US20110223492A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
US20110223492A1
US20110223492A1 US13/038,818 US201113038818A US2011223492A1 US 20110223492 A1 US20110223492 A1 US 20110223492A1 US 201113038818 A US201113038818 A US 201113038818A US 2011223492 A1 US2011223492 A1 US 2011223492A1
Authority
US
United States
Prior art keywords
nonaqueous electrolyte
electrode plate
positive electrode
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/038,818
Inventor
Nobuhiro Sakitani
Tatsuya Aizawa
Satoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Assigned to SANYO ELECTRIC CO., LTD. reassignment SANYO ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AIZAWA, TATSUYA, SAKITANI, NOBUHIRO, YAMAMOTO, SATOSHI
Publication of US20110223492A1 publication Critical patent/US20110223492A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to a nonaqueous secondary battery with a small increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, when using a non-aqueous electrolyte containing a nitrile group-containing compound.
  • nonaqueous secondary batteries represented by lithium ion secondary batteries having a high energy density and high capacity are widely used.
  • lithium-cobalt composite oxides and dissimilar metallic element-containing lithium-cobalt composite oxides are primarily used because their battery characteristics in various aspects are especially higher than those of other oxides.
  • cobalt is expensive and exists in small amounts as a natural resource.
  • a nonaqueous electrolyte secondary battery tends to suffer positive electrode degradation when being stored in a charged state under high-temperature conditions. This is because the storage of a nonaqueous electrolyte secondary battery in a charged state causes oxidative decomposition of the nonaqueous electrolytic solution on the positive electrode active material and elution of transition metal ions of the positive electrode active material. Moreover, the decomposition of the nonaqueous electrolytic solution and the metal ion elution may proceed faster in a high-temperature environment than in a room-temperature environment.
  • JP-A-2004-179146 discloses a case in which a variety of dinitrile compounds is added to a nonaqueous electrolyte for the purpose of improving the cycling characteristics, battery capacity, and high-temperature charged storage characteristics of a nonaqueous electrolyte secondary battery.
  • JP-T-2007-538365 discloses a case in which a nitrile group-containing compound is added to a nonaqueous electrolyte for the purpose of improving the high-temperature cycling characteristics and safety, and in addition, fluorinated toluene is added to the nonaqueous electrolyte for the purpose of preventing battery expansion phenomena and capacity reduction during high-temperature charged storage.
  • JP-A-2008-108586 discloses a case in which a dinitrile compound is added to a nonaqueous electrolyte for the purpose of achieving a nonaqueous electrolyte secondary battery with high capacity and superior charge-discharge cycling and absorption characteristics.
  • JP-A-2009-32653 discloses a case of the use of a nonaqueous electrolytic solution containing a compound including two to four nitrile groups in its structural formula and at least one compound selected from the group consisting of fluorinated cyclic carbonate having two or more fluorine atoms, monofluorophosphate, and difulorophosphate, for the purpose of preventing gas generation during high temperature charged storage and for improving the cycling characteristics in a nonaqueous secondary battery.
  • US Patent Publication No. 2008/0118847 discloses a case in which an inorganic material coating layer of Al 2 O 3 , ZrO 2 , or the like is formed on the surface of positive electrode active material particles and a dinitrile compound is added to a nonaqueous electrolytic solution for the purpose of improving the cycling characteristics at high temperature (60° C.) and the trickle charging characteristic at low voltage.
  • WO 2006/038532 discloses a separator having impregbability with nonaqueous electrolytic solution, mechanical strength, and permeability as well as high-temperature charged storage characteristics, when used in a battery.
  • the separator is a microporous polyolefin multilayer film formed of a stack of two or more films containing polyethylene and polypropylene, with the content of the polypropylene, which contains inorganic particles, in on at least one surface layer being not less than 5% by mass and not more than 90% by mass.
  • PCT Publication No. WO 2006/038532 sets forth a separator that enables improvement of the high-temperature charged storage characteristics of a nonaqueous electrolyte secondary battery.
  • the separator is formed of a multilayer film of two or more layers containing polyethylene and polypropylene, and the inorganic particles are dispersed in a microporous polyolefin film that contains polypropylene. Therefore, the effect, to be described later, of trapping of decomposition products by the inorganic particles cannot be adequately obtained.
  • PCT Publication No. WO 2006/038532 sets forth nothing concerning gas generation or increased internal resistance during high-temperature charged storage when a nonaqueous electrolyte containing a nitrile group-containing compound is used.
  • the present inventors have conducted various studies on the conditions for achieving a nonaqueous electrolyte secondary battery with a smaller increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, even when a nonaqueous electrolyte containing a nitrile group-containing compound is used without an inorganic material coating layer being formed on the surface of the positive electrode active material particles.
  • the inventors arrived at the present invention when they discovered that forming an inorganic particle layer between the positive electrode plate and the negative electrode plate can provide a solution.
  • An advantage of some aspects of the invention is to provide a nonaqueous electrolyte secondary battery with a smaller increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, even when a commonly used nonaqueous electrolyte containing a nitrile group-containing compound is used without an inorganic material coating layer being formed on the surface of positive electrode active material particles.
  • a nonaqueous electrolyte secondary battery includes a positive electrode plate containing positive electrode active material, a negative electrode plate containing negative electrode active material, a nonaqueous electrolyte containing a nitrile group-containing compound, and a separator provided between the positive electrode plate and the negative electrode plate.
  • a layer of inorganic particles is formed between the positive electrode plate and the separator or between the negative electrode plate and the separator.
  • an inorganic particle layer is formed between the positive electrode plate and the separator or between the negative electrode plate and the separator.
  • Such inorganic particle layer traps the decomposition products of the nitrile group-containing compound that are generated on the surface of the positive electrode active material before the products reach the negative electrode surface, thereby preventing them from reaching the negative electrode surface. Accordingly, it becomes possible to prevent gas generation at the negative electrode when the battery is stored in a charged state under high temperature conditions.
  • the inorganic particles used to form the inorganic particle layer may be selected as appropriate from among rutile-type titanium oxide (rutile-type titania), aluminum oxide (alumina), zirconium oxide (zirconia), magnesium oxide (magnesia), and the like.
  • the inorganic particle layer be formed between the positive electrode plate and the separator.
  • Decomposition products of the nitrile group-containing compound are formed on the surface of the positive electrode active material. Therefore, the decomposition products can be trapped more efficiently when the inorganic particle layer is formed in the vicinity of the positive electrode plate, which is the source of generation of the decomposition products of the nitrile group-containing compound, as in the nonaqueous electrolyte secondary battery according to the aspect of the invention.
  • the inorganic particle layer be formed on a surface of the positive electrode plate.
  • the inorganic particle layer may shrink together with the sheet-like separator when heat is generated.
  • the nitrile group-containing compound be contained in a proportion of not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte.
  • the advantageous effects of the nitrile group-containing compound will not manifest, whereas if it exceeds 5.0% by mass, the protective coating formed on the surface of the positive electrode plate will become too thick, thereby inhibiting absorption and desorption of Li ions into/from the positive electrode active material.
  • the advantageous effects will be exerted satisfactorily when the content of the nitrile group-containing compound is not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte, as in the nonaqueous electrolyte secondary battery according to the aspect of the invention.
  • the average particle size of the inorganic particles be not more than 1 ⁇ m.
  • the average particle size of the inorganic particles is not more than 1 ⁇ m, the size of the pores formed in the inorganic particle layer will be small enough to effectively trap the decomposition products of the nitrile group-containing compound.
  • a more preferable average particle size for the inorganic particles will be in the range of 0.1 to 0.8 ⁇ m.
  • the surfaces of the inorganic particles will preferably be treated with a compound that is able to impart hydrophilicity, such as Al, Si, or Ti.
  • the inorganic particles be at least one kind selected from among rutile-type titania and alumina.
  • Rutile-type titania or alumina particles are inexpensive in cost, do not react readily with lithium metal or lithium ions, and are capable of being stably present in a nonaqueous electrolyte secondary battery according to the aspect of the invention. Therefore, the inorganic particle layer degrades less in the nonaqueous electrolyte secondary battery according to the aspect of the invention, in which the inorganic particles that form the inorganic particle layer are rutile-type titania or alumina.
  • the average pore size of the separator be smaller than the average particle size of the inorganic particles used in the inorganic particle layer.
  • this aspect of the invention provides a nonaqueous electrolyte secondary battery in which variation in the charge-discharge characteristics is small.
  • the inorganic particle layer have a thickness of not more than 4 ⁇ m.
  • the thickness of the inorganic particle layer will be in the range of 0.5 ⁇ m to 4 ⁇ m, and still more preferably, in the range of 0.5 ⁇ m to 2 ⁇ m.
  • FIG. 1A is a plan view of a laminate-type nonaqueous electrolyte secondary battery used for determination of a variety of battery characteristics in the Examples and Comparative Examples
  • FIG. 1B is a bottom view of FIG. 1A
  • FIG. 1C is a bottom view of the laminate-type nonaqueous electrolyte secondary battery when being actually used.
  • Lithium cobalt oxide as positive electrode active material, acetylene black as a carbonaceous conductive material, and PVDF (polyvinylidene fluoride) were mixed in the proportions of 95:2.5:2.5 by mass. This mixture was then mixed with NMP (N-methylpyrrolidone) as a solvent, using a mixer, to prepare positive electrode mixture slurry. The slurry was applied to both surfaces of a positive electrode collector of aluminum having a thickness of 15 ⁇ m by the doctor blade method, and dried to form active material layers on both surfaces of the positive electrode collector. Then, the resultant product was compressed using a compression roller to produce a positive electrode plate having a short side length of 50.0 mm. The packing density of the positive electrode plate was 3.60 g/cm 3 .
  • an inorganic particle layer was formed on the surface of the positive electrode plate.
  • the inorganic particle layer was formed as follows. First, aqueous slurry for forming an inorganic particle layer was prepared using water as a solvent, titanium oxide (TiO 2 , average particle size 0.25 ⁇ m, no surface treated layer, trade name “CR-EL”, manufactured by ISHIHARA SANGYO KAISHA, LTD.) as inorganic particles, carboxymethyl cellulose CMC (the trade name of “1380” manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.) as a dispersion stabilizer, and SBR (styrene-butadiene rubber) as an aqueous binder.
  • TiO 2 titanium oxide
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • the aqueous slurry was prepared in such a manner that the concentration of the solid content of the inorganic particles was 30 parts by mass, the content of the dispersion stabilizer was 0.2 parts by mass with respect to 100 parts by mass of the inorganic particles, and the content of the binder was 3.8 parts by mass with respect to 100 parts by mass of the inorganic particles.
  • the aqueous slurry was coated onto both surfaces of the positive electrode plate by using a gravure method.
  • the water serving as solvent was then dried and removed, resulting in inorganic particle layers on both surfaces of the positive electrode plate.
  • the thickness of each inorganic particle layer was 2 ⁇ m, so that the total thickness of the inorganic particle layers on both surfaces was formed to be 4 nm.
  • Negative electrode slurry was prepared from artificial graphite, a solution of 1% by mass of CMC (trade name “1380” manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.) in pure water, and SBR, in the solid content mass proportion of 98:1:1, using a multi-shaft disperser/kneader (“T.K. COMBI MIX (R)” manufactured by PRIMIX Corporation). Then the slurry was applied to both surfaces of a negative electrode collector of copper having a thickness of 8 ⁇ m by the doctor blade method, and then dried to form active material layers on both surfaces of the negative electrode collector. After that, the resultant product was compressed using a compression roller to produce a negative electrode plate having a short side length of 52.0 mm. The packing density of the negative electrode plate was 1.60 g/cc.
  • the potential of graphite is 0.1V relative to lithium.
  • the active material packing amounts in the positive electrode plate and the negative electrode plate were adjusted so that the ratio of the positive electrode plate and negative electrode plate charging capacities (negative electrode charging capacity divided by positive electrode charging capacity) was 1.1 at the potential of the positive electrode active material (4.45 V relative to lithium) as design standard.
  • Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed as nonaqueous solvents in the proportion of 30:70 by volume.
  • lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was dissolved in the mixed solvent to the amount of 1 M (mol/liter).
  • pimelonitrile or adiponitrile was added as a nitrile group-containing compound in a predetermined proportion to prepare an electrolytic solution.
  • the amount of the added pimelonitrile was 1% by mass in the batteries of the Example 1 and the Comparative Example 1, 0.5% by mass in the battery of the Example 2, and 0.05% by mass in the battery of the Example 3.
  • the amount of the added adiponitrile was 1% by mass in the batteries of the Example 4 and the Comparative Example 4. In the batteries of the Comparative Examples 2 and 3, neither pimelonitrile nor adiponitrile was added.
  • the spirally wound electrode assembly was pressed into a flat shape and inserted into an aluminum laminate battery outer case. Then, the electrolytic solution was poured into the battery outer case and sealed, resulting in a laminate-type nonaqueous electrolyte secondary battery for testing.
  • the design capacity of the laminate-type nonaqueous electrolyte secondary battery was 850 mAh with charging final voltage of 4.35 V.
  • FIG. 1 The structure of this laminate-type nonaqueous electrolyte secondary battery is shown in FIG. 1 .
  • a flat-shaped spirally-wound electrode assembly 13 having a positive electrode lead terminal 11 and a negative electrode lead terminal 12 is disposed in a cup-like laminated molded body 14 .
  • First and second side seal portions 15 a and 15 b are formed on both side edges, and a top seal portion 16 is formed on the upper edge. Both of the side seal portions 15 a and 15 b are normally folded to extend along the cup-like molded body 14 during use, as shown in FIG. 1C .
  • each battery was charged again at 25° C. at a constant current of 1 It until the battery voltage reached 4.35 V. After the battery voltage reached 4.35 V, the battery was charged at a constant voltage of 4.35 V until charging current reached 1/50 It. As a result, a fully-charged battery was obtained.
  • Each fully-charged battery was stored in a thermostatic chamber at 60° C. for 30 days and then left to cool down to 25° C.
  • the discharge capacity when the battery was discharged at a constant current of 1 It until the battery voltage reached 3.0 V was measured, and the residual capacity was derived as the ratio (%) of such discharge capacity after high-temperature storage to the initial discharge capacity.
  • Such residual capacity is used to determine the self-discharge amount during high-temperature storage. The higher the self-discharge amount is, residual capacity the lower the residual capacity is.
  • the amount of internal resistance change before and after high-temperature storage was determined by measuring the internal resistance by using the AC method, and in addition, the rate of increase (%) in battery thickness was determined by measuring the thickness of the battery with a digital indicator (manufactured by Sony Corporation). The results are listed in Table 1.
  • the pimelonitrile which is a nitrile group-containing compound, formed a protective coating on the positive electrode active material surface and inhibited reaction between the positive electrode active material and the nonaqueous electrolytic solution, thereby improving the residual capacity, while the decomposition products of part of the pimelonitrile reacted on the surface of the negative electrode plate, causing gas generation and thus an increase in battery thickness.
  • the residual capacity is higher and the rate of increase in internal resistance and the rate of increase in battery thickness are lower in the battery of the Example 1. This may be because the inorganic particle layer formed on the surface of the positive electrode plate trapped the decomposition products of part of the pimelonitrile and prevented them from reaching the surface of the negative electrode plate, thereby reducing gas generation and preventing an increase in battery thickness.
  • the prevention of a battery thickness increase may also have prevented an increase in internal resistance of the battery and have improved the residual capacity.
  • the amount of nitrile group-containing compound that is added to the nonaqueous electrolytic solution will preferably be not less than 0.05% by mass.
  • nitrile group-containing compound other than adiponitrile at least pimelonitrile can be used to achieve a similar effect. It is also recognized that even an ordinary nitrile group-containing compound will also achieve a similar effect because the effect of an additive such as adiponitrile and pimelonitrile results from the presence of a nitrile group (cyano group) in the molecules.
  • the inorganic particle layer is formed on the surface of the positive electrode plate in the Examples, the inorganic particle layer may alternatively be formed on the surface of the negative electrode plate. However, considering that the decomposition products of the nitrile group-containing compound are formed on the positive electrode plate, forming the layer on the surface of the positive electrode plate exerts a better effect.
  • laminate-type nonaqueous electrolyte secondary batteries are described by way of example in order to easily determine the amount of gas generation inside the battery, that is, the battery expansion.
  • the invention does not depend on the shape of the electrode assembly of a nonaqueous electrolyte secondary battery, and therefore is applicable to a cylindrical nonaqueous electrolyte secondary battery using a cylindrical spirally-wound electrode assembly, a prismatic or elliptic cylindrical nonaqueous electrolyte secondary battery using a spirally-wound electrode assembly in a flat shape, or a stack-type nonaqueous electrolyte secondary battery having a stack of a positive electrode plate and a negative electrode plate with a separator interposed therebetween, besides other like batteries.
  • lithium cobalt oxide was used as positive electrode active material, and the charging voltage was as high as 4.35 V (positive electrode potential is 4.45 V relative to lithium).
  • a high charging voltage was used to confirm in a short time the effect of addition of a nitrile group-containing compound, because a higher charging voltage accelerates the reactions of the nitrile group-containing compound on the surface of the positive electrode active material.

Abstract

To provide a nonaqueous electrolyte secondary battery with a small increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, when using a non-aqueous electrolyte containing a nitrile group-containing compound. The nonaqueous electrolyte secondary battery includes a positive electrode plate containing positive electrode active material, a negative electrode plate containing negative electrode active material, a nonaqueous electrolyte containing a nitrile group-containing compound, and a separator provided between the positive electrode plate and the negative electrode plate, and is also provided with a layer of inorganic particles between the positive electrode plate and the separator or between the negative electrode plate and the separator. It is preferable that the layer of inorganic particles be formed on a surface of the positive electrode plate.

Description

    TECHNICAL FIELD
  • The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to a nonaqueous secondary battery with a small increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, when using a non-aqueous electrolyte containing a nitrile group-containing compound.
  • BACKGROUND ART
  • Recently, as power supplies for driving portable electronic equipment, such as cell phones, portable personal computers, and portable music players, and further, as power supplies for hybrid electric vehicles (HEVs) and electric vehicles (EVs), nonaqueous secondary batteries represented by lithium ion secondary batteries having a high energy density and high capacity are widely used.
  • For the positive electrode active material in these nonaqueous secondary batteries, use is made, either singly or mixed together, of LiCoO2, LiNiO2, LiNixCo1-xO2 (x=0.01 to 0.99), LiMnO2, LiMn2O4, and LiCoxMnyNizO2 (x+y+z=1), or LiFePO4 or the like, all of which can reversibly absorb and desorb lithium ions.
  • Among them, lithium-cobalt composite oxides and dissimilar metallic element-containing lithium-cobalt composite oxides are primarily used because their battery characteristics in various aspects are especially higher than those of other oxides. However, cobalt is expensive and exists in small amounts as a natural resource. Thus, in order to continue to use such lithium-cobalt composite oxides and dissimilar metallic element-containing lithium-cobalt composite oxides as the positive electrode active material of nonaqueous secondary batteries, it is desired to raise the performance of nonaqueous secondary batteries to even higher levels.
  • On the other hand, a nonaqueous electrolyte secondary battery tends to suffer positive electrode degradation when being stored in a charged state under high-temperature conditions. This is because the storage of a nonaqueous electrolyte secondary battery in a charged state causes oxidative decomposition of the nonaqueous electrolytic solution on the positive electrode active material and elution of transition metal ions of the positive electrode active material. Moreover, the decomposition of the nonaqueous electrolytic solution and the metal ion elution may proceed faster in a high-temperature environment than in a room-temperature environment.
  • In this respect, JP-A-2004-179146 discloses a case in which a variety of dinitrile compounds is added to a nonaqueous electrolyte for the purpose of improving the cycling characteristics, battery capacity, and high-temperature charged storage characteristics of a nonaqueous electrolyte secondary battery. JP-T-2007-538365 discloses a case in which a nitrile group-containing compound is added to a nonaqueous electrolyte for the purpose of improving the high-temperature cycling characteristics and safety, and in addition, fluorinated toluene is added to the nonaqueous electrolyte for the purpose of preventing battery expansion phenomena and capacity reduction during high-temperature charged storage.
  • JP-A-2008-108586 discloses a case in which a dinitrile compound is added to a nonaqueous electrolyte for the purpose of achieving a nonaqueous electrolyte secondary battery with high capacity and superior charge-discharge cycling and absorption characteristics. JP-A-2009-32653 discloses a case of the use of a nonaqueous electrolytic solution containing a compound including two to four nitrile groups in its structural formula and at least one compound selected from the group consisting of fluorinated cyclic carbonate having two or more fluorine atoms, monofluorophosphate, and difulorophosphate, for the purpose of preventing gas generation during high temperature charged storage and for improving the cycling characteristics in a nonaqueous secondary battery.
  • US Patent Publication No. 2008/0118847 discloses a case in which an inorganic material coating layer of Al2O3, ZrO2, or the like is formed on the surface of positive electrode active material particles and a dinitrile compound is added to a nonaqueous electrolytic solution for the purpose of improving the cycling characteristics at high temperature (60° C.) and the trickle charging characteristic at low voltage.
  • PCT Publication No. WO 2006/038532 discloses a separator having impregbability with nonaqueous electrolytic solution, mechanical strength, and permeability as well as high-temperature charged storage characteristics, when used in a battery. The separator is a microporous polyolefin multilayer film formed of a stack of two or more films containing polyethylene and polypropylene, with the content of the polypropylene, which contains inorganic particles, in on at least one surface layer being not less than 5% by mass and not more than 90% by mass.
  • According to the inventions disclosed in JP-A-2004-179146, JP-T-2007-538365, JP-A-2008-108586, and JP-A-2009-32653, it is recognized to some extent that because a nitrile group-containing compound is absorbed into the surface of the positive electrode active material in a charged state, the surface of the positive electrode active material can be protected, and the side reactions between the nonaqueous electrolyte and the positive electrode active material can be inhibited, and therefore these inventions have advantages for improving battery characteristics during high-temperature storage. However, when a nonaqueous electrolyte containing a nitrile group-containing compound is stored in a charged state at a high temperature, as set forth in JP-A-2007-538365 and JP-A-2009-32653, part of the nitrile group-containing compound decomposes and generates gas. Moreover, according to the results of experiments by the present inventors, when a nonaqueous electrolyte containing a nitrile compound is used, an increase in internal resistance is observed in the battery after storage in a charged state at a high temperature, which is presumably caused by excessive formation of a protective film on the surface of the positive electrode active material.
  • Furthermore, when the surface of the positive electrode active material particles is coated with an inorganic material coating layer of Al2O3, ZrO2, or the like, as in the invention disclosed in US Patent Publication No. 2008/0118847, the inorganic material coating layer, which constitutes an insulating material, is not involved in the electrode reactions, and therefore, to a degree corresponding to that non-involvement, the capacity per unit volume of the battery is reduced and the internal resistance increases. Moreover, US Patent Publication No. 2008/0118847 does not disclose any gas generation state during high-temperature charged storage when a nonaqueous electrolyte containing a nitrile group-containing compound is used.
  • PCT Publication No. WO 2006/038532 sets forth a separator that enables improvement of the high-temperature charged storage characteristics of a nonaqueous electrolyte secondary battery. However, the separator is formed of a multilayer film of two or more layers containing polyethylene and polypropylene, and the inorganic particles are dispersed in a microporous polyolefin film that contains polypropylene. Therefore, the effect, to be described later, of trapping of decomposition products by the inorganic particles cannot be adequately obtained. Moreover, PCT Publication No. WO 2006/038532 sets forth nothing concerning gas generation or increased internal resistance during high-temperature charged storage when a nonaqueous electrolyte containing a nitrile group-containing compound is used.
  • The present inventors have conducted various studies on the conditions for achieving a nonaqueous electrolyte secondary battery with a smaller increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, even when a nonaqueous electrolyte containing a nitrile group-containing compound is used without an inorganic material coating layer being formed on the surface of the positive electrode active material particles. As a result, the inventors arrived at the present invention when they discovered that forming an inorganic particle layer between the positive electrode plate and the negative electrode plate can provide a solution.
  • SUMMARY
  • An advantage of some aspects of the invention is to provide a nonaqueous electrolyte secondary battery with a smaller increase in internal resistance and less gas generation during high-temperature charged storage, and with a high residual capacity, even when a commonly used nonaqueous electrolyte containing a nitrile group-containing compound is used without an inorganic material coating layer being formed on the surface of positive electrode active material particles.
  • According to an aspect of the present invention, a nonaqueous electrolyte secondary battery includes a positive electrode plate containing positive electrode active material, a negative electrode plate containing negative electrode active material, a nonaqueous electrolyte containing a nitrile group-containing compound, and a separator provided between the positive electrode plate and the negative electrode plate. A layer of inorganic particles is formed between the positive electrode plate and the separator or between the negative electrode plate and the separator.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, an inorganic particle layer is formed between the positive electrode plate and the separator or between the negative electrode plate and the separator. Such inorganic particle layer traps the decomposition products of the nitrile group-containing compound that are generated on the surface of the positive electrode active material before the products reach the negative electrode surface, thereby preventing them from reaching the negative electrode surface. Accordingly, it becomes possible to prevent gas generation at the negative electrode when the battery is stored in a charged state under high temperature conditions.
  • The inorganic particles used to form the inorganic particle layer may be selected as appropriate from among rutile-type titanium oxide (rutile-type titania), aluminum oxide (alumina), zirconium oxide (zirconia), magnesium oxide (magnesia), and the like.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the inorganic particle layer be formed between the positive electrode plate and the separator.
  • Decomposition products of the nitrile group-containing compound are formed on the surface of the positive electrode active material. Therefore, the decomposition products can be trapped more efficiently when the inorganic particle layer is formed in the vicinity of the positive electrode plate, which is the source of generation of the decomposition products of the nitrile group-containing compound, as in the nonaqueous electrolyte secondary battery according to the aspect of the invention.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the inorganic particle layer be formed on a surface of the positive electrode plate.
  • If the inorganic particle layer is formed on a surface of a sheet-like separator, the inorganic particle layer may shrink together with the sheet-like separator when heat is generated. By contrast, it is preferable, in terms of safety of batteries, to form an inorganic particle layer on the surface of the positive electrode plate as in the nonaqueous electrolyte secondary battery according to the aspects of the invention, because then the inorganic particle layer will not shrink even when heat is generated, and therefore, short circuits between the positive electrode and the negative electrode will be unlikely to occur.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the nitrile group-containing compound be contained in a proportion of not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte.
  • If the content of the nitrile group-containing compound is less than 0.05% by mass with respect to the total mass of the nonaqueous electrolyte, the advantageous effects of the nitrile group-containing compound will not manifest, whereas if it exceeds 5.0% by mass, the protective coating formed on the surface of the positive electrode plate will become too thick, thereby inhibiting absorption and desorption of Li ions into/from the positive electrode active material. Hence, the advantageous effects will be exerted satisfactorily when the content of the nitrile group-containing compound is not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte, as in the nonaqueous electrolyte secondary battery according to the aspect of the invention.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the average particle size of the inorganic particles be not more than 1 μm.
  • When the average particle size of the inorganic particles is not more than 1 μm, the size of the pores formed in the inorganic particle layer will be small enough to effectively trap the decomposition products of the nitrile group-containing compound. A more preferable average particle size for the inorganic particles will be in the range of 0.1 to 0.8 μm. In consideration of the dispersiveness in slurry during preparation of the inorganic particle layer, the surfaces of the inorganic particles will preferably be treated with a compound that is able to impart hydrophilicity, such as Al, Si, or Ti.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the inorganic particles be at least one kind selected from among rutile-type titania and alumina.
  • Rutile-type titania or alumina particles are inexpensive in cost, do not react readily with lithium metal or lithium ions, and are capable of being stably present in a nonaqueous electrolyte secondary battery according to the aspect of the invention. Therefore, the inorganic particle layer degrades less in the nonaqueous electrolyte secondary battery according to the aspect of the invention, in which the inorganic particles that form the inorganic particle layer are rutile-type titania or alumina.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the average pore size of the separator be smaller than the average particle size of the inorganic particles used in the inorganic particle layer.
  • When the average pore size of the separator is smaller than the average particle size of the inorganic particles used for the inorganic particle layer, then even if some of the inorganic particles separate off, those inorganic particles will be prevented from intruding into the micro-pores of the separator, so that reduction in the discharging performance can be avoided. Therefore, this aspect of the invention provides a nonaqueous electrolyte secondary battery in which variation in the charge-discharge characteristics is small.
  • In the nonaqueous electrolyte secondary battery according to the aspect of the invention, it is preferable that the inorganic particle layer have a thickness of not more than 4 μm.
  • If the inorganic particle layer is too thin, the advantageous effects obtained by forming the inorganic particle layer may be unsatisfactory, whereas if the inorganic particle layer is too thick, the load characteristic and the energy density of the battery may be reduced. More preferably, the thickness of the inorganic particle layer will be in the range of 0.5 μm to 4 μm, and still more preferably, in the range of 0.5 μm to 2 μm.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
  • FIG. 1A is a plan view of a laminate-type nonaqueous electrolyte secondary battery used for determination of a variety of battery characteristics in the Examples and Comparative Examples, FIG. 1B is a bottom view of FIG. 1A, and FIG. 1C is a bottom view of the laminate-type nonaqueous electrolyte secondary battery when being actually used.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Exemplary embodiments of the invention will now be described in detail with reference to examples and comparative examples. However, the examples described below are merely illustrative examples of nonaqueous electrolyte secondary batteries that embody the technical spirit of the invention, and are not intended to limit the invention to these particular nonaqueous electrolyte secondary batteries. The invention can be equally applied to various modified cases without departing from the technical spirit described in the claims.
  • Preparation of Positive Electrode Plate
  • Lithium cobalt oxide as positive electrode active material, acetylene black as a carbonaceous conductive material, and PVDF (polyvinylidene fluoride) were mixed in the proportions of 95:2.5:2.5 by mass. This mixture was then mixed with NMP (N-methylpyrrolidone) as a solvent, using a mixer, to prepare positive electrode mixture slurry. The slurry was applied to both surfaces of a positive electrode collector of aluminum having a thickness of 15 μm by the doctor blade method, and dried to form active material layers on both surfaces of the positive electrode collector. Then, the resultant product was compressed using a compression roller to produce a positive electrode plate having a short side length of 50.0 mm. The packing density of the positive electrode plate was 3.60 g/cm3.
  • Formation of Porous Layer on Positive Electrode Plate Surface
  • In the Examples 1 to 4 and the Comparative Example 3, an inorganic particle layer was formed on the surface of the positive electrode plate. The inorganic particle layer was formed as follows. First, aqueous slurry for forming an inorganic particle layer was prepared using water as a solvent, titanium oxide (TiO2, average particle size 0.25 μm, no surface treated layer, trade name “CR-EL”, manufactured by ISHIHARA SANGYO KAISHA, LTD.) as inorganic particles, carboxymethyl cellulose CMC (the trade name of “1380” manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.) as a dispersion stabilizer, and SBR (styrene-butadiene rubber) as an aqueous binder.
  • The aqueous slurry was prepared in such a manner that the concentration of the solid content of the inorganic particles was 30 parts by mass, the content of the dispersion stabilizer was 0.2 parts by mass with respect to 100 parts by mass of the inorganic particles, and the content of the binder was 3.8 parts by mass with respect to 100 parts by mass of the inorganic particles. The aqueous slurry was coated onto both surfaces of the positive electrode plate by using a gravure method. The water serving as solvent was then dried and removed, resulting in inorganic particle layers on both surfaces of the positive electrode plate. The thickness of each inorganic particle layer was 2 μm, so that the total thickness of the inorganic particle layers on both surfaces was formed to be 4 nm.
  • Preparation of Negative Electrode Plate
  • Negative electrode slurry was prepared from artificial graphite, a solution of 1% by mass of CMC (trade name “1380” manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.) in pure water, and SBR, in the solid content mass proportion of 98:1:1, using a multi-shaft disperser/kneader (“T.K. COMBI MIX (R)” manufactured by PRIMIX Corporation). Then the slurry was applied to both surfaces of a negative electrode collector of copper having a thickness of 8 μm by the doctor blade method, and then dried to form active material layers on both surfaces of the negative electrode collector. After that, the resultant product was compressed using a compression roller to produce a negative electrode plate having a short side length of 52.0 mm. The packing density of the negative electrode plate was 1.60 g/cc.
  • It is to be noted that the potential of graphite is 0.1V relative to lithium. The active material packing amounts in the positive electrode plate and the negative electrode plate were adjusted so that the ratio of the positive electrode plate and negative electrode plate charging capacities (negative electrode charging capacity divided by positive electrode charging capacity) was 1.1 at the potential of the positive electrode active material (4.45 V relative to lithium) as design standard.
  • Preparation of Electrolytic Solution
  • Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed as nonaqueous solvents in the proportion of 30:70 by volume. Then lithium hexafluorophosphate (LiPF6) as an electrolyte salt was dissolved in the mixed solvent to the amount of 1 M (mol/liter). Then, pimelonitrile or adiponitrile was added as a nitrile group-containing compound in a predetermined proportion to prepare an electrolytic solution. The amount of the added pimelonitrile was 1% by mass in the batteries of the Example 1 and the Comparative Example 1, 0.5% by mass in the battery of the Example 2, and 0.05% by mass in the battery of the Example 3. The amount of the added adiponitrile was 1% by mass in the batteries of the Example 4 and the Comparative Example 4. In the batteries of the Comparative Examples 2 and 3, neither pimelonitrile nor adiponitrile was added.
  • Preparation of Battery
  • The positive electrode plate and the negative electrode plate, each provided with a lead terminal, were spirally wound with a separator (made of polyethylene, film thickness 16 μm, porosity 47%) interposed therebetween. The spirally wound electrode assembly was pressed into a flat shape and inserted into an aluminum laminate battery outer case. Then, the electrolytic solution was poured into the battery outer case and sealed, resulting in a laminate-type nonaqueous electrolyte secondary battery for testing. The design capacity of the laminate-type nonaqueous electrolyte secondary battery was 850 mAh with charging final voltage of 4.35 V.
  • The structure of this laminate-type nonaqueous electrolyte secondary battery is shown in FIG. 1. As shown in FIG. 1A and FIG. 1B, in a laminate-type nonaqueous electrolyte secondary battery 10, a flat-shaped spirally-wound electrode assembly 13 having a positive electrode lead terminal 11 and a negative electrode lead terminal 12 is disposed in a cup-like laminated molded body 14. First and second side seal portions 15 a and 15 b are formed on both side edges, and a top seal portion 16 is formed on the upper edge. Both of the side seal portions 15 a and 15 b are normally folded to extend along the cup-like molded body 14 during use, as shown in FIG. 1C.
  • Determination of High-Temperature Charged Storage Characteristics
  • High-temperature charged storage characteristics were determined as follows for the batteries of the Examples 1 to 4 and the Comparative Examples 1 to 4 prepared as described above. First, each battery was charged at 25° C. at a constant current of 1 It=850 mA until the battery voltage reached 4.35 V. After the battery voltage reached 4.35 V, the battery was charged at a constant voltage of 4.35V until the charging current reached 1/50 It=17 mA. As a result, a fully-charged battery was obtained. Then the discharge capacity when the battery was discharged 3.0 V at a constant current of 1 It until the battery voltage reached was measured and taken as the initial discharge capacity.
  • Then, after the initial discharge capacity was measured, each battery was charged again at 25° C. at a constant current of 1 It until the battery voltage reached 4.35 V. After the battery voltage reached 4.35 V, the battery was charged at a constant voltage of 4.35 V until charging current reached 1/50 It. As a result, a fully-charged battery was obtained. Each fully-charged battery was stored in a thermostatic chamber at 60° C. for 30 days and then left to cool down to 25° C. The discharge capacity when the battery was discharged at a constant current of 1 It until the battery voltage reached 3.0 V was measured, and the residual capacity was derived as the ratio (%) of such discharge capacity after high-temperature storage to the initial discharge capacity. Such residual capacity is used to determine the self-discharge amount during high-temperature storage. The higher the self-discharge amount is, residual capacity the lower the residual capacity is.
  • For each battery before and after being stored in a thermostatic chamber, the amount of internal resistance change before and after high-temperature storage was determined by measuring the internal resistance by using the AC method, and in addition, the rate of increase (%) in battery thickness was determined by measuring the thickness of the battery with a digital indicator (manufactured by Sony Corporation). The results are listed in Table 1.
  • TABLE 1
    Content Amount of internal resistance
    Nitrile group-containing (% by Porous change (mΩ) before and after Residual Rate of increase in battery
    compound mass) layer storage capacity (%) thickness (%)
    Example 1 Pimelonitrile 1.0 Present Δ11.7 76 1.5
    Example 2 Pimelonitrile 0.5 Present Δ11.2 71 1.6
    Example 3 Pimelonitrile 0.05 Present Δ10.9 65 1.8
    Comparative Pimelonitrile 1.0 Absent Δ25.2 52 4.6
    Example 1
    Comparative Absent Δ10.4 38 1.3
    Example 2
    Comparative Present Δ10.7 56 1.5
    Example 3
    Example 4 Adiponitrile 1.0 Present Δ10.1 73 1.7
    Comparative Adiponitrile 1.0 Absent Δ21.3 48 4.9
    Example 4
  • From the results shown in Table 1, the following are found. When comparing the measurement results for the batteries of the Comparative Example 1 and the Comparative Example 2, neither of which has an inorganic particle layer on the surface of the positive electrode plate, the residual capacity of the battery of the Comparative Example 1 is higher than that of the battery of the Comparative Example 2, but the increase in internal resistance and the rate of increase in battery thickness are larger. This is possibly because the pimelonitrile, which is a nitrile group-containing compound, formed a protective coating on the positive electrode active material surface and inhibited reaction between the positive electrode active material and the nonaqueous electrolytic solution, thereby improving the residual capacity, while the decomposition products of part of the pimelonitrile reacted on the surface of the negative electrode plate, causing gas generation and thus an increase in battery thickness.
  • When comparing the measurement results of the battery of the Comparative Example 1, which has no inorganic particle layer on the surface of the positive electrode plate, and the battery of the Example 1, which has an inorganic particle layer on the surface of the positive electrode plate, 1% by mass of pimelonitrile being added to the nonaqueous electrolytic solution in both Examples, the residual capacity is higher and the rate of increase in internal resistance and the rate of increase in battery thickness are lower in the battery of the Example 1. This may be because the inorganic particle layer formed on the surface of the positive electrode plate trapped the decomposition products of part of the pimelonitrile and prevented them from reaching the surface of the negative electrode plate, thereby reducing gas generation and preventing an increase in battery thickness. In addition, the prevention of a battery thickness increase may also have prevented an increase in internal resistance of the battery and have improved the residual capacity.
  • When comparing the measurement results of the battery of Comparative Example 2, which has no inorganic particle layer on the surface of the positive electrode plate and the battery of the Comparative Example 3, which has an inorganic particle layer on the surface of the positive electrode plate, no pimelonitrile being added to the nonaqueous electrolytic solution in either Example, the residual capacity of the battery of the Comparative Example 3 is higher, but the rate of increase in internal resistance and the rate of increase in battery thickness are substantially equal between the Comparative Examples 2 and 3. This indicates that the formation of an inorganic particle layer on the surface of the positive electrode plate does not have an effect of preventing an increase in battery thickness.
  • Accordingly, when the measurement results for the batteries of the Comparative Examples 1 to 3 are comprehensively evaluated, it is clear that even with a combination of the addition of a nitrile group-containing compound to the nonaqueous electrolytic solution and the formation of an inorganic particle layer on the surface of the positive electrode plate, one cannot readily expect the nitrile group-containing compound to have the effect of preventing battery expansion as in the battery of the Example 1.
  • Furthermore, when comparing the measurement results of the batteries of the Examples 1 to 3, all of which have an inorganic particle layer on the surface of the positive electrode layer but which differ in the amount of pimelonitrile that is added, it is recognized that the effect of improving the residual capacity is smaller as the amount of pimelonitrile that is added is decreased. Thus it will be seen that the amount of nitrile group-containing compound that is added to the nonaqueous electrolytic solution will preferably be not less than 0.05% by mass.
  • Furthermore, when comparing the measurement results for the battery of the Comparative Example 4, which has no inorganic particle layer on the surface of the positive electrode plate, and the battery of the Example 4, which has an inorganic particle layer on the surface of the positive electrode plate, 1% by mass of adiponitrile being added to the nonaqueous electrolytic solution in both cases, the residual capacity is higher and the rate of increase in internal resistance and the rate of increase in battery thickness are smaller in the battery of the Example 4. This indicates that adiponitrile exerts a similar effect to pimelonitrile as a nitrile group-containing compound. Therefore, according to some aspects of the invention, it is recognized that, as a nitrile group-containing compound other than adiponitrile, at least pimelonitrile can be used to achieve a similar effect. It is also recognized that even an ordinary nitrile group-containing compound will also achieve a similar effect because the effect of an additive such as adiponitrile and pimelonitrile results from the presence of a nitrile group (cyano group) in the molecules.
  • Note that although the inorganic particle layer is formed on the surface of the positive electrode plate in the Examples, the inorganic particle layer may alternatively be formed on the surface of the negative electrode plate. However, considering that the decomposition products of the nitrile group-containing compound are formed on the positive electrode plate, forming the layer on the surface of the positive electrode plate exerts a better effect.
  • In the Examples and Comparative Examples, laminate-type nonaqueous electrolyte secondary batteries are described by way of example in order to easily determine the amount of gas generation inside the battery, that is, the battery expansion. However, the invention does not depend on the shape of the electrode assembly of a nonaqueous electrolyte secondary battery, and therefore is applicable to a cylindrical nonaqueous electrolyte secondary battery using a cylindrical spirally-wound electrode assembly, a prismatic or elliptic cylindrical nonaqueous electrolyte secondary battery using a spirally-wound electrode assembly in a flat shape, or a stack-type nonaqueous electrolyte secondary battery having a stack of a positive electrode plate and a negative electrode plate with a separator interposed therebetween, besides other like batteries.
  • In the Examples and Comparative Examples, lithium cobalt oxide was used as positive electrode active material, and the charging voltage was as high as 4.35 V (positive electrode potential is 4.45 V relative to lithium). However, such a high charging voltage was used to confirm in a short time the effect of addition of a nitrile group-containing compound, because a higher charging voltage accelerates the reactions of the nitrile group-containing compound on the surface of the positive electrode active material.
  • Therefore, the nonaqueous electrolyte secondary battery according to some aspects of the invention may be equally applicable in the case of using LiCoO2, LiNiO2, LiNixCo1-xO2 (x=0.01 to 0.99), LiMnO2, LiMn2O4, LiCoxMnyNizO2 (x+y+z=1), or LiFePO4, which are capable of reversibly absorbing and desorbing lithium ions and are commonly used as positive electrode active material.

Claims (19)

1. A nonaqueous electrolyte secondary battery comprising:
a positive electrode plate containing positive electrode active material;
a negative electrode plate containing negative electrode active material;
a nonaqueous electrolyte containing a nitrile group-containing compound; and
a separator provided between the positive electrode plate and the negative electrode plate;
a layer of inorganic particles being formed between the positive electrode plate and the separator or between the negative electrode plate and the separator.
2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the nitrile group-containing compound is contained in a proportion of not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte.
3. The nonaqueous electrolyte secondary battery according to claim 1, wherein the average particle size of the inorganic particles is not more than 1 μm.
4. The nonaqueous electrolyte secondary battery according to claim 1, wherein the inorganic particles are at least one kind selected from among rutile-type titania and alumina.
5. The nonaqueous electrolyte secondary battery according to claim 1, wherein the average pore size of the separator is smaller than the average particle size of the inorganic particles used in the inorganic particle layer.
6. The nonaqueous electrolyte secondary battery according to claim 1, wherein the inorganic particle layer has a thickness of not more than 4 μm.
7. A nonaqueous electrolyte secondary battery comprising:
a positive electrode plate containing positive electrode active material;
a negative electrode plate containing negative electrode active material;
a nonaqueous electrolyte containing a nitrile group-containing compound; and
a separator provided between the positive electrode plate and the negative electrode plate;
a layer of inorganic particles being formed between the positive electrode plate and the separator or between the negative electrode plate and the separator, wherein the inorganic particle layer is formed between the positive electrode plate and the separator.
8. The nonaqueous electrolyte secondary battery according to claim 7, wherein the inorganic particle layer is formed on a surface of the positive electrode plate.
9. The nonaqueous electrolyte secondary battery according to claim 7, wherein the nitrile group-containing compound is contained in a proportion of not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte.
10. The nonaqueous electrolyte secondary battery according to claim 7, wherein the average particle size of the inorganic particles is not more than 1 μm.
11. The nonaqueous electrolyte secondary battery according to claim 7, wherein the inorganic particles are at least one kind selected from among rutile-type titania and alumina.
12. The nonaqueous electrolyte secondary battery according to claim 7, wherein the average pore size of the separator is smaller than the average particle size of the inorganic particles used in the inorganic particle layer.
13. The nonaqueous electrolyte secondary battery according to claim 7, wherein the inorganic particle layer has a thickness of not more than 4 μm.
14. A nonaqueous electrolyte secondary battery comprising:
a positive electrode plate containing positive electrode active material;
a negative electrode plate containing negative electrode active material;
a nonaqueous electrolyte containing a nitrile group-containing compound; and
a separator provided between the positive electrode plate and the negative electrode plate;
a layer of inorganic particles being formed between the positive electrode plate and the separator or between the negative electrode plate and the separator, wherein the inorganic particle layer is formed on a surface of the positive electrode plate.
15. The nonaqueous electrolyte secondary battery according to claim 14, wherein the nitrile group-containing compound is contained in a proportion of not less than 0.05% by mass and not more than 5.0% by mass with respect to the total mass of the nonaqueous electrolyte.
16. The nonaqueous electrolyte secondary battery according to claim 14, wherein the average particle size of the inorganic particles is not more than 1 μm.
17. The nonaqueous electrolyte secondary battery according to claim 14, wherein the inorganic particles are at least one kind selected from among rutile-type titania and alumina.
18. The nonaqueous electrolyte secondary battery according to claim 14, wherein the average pore size of the separator is smaller than the average particle size of the inorganic particles used in the inorganic particle layer.
19. The nonaqueous electrolyte secondary battery according to claim 14, wherein the inorganic particle layer has a thickness of not more than 4 μm.
US13/038,818 2010-03-11 2011-03-02 Nonaqueous electrolyte secondary battery Abandoned US20110223492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-054889 2010-03-11
JP2010054889A JP5721334B2 (en) 2010-03-11 2010-03-11 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
US20110223492A1 true US20110223492A1 (en) 2011-09-15

Family

ID=44149002

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/038,818 Abandoned US20110223492A1 (en) 2010-03-11 2011-03-02 Nonaqueous electrolyte secondary battery

Country Status (5)

Country Link
US (1) US20110223492A1 (en)
EP (1) EP2365571B1 (en)
JP (1) JP5721334B2 (en)
KR (1) KR20110102832A (en)
CN (1) CN102195094A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193691A1 (en) * 2011-05-02 2014-07-10 Tomoyoshi Ueki Nonaqueous electrolyte secondary battery
US9640798B2 (en) 2012-10-30 2017-05-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US20170170668A1 (en) * 2015-12-15 2017-06-15 Yokogawa Electric Corporation Power storage service system
US10062889B2 (en) 2013-04-12 2018-08-28 Murata Manufacturing Co., Ltd. Lithium ion secondary battery
US10084187B2 (en) 2016-09-20 2018-09-25 Apple Inc. Cathode active materials having improved particle morphologies
US10128494B2 (en) 2014-08-01 2018-11-13 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
US10141572B2 (en) 2016-03-14 2018-11-27 Apple Inc. Cathode active materials for lithium-ion batteries
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US10615413B2 (en) 2013-03-12 2020-04-07 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US10662071B2 (en) 2016-11-14 2020-05-26 Sumitomo Chemical Company, Limited Alumina and slurry containing the same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
CN112002942A (en) * 2018-09-21 2020-11-27 宁德新能源科技有限公司 Electrolyte and electrochemical device containing same
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130101893A1 (en) * 2011-10-25 2013-04-25 Apple Inc. High-voltage lithium-polymer batteries for portable electronic devices
US20160204414A1 (en) * 2013-09-30 2016-07-14 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using the same
CN109103489B (en) * 2017-06-21 2020-05-05 宁德时代新能源科技股份有限公司 Electrolyte and battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118847A1 (en) * 2006-11-20 2008-05-22 Euy-Young Jung Rechargeable lithium battery
US20080220336A1 (en) * 2007-03-08 2008-09-11 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US20090197181A1 (en) * 2006-03-17 2009-08-06 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214640A (en) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd Battery
JP4609751B2 (en) 2002-07-15 2011-01-12 宇部興産株式会社 Lithium secondary battery
JP4167103B2 (en) * 2003-03-28 2008-10-15 松下電器産業株式会社 Nonaqueous electrolyte secondary battery
JP5061417B2 (en) * 2004-04-23 2012-10-31 パナソニック株式会社 Lithium ion secondary battery
JP4543085B2 (en) 2004-05-28 2010-09-15 エルジー・ケム・リミテッド Additive for lithium secondary battery
EP1787805B1 (en) 2004-10-01 2011-11-23 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
JP5110817B2 (en) * 2006-03-17 2012-12-26 三洋電機株式会社 Non-aqueous electrolyte battery
JP5109329B2 (en) * 2006-10-16 2012-12-26 ソニー株式会社 Secondary battery
JP4936440B2 (en) 2006-10-26 2012-05-23 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP5217200B2 (en) * 2007-03-20 2013-06-19 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5217400B2 (en) * 2007-06-28 2013-06-19 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JPWO2010092815A1 (en) * 2009-02-13 2012-08-16 パナソニック株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090197181A1 (en) * 2006-03-17 2009-08-06 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US20080118847A1 (en) * 2006-11-20 2008-05-22 Euy-Young Jung Rechargeable lithium battery
US20080220336A1 (en) * 2007-03-08 2008-09-11 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673435B2 (en) * 2011-05-02 2017-06-06 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US20140193691A1 (en) * 2011-05-02 2014-07-10 Tomoyoshi Ueki Nonaqueous electrolyte secondary battery
US9640798B2 (en) 2012-10-30 2017-05-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US10615413B2 (en) 2013-03-12 2020-04-07 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US10062889B2 (en) 2013-04-12 2018-08-28 Murata Manufacturing Co., Ltd. Lithium ion secondary battery
US10128494B2 (en) 2014-08-01 2018-11-13 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
US10347909B2 (en) 2014-08-01 2019-07-09 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US10361569B2 (en) * 2015-12-15 2019-07-23 Yokogawa Electric Corporation Power storage service system
US20170170668A1 (en) * 2015-12-15 2017-06-15 Yokogawa Electric Corporation Power storage service system
US10164256B2 (en) 2016-03-14 2018-12-25 Apple Inc. Cathode active materials for lithium-ion batteries
US10141572B2 (en) 2016-03-14 2018-11-27 Apple Inc. Cathode active materials for lithium-ion batteries
US11870069B2 (en) 2016-03-14 2024-01-09 Apple Inc. Cathode active materials for lithium-ion batteries
US11362331B2 (en) 2016-03-14 2022-06-14 Apple Inc. Cathode active materials for lithium-ion batteries
US10297823B2 (en) 2016-09-20 2019-05-21 Apple Inc. Cathode active materials having improved particle morphologies
US10084187B2 (en) 2016-09-20 2018-09-25 Apple Inc. Cathode active materials having improved particle morphologies
US10593941B2 (en) 2016-09-20 2020-03-17 Apple Inc. Cathode active materials having improved particle morphologies
US11114663B2 (en) 2016-09-20 2021-09-07 Apple Inc. Cathode active materials having improved particle morphologies
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US11462736B2 (en) 2016-09-21 2022-10-04 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US10662071B2 (en) 2016-11-14 2020-05-26 Sumitomo Chemical Company, Limited Alumina and slurry containing the same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
CN112002942A (en) * 2018-09-21 2020-11-27 宁德新能源科技有限公司 Electrolyte and electrochemical device containing same
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Also Published As

Publication number Publication date
JP5721334B2 (en) 2015-05-20
EP2365571A2 (en) 2011-09-14
EP2365571A3 (en) 2012-02-08
CN102195094A (en) 2011-09-21
JP2011192395A (en) 2011-09-29
KR20110102832A (en) 2011-09-19
EP2365571B1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
EP2365571B1 (en) Nonaqueous electrolyte secondary battery
EP3070767B1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
US20060194109A1 (en) Nonaqueous electrolyte secondary battery and charge/discharge system thereof
JP2005285385A (en) Separator and nonaqueous electrolyte battery using the separator
EP3113247B1 (en) Lithium ion secondary battery
EP2597706B1 (en) Lithium ion secondary battery
JP5241118B2 (en) Non-aqueous electrolyte battery
JP5259662B2 (en) Electrode assembly and secondary battery including the same
US20110200877A1 (en) Non-aqueous electrolyte secondary battery
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
KR101742609B1 (en) Electrode for a lithium secondary battery and lithium secondary battery comprising the same
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
EP3151311B1 (en) Lithium ion secondary battery
US10581048B2 (en) Non-aqueous electrolyte battery having first separator layer with total pore volume larger than second separator layer
JP5241120B2 (en) Non-aqueous electrolyte battery
US20140255736A1 (en) Non-aqueous electrolyte secondary battery
JP6770701B2 (en) Power storage element
JP2021044171A (en) Lithium ion secondary battery and method for manufacturing the same
JP6139939B2 (en) Non-aqueous electrolyte secondary battery
WO2020202661A1 (en) Lithium ion secondary battery
EP4030498B1 (en) Graphite-based negative electrode active material
JP7296042B2 (en) Non-aqueous electrolyte secondary battery
JP7327400B2 (en) NONAQUEOUS ELECTROLYTE STORAGE ELEMENT AND POWER STORAGE DEVICE
US20220173395A1 (en) Lithium ion secondary battery
JP6880488B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANYO ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAKITANI, NOBUHIRO;AIZAWA, TATSUYA;YAMAMOTO, SATOSHI;REEL/FRAME:025904/0493

Effective date: 20110215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION