JP2021039970A - 半導体装置の製造方法、基板処理装置、およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置、およびプログラム Download PDF

Info

Publication number
JP2021039970A
JP2021039970A JP2019158563A JP2019158563A JP2021039970A JP 2021039970 A JP2021039970 A JP 2021039970A JP 2019158563 A JP2019158563 A JP 2019158563A JP 2019158563 A JP2019158563 A JP 2019158563A JP 2021039970 A JP2021039970 A JP 2021039970A
Authority
JP
Japan
Prior art keywords
group
substrate
raw material
wafer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019158563A
Other languages
English (en)
Other versions
JP7023905B2 (ja
Inventor
良知 橋本
Yoshitomo Hashimoto
良知 橋本
勝吉 原田
Katsuyoshi Harada
勝吉 原田
中谷 公彦
Kimihiko Nakatani
公彦 中谷
義朗 ▲ひろせ▼
義朗 ▲ひろせ▼
Yoshiro Hirose
雅也 永戸
Masaya Nagato
雅也 永戸
尾崎 貴志
Takashi Ozaki
貴志 尾崎
富介 清水
Tomiyuki Shimizu
富介 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP2019158563A priority Critical patent/JP7023905B2/ja
Priority to CN202010720739.5A priority patent/CN112447499A/zh
Priority to TW109127150A priority patent/TWI800746B/zh
Priority to TW112111024A priority patent/TW202333234A/zh
Priority to KR1020200109503A priority patent/KR102450410B1/ko
Priority to US17/006,466 priority patent/US11527402B2/en
Priority to SG10202008356TA priority patent/SG10202008356TA/en
Publication of JP2021039970A publication Critical patent/JP2021039970A/ja
Application granted granted Critical
Publication of JP7023905B2 publication Critical patent/JP7023905B2/ja
Priority to KR1020220123512A priority patent/KR20220136980A/ko
Priority to US17/983,131 priority patent/US11978623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Abstract

【課題】基板上に形成される酸化膜の特性を向上する半導体装置の製造方法、基板処理装置、およびプログラムを提供する。
【解決手段】基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する、第1基とXとの結合エネルギーが第2基とXとの結合エネルギーよりも高い原料を供給し、基板上に、Xに第1基が結合した成分を含む第1層を形成する工程Aと、基板に対して酸化剤を供給し、第1層を酸化させて、Xを含む第2層を形成する工程Bと、を非同時に行うサイクルを所定回数行うことで、基板上に、Xを含む酸化膜を形成する。行程Aでは、原料に含まれる中心原子Xから、第1基が脱離することなく、第2基が脱離する条件であって、第2基が脱離し第1基との結合が維持された状態の中心原子Xが基板の表面に吸着する条件下で、原料を供給する。
【選択図】図4

Description

本開示は、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
半導体装置の製造工程の一工程として、基板に対して原料を供給する工程と、基板に対して酸化剤を供給する工程と、を交互に繰り返すことで、基板上に酸化膜を形成する工程が行われることがある(例えば特許文献1,2参照)。
特開2008−135633号公報 特開2010−153776号公報
本開示は、基板上に形成される酸化膜の特性を向上させることを目的とする。
本開示の一態様によれば、
(a)基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する原料であって、前記第1基と前記Xとの結合エネルギーが前記第2基と前記Xとの結合エネルギーよりも高い原料を供給し、前記基板上に、前記Xに前記第1基が結合した成分を含む第1層を形成する工程と、
(b)前記基板に対して酸化剤を供給し、前記第1層を酸化させて、前記Xを含む第2層を形成する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記Xを含む酸化膜を形成する工程を有し、
(a)では、前記原料に含まれる前記Xから、前記第1基が脱離することなく、前記第2基が脱離する条件であって、前記第2基が脱離し前記第1基との結合が維持された状態の前記Xが前記基板の表面に吸着する条件下で、前記原料を供給する技術が提供される。
本開示によれば、基板上に形成される酸化膜の特性を向上させることが可能な技術を提供することが可能となる。
本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA−A線断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一態様におけるガス供給シーケンスを示す図である。 本開示の一態様におけるガス供給シーケンスの変形例を示す図である。 (a)は成膜ステップを開始する前における基板の表面状態を模式的に示す図であり、(b)はステップAを実施した際における基板の表面状態を模式的に示す図であり、(c)はステップBを実施した際における基板の表面状態を模式的に示す図である。 実施例および比較例におけるSiO膜の膜厚等の各種測定結果をそれぞれ示す図である。 (a)は実施例におけるSiO膜の基板面内膜厚分布の測定結果を示す図であり、(b)は比較例におけるSiO膜の基板面内膜厚分布の測定結果を示す図である。 他の実施例におけるSiO膜の基板面内膜厚均一性およびウェットエッチングレートの測定結果をそれぞれ示す図である。
<本開示の第1態様>
以下、本開示の第1態様について、主に、図1〜図4、図6(a)〜図6(c)を用いて説明する。
(1)基板処理装置の構成
図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス鋼(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
処理室201内には、第1供給部、第2供給部としてのノズル249a,249bが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a,249bを、それぞれ第1ノズル、第2ノズルとも称する。ノズル249a,249bは、それぞれ、石英またはSiC等の耐熱性材料である非金属材料により構成されている。ノズル249a,249bは、それぞれ、複数種類のガスの供給に用いられる共用ノズルとして構成されている。
ノズル249a,249bには、第1配管、第2配管としてのガス供給管232a,232bがそれぞれ接続されている。ガス供給管232a,232bは、それぞれ、複数種類のガスの供給に用いられる共用配管として構成されている。ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232c,232dが接続されている。ガス供給管232c,232dには、ガス流の上流側から順に、MFC241c,241d、バルブ243c,243dがそれぞれ設けられている。ガス供給管232bのバルブ243bよりも下流側には、ガス供給管232eが接続されている。ガス供給管232eには、ガス流の上流側から順に、MFC241e、バルブ243eが設けられている。ガス供給管232a〜232eは、例えばSUS等の金属材料により構成されている。
図2に示すように、ノズル249a,249bは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、それぞれが、平面視においてウエハ200の中心に向かって開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、反応管203の下部から上部にわたって複数設けられている。
ガス供給管232aからは、中心原子Xとしてのシリコン(Si)に第1基としてのアルコキシ基と第2基としてのアミノ基とが結合した分子構造を有する原料(原料ガス)が、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。
アルコキシ基とは、第3基としてのアルキル基(R)が酸素(O)原子と結合した構造を有するものであり、−ORの構造式で表される1価の官能基のことである。アルコキシ基には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が含まれる。アルコキシ基は、これらの直鎖状アルコキシ基だけでなく、イソプロポキシ基、イソブトキシ基、セカンダリブトキシ基、ターシャリブトキシ基等の分岐状アルコキシ基であってもよい。また、上述のアルキル基には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。アルキル基は、これらの直鎖状アルキル基だけでなく、イソプロピル基、イソブチル基、セカンダリブチル基、ターシャリブチル基等の分岐状アルキル基であってもよい。
アミノ基とは、アンモニア(NH)、第一級アミン、第二級アミンのいずれかから水素(H)を除去した構造を有するものであり、−NH、−NHR、−NRR’のうちいずれかの構造式で表される1価の官能基のことである。構造式中に示したR、R’は、メチル基、エチル基、プロピル基、ブチル基等を含むアルキル基である。R、R’は、これらの直鎖状アルキル基だけでなく、イソプロピル基、イソブチル基、セカンダリブチル基、ターシャリブチル基等の分岐状アルキル基であってもよい。R、R’は、同一のアルキル基であってもよいし、異なるアルキル基であってもよい。
原料ガスとしては、例えば、中心原子XとしてSiを、第1基としてアルコキシ基であるメトキシ基(−OMe)を、第2基としてアミノ基であるジメチルアミノ基(−N(CH)をそれぞれ含むガス、例えば、トリメトキシジメチルアミノシラン((CHNSi(OCH、略称:TMDMAS)ガスを用いることができる。TMDMASに含まれるSiは4つの結合手を有しており、Siの4つの結合手のうち3つの結合手にはメトキシ基が結合しており、Siの4つの結合手のうち残りの1つの結合手にはジメチルアミノ基が結合している。TMDMAS分子に含まれるアミノ基の数とアルコキシ基の数との比率は、1:3となっている。メトキシ基とSiとの結合エネルギーEは、ジメチルアミノ基とSiとの結合エネルギーEよりも高い。すなわち、ジメチルアミノ基は、メトキシ基に比べて、Siから脱離しやすい活性な特性を有している。
ガス供給管232bからは、酸化剤として、O含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。O含有ガスとしては、例えば、酸素(O)ガスを用いることができる。Oガスは、酸化ガス、すなわち、O源として作用する。
ガス供給管232cからは、H含有ガスが、MFC241c、バルブ243c、ガス供給管232a、ノズル249aを介して処理室201内へ供給される。H含有ガスは、それ単体では酸化作用は得られないが、後述する基板処理工程において、特定の条件下でO含有ガスと反応することで原子状酸素(atomic oxygen、O)等の酸化種を生成し、酸化処理の効率を向上させるように作用する。H含有ガスとしては、例えば、水素(H)ガスを用いることができる。
ガス供給管232d,232eからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれ、MFC241d,241e、バルブ243d,243e、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。Nガスは、パージガス、キャリアガス、希釈ガス等として作用する。
主に、ガス供給管232a、MFC241a、バルブ243aにより、原料供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、酸化剤供給系が構成される。ガス供給管232c、MFC241c、バルブ243cを酸化剤供給系に含めて考えてもよい。主に、ガス供給管232d,232e、MFC241d,241e、バルブ243d,243eにより、不活性ガス供給系が構成される。
上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a〜243eやMFC241a〜241e等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a〜232eのそれぞれに対して接続され、ガス供給管232a〜232e内への各種ガスの供給動作、すなわち、バルブ243a〜243eの開閉動作やMFC241a〜241eによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a〜232e等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231は、例えばSUS等の金属材料により構成されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、例えばSUS等の金属材料により構成され、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送系(搬送機構)として構成されている。
マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
基板支持具としてのボート217は、複数枚、例えば25〜200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、制御プログラム、プロセスレシピ等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のMFC241a〜241e、バルブ243a〜243e、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a〜241eによる各種ガスの流量調整動作、バルブ243a〜243eの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。
コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上に酸化膜を形成する基板処理シーケンス例について、主に、図4、図6(a)〜図6(c)を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
本態様における基板処理シーケンスでは、
ウエハ200に対して、原料としてTMDMASガスを供給し、ウエハ200上に、Siにメトキシ基が結合した成分を含む第1層を形成するステップAと、
ウエハ200に対して酸化剤としてOガスを供給し、第1層を酸化させて、Siを含む第2層を形成するステップBと、
を非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うことで、ウエハ200上に、Siを含む酸化膜、すなわち、Si,Oを含むシリコン酸化膜(SiO膜)を形成する。
ステップAでは、TMDMASに含まれるSiから、メトキシ基が脱離することなく、ジメチルアミノ基が脱離する条件であって、ジメチルアミノ基が脱離しメトキシ基との結合が維持された状態のSiがウエハ200の表面に吸着する条件下で、TMDMASガスを供給する。
本明細書では、図4に示すガス供給シーケンスを、便宜上、以下のように示すこともある。以下の変形例や他の態様の説明においても同様の表記を用いることとする。
(TMDMAS→O)×n ⇒ SiO
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージ、ボートロード)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力調整および温度調整ステップ)
処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される(圧力調整)。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。また、回転機構267によるボート217およびウエハ200の回転を開始する。真空ポンプ246の稼働、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
図6(a)に示すように、ウエハ200の表面は、ヒドロキシ基(−OH)により終端(OH終端)された状態となっている。ウエハ200の表面に存在するOH終端は、分子や原子の吸着サイトとしての機能を有している。
(成膜ステップ)
その後、次のステップA,Bを順次実行する。
[ステップA]
このステップでは、処理室201内のウエハ200に対してTMDMASガスを供給する(TMDMASガス供給)。具体的には、バルブ243aを開き、ガス供給管232a内へTMDMASガスを流す。TMDMASガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してTMDMASガスが供給される。このとき、バルブ243d,243eを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
本ステップを後述する処理条件下で行うことにより、TMDMASガスに含まれるSiから、メトキシ基(OMe)を脱離させることなく、ジメチルアミノ基(NMe)を脱離させることが可能となる。また、ジメチルアミノ基が脱離しメトキシ基との結合が維持された状態のSiを、ウエハ200の表面に吸着(化学吸着)させることが可能となる。すなわち、Siの4つの結合手のうち3つの結合手にメトキシ基が結合した状態で、Siをウエハ200の表面における吸着サイトの一部に吸着させることが可能となる。このようにして、ウエハ200の最表面上に、Siにメトキシ基が結合した成分を含む第1層を形成することが可能となる。
また、本ステップを後述する処理条件下で行うことにより、TMDMASガスに含まれるSiから脱離したジメチルアミノ基を、ウエハ200の表面に吸着させないようにすることが可能となる。結果として、ウエハ200上に形成される第1層中に、TMDMASガスに含まれるSiから脱離したジメチルアミノ基を含ませないようにすることが可能となる。すなわち、ウエハ200上に形成される第1層を、C,N等の不純物の少ない層とすることが可能となる。
本ステップでは、ウエハ200の表面に吸着したSiに結合したメトキシ基により、すなわち、ウエハ200の表面に吸着したSiの3つの結合手がメトキシ基により埋められていることにより、ウエハ200の表面に吸着したSiへの原子または分子の吸着を阻害することが可能となる。また、本ステップでは、ウエハ200の表面に吸着したSiに結合したメトキシ基を立体障害として作用させ、ウエハ200の表面に吸着したSiの周辺の、ウエハ200の表面における吸着サイト(OH終端)への原子または分子の吸着を阻害することが可能となる。またこれにより、本ステップでは、ウエハ200の表面に吸着したSiの周辺の、ウエハ200の表面における吸着サイト(OH終端)を保持することが可能となる。
本ステップでは、Siのウエハ200の表面への吸着反応(化学吸着反応)が飽和するまでTMDMASガスの供給を継続するのが好ましい。TMDMASガスの供給をこのように継続したとしても、Siに結合したメトキシ基が立体障害として作用することにより、Siを、ウエハ200の表面に不連続に吸着させることが可能となる。具体的には、Siを、ウエハ200の表面に1原子層未満の厚さとなるように吸着させることが可能となる。
図6(b)に示すように、Siのウエハ200の表面への吸着反応を飽和させた状態において、ウエハ200の表面は、Siに結合したメトキシ基により覆われた状態となり、ウエハ200の表面の一部は、吸着サイト(OH終端)が消費されることなく保持された状態となる。Siのウエハ200の表面への吸着反応を飽和させた状態において、ウエハ200の表面へ吸着したSiにより構成される層は、1原子層未満の厚さの不連続層となる。
第1層が形成された後、バルブ243aを閉じ、処理室201内へのTMDMASガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する(パージ)。このとき、バルブ243d,243eを開き、処理室201内へNガスを供給する。Nガスはパージガスとして作用する。
原料ガスとしては、TMDMASガスに限らず、第1基とSiとの結合エネルギーEが第2基とSiとの結合エネルギーEよりも高いガスであれば、同様の構成、すなわち、中心原子としてのSiに第1基と第2基とが結合した分子構造を有する種々のガスを好適に用いることができる。すなわち、原料ガスとして、中心原子としてのSiに第1基と第2基とが結合した分子構造を有するガスであって、第1基としてアルコキシ基を含み、第2基として、アミノ基、アルキル基、ハロゲノ基、ヒドロキシ基、ヒドロ基、アリール基、ビニル基、およびニトロ基のうち少なくともいずれか1つを含む種々のガスを好適に用いることができる。ここで、アルキル基には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。また、ハロゲノ基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲノ基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。
不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。この点は、後述するステップBにおいても同様である。
[ステップB]
ステップAが終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1層に対してOガスを供給する(Oガス供給)。具体的には、バルブ243bを開き、ガス供給管232b内へOガスを流す。Oガスは、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してOガスが供給される。このとき、バルブ243d,243eを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
本ステップを後述する処理条件下で行うことにより、第1層に含まれるSiと結合するメトキシ基(OMe)に含まれるメチル基(Me)、および、Siと結合するメトキシ基(OMe)のうち少なくともいずれかを、第1層から脱離させることが可能となる。そして、ウエハ200上に形成された第1層の少なくとも一部を酸化(改質)させ、第2層として、SiおよびOを含む層であるシリコン酸化層(SiO層)を形成することが可能となる。図6(c)に示すように、第2層は、メチル基やメトキシ基を含まない層、すなわち、C等の不純物を含まない層となる。また、第2層の表面は、Oガスによる酸化処理の結果、OH終端された状態となる。なお、第1層から脱離したC等の不純物は、二酸化炭素(CO)等のガス状物質を構成し、処理室201内から排出される。
第2層が形成された後、バルブ243bを閉じ、処理室201内へのOガスの供給を停止する。そして、ステップAにおけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
酸化剤としては、Oガスの他、例えば、プラズマ励起させたOガス(O )、オゾン(O)ガス、Oガス+Hガス、水蒸気(HOガス)、一酸化窒素(NO)ガス、亜酸化窒素(NO)ガス等のO含有ガスを用いることができる。
[所定回数実施]
上述したステップA,Bを非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に、所定組成および所定膜厚のSiO膜を形成することが可能となる。上述のサイクルは複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行うことで形成される第2層の厚さを所望の膜厚よりも小さくし、第2層を積層することで形成されるSiO膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
ステップAにおける処理条件としては、
TMDMASガス供給流量:0.01〜2slm、好ましくは0.1〜1slm
ガス供給流量(ガス供給管毎):0〜10slm
各ガス供給時間:1〜120秒、好ましくは1〜60秒
処理温度(ウエハ200の温度):550〜700℃、好ましくは600〜650℃
処理圧力(処理室201内の圧力):1〜2666Pa、好ましくは67〜1333Pa
が例示される。
ステップBにおける処理条件としては、
ガス供給流量:0.1〜10slm
ガス供給時間:1〜120秒、好ましくは1〜60秒
処理圧力:1〜4000Pa、好ましくは1〜3000Pa
が例示される。他の処理条件は、ステップAにおける処理条件と同様な処理条件とする。
本明細書における「1〜2666Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「1〜2666Pa」とは「1Pa以上2666Pa以下」を意味する。他の数値範囲についても同様である。
処理温度が550℃未満となると、ステップAにおいて、TMDMASガスに含まれるSiから脱離したジメチルアミノ基が、ウエハ200の表面に吸着する場合がある。また、ステップBにおいて、第1層に含まれるSiと結合するメトキシ基に含まれるメチル基、および、Siと結合するメトキシ基のうち少なくともいずれかを、第1層から脱離させることが困難となる場合がある。結果として、ウエハ200上に形成されるSiO膜中に、ジメチルアミノ基やメトキシ基に由来するC,N等の不純物が残留しやすくなり、ウエハ200上に形成されるSiO膜の加工耐性(ウェットエッチング耐性等)が低下する場合がある。
処理温度を550℃以上の温度とすることで、ステップAにおいて、TMDMASガスに含まれるSiから脱離したジメチルアミノ基を、ウエハ200の表面に吸着させないようにすることが可能となる。また、ステップBにおいて、第1層に含まれるSiと結合するメトキシ基に含まれるメチル基、および、Siと結合するメトキシ基のうち少なくともいずれかの、第1層からの脱離を促進させることが可能となる。結果として、ウエハ200上に形成されるSiO膜の加工耐性を向上させることが可能となる。処理温度を600℃以上の温度とすることで、上述の効果をさらに強化することができ、ウエハ200上に形成されるSiO膜の加工耐性をさらに向上させることが可能となる。
また、処理温度が700℃超となると、ステップAにおいて、TMDMASガスが熱分解しやすくなり、ジメチルアミノ基が脱離しメトキシ基との結合が維持された状態のSiをウエハ200の表面に吸着させることが困難となる場合がある。結果として、Siと結合するメトキシ基による上述の各作用が得られにくくなり、ウエハ200の表面に吸着させるSiにより構成される層を1原子層未満の厚さの不連続層とすることが困難となり、ウエハ200上に形成されるSiO膜のウエハ面内膜厚均一性や段差被覆性が悪化する場合がある。
処理温度を700℃以下の温度とすることで、ステップAにおいて、TMDMASガスの熱分解を抑制し、ジメチルアミノ基が脱離しメトキシ基との結合が維持された状態のSiをウエハ200の表面に吸着させることが可能となる。結果として、Siと結合するメトキシ基による上述の各作用が得られるようになり、ウエハ200の表面に吸着させるSiにより構成される層を1原子層未満の厚さの不連続層とすることが可能となり、ウエハ200上に形成されるSiO膜のウエハ面内膜厚均一性や段差被覆性を向上させることが可能となる。処理温度を650℃以下の温度とすることで、上述の効果をさらに強化することができ、ウエハ200上に形成されるSiO膜のウエハ面内膜厚均一性や段差被覆性をさらに向上させることが可能となる。
(アフターパージおよび大気圧復帰)
ウエハ200上へのSiO膜の形成が終了した後、ノズル249a,249bのそれぞれから、パージガスとしてのNガスを処理室201内へ供給し、排気口231aから排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロード、ウエハディスチャージ)
ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本態様による効果
本態様によれば、以下に示す一つ又は複数の効果が得られる。
(a)ステップAにおいて、TMDMASに含まれるSiからメトキシ基を脱離させることなくジメチルアミノ基を脱離させ、ジメチルアミノ基が脱離しメトキシ基との結合が維持された状態のSiをウエハ200の表面に吸着させることにより、Siに結合したメトキシ基による作用により、ウエハ200の表面に吸着したSiおよびその周辺の、ウエハ200の表面における吸着サイトへの原子または分子の吸着を阻害することが可能となる。これにより、ウエハ200の表面に吸着したSiにより構成される層を1原子層未満の厚さの不連続層とすることが可能となる。そしてこれにより、ウエハ200上に形成されるSiO膜のウエハ面内膜厚均一性や段差被覆性を向上させることができ、この膜を、コンフォーマルな膜とすることが可能となる。なお、原料ガスとして、例えば、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガスのような、中心原子Siにアミノ基が結合し、アルコキシ基が結合していないガスを用いた場合、本態様におけるアルコキシ基(メトキシ基)による作用は得られず、ウエハ200上に形成されるSiO膜のウエハ面内膜厚均一性や段差被覆性が低下する場合がある。
(b)ステップAにおいて、TMDMASガスに含まれるSiから脱離したジメチルアミノ基を、ウエハ200の表面に吸着させないようにすることにより、第1層を、C,N等の不純物の少ない層とすることが可能となる。これにより、ウエハ200上に形成されるSiO膜を、加工耐性に優れた膜とすることが可能となる。
(c)ステップBにおいて、第1層に含まれるSiと結合するメトキシ基に含まれるメチル基、および、Siと結合するメトキシ基のうち少なくともいずれかを脱離させることにより、第2層を、C等の不純物の少ない層とすることが可能となる。これにより、ウエハ200上に形成されるSiO膜を、加工耐性に優れた膜とすることが可能となる。
(d)ステップBにおいて、熱的に励起されたOガス、すなわち、プラズマ非励起状態のOガスを酸化剤として用いることにより、すなわち、成膜ステップをノンプラズマの雰囲気下で行うことにより、ウエハ200上に形成されるSiO膜へのプラズマダメージを回避することが可能となる。また、処理室201内の部材等に対するプラズマダメージを回避することが可能となる。また、酸化力を抑えた状態で酸化処理を行うことができることにより、SiO膜を形成する際の下地(ウエハ200の表面)の酸化を抑制することが可能となる。
(e)本態様による効果は、TMDMASガス以外の原料を用いる場合や、Oガス以外の酸化剤を用いる場合や、Nガス以外の不活性ガスを用いる場合にも、同様に得ることができる。
(4)変形例
本態様における基板処理シーケンスは、以下に示す変形例のように変更することができる。
(変形例1)
以下に示すガス供給シーケンスのように、成膜ステップでは、ウエハ200に対してOガスを先行して供給(プリフロー)した後に、ステップAと、ステップBと、をこの順に非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うようにしてもよい。
→(TMDMAS→O)×n ⇒ SiO
本変形例によれば、上述の態様と同様の効果が得られる。また、ウエハ200に対してOガスをプリフローすることにより、ステップAを行う前のウエハ200の表面における吸着サイト(OH終端)を適正化させることが可能となる。これにより、ステップAにおける第1層の形成を促し、SiO膜を形成する際のインキュベーションタイムを短縮させることが可能となる。
(変形例2)
図5や以下に示すガス供給シーケンスのように、ステップBでは、酸化剤としてOガス+Hガスを用いるようにしてもよい。
(TMDMAS→O+H)×n ⇒ SiO
具体的には、ステップBでは、バルブ243b,243cを開き、ガス供給管232b,232c内へOガス、Hガスをそれぞれ流す。ガス供給管232b,232c内を流れたOガス、Hガスは、それぞれ、MFC241b,241cにより流量調整され、ノズル249b,249aを介して処理室201内へ供給される。OガスとHガスとは、処理室201内で混合して反応し、その後、排気口231aより排気される。このとき、ウエハ200に対して、OガスとHガスとの反応により生じた原子状酸素(atomic oxygen、O)等の酸素を含む水分(HO)非含有の酸化種が供給される。
本ステップにおける処理条件としては、
ガス供給流量:0.1〜10slm
ガス供給流量:0.1〜10slm
ガス供給時間:1〜120秒、好ましくは1〜60秒
処理圧力:1〜3000Pa、好ましくは1〜2000Pa
が例示される。他の処理条件は、ステップAにおける処理条件と同様とする。
本変形例によれば、上述の態様と同様の効果が得られる。また、本変形例によれば、原子状酸素等の酸化種が有する強い酸化力により、ステップBにおいて、第1層に含まれるSiと結合するメトキシ基に含まれるメチル基、および、Siと結合するメトキシ基のうち少なくともいずれかの脱離をさらに促すことができ、結果として、ウエハ200上に形成されるSiO膜の加工耐性をさらに向上させることが可能となる。
<本開示の他の態様>
以上、本開示の態様を具体的に説明した。しかしながら、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
以下に示すガス供給シーケンスのように、酸化剤として、プラズマ励起させたOガス(O )やOガスを用いるようにしてもよい。これらの酸化剤を供給する場合における処理手順、処理条件は、上述の態様のステップBにおけるそれらと同様とすることができる。
(TMDMAS→O )×n ⇒ SiO
(TMDMAS→O)×n ⇒ SiO
これらの場合であっても、上述の態様と同様の効果が得られる。また、これらの酸化剤が奏する強い酸化力により、ステップBにおいて、第1層に含まれるSiと結合するメトキシ基に含まれるメチル基、および、Siと結合するメトキシ基のうち少なくともいずれかの脱離をさらに促すことができ、結果として、ウエハ200上に形成されるSiO膜の加工耐性をさらに向上させることが可能となる。
また、以下に示すガス供給シーケンス(n,n,nはそれぞれ1以上の整数)のように、原料ガスとして、TMDMASガスに加えて、ハロシラン系ガス(クロロシラン系ガス)であるヘキサクロロジシラン(SiCl、略称:HCDS)ガス等のハロゲン(Cl)とSiとを含有するガスをさらに用いてもよい。HCDSガスを供給する際における処理手順、処理条件は、上述の態様のステップAにおけるそれらと同様とすることができる。HCDSガスの代わりにテトラクロロシラン(SiCl)ガス、トリクロロシラン(SiHCl)ガス、ジクロロシラン(SiHCl)ガス、モノクロロシラン(SiHCl)ガス等を用いることもできる。
(HCDS→TMDMAS→O)×n ⇒ SiO
(TMDMAS→HCDS→O)×n ⇒ SiO
〔(HCDS→TMDMAS)×n→O〕×n ⇒ SiO
〔(TMDMAS→HCDS)×n→O〕×n ⇒ SiO
(HCDS→TMDMAS→O+H)×n ⇒ SiO
(TMDMAS→HCDS→O+H)×n ⇒ SiO
〔(HCDS→TMDMAS)×n→O+H〕×n ⇒ SiO
〔(TMDMAS→HCDS)×n→O+H〕×n ⇒ SiO
これらの場合であっても、上述の態様と同様の効果が得られる。また、複数種類の原料ガスを用いることにより、成膜レートを高めることも可能となる。また、SiO膜中のSi濃度を高めるなど、組成の調整も可能となる。
原料ガスに含まれる中心原子Xは、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の金属元素であってもよい。これらの場合、ウエハ200上に、アルミニウム酸化膜(AlO)膜、チタン酸化膜(TiO膜)、ジルコニウム酸化膜(ZrO膜)、ハフニウム酸化膜(HfO膜)等の金属酸化膜を形成することが可能となる。これらの場合における処理手順、処理条件は、上述の態様におけるそれらと同様とすることができる。これらの場合においても、上述の態様と同様の効果が得られる。
各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。
上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
これらの基板処理装置を用いる場合においても、上述の態様と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様と同様の効果が得られる。
また、上述の態様は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様の処理手順、処理条件と同様とすることができる。
実施例として、図1に示す基板処理装置を用い、図4に示す成膜シーケンスにより、ウエハ上にSiO膜を形成した。また、比較例として、図1に示す基板処理装置を用い、HCDSガスを供給するステップと、O+Hガスを供給するステップと、を交互に繰り返すことにより、ウエハ上にSiO膜を形成した。ウエハとしては、表面に凹凸パターンが形成されていないベアウエハ(w/o PTN)と、表面に凹凸パターンが形成されたパターンウエハと、を用いた。パターンウエハについては、ベアウエハの表面積を1としたときに、10倍の表面積を有するウエハ(w/x10 PTN)、23倍の表面積を有するウエハ(w/x23 PTN)、50倍の表面積を有するウエハ(w/x50 PTN)をそれぞれ用いた。実施例および比較例ともに、各ステップにおける処理条件は、上述の態様に記載の処理条件範囲内の所定の条件とした。
そして、実施例および比較例について、ベアウエハ上に形成されたSiO膜のウエハ面内平均膜厚[Å]、ウエハ面内膜厚均一性(WiW)[±%]、ウエハ間膜厚均一性(WtW)[±%]、屈折率(R.I.)、密度[g/cm]、表面粗さRMS[nm]、表面粗さRmax[nm]、および、ウエハ表面の酸化厚さ(下地酸化厚)[Å]をそれぞれ測定した。それらの結果を図7に示す。図7におけるTop,Cen,Btmは、被測定ウエハの垂直方向における位置を示しており、それぞれ、ウエハ配列領域における上部、中央部、下部を示している。図7に示すように、実施例におけるSiO膜の方が、比較例におけるSiO膜よりも、WiWおよびWtWがそれぞれ小さいこと、すなわち、ウエハ面内膜厚均一性およびウエハ間膜厚均一性がそれぞれ良好であることが分かる。また、実施例におけるSiO膜の方が、比較例におけるSiO膜よりも、RMSおよびRmaxがそれぞれ小さいこと、すなわち、表面が平滑であること(表面ラフネスが良好であること)が分かる。また、実施例における下地酸化厚は、比較例における下地酸化厚の1/2以下であり、実施例の方が、比較例よりも、下地の酸化を抑制できていることが分かる。R.I.および密度については、実施例におけるSiO膜と比較例におけるSiO膜とで、それぞれ同程度であることが分かる。
また、実施例および比較例について、ウエハ上に形成されたSiO膜のウエハ面内膜厚分布をそれぞれ測定した。図8(a)に実施例の測定結果を、図8(b)に比較例の測定結果をそれぞれ示す。いずれの図においても、横軸はウエハ中心からの距離(mm)を、縦軸はSiO膜の厚さ(Å)をそれぞれ示している。これらの図によれば、比較例におけるSiO膜のウエハ面内膜厚分布は、ウエハの表面積を大きくするにつれて、ウエハの中央部で最も薄く、周縁部に近づくにつれて徐々に厚くなる分布(中央凹分布)となる傾向が強いことが分かる。これに対し、実施例におけるSiO膜のウエハ面内膜厚分布は、ウエハの表面積を大きくした場合であっても、中央凹分布になりにくいこと分かる。
また、実施例および比較例について、ウエハ上に形成されたSiO膜の組成を調べたところ、比較例におけるSiO膜がClを含むのに対し、実施例におけるSiO膜はClを含まないことが分かった。また、実施例におけるSiO膜中のC濃度は、比較例におけるSiO膜中のC濃度と同等に低くなることが分かった。
他の実施例として、図1に示す基板処理装置を用い、図4に示す成膜シーケンスにより、ウエハ上にSiO膜を形成した。処理温度は、500,600,650℃とした。他の処理条件は、上述の態様に記載の処理条件範囲内の所定の条件とした。そして、ウエハ上に形成されたSiO膜のWiW[±%]、および、1%フッ化水素(HF)水溶液を用いてエッチングした際のSiO膜のウェットエッチングレート(WER)[Å/min]をそれぞれ測定した。それらの結果を図9に示す。図9より、処理温度を高くすることにより、SiO膜のWiWが小さくなること、すなわち、ウエハ面内膜厚均一性が良好となることが分かる。また、処理温度を高くすることにより、SiO膜のWERが小さくなること、すなわち、加工耐性が向上することが分かる。また、図9より、処理温度を600℃以上とすることにより、SiO膜のウエハ面内膜厚均一性および加工耐性が急激に向上することが分かる。なお、処理温度を550℃以上とした場合においても、これらの特性が急激に向上することを確認した。
<本開示の好ましい態様>
以下、好ましい態様について付記する。
(付記1)
本開示の一態様によれば、
(a)基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する原料であって、前記第1基と前記Xとの結合エネルギーが前記第2基と前記Xとの結合エネルギーよりも高い原料を供給し、前記基板上に、前記Xに前記第1基が結合した成分を含む第1層を形成する工程と、
(b)前記基板に対して酸化剤を供給し、前記第1層を酸化させて、前記Xを含む第2層を形成する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記Xを含む酸化膜を形成する工程を有し、
(a)では、前記原料に含まれる前記Xから、前記第1基が脱離することなく、前記第2基が脱離する条件であって、前記第2基が脱離し前記第1基との結合が維持された状態の前記Xが前記基板の表面に吸着する条件下で、前記原料を供給する半導体装置の製造方法、または、基板処理方法が提供される。
(付記2)
付記1に記載の方法であって、
前記Xは4つの結合手を有し、前記Xの4つの結合手のうち3つの結合手には前記第1基が結合しており、前記Xの4つの結合手のうち残りの1つの結合手には前記第2基が結合しており、
(a)では、前記Xの3つの結合手に前記第1基が結合した状態で、前記Xが前記基板の表面に吸着する条件下で、前記原料を供給する。
(付記3)
付記1または2に記載の方法であって、
(a)では、前記原料に含まれる前記Xから脱離した前記第2基が前記基板の表面に吸着しない条件下で、前記原料を供給する。
(付記4)
付記1〜3のいずれか1項に記載の方法であって、
(a)では、前記基板の表面に吸着した前記Xに結合した前記第1基により、前記基板の表面に吸着した前記Xへの原子または分子の吸着を阻害すると共に、その周辺の前記基板の表面における吸着サイト(OH終端)への原子または分子の吸着を阻害する。
(付記5)
付記1〜4のいずれか1項に記載の方法であって、
(a)では、前記基板の表面に吸着した前記Xに結合した前記第1基により、その周辺の前記基板の表面における吸着サイト(OH終端)を保持させる。
(付記6)
付記1〜5のいずれか1項に記載の方法であって、
(a)では、前記Xを前記基板の表面に不連続に吸着させる。
(付記7)
付記1〜6のいずれか1項に記載の方法であって、
(a)では、前記Xを前記基板の表面に1原子層未満の厚さとなるように吸着させる。
(付記8)
付記1〜7のいずれか1項に記載の方法であって、
(a)では、前記Xの前記基板の表面への吸着反応(化学吸着反応)が飽和するまで前記原料の供給を継続する。
(付記9)
付記8に記載の方法であって、
前記Xの前記基板の表面への吸着反応が飽和した状態において、前記基板の表面へ吸着したXにより構成される層は、1原子層未満の厚さである。
(付記10)
付記8または9に記載の方法であって、
前記Xの前記基板の表面への吸着反応が飽和した状態において、前記基板の表面へ吸着したXにより構成される層は、不連続層である。
(付記11)
付記8〜10のいずれか1項に記載の方法であって、
前記Xの前記基板の表面への吸着反応が飽和した状態において、前記基板の表面の一部に吸着サイト(OH終端)を保持させる。
(付記12)
付記8〜11のいずれか1項に記載の方法であって、
前記Xの前記基板の表面への吸着反応が飽和した状態において、前記基板の表面が前記第1基により覆われた状態とする。
(付記13)
付記1〜12のいずれか1項に記載の方法であって、
(b)では、前記第1層に含まれる前記Xと結合する前記第1基に含まれる第3基、および、前記Xと結合する前記第1基のうち少なくともいずれかが脱離する条件下で、前記酸化剤を供給する。
(付記14)
付記1〜13のいずれか1項に記載の方法であって、
(b)では、前記第1層に含まれる前記Xと結合する前記第1基に含まれる第3基、および、前記Xと結合する前記第1基が脱離する条件下で、前記酸化剤を供給する。
(付記15)
付記1〜14のいずれか1項に記載の方法であって、
前記第1基は、アルコキシ基を含み、
前記第2基は、アミノ基、アルキル基、ハロゲノ基、ヒドロキシ基、ヒドロ基、アリール基、ビニル基、およびニトロ基のうち少なくともいずれか1つを含む。付記14における前記第3基は、アルキル基を含む。
(付記16)
付記1〜15のいずれか1項に記載の方法であって、
前記酸化膜を形成する工程における処理温度(前記基板の温度)を、550℃以上700℃以下とする。
(付記17)
付記1〜15のいずれか1項に記載の方法であって、
前記酸化膜を形成する工程における処理温度(前記基板の温度)を、600℃以上650℃以下とする。
(付記18)
付記1〜17のいずれか1項に記載の方法であって、
前記酸化膜を形成する工程では、(b)を行った後に、(a)と、(b)と、をこの順に非同時に行うサイクルを所定回数行う。(b)を行うことで、前記基板の表面(前記第2層の表面を含む)に吸着サイト(OH終端)を形成する。
(付記19)
本開示の他の態様によれば、
基板が処理される処理室と、
前記処理室内の基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する原料であって、前記第1基と前記Xとの結合エネルギーが前記第2基と前記Xとの結合エネルギーよりも高い原料を供給する原料供給系と、
前記処理室内の基板に対して酸化剤を供給する酸化剤供給系と、
前記処理室内の基板を加熱するヒータと、
前記処理室内において、付記1の各処理(各工程)を行わせるように、前記原料供給系、前記酸化剤供給系、および前記ヒータを制御することが可能なよう構成される制御部と、
を有する基板処理装置が提供される。
(付記20)
本開示のさらに他の態様によれば、
基板処理装置の処理室内において、付記1の各手順(各工程)をコンピュータによって前記基板処理装置に実行させるプログラム、または、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
200 ウエハ(基板)
201 処理室

Claims (7)

  1. (a)基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する原料であって、前記第1基と前記Xとの結合エネルギーが前記第2基と前記Xとの結合エネルギーよりも高い原料を供給し、前記基板上に、前記Xに前記第1基が結合した成分を含む第1層を形成する工程と、
    (b)前記基板に対して酸化剤を供給し、前記第1層を酸化させて、前記Xを含む第2層を形成する工程と、
    を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記Xを含む酸化膜を形成する工程を有し、
    (a)では、前記原料に含まれる前記Xから、前記第1基が脱離することなく、前記第2基が脱離する条件であって、前記第2基が脱離し前記第1基との結合が維持された状態の前記Xが前記基板の表面に吸着する条件下で、前記原料を供給する半導体装置の製造方法。
  2. 前記Xは4つの結合手を有し、前記Xの4つの結合手のうち3つの結合手には前記第1基が結合しており、前記Xの4つの結合手のうち残りの1つの結合手には前記第2基が結合しており、
    (a)では、前記Xの3つの結合手に前記第1基が結合した状態で、前記Xが前記基板の表面に吸着する条件下で、前記原料を供給する請求項1に記載の半導体装置の製造方法。
  3. (a)では、前記原料に含まれる前記Xから脱離した前記第2基が前記基板の表面に吸着しない条件下で、前記原料を供給する請求項1または2に記載の半導体装置の製造方法。
  4. 前記第1基は、アルコキシ基を含み、
    前記第2基は、アミノ基、アルキル基、ハロゲノ基、ヒドロキシ基、ヒドロ基、アリール基、ビニル基、およびニトロ基のうち少なくともいずれか1つを含む請求項1〜3のいずれか1項に記載の半導体装置の製造方法。
  5. 前記酸化膜を形成する工程における処理温度を、550℃以上700℃以下とする請求項1〜4のいずれか1項に記載の半導体装置の製造方法。
  6. 基板が処理される処理室と、
    前記処理室内の基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する原料であって、前記第1基と前記Xとの結合エネルギーが前記第2基と前記Xとの結合エネルギーよりも高い原料を供給する原料供給系と、
    前記処理室内の基板に対して酸化剤を供給する酸化剤供給系と、
    前記処理室内の基板を加熱するヒータと、
    前記処理室内において、(a)基板に対して前記原料を供給し、前記基板上に、前記Xに前記第1基が結合した成分を含む第1層を形成する処理と、(b)前記基板に対して前記酸化剤を供給し、前記第1層を酸化させて、前記Xを含む第2層を形成する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記Xを含む酸化膜を形成する処理を行わせ、(a)において、前記原料に含まれる前記Xから、前記第1基が脱離することなく、前記第2基が脱離する条件であって、前記第2基が脱離し前記第1基との結合が維持された状態の前記Xが前記基板の表面に吸着する条件下で、前記原料を供給するように、前記原料供給系、前記酸化剤供給系、および前記ヒータを制御することが可能なよう構成される制御部と、
    を有する基板処理装置。
  7. 基板処理装置の処理室内において、
    (a)基板に対して、中心原子Xに第1基と第2基とが結合した分子構造を有する原料であって、前記第1基と前記Xとの結合エネルギーが前記第2基と前記Xとの結合エネルギーよりも高い原料を供給し、前記基板上に、前記Xに前記第1基が結合した成分を含む第1層を形成する手順と、
    (b)前記基板に対して酸化剤を供給し、前記第1層を酸化させて、前記Xを含む第2層を形成する手順と、
    を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記Xを含む酸化膜を形成する手順と、
    (a)において、前記原料に含まれる前記Xから、前記第1基が脱離することなく、前記第2基が脱離する条件であって、前記第2基が脱離し前記第1基との結合が維持された状態の前記Xが前記基板の表面に吸着する条件下で、前記原料を供給する手順と、
    をコンピュータによって前記基板処理装置に実行させるプログラム。
JP2019158563A 2019-08-30 2019-08-30 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム Active JP7023905B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019158563A JP7023905B2 (ja) 2019-08-30 2019-08-30 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
CN202010720739.5A CN112447499A (zh) 2019-08-30 2020-07-24 半导体器件的制造方法、衬底处理装置及记录介质
TW112111024A TW202333234A (zh) 2019-08-30 2020-08-11 基板處理方法、半導體裝置之製造方法、基板處理裝置及其程式
TW109127150A TWI800746B (zh) 2019-08-30 2020-08-11 半導體裝置之製造方法、基板處理方法、基板處理裝置及其程式
KR1020200109503A KR102450410B1 (ko) 2019-08-30 2020-08-28 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
US17/006,466 US11527402B2 (en) 2019-08-30 2020-08-28 Method of processing substrate, substrate processing apparatus, recording medium, and method of manufacturing semiconductor device
SG10202008356TA SG10202008356TA (en) 2019-08-30 2020-08-31 Method of manufacturing semiconductor device, substrate processing apparatus, and program
KR1020220123512A KR20220136980A (ko) 2019-08-30 2022-09-28 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
US17/983,131 US11978623B2 (en) 2019-08-30 2022-11-08 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158563A JP7023905B2 (ja) 2019-08-30 2019-08-30 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Publications (2)

Publication Number Publication Date
JP2021039970A true JP2021039970A (ja) 2021-03-11
JP7023905B2 JP7023905B2 (ja) 2022-02-22

Family

ID=74681798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158563A Active JP7023905B2 (ja) 2019-08-30 2019-08-30 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Country Status (6)

Country Link
US (2) US11527402B2 (ja)
JP (1) JP7023905B2 (ja)
KR (2) KR102450410B1 (ja)
CN (1) CN112447499A (ja)
SG (1) SG10202008356TA (ja)
TW (2) TW202333234A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023905B2 (ja) * 2019-08-30 2022-02-22 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236073A (ja) * 2012-04-12 2013-11-21 Air Products & Chemicals Inc 酸化ケイ素薄膜の高温原子層堆積
JP2018152554A (ja) * 2017-02-14 2018-09-27 ラム リサーチ コーポレーションLam Research Corporation シリコン酸化物の選択的堆積

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530361B2 (en) * 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
JP4836761B2 (ja) 2006-11-29 2011-12-14 株式会社日立国際電気 半導体デバイスの製造方法
JP5665289B2 (ja) 2008-10-29 2015-02-04 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP5998101B2 (ja) * 2013-05-24 2016-09-28 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
JP6579974B2 (ja) * 2015-02-25 2019-09-25 株式会社Kokusai Electric 基板処理装置、温度センサ及び半導体装置の製造方法
CA2920646A1 (en) 2016-02-12 2017-08-12 Seastar Chemicals Inc. Organometallic compound and method
WO2018088003A1 (ja) * 2016-11-11 2018-05-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6777614B2 (ja) * 2017-09-26 2020-10-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6756689B2 (ja) * 2017-10-13 2020-09-16 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6806719B2 (ja) * 2018-01-17 2021-01-06 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP7023905B2 (ja) * 2019-08-30 2022-02-22 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236073A (ja) * 2012-04-12 2013-11-21 Air Products & Chemicals Inc 酸化ケイ素薄膜の高温原子層堆積
JP2018152554A (ja) * 2017-02-14 2018-09-27 ラム リサーチ コーポレーションLam Research Corporation シリコン酸化物の選択的堆積

Also Published As

Publication number Publication date
KR102450410B1 (ko) 2022-10-05
JP7023905B2 (ja) 2022-02-22
CN112447499A (zh) 2021-03-05
KR20210027191A (ko) 2021-03-10
TW202333234A (zh) 2023-08-16
US20210066073A1 (en) 2021-03-04
US11978623B2 (en) 2024-05-07
US20230067218A1 (en) 2023-03-02
TW202119499A (zh) 2021-05-16
SG10202008356TA (en) 2021-03-30
US11527402B2 (en) 2022-12-13
KR20220136980A (ko) 2022-10-11
TWI800746B (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
JP2016072587A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2018046129A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR20210084302A (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
US11735412B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2016157871A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6470468B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6754493B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US11978623B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20230183864A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11935742B2 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6224258B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2020188801A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2021040060A (ja) 半導体装置の製造方法、基板処理システム、およびプログラム
JP7123100B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6654232B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2022180825A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US20230175116A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7023905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150