリアル株式会社 高強度光記録媒体保護膜形成用スパッタリングターゲット
JP5061802B2 (ja) 2007-09-06 2012-10-31 三菱マテリアル株式会社 耐割れ性に優れたZrO2−In2O3系光記録媒体保護膜形成用スパッタリングターゲット
JP5855948B2 (ja) 2012-01-12 2016-02-09 ジオマテック株式会社 透明導電膜,透明導電膜付き基板,ips液晶セル,静電容量型タッチパネル及び透明導電膜付き基板の製造方法
JPWO2014112369A1 (ja) * 2013-01-16 2017-01-19 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及びこれらの製造方法
JP2014214359A (ja) * 2013-04-26 2014-11-17 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP6231924B2 (ja) * 2014-03-28 2017-11-15 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
KR102404834B1 (ko) * 2014-07-31 2022-06-02 도소 가부시키가이샤 산화물 소결체, 그 제조 방법 및 스퍼터링 타깃
JP6414165B2 (ja) 2016-09-06 2018-10-31 三菱マテリアル株式会社 酸化物スパッタリングターゲット、及び酸化物スパッタリングターゲットの製造方法
KR102115126B1 (ko) * 2018-02-08 2020-05-25 미쓰비시 마테리알 가부시키가이샤 산화물 스퍼터링 타깃, 및 산화물 스퍼터링 타깃의 제조 방법
JP6705526B2 (ja) * 2018-04-26 2020-06-03 三菱マテリアル株式会社 シールド層、シールド層の製造方法、及び、酸化物スパッタリングターゲット

Also Published As

Publication number Publication date
WO2021111970A1 (ja) 2021-06-10
TW202126838A (zh) 2021-07-16
KR20220110169A (ko) 2022-08-05
CN114616218A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
JP5733208B2 (ja) イオンプレーティング用タブレットとその製造方法、および透明導電膜
JP5003600B2 (ja) 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜、導電性積層体
KR101967945B1 (ko) Sb-Te기 합금 소결체 스퍼터링 타깃
JP5764828B2 (ja) 酸化物焼結体およびそれを加工したタブレット
JP6291593B2 (ja) Itoスパッタリングターゲット及びその製造方法並びにito透明導電膜の製造方法
TWI437112B (zh) ZrO2-In2O3系光記錄媒體保護膜形成用濺鍍靶
US20140311902A1 (en) Magnetic Material Sputtering Target and Manufacturing Method Thereof
CN114959599A (zh) 磁记录膜形成用溅射靶及其制造方法
JP2018162493A (ja) タングステンシリサイドターゲット及びその製造方法
WO2021111970A1 (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JP2015013778A (ja) 酸化物焼結体及びその製造方法、並びに酸化物膜
WO2020044798A1 (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JP7086080B2 (ja) 酸化物焼結体およびスパッタリングターゲット
TW201816158A (zh) Mn-Zn-O系濺鍍靶及其製造方法
JP6459830B2 (ja) 酸化物焼結体及びその製造方法、並びに酸化物膜の製造方法
WO2021112006A1 (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JP2021091963A (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JPWO2019187269A1 (ja) 酸化物焼結体、スパッタリングターゲットおよび透明導電膜
JP2015003846A (ja) 酸化物焼結体及びその製造方法、並びに酸化物膜
JP2003160861A (ja) Mg含有ITOスパッタリングターゲットの製造方法
JPWO2014021374A1 (ja) 酸化物焼結体およびそれを加工したタブレット
JP2005133105A (ja) 高屈折率膜形成用のスパッタリングターゲットとその製造方法
JP2020033639A (ja) 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JP2020147822A (ja) MgO−TiO系スパッタリングターゲットの製造方法
JP2011219796A (ja) Bi4Ti3O12相を含むBiTi系酸化物ターゲットおよびその製造方法