JP2021044171A - リチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
JP2021044171A
JP2021044171A JP2019165929A JP2019165929A JP2021044171A JP 2021044171 A JP2021044171 A JP 2021044171A JP 2019165929 A JP2019165929 A JP 2019165929A JP 2019165929 A JP2019165929 A JP 2019165929A JP 2021044171 A JP2021044171 A JP 2021044171A
Authority
JP
Japan
Prior art keywords
active material
electrode active
negative electrode
positive electrode
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165929A
Other languages
English (en)
Inventor
圭 島本
Kei Shimamot
圭 島本
福永 孝夫
Takao Fukunaga
福永  孝夫
秀幸 杉山
Hideyuki Sugiyama
秀幸 杉山
渉 増田
Wataru Masuda
渉 増田
弘輝 藤田
Hiroteru Fujita
弘輝 藤田
宗隆 樋口
munetaka Higuchi
宗隆 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Eliiy Power Co Ltd
MU Ionic Solutions Corp
Original Assignee
Mazda Motor Corp
Eliiy Power Co Ltd
MU Ionic Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Eliiy Power Co Ltd, MU Ionic Solutions Corp filed Critical Mazda Motor Corp
Priority to JP2019165929A priority Critical patent/JP2021044171A/ja
Priority to US17/013,347 priority patent/US20210083296A1/en
Priority to EP20194665.4A priority patent/EP3793014A1/en
Priority to CN202010920873.XA priority patent/CN112490489A/zh
Publication of JP2021044171A publication Critical patent/JP2021044171A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】リチウムイオン二次電池の引火点向上と冷間出力の耐久性向上の両立を図る。【解決手段】リチウムイオン二次電池は、正極集電体11の表面に正極活物質層12を有する正極8と、負極集電体14の表面に負極活物質層15を有する負極8と、非水電解液17とが電池ケース4に収容されている。非水電解液17は非水溶媒の主成分としてγ−ブチロラクトンを含有する。正極活物質層12の表面にはBOBイオン由来の被膜13が形成されている。負極活物質層15の表面にはVC由来の被膜16が形成されている。【選択図】図2

Description

本発明はリチウムイオン二次電池及びその製造方法に関する。
リチウムイオン二次電池は、主として、リチウムを吸蔵・放出する正極及び負極、非水電解液、並びにセパレータから構成され、携帯電話、パソコン等の電子機器、電気自動車等に使用されている。非水電解液は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート等の非水溶媒にリチウム塩を溶解させた構成とされている。このようなリチウムイオン二次電池では、温度が高くなったときに、可燃性の非水溶媒が揮発することや、正極活物質として利用されているリチウム複合酸化物が分解して酸素を放出することが問題にされている。
これに対して、特許文献1には、リチウムイオン二次電池の非水溶媒として各々高沸点溶媒であるエチレンカーボネートとプロピレンカーボネートとγ−ブチロラクトンの混合溶媒を用いることが記載されている。
特開2000−243447号公報
γ−ブチロラクトンは、リチウムイオン二次電池の引火点を高めることに有効である。しかし、本発明者の研究によれば、γ−ブチロラクトンが負極において分解し、その分解生成物によって電池の出力が低下していくことがわかった。その分解生成物が正極に移動して該正極でのLiイオンの出入りが阻害されると考えられる。
そこで、本発明は、リチウムイオン二次電池の引火点向上と耐久性向上の両立を図ること、特に冷間出力を長期間にわたって維持できるようにすることを課題とする。
本発明は、上記課題を解決するために、γ−ブチロラクトンを非水溶媒として使用する一方、γ−ブチロラクトンの負極上での分解、並びにγ−ブチロラクトンの分解生成物による正極の劣化を抑える被膜を正負の各電極に形成するようにした。
ここに開示するリチウムイオン二次電池は、集電体の表面に正極活物質層を有する正極と、集電体の表面に負極活物質層を有する負極と、非水電解液とが電池ケース内に収容されたリチウムイオン二次電池であって、
上記非水電解液は、非水溶媒の主成分としてγ−ブチロラクトン(以下、「GBL」という。)を含有し、
上記負極活物質層の表面にはビニレンカーボネート(以下、「VC」という。)由来の被膜(SEI層)が形成されており、
上記正極活物質層の表面には、ビスオキサレートボラート(以下、「BOB」という。)イオン由来の被膜が形成されていることを特徴とする。
これによれば、非水電解液はGBLをベースとし、このGBLは、分子間結合力が高い高誘電率溶媒であるとともに、融点が低く低温でも液体状態を保つから、リチウムイオン二次電池の引火点向上と冷間出力の向上に有利になる。
そうして、負極活物質層の表面にVC由来の被膜が形成されていることにより、GBLの負極上での還元分解が防がれる。また、正極活物質層の表面にBOBイオン由来の被膜が形成されていることにより、負極上で生ずるGBLの分解生成物が正極に移動しても、該分解生成物による正極の劣化が防がれる。また、GBLの正極での酸化分解も防止される。
このように、本発明によれば、負極活物質層表面のVC由来の被膜及び正極活物質層表面のBOBイオン由来の被膜の存在により、GBLを非水電解液のベースとするリチウムイオン二次電池のサイクル劣化の抑制、保存劣化の抑制が可能になり、例えば、−30℃の環境下の使用においても、長期間にわたって高い出力特性を維持できるようになる。
一実施形態では、上記正極は、オリビン型結晶構造のリン酸鉄リチウムを上記正極活物質として含有する。これにより、リチウムイオン二次電池の充電時の熱安定性の確保に有利になり、また、放電電圧を高くすることができる。この場合、BOBイオン由来の被膜が正極活物質層をGBLの分解生成物から保護するため、リン酸鉄リチウムの分解(Feの溶出)が防止される。
一実施形態では、上記負極は、炭素材料を上記負極活物質として含有する。これにより、電池容量の増大に有利になる。
ここに、黒鉛系炭素材料を負極活物質とするケースにおいて、非水溶媒としてGBLを採用したときには、負極の表面にSEI(固定電解質界面)層が形成されにくいことが問題になる。SEI層は、充電時に、電解液中の溶媒が還元分解されることにより形成され、溶媒和LiイオンがSEI層を通過する際に脱溶媒和し、単体のLiイオンとして黒鉛層間に挿入されるようになる。このSEI層の形成が不十分であるときは、溶媒和Liイオンがそのまま黒鉛層間に挿入され(共挿入)、黒鉛層間において溶媒の分解反応が進行し、黒鉛の結晶構造が破壊されていくため、電池のサイクル安定性能が低下する。
これに対して、当該実施形態では、VC由来の被膜(SEI層)によって溶媒和Liイオンの脱溶媒和が効率良く行なわれ、黒鉛層間における溶媒の分解反応が抑制されるのでサイクル安定性能が向上する。
電池容量を大きくする観点から好ましいのは、ハードカーボンを用いた黒鉛化度が低い(例えば、CuKα線の回折角2θ=26.6度に対応する回折ピークの半価幅で0.015ラジアン以上である)炭素材料を負極活物質とすることである。
一実施形態では、上記非水電解液は、上記非水溶媒として、上記GBLに加えて、ジブチルカーボネート(以下、「DBC」という。)を含有することを特徴とする。GBLは粘度が高いため、セパレータの濡れ性が問題になるところ、DBCの添加によってセパレータに対する非水電解液の濡れ性が向上する。これにより、イオン移動度が高くなり、リチウムイオン二次電池の出力特性の向上に有利になる。しかも、DBCは沸点が高い(約206℃)ことから、非水溶媒の揮発抑制の観点からも好ましい。DBCとしては、引火点が高い(91℃)n−DBCを好ましく採用することができる。
上記非水溶媒としては、上記GBL及びDBCに加えて、エチレンカーボネート(以下、「EC」という。)を含有するものであってもよく、さらには、ECとプロピレンカーボネート(以下、「PC」という。)を含有するものであってもよい。高沸点且つ高誘電率溶媒であるECやPCの添加により、リチウムイオン二次電池の引火点向上と冷間出力の向上に有利になる。
以上のように非水溶媒を混合溶媒とする場合、非水溶媒におけるGBLの濃度は50容量%以上とする。この場合において、DBCの濃度は5容量%以上15容量%以下とすることが好ましい。EC又はPCを添加する場合、各々の濃度は5容量%以上30容量%以下とし、ECとPCの両者を添加する場合、両者合わせた濃度は10容量%以上40容量%以下とすることが好ましい。
ここに開示するリチウムイオン二次電池の製造方法は、集電体の表面に正極活物質層を有する正極と、集電体の表面に負極活物質層を有する負極と、非水電解液とが電池ケース内に収容されたリチウムイオン二次電池の製造方法であって、
上記電池ケースに、上記正極及び上記負極を収容し、さらに、GBLを主成分とし且つVCとLiBOBを含有する非水溶媒にリチウム塩を溶解してなる非水電解液を封入して電池組立体を得る工程と、
上記電池組立体に対して初期充電処理を行なうことにより、上記負極活物質層の表面に上記VC由来の被膜を形成するとともに、上記正極活物質層の表面に上記LiBOBの電離によって生ずるBOBイオン由来の被膜を形成する工程とを備えていることを特徴とする。
この製造方法により、上述のリチウムイオン二次電池を得ることができる。また、この製造方法によれば、正極活物質層の表面にBOBイオン由来の被膜が形成されるだけでなく、BOBイオンの負極上での分解によって、負極活物質層表面のVC由来の被膜が強化される。
上記非水電解液におけるVCの濃度は、負極活物質層の表面にGBLの還元分解を抑制し得る被膜(SEI層)を形成する観点から0.3質量%以上とすることが好ましい。但し、VC由来の被膜が厚くなると、負極活物質に対するLiイオンの挿入・脱離の際の抵抗が大きくなることから、このVCの当該濃度は3質量%以下とすることが好ましい。VCのより好ましい濃度は0.5質量%以上2.5質量%以下であり、さらには1質量%以上2質量%以下とすることが好ましい。
上記非水電解液におけるLiBOBの濃度は、正極活物質層の表面に該正極活物質の保護に好適な被膜を形成する観点から0.3質量%以上とすることが好ましい。但し、BOBイオン由来の被膜が厚くなると、正極活物質に対するLiイオンの挿入・脱離の際の抵抗が大きくなることから、このLiBOBの当該濃度は1.5質量%以下とすることが好ましい。LiBOBのより好ましい濃度は0.5質量%以上1質量%以下である。
本発明に係るリチウムイオン二次電池によれば、非水電解液は非水溶媒の主成分としてGBLを含有し、負極活物質層の表面にはVC由来の被膜(SEI層)が形成され、正極活物質層の表面にはBOBイオン由来の被膜が形成されているから、リチウムイオン二次電池の引火点向上と冷間出力の向上に有利になるとともに、その保存劣化やサイクル劣化の抑制に有利になる。
本発明に係るリチウムイオン二次電池の製造方法によれば、GBLを非水電解液のベースとするリチウムイオン二次電池において、負極活物質層の表面にVC由来の被膜(SEI層)を形成し、正極活物質層の表面にBOBイオン由来の被膜を形成することができ、引火点が高く且つ冷間出力特性に優れた耐久性が高いリチウムイオン二次電池を得ることができる。
リチウムイオン二次電池の内部構造を示す一部切断した斜視図。 同電池の正極及び負極の積層構造を模式的に示す断面図。 放電容量のサイクル劣化特性を示すグラフ図。 放電容量維持率のサイクル劣化特性を示すグラフ図。 −30℃における最大電流値のサイクル劣化特性を示すグラフ図。 −30℃における最大電流の維持率のサイクル劣化特性を示すグラフ図。 放電容量の保存劣化特性を示すグラフ図。 放電容量維持率の保存劣化特性を示すグラフ図。 −30℃における最大電流値の保存劣化特性を示すグラフ図。 −30℃における最大電流の維持率維持率の保存劣化特性を示すグラフ図。
以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
本実施形態に係るリチウムイオン二次電池は、電子機器、電気自動車、ハイブリッド車等への利用に適する。
<リチウムイオン二次電池の全体構成>
図1に示すように、リチウムイオン二次電池1は、複数の薄いシート状の電池構成材をまとめて扁平な渦巻状(反物状)になるように巻いた捲回体2と、この捲回体2の外周を覆う絶縁シート3と、これらを収容する電池ケース4とを備えている。電池ケース4の上面には正極端子5及び負極端子6が設けられている。
捲回体2は、2枚のシート状のセパレータ7と、正極端子5に接続されるシート状の正極8と、負極端子6に接続されるシート状の負極9とで形成されている。この捲回体2は、セパレータ7、負極9、セパレータ7及び正極8をこの順番で重ね合わせた積層体を扁平渦巻状に巻いて形成されている。
セパレータ7には非水電解液が含浸している。非水電解液は、GBLを主成分とする非水溶媒にLi塩を溶解させてなる。電池ケース4の上面には非水電解液の注入口21が設けられている。注入口21は栓22で塞がれている。
なお、電池構成材は捲回体の形態の代わりに、シート状の電池構成材をつづら折り状に折りたたんで積層してなる積層体としてもよい。この積層体の形態とした場合は、電池ケース内の隅の空間にも電池構成材を配することができ容量を増やすことができる。
[正極8について]
図2に示すように、正極8は、集電体11の表面(負極9と相対する面)に正極活物質層12を設けてなる。集電体11は導電性を有する金属薄膜によって形成されている。好ましい集電体11としてはアルミニウム箔が挙げられる。正極活物質層12は、正極活物質及び助剤(バインダ及び導電助剤)を混合し集電体11に塗布することによって形成されている。
好ましい正極活物質としては、コバルト、マンガン及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物、リン酸系リチウム化合物、ケイ酸系リチウム化合物がある。特に、リン酸系リチウムを採用することが好ましい。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
好ましいリン酸系リチウム化合物としては、オリビン型結晶構造のLiMPO(M=遷移金属Fe、Co、Ni、Mn等)、LiMPOF(M=遷移金属Fe、Co、Ni、Mn等)がある。なかでも、リン酸鉄リチウムLiFePOが好ましい。ケイ酸系リチウム化合物としては、例えば、LiMSiO(M=遷移金属Fe、Co、Ni、Mn等)がある。
バインダとしては、ポリフッ化ビニリデン(PVdF)を好ましく採用することができる。導電助剤としては、カーボンブラック、アセチレンブラック、カーボンナノファイバ(CNF)等を採用することができる。
正極活物質層12の表面には、非水電解液17に接触するBOBイオン由来の被膜13が形成されている。なお、図2ではセパレータ7の図示を書略している。
[負極9について]
負極9は、集電体14の表面(正極8と相対する面)に負極活物質層15を設けてなる。集電体14は導電性を有する金属薄膜によって形成されている。好ましい集電体14としては銅箔が挙げられる。負極活物質層15は、負極活物質及び助剤(バインダ及び導電助剤)を混合し集電体14に塗布することによって形成されている。
負極活物質としては、黒鉛系炭素材料、すなわち、人造黒鉛や天然黒鉛を採用することが好ましい。黒鉛系炭素材料は、リチウムイオンの吸蔵及び放出能力の向上の観点から、黒鉛化度が低いものが好ましい。例えば、CuKα線の回折角2θ=26.6度に対応する回折ピークの半価幅で0.015ラジアン以上であることが好ましい。黒鉛化度が低い人造黒鉛やハードカーボンは負極活物質として好ましい。結晶性の高い天然黒鉛は、単独では劣化が早いため、表面処理を行った天然黒鉛や人造黒鉛と併用することが好ましい。
バインダとしては、スチレン−ブタジエンゴム(SBR)、該スチレン−ブタジエンゴムに増粘剤としてカルボキシメチルセルロースを併用したもの(SBR−CMC)、PVdF、イミド系バインダ、或いはポリアクリル酸系バインダ等を好ましく採用することができる。導電助剤としては、カーボンブラック、アセチレンブラック、カーボンナノファイバCNF等を好ましく採用することができる。
負極活物質層15の表面には、非水電解液17に接触するVC由来の被膜(SEI層)16が形成されている。
[セパレータ7について]
セパレータ7は、ポリエチレン、ポリプロピレン等の合成樹脂よりなる多孔性薄膜であって、非水電解液17が含浸されている。
[非水電解液について]
非水電解液は、GBLを主成分とする非水溶媒にリチウム塩(支持電解質)を溶解してなる。非水電解液は、−40℃〜70℃において液体であり、必要に応じて添加剤が添加される。
非水溶媒は、GBLに加えて、EC、PC等の環状カーボネート、γ−バレロラクトン(GVL)等の環状エステル、DBC等の鎖状カーボネート、エーテル類、スルホン類等の各種有機溶媒から選ばれる1種又は2種以上を含有する混合溶媒とすることができる。
DBCはセパレータ7に対する非水電解液の濡れ性を改善する。そのような濡れ性改善溶媒としては、メチルブチルカーボネート(MBC)、エチルブチルカーボネート(EBC)等が挙げられ、なかでも、引火点が高い(91℃)n−DBCを好ましく採用することができる。非水溶媒における濡れ性改善溶媒の濃度は5容量%以上15容量%以下とすればよい。
好ましい混合溶媒例は、GBLと、EC及び/又はPCと、DBCとの混合溶媒である。当該混合溶媒においては、GBLの濃度を50容量%以上とし、EC又はPCを単独添加する場合、各々の濃度は5容量%以上30容量%以下とし、ECとPCの両者を添加する場合、両者合わせた濃度は10容量%以上40容量%以下とし、DBCの濃度は5容量%以上15容量%以下とすることが特に好ましい。
好ましいリチウム塩としては、LiPF、LiBF、LiPO、LiN(SOF)、LiN(SOCF、LiN(SO等が挙げられる。リチウム塩は、1種単独で用いることができ、また、2種以上を組み合わせて用いることができる。非水電解液におけるリチウム塩の濃度は、例えば、0.5M以上2.0M以下となるようにすればよい。
また、リチウムイオン二次電池の組立時において、非水電解液は、上述の正極活物質層12の表面にBOBイオン由来の被膜13を形成するためのLiBOB、並びに上述の負極活物質層15の表面にVC由来の被膜(SEI層)16を形成するためのVCを含有する。BOBイオン及びVCの殆どは初期充電処理によって被膜13,16の形成に消費されるが、それら処理後も一部は非水電解液中に残存する。なお、BOBイオン又はVCが非水電解液中に残存しない場合もある。
<GBLの分解問題>
リチウムイオン二次電池1の充電において、負極9にSEI層の形成不良等があると、負極9において非水電解液中のGBLの還元分解反応を生ずる。或いは、電池1が過放電の状態になったとき、負極9の集電体(銅)14が非水電解液17に溶解し、これに伴って、負極9においてGBLの還元分解反応を生ずる。
このGBLの分解生成物が非水電解液17において拡散すると、周辺の正常なSEI層の再形成を妨げられ、また、セパレータ7の目詰まりを引き起こす。その結果、SEI層の形成不良やセパレータ7を通過するLiイオンの移動阻害により、当該電池1のサイクル特性が悪化する。また、GBLの分解生成物が正極8に移動すると、正極活物質層12のバインダが分解して正極活物質が溶出し、正極8におけるLiイオンの捕捉性が悪化する。
<GBLの分解対策>
本実施形態では、上記GBLの分解問題に対策すべく、上述の如く、正極活物質層12の表面にBOBイオン由来の被膜13を形成し、負極活物質層15の表面にVC由来の被膜(SEI層)16を形成している。
BOBイオン由来の被膜13は、リチウムイオン二次電池の後述する初期充電において生成される。その生成の具体的なメカニズムは不明であるが、非水電解液中のBOBイオンが酸化分解し重合して被膜13が形成されると推測される。ここに、「BOBイオン由来の被膜」13は、当該被膜がBOBイオン由来の成分を含有することを表現したものであり、被膜13は、BOBイオンに由来しない、非水電解液の他の溶媒或いは支持塩の上記初期充電によって生ずる分解生成物を含み得る。
VC由来の被膜16は、リチウムイオン二次電池の後述する初期充電において生成される。その生成の具体的なメカニズムは不明であるが、非水電解液中のVCが還元分解し重合して形成されると推測される。ここに、「VC由来の被膜」16は、被膜16がVC由来の成分を含有することを表現したものであり、被膜16は、VCに由来しない、非水電解液の他の溶媒或いは支持塩の上記初期充電によって生ずる分解生成物を含み得る。
負極活物質層15の表面がVC由来の被膜16で覆われていることにより、非水電解液中のGBLの負極上での還元分解が抑制される。また、負極上でGBLの分解を生ずると、その分解生成物が正極側へ拡散移動するものの、正極活物質層12の表面はBOBイオン由来の被膜13によって覆われている。従って、GBLの分解生成物が正極活物質層12のバインダを破壊することで引き起こされる電池の出力低下が、BOBイオン由来の被膜13によって防止される。また、BOBイオン由来の被膜は、Liイオンが正極活物質の結晶構造内に挿入・離脱することを妨げないから、サイクル特性の維持に有利になる。
<リチウムイオン二次電池の製造方法>
上記リチウムイオン二次電池は、以下に述べる各工程を有する方法によって製造することができる。
[電池組立工程]
正極活物質と助剤(バインダ及び導電助剤)を混練し、スラリー状の合材を作成する。この合材を集電体11に塗布し乾燥させることによって、集電体11の表面に正極活物質層12が形成されたシート状の正極8を形成する。
負極活物質と助剤(バインダ及び導電助剤)を混練し、スラリー状の合材を作成する。この合材を集電体14に塗布し乾燥させることによって、集電体14の表面に負極活物質層15が形成されたシート状の負極9を形成する。
シート状の正極8とシート状の負極9を、セパレータ7が正極8と負極9の間に挟まるように積層して電極エレメントを得る。電極エレメントに正・負のリードを取り付けて電池ケース4に収容する。
GBLを主成分とする非水溶媒にLi塩を溶解してなる非水電解液を電池ケース4に注入口21から注入し、注入口21を栓22で封止することにより、電池組立体を得る。非水電解液には、LiBOB及びVCを添加しておく。
[初期充電(予備充電)処理]
上記電池組立体に対して初期充電処理を行なうことにより、被膜13,16を形成する。この初期充電は、負極9の電位がVCの還元電位以下となるように行なう。充電処理は、CC充電(定電流充電)処理及び定電流充電後に定電圧充電を行なうCCCV充電処理のいずれを採用してもよい。
この初期充電処理により、正極活物質層12の表面にLiBOBの電離によって生ずるBOBイオン由来の被膜13を形成し、負極活物質層15の表面にVC由来の被膜16を形成する。
上記初期充電処理による被膜13,16の形成に伴って発生するガスを電池ケースから除去するガス抜きを行なう。
[本充電処理・エージング処理]
上記初期充電処理の後、当該リチウムイオン二次電池の充電上限電圧への本充電を行ない、初回放電容量を確認した後、電池不良の有無をみるためのエージング処理を行なう。
<リチウムイオン二次電池の特性試験>
非水電解液を表1に示す組成とした各サンプルに係るリチウムイオン二次電池を上記製造方法に従って作製した。
Figure 2021044171
LiFePO(正極活物質)とカーボンブラック(導電助剤)を混合し、これに予めPVdF(結着剤)を溶解させておいた結着剤溶液を加えて混合することにより、ペースト状の正極合材を調製した。この正極合材をアルミニウム箔(集電体)の片面に塗布し、乾燥、加圧処理することにより、正極を作製した。一方、ハードカーボン(負極活物質)とカーボンブラック(導電助剤)を混合し、これに予めSBR−CMC(結着剤)を溶解させておいた結着剤溶液を加えて混合することにより、ペースト状の負極合材を調製した。この負極合材を銅箔(集電体)の片面に塗布し、乾燥、加圧処理することにより、負極を作製した。正極、微多孔性ポリプロピレンフィルム(セパレータ)、負極の順に積層し、表1に記載の組成の非水溶媒に係る電解液(支持電解質;LiPF=1M)を加えることにより、特性評価用の各サンプル(フルセル)を作製した。
そうして、各サンプルについて、サイクル劣化試験(容量維持率及び−30℃における最大電流の維持率の測定)及び保存劣化試験(容量維持率及び−30℃における最大電流値の維持率の測定)を行なった。
図3〜図6はサイクル劣化試験結果を示す。サイクル劣化試験の条件は次のとおりである。すなわち、電池温度は60℃、電池容量は3Ah、DOD(放電深度)は100%、充電条件及び放電条件各々は1Cとした。
図3はサイクル劣化試験前後の電池温度25℃で3Aにて放電したときの放電容量を示し、図4はその放電容量の維持率を示す。
サンプル1,3,4を比較すると(この順でVC量が増えている。)、VCの増量によって放電容量が大きくなり、放電容量の維持率も高くなる傾向にあり、サイクル特性劣化の改善が見られる。但し、VC添加量が多くなったとき(サンプル4)の改善度合は鈍くなっている。
サンプル1と5を比較すると、LiBOBを添加した後者は200サイクル品の放電容量の維持率が高くなっている。この点は、サンプル2と9(ECの一部をPCで置換したケースにおいて、後者はLiBOB添加)の比較、並びにサンプル3と6(VCを2質量%としたケースにおいて、後者はLiBOB添加)の比較でも同じであり、LiBOBを添加した後者は放電容量の維持率が高くなっている。
また、LiBOBを添加したサンプル5−9は、サイクルが進むときの放電容量の低下の仕方が比較的安定している。
サンプル1と2(VC=1.0質量%において、後者はECの一部をPCで置換)、サンプル6と8(VC=2.0質量%、LiBOB=0.5質量%において、後者はECの一部をPCで置換)、並びにサンプル7と9(VC=1.0質量%、LiBOB=1.0質量%において、後者はECの一部をPCで置換)の比較によれば、非水溶媒のECの一部をPCに置き換えても、放電容量の維持率には大きな変化は見られない。
図5はサイクル劣化試験前後の−30℃における最大電流を示し、図6はその最大電流の維持率を示す。この最大電流は、電池温度−30℃において、SOC100%から定電流放電したときの0.1秒目1.5V時の最大電流(30、50Aの2点から算出)である。なお、サンプル1の200サイクル品では、50Aにおいて、0.1秒で電圧が1.5V以下となったため、最大電流値は得られていない。
サンプル1,3,4をみると(この順でVC量が増えている。)、サンプル1に比して、サンプル3,4ではサイクル劣化特性の改善がみられるが、サンプル3(VC=2.0質量%)に比して、サンプル4(VC=3.0質量%)ではその改善度合が低くなっている。これから、VC添加量を過度に多くすることは好ましくないということができる。
サンプル1と5(VC=1.0質量%のケースにおいて、後者はLiBOB添加)を比較すると、後者は最大電流の維持率が高くなっている。この点は、サンプル2と9(ECの一部をPCで置換したケースにおいて、後者はLiBOB添加)の比較でも同じであり、LiBOBを添加した後者は最大電流の維持率が高くなっている。これから、LiBOBの添加でサイクル劣化特性が改善することがわかる。
図7〜図10は保存劣化試験結果を示す。保存劣化試験は、電池を温度60℃で保存して13日経過後及び26日経過後の放電容量及び−30℃における最大電流値を調べるというものである。
図7は保存劣化試験前後の電池温度25℃において3Aで放電したときの放電容量を示し、図8はその放電容量の維持率を示す。放電容量の測定条件はサイクル劣化試験の場合と同じである。
サンプル1,3,4を比較すると(この順でVC量が増えている。)、VCの増量によって放電容量の維持率が高くなる傾向にあり、サイクル劣化特性の改善が見られる。但し、VC添加量が多くなったとき(サンプル4)の改善度合は鈍くなっている。
サンプル1と5を比較すると、LiBOBを添加した後者は13日保存品の放電容量の維持率が高くなっている。この点は、サンプル2と9(ECの一部をPCで置換したケースにおいて、後者はLiBOB添加)の比較、並びにサンプル3と6(VCを2質量%としたケースにおいて、後者はLiBOB添加)の比較でも同じであり、LiBOBを添加した後者は放電容量の維持率が高くなっている。
また、LiBOBを添加したサンプル6−9は、保存が進むときの放電容量の低下の仕方が比較的安定している。
図9は保存劣化試験前後の−30℃における最大電流値を示し、図10はその最大電流の維持率を示す。最大電流値の算出条件はサイクル劣化試験の場合と同じである。
サンプル1,3,4をみると(この順でVC量が増えている。)、サンプル1に比して、サンプル3,4では保存劣化特性の改善がみられるが、サンプル3(VC=2.0質量%)では、フレッシュ品よりも13日保存品の最大電流値が高くなっており、電池特性が不安定になっている。
サンプル1と5(VC=1.0質量%のケースにおいて、後者はLiBOB添加)を比較すると、後者は最大電流の維持率が高くなっている。この点は、サンプル2と9(ECの一部をPCで置換したケースにおいて、後者はLiBOB添加)の比較でも同じであり、LiBOBを添加した後者は最大電流の維持率が高くなっている。これから、LiBOBの添加で保存劣化特性が改善することがわかる。
また、LiBOBを添加したサンプル6−9は、保存が進むときの最大電流の低下の仕方が比較的安定している。
以上のように、非水電解液にVC及びLiBOBを添加すると、放電容量及び最大電流のサイクル劣化特性が改善するとともに、放電容量及び最大電流の保存劣化特性が改善する。負極活物質層の表面にVC由来の被膜が形成されるとともに、正極活物質層の表面にBOBイオン由来の被膜が形成されるためと認められる。しかも、サイクル或いは保存が進むときの保存容量及び最大電流の低下の仕方が比較的安定している。
正極活物質がBOBイオン由来の被膜によって保護されていることは負極の分析によって確認している。すなわち、LiBOBを添加していないサンプル1−4では、負極上にFeの析出がみられた。これに対して、LiBOBを添加したサンプル5−9では、負極へのFeの析出はみられなかった。サンプル1−4における負極上へのFeの析出は、正極活物質であるLiFePOが非水電解液中へ溶出したことによるものである。サンプル5−9において、負極へのFeの析出がみられないということは、正極活物質層の表面にLiBOB由来の被膜が形成され、該被膜によって正極活物質が保護された結果と認められる。
また、上記各サンプルの電解液は、非水溶媒として、EC及びGBLに加えてDBCを含有するが、DBCを添加しないときは、注液性が悪く、得られた電池のサイクル寿命も短命であった。これは、DBC含有しない電解液はセパレータに対する濡れ性が悪いためである。実際、EC及びGBLを含有し、DBCを含有しない電解液をセパレータに滴下したところ、接触角が大きく、濡れ性が悪いことを確認した。
これに対して、上記各サンプルでは、注液性は良好であり、サイクル試験にも耐えうるものであった。これは、非水電解液へのDBCの添加によってセパレータに対する濡れ性が良好になったためである。すなわち、電解液の非水溶媒として粘度が高いGBLを採用するときは、セパレータに対する濡れ性を良好にするために、DBCを添加することが好ましい。
また、サンプル7の電解液の引火点をクリーブランド開放式測定器で測定したところ、103℃であり、GBLを主成分とする非水電解液が高い引火点を有することを確認した。
以上から、実施形態に係るリチウムイオン二次電池は、12V鉛バッテリの代替用バッテリやエンジン始動モータのバッテリとして、良好な低温始動性を長期間にわたって発揮することを期待することができる。
1 リチウムイオン二次電池
4 電池ケース
7 セパレータ
8 正極
9 負極
11 正極集電体
12 正極活物質層
13 BOBイオン由来の被膜
14 負極集電体
15 負極活物質層
16 VC由来の被膜
17 非水電解液

Claims (5)

  1. 集電体の表面に正極活物質層を有する正極と、集電体の表面に負極活物質層を有する負極と、非水電解液とが電池ケース内に収容されたリチウムイオン二次電池であって、
    上記非水電解液は、非水溶媒の主成分としてγ−ブチロラクトンを含有し、
    上記負極活物質層の表面にはビニレンカーボネート由来の被膜が形成されており、
    上記正極活物質層の表面には、ビスオキサレートボラートイオン由来の被膜が形成されていることを特徴とするリチウムイオン二次電池。
  2. 請求項1において、
    上記正極は、オリビン型結晶構造のリン酸鉄リチウムを上記正極活物質として含有することを特徴とするリチウムイオン二次電池。
  3. 上記負極は、炭素材料を上記負極活物質として含有することを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  4. 上記非水電解液は、上記非水溶媒として、上記γ−ブチロラクトンに加えて、ジブチルカーボネートを含有することを特徴とする請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。
  5. 集電体の表面に正極活物質層を有する正極と、集電体の表面に負極活物質層を有する負極と、非水電解液とが電池ケース内に収容されたリチウムイオン二次電池の製造方法であって、
    上記電池ケースに、上記正極及び上記負極を収容し、さらに、γ−ブチロラクトンを主成分とし且つビニレンカーボネートとリチウムビスオキサレートボラートを含有する非水溶媒にリチウム塩を溶解してなる非水電解液を封入して電池組立体を得る工程と、
    上記電池組立体に対して初期充電処理を行なうことにより、上記負極活物質層の表面に上記ビニレンカーボネート由来の被膜を形成するとともに、上記正極活物質層の表面に上記リチウムビスオキサレートボラートの電離によって生ずるビスオキサレートボラートイオン由来の被膜を形成する工程とを備えていることを特徴とするリチウムイオン二次電池の製造方法。
JP2019165929A 2019-09-12 2019-09-12 リチウムイオン二次電池及びその製造方法 Pending JP2021044171A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019165929A JP2021044171A (ja) 2019-09-12 2019-09-12 リチウムイオン二次電池及びその製造方法
US17/013,347 US20210083296A1 (en) 2019-09-12 2020-09-04 Lithium ion secondary battery and production method thereof
EP20194665.4A EP3793014A1 (en) 2019-09-12 2020-09-04 Lithium-ion secondary battery and production method thereof
CN202010920873.XA CN112490489A (zh) 2019-09-12 2020-09-04 锂离子二次电池及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165929A JP2021044171A (ja) 2019-09-12 2019-09-12 リチウムイオン二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
JP2021044171A true JP2021044171A (ja) 2021-03-18

Family

ID=72517086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165929A Pending JP2021044171A (ja) 2019-09-12 2019-09-12 リチウムイオン二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US20210083296A1 (ja)
EP (1) EP3793014A1 (ja)
JP (1) JP2021044171A (ja)
CN (1) CN112490489A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410522A (zh) * 2021-06-18 2021-09-17 山东省智能光电新能源研究院 一种提高锂离子电池sei膜稳定性的方法
CN113540570B (zh) * 2021-09-16 2021-12-10 北京壹金新能源科技有限公司 一种电解液、制备方法及包含其的锂离子电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243447A (ja) 1999-02-19 2000-09-08 Sony Corp ゲル電解質及びゲル電解質電池
JP4042034B2 (ja) * 2002-02-01 2008-02-06 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
CN104659414B (zh) * 2005-10-20 2019-04-12 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
CN101425611B (zh) * 2008-12-03 2010-09-15 北京科技大学 一种用于锂离子电池的高功能型电解液
CN101916878B (zh) * 2010-08-27 2012-12-12 上海奥威科技开发有限公司 一种以γ-丁内酯为基础溶剂的低温有机电解液及其应用
CN102522590B (zh) * 2011-12-26 2014-09-17 华为技术有限公司 一种非水有机电解液、包含它的锂离子二次电池及其制备方法和终端通讯设备
JP7111468B2 (ja) * 2014-11-03 2022-08-02 24エム・テクノロジーズ・インコーポレイテッド 半固体電極中の電極材料のプレリチオ化
JP2017021986A (ja) * 2015-07-10 2017-01-26 日立マクセル株式会社 非水二次電池
CN107681149A (zh) * 2016-08-02 2018-02-09 万向二三股份公司 一种快充型钛酸锂动力电池
CN107181003B (zh) * 2017-06-23 2019-12-10 上海交通大学 一种锂离子电池用安全电解液及含该电解液的锂离子电池
DE112019000263T5 (de) * 2018-01-10 2020-08-20 Mazda Motor Corporation Elektrolytlösung für lithiumionenakkumulator und lithiumionenakkumulator
CN109088097A (zh) * 2018-10-25 2018-12-25 河南省法恩莱特新能源科技有限公司 一种锂离子动力电池的阻燃电解液
CN109671982B (zh) * 2018-12-25 2021-05-11 河南电池研究院有限公司 一种匹配硅碳负极材料的锂离子电池高温高安全电解液

Also Published As

Publication number Publication date
EP3793014A1 (en) 2021-03-17
CN112490489A (zh) 2021-03-12
US20210083296A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5780071B2 (ja) 非水電解液二次電池及びその製造方法
US7368203B2 (en) Nonaqueous electrolyte secondary cell
JP4012174B2 (ja) 効率的な性能を有するリチウム電池
JP5783425B2 (ja) 非水電解質二次電池の製造方法
US20110223492A1 (en) Nonaqueous electrolyte secondary battery
WO2014128903A1 (ja) リチウムイオン二次電池
JP2019016483A (ja) 非水電解質二次電池
JP5622525B2 (ja) リチウムイオン二次電池
US20090305143A1 (en) Non-aqueous electrolyte secondary battery
JP6208560B2 (ja) リチウム二次電池
JP2020102348A (ja) リチウムイオン電池の製造方法およびリチウムイオン電池
JP5109349B2 (ja) 二次電池
US20210083296A1 (en) Lithium ion secondary battery and production method thereof
JP2003142078A (ja) 非水系二次電池
CN109119629B (zh) 非水电解液二次电池
JP2009134970A (ja) 非水電解質電池
JP4867161B2 (ja) 非水電解質二次電池
JP5326923B2 (ja) 非水電解液二次電池
JP2003168427A (ja) 非水電解質電池
JP4687942B2 (ja) 非水電解質二次電池の製造方法
JP5405353B2 (ja) 非水電解液二次電池
JP6585365B2 (ja) 非水電解質二次電池
CN111834669B (zh) 锂离子电池电解液以及锂离子电池
JP2003109662A (ja) 二次電池の製造方法
JP2022049830A (ja) リチウムイオン二次電池及びその製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201222