JP2021034401A - 半導体レーザ素子およびチップオンサブマウント - Google Patents

半導体レーザ素子およびチップオンサブマウント Download PDF

Info

Publication number
JP2021034401A
JP2021034401A JP2019148933A JP2019148933A JP2021034401A JP 2021034401 A JP2021034401 A JP 2021034401A JP 2019148933 A JP2019148933 A JP 2019148933A JP 2019148933 A JP2019148933 A JP 2019148933A JP 2021034401 A JP2021034401 A JP 2021034401A
Authority
JP
Japan
Prior art keywords
region
current injection
semiconductor laser
light emitting
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019148933A
Other languages
English (en)
Other versions
JP7295739B2 (ja
Inventor
俊哉 前澤
Toshiya Maezawa
俊哉 前澤
大木 泰
Yasushi Oki
泰 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019148933A priority Critical patent/JP7295739B2/ja
Publication of JP2021034401A publication Critical patent/JP2021034401A/ja
Application granted granted Critical
Publication of JP7295739B2 publication Critical patent/JP7295739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制された半導体レーザ素子を提供すること。【解決手段】半導体レーザ素子は、光出射端面に対向する後端面、光出射端面と後端面との間で延伸方向に延びるマルチモードの導波路領域、導波路領域に電流を注入する電流注入領域、を備え、延伸方向における中心線よりも光出射端面側に位置する光出射側領域におけるカバレッジ幅の最小値を第1カバレッジ幅、中心線よりも後端面側に位置する後側領域におけるカバレッジ幅の最大値を第2カバレッジ幅としたとき、第1カバレッジ幅が第2カバレッジ幅より狭く、かつ光出射側領域における電流注入領域の面積を光出射側電流注入面積、後側領域における電流注入領域の面積を後側電流注入面積としたときに、光出射側電流注入面積が後側電流注入面積の100%より大きく200%以下である。【選択図】図1

Description

本発明は、半導体レーザ素子およびチップオンサブマウントに関するものである。
半導体レーザ素子は、光通信用途や産業加工用途などのレーザ光源として広く活用されている。光通信用途では、光ファイバを介してレーザ光を長距離(例えば数百キロメートル)伝搬させる必要があり、光信号の品質劣化を抑制するためにシングルモードのレーザ光が使用されることが一般的である。一方、たとえば産業加工用途では、光通信用途のレーザ光と比較すると高出力が必要とされる。しかし、長距離を伝搬させる必要はないので、高出力に有利なマルチモードのレーザ光が使用されるのが一般的である。マルチモードのレーザ光を発振して出射する端面発光型の半導体レーザ素子では、導波路の幅を広く構成し、導波路内で複数モードのレーザ光の発振および導波を許容する構成が採用されている。このような構成の半導体レーザ素子を、以下では適宜マルチモード半導体レーザ素子と記載する場合がある。ここで、マルチモードとは、横モードが複数存在することを意味する。
マルチモード半導体レーザ素子では、たとえばマルチモード光ファイバなどの光学要素に光を効果的に結合させるため、光出射端面から出射されるレーザ光の水平方向の放射角(以降FFPhと記載する場合がある)を小さく抑えることが望ましい。
一方で、マルチモード半導体レーザ素子には、光出力および電気-光変換効率を高めることも求められる。電気-光変換効率とは、マルチモード半導体レーザ素子の光出力をマルチモード半導体レーザ素子への投入電力で除算した値である。
マルチモード半導体レーザ素子への注入電流値を増加することで、光出力を高めることが可能である。しかし、一般的には、注入電流値が増加するにつれて、FFPhも増加してしまう。特に、近年では、光出力を高めるために、マルチモード半導体レーザ素子が、たとえば15A以上の高電流注入領域において使用されるようになってきているが、高電流注入領域でも従来と同等のFFPhが求められるようになっている。したがって、特に高電流注入領域でのFFPhの増加の抑制が重要である。
特許文献1には、光出射端面と後端面との間で複数に分割した分割電極構造を採用した構成が開示されている。開示された構成によれば、光出射端面に近い電極ほど、注入電流密度が高くなるようにすることで、安定したマルチモードでレーザ発振を行う高出力な半導体レーザ素子を実現できるとされている。
国際公開第2005/062433号
しかしながら、特許文献1に開示される分割電極構造は、その作製が困難であり、かつレーザ発振制御が複雑であるという問題がある。そこで、マルチモード半導体レーザ素子において、簡易な構成にて、光出力および電気-光変換効率を高めるとともに、FFPhの増加を抑制することが、特に高電流注入領域において求められている。
本発明は、上記に鑑みてなされたものであって、簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制された半導体レーザ素子およびチップオンサブマウントを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の一態様に係る半導体レーザ素子は、光出射端面と、前記光出射端面に対向する後端面と、前記光出射端面と前記後端面との間で延伸方向に延びるマルチモードの導波路領域と、前記導波路領域に電流を注入する電流注入領域と、を備え、前記導波路領域の幅と前記電流注入領域の幅との差の1/2をカバレッジ幅とし、前記延伸方向における中心線よりも前記光出射端面側に位置する光出射側領域における前記カバレッジ幅の最小値を第1カバレッジ幅、前記中心線よりも前記後端面側に位置する後側領域における前記カバレッジ幅の最大値を第2カバレッジ幅としたとき、前記第1カバレッジ幅が前記第2カバレッジ幅より狭く、かつ前記光出射側領域における前記電流注入領域の面積を光出射側電流注入面積、前記後側領域における前記電流注入領域の面積を後側電流注入面積としたときに、前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく200%以下である。
前記カバレッジ幅は、前記光出射端面から前記後端面に向かって一定または増加してもよい。
前記カバレッジ幅が前記光出射端面から前記後端面に向かって不連続に増加する箇所が存在してもよい。
前記第1カバレッジ幅が5μm以下であってもよい。
前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく175%以下であってもよい。
前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく160%以下であってもよい。
前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく150%以下であってもよい。
前記光出射側電流注入面積が前記後側電流注入面積の105%以上148%以下であってもよい。
前記光出射側電流注入面積が前記後側電流注入面積の113%以上145%以下であってもよい。
本発明の一態様に係る半導体レーザ素子は、光出射端面と、前記光出射端面に対向する後端面と、前記光出射端面と前記後端面との間で延伸方向に延びるマルチモードの導波路領域と、前記導波路領域に電流を注入する電流注入領域と、を備え、前記導波路領域の幅と前記電流注入領域の幅との差の1/2をカバレッジ幅とすると、前記カバレッジ幅は、前記光出射端面から前記後端面に向かって一定または増加し、かつ、前記カバレッジ幅が不連続に変化する箇所が1箇所以上存在する。
本発明の一態様に係るチップオンサブマウントは、前記半導体レーザ素子と、前記半導体レーザ素子が搭載されるサブマウントと、を備える。
前記半導体レーザ素子はジャンクションダウン状態で前記サブマウントに搭載されていてもよい。
本発明によれば、簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制された半導体レーザ素子を実現できるという効果を奏する。
図1は、実施形態1に係る半導体レーザ素子の模式図である。 図2は、図1のII−II線断面図である。 図3は、実施例および比較例について、So/Srと光出力の変化との関係を示す図である。 図4は、実施例および比較例について、So/Srと電気-光変換効率の変化との関係を示す図である。 図5は、実施例および比較例について、So/SrとFFPhの変化との関係を示す図である。 図6は、実施形態2に係る半導体レーザ素子の模式図である。 図7は、実施形態3に係る半導体レーザバー素子の模式図である。 図8は、実施形態4に係るチップオンサブマウントの模式図である。
以下に、図面を参照して実施形態について説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、図中、XYZ直交軸を用いて方向を説明する場合がある。
(実施形態1)
図1は、実施形態1に係る半導体レーザ素子の模式図である。図2は、図1のII−II線断面図である。
半導体レーザ素子1は、光出射端面Eoと、後端面Erと、導波路領域Awgと、電流注入領域Aciと、を備えている。
半導体レーザ素子1は、端面発光型のレーザ素子であり、光出射端面Eoから、半導体レーザ素子1が発振したレーザ光を出射する。後端面Erは、図中Z方向において光出射端面Eoに対向する面である。後端面Erには、レーザ光の波長において、通常90%以上、たとえば95%の反射率の高反射率反射膜が設けられている。また、光出射端面Eoには、レーザ光の波長において、高反射率反射膜よりも反射率が低い、たとえば0.1%〜7%の反射率の低反射率反射膜が設けられている。光出射端面Eoと後端面Erとによってレーザ共振器が構成される。図中、Lは光出射端面Eoと後端面Erとの距離であり、レーザ共振器長とも呼ばれる。Lは特に限定されないが、たとえば800μm〜6mmであり、さらには3mm〜5mmでもよい。
導波路領域Awgは、光出射端面Eoと後端面Erとの間で延伸方向に延びるマルチモードの導波路領域である。ここで、延伸方向とは、Z方向に平行な方向である。導波路領域Awgの光軸は延伸方向に平行である。導波路領域Awgは、X方向において、半導体レーザ素子1が発振したレーザ光をマルチモードで導波する幅を有している。マルチモードの導波路領域とは、半導体レーザ素子1が発振したレーザ光をマルチモードで導波する領域である。また、導波路領域Awgは、レーザ増幅媒体としての活性層を含んでおり、電流を注入することによって発光し、かつ光増幅作用を発揮する。
電流注入領域Aciは、導波路領域Awgに電流を注入する領域である。
電流注入領域Aciおよび導波路領域Awgについて、図2を参照して、より具体的に説明する。半導体レーザ素子1は、リッジ構造Rを有する。半導体レーザ素子1は、n型GaAsからなる基板2と、基板2の裏面に設けられた下部電極3と、基板2上に形成された半導体積層部4と、パッシベーション膜5と、上部電極6と、を備えている。
半導体レーザ素子1は、下部電極3と上部電極6との間に電圧を印加して電流を注入するとレーザ発振し、レーザ光を光出射端面Eoから出力する。
半導体積層部4は、基板2上に順次形成された、n型バッファ層7、n型クラッド層8、n型ガイド層9、活性層10、p型ガイド層11、p型クラッド層12、およびp型コンタクト層13を含む。
n型バッファ層7は、GaAsからなり、基板2上に高品質のエピタキシャル層の積層構造を成長するための緩衝層である。n型クラッド層8とn型ガイド層9とは、積層方向に対する所望の光閉じ込め状態を実現するように、屈折率と厚さとが設定されたAlGaAsからなる。なお、n型ガイド層9のAl組成は、例えば15%以上40%未満である。また、n型クラッド層8は、n型ガイド層9よりも屈折率が小さくなっている。また、n型ガイド層9の厚さは、50nm以上、例えば1000nm程度であることが好ましい。n型クラッド層8の厚さは、1μm〜3μm程度が好ましい。また、これらのn型半導体層は、n型ドーパントとして例えば珪素(Si)を含んでもよい。
活性層10は、下部バリア層、量子井戸層、上部バリア層を備え、単一の量子井戸(SQW)構造を有する。下部バリア層および上部バリア層は、量子井戸層にキャリアを閉じ込める障壁の機能を有し、故意にドーピングをしない高純度のAlGaAsからなる。量子井戸層は、故意にドーピングをしない高純度のInGaAsからなる。量子井戸層のIn組成および膜厚、下部バリア層および上部バリア層の組成は、所望の発光中心波長(たとえば900nm〜1080nm)に応じて設定される。なお、活性層10の構造は、量子井戸層とその上下に形成されたバリア層の積層構造を所望の数だけ繰り返した多重量子井戸(MQW)構造でもよい。なお、量子井戸層、下部バリア層および上部バリア層に故意にドナーやアクセプタが添加される場合もある。
p型ガイド層11およびp型クラッド層12は、上述のn型クラッド層8およびn型ガイド層9と対になり、積層方向に対する所望の光閉じ込め状態を実現するように、屈折率と厚さとが設定されたAlGaAsからなる。p型クラッド層12は、p型ガイド層11よりも屈折率が小さくなっている。層中の光のフィールドをn型クラッド層8の方向にずらして導波路損失を小さくするために、p型クラッド層12のAl組成はn型クラッド層8に比べて若干大きめに設定される。そして、p型ガイド層11のAl組成は、p型クラッド層12のAl組成に比べて小さく設定される。また、p型ガイド層11の厚さは、50nm以上、例えば1000nm程度であることが好ましい。p型クラッド層12の厚さは、1μm〜3μm程度が好ましい。また、これらのp型半導体層は、p型ドーパントとして炭素(C)を含んでもよい。p型ガイド層11のC濃度は、例えば0.1〜1.0×1017cm−3に設定され、0.5〜1.0×1017cm−3程度が好適である。p型クラッド層12のC濃度は、例えば1.0×1017cm−3以上に設定される。
p型コンタクト層13は、ZnまたはCが高濃度にドーピングされたGaAsからなる。また、p型クラッド層12の突出した部分とp型コンタクト層13とはリッジ構造Rを構成している。リッジ構造RのX方向における幅は、Z方向(図1参照)に沿って略一定である。リッジ構造Rは、X方向において光を閉じ込める機能を有し、導波路構造を構成する。
パッシベーション膜5は、例えばSiNxからなる絶縁膜であり、p型クラッド層12とp型コンタクト層13とを覆うように形成されている。パッシベーション膜5は、リッジ構造Rの位置に設けられた開口部5aを有する。上部電極6は開口部5aを経由してp型コンタクト層13にオーミック接触する。
半導体レーザ素子1の内部では、光は、Y方向には主にn型ガイド層9、活性層10、およびp型ガイド層11の領域に存在する。また、光は、X方向には主にリッジ構造Rの直下の領域に存在する。よって、n型ガイド層9、活性層10、およびp型ガイド層11におけるリッジ構造Rの直下の領域を導波路領域Awgと呼ぶことができる。
また、活性層10には、上部電極6から、開口部5aを経由してオーミック接触するp型コンタクト層13を通じて電流が注入されるので、p型コンタクト層13において開口部5aに対応する領域を電流注入領域Aciと呼ぶことができる。
したがって、半導体レーザ素子1の場合、導波路領域Awgの幅とは、X方向におけるリッジ構造Rの幅と考えることができる。また、電流注入領域Aciの幅は、X方向における開口部5aの幅と考えることができる。
ここで、下記式のように、導波路領域Awgの幅と電流注入領域Aciの幅との差の1/2をカバレッジ幅として定義する。
カバレッジ幅=(導波路領域Awgの幅−電流注入領域Aciの幅)/2
なお、電流注入領域Aciの幅方向両側におけるカバレッジ幅は、必ずしも同じ幅である必要はないが、半導体レーザ素子1から出射されるレーザ光の放射角などの対称性を考慮すると、両側が同じカバレッジ幅となることが好ましい。本実施形態では、両側が同じカバレッジ幅であることとする。
また、導波路領域Awgにおいて、延伸方向(Z方向)における中心線CLよりも光出射端面Eo側に位置する領域を光出射側領域Aoとする。また、導波路領域Awgにおいて、延伸方向における中心線CLよりも後端面Er側に位置する領域を後側領域Arとする。光出射側領域Ao、後側領域Arの延伸方向のおける長さはいずれもL/2である。
ここで、半導体レーザ素子1では、導波路領域AwgはZ方向に沿って幅が一定である。一方、電流注入領域Aciは、その幅が、光出射端面Eoから後端面Erに向かって一定の部分と段階的に減少している部分がある。具体的には、電流注入領域Aciは、光出射端面Eoから長さL1にわたって一定の幅であるが、光出射側領域Aoに存在する変化部P1において幅が段階的に減少し、さらに長さL2にわたって一定の幅である。そして、後側領域Arに存在する変化部P2において幅が段階的に減少し、さらに長さL3にわたって一定の幅であり、後端面Erに到達する。また、半導体レーザ素子1では、L1+L2+L3は略Lに等しいとする。
したがって、光出射側領域Aoにおけるカバレッジ幅の最小値を第1カバレッジ幅とすると、第1カバレッジ幅は光出射端面Eoから長さL1まで位置における幅Woである。また、後側領域Arにおけるカバレッジ幅の最大値を第2カバレッジ幅とすると、第2カバレッジ幅は後端面Erから長さL3まで位置におけるWrである。このとき、第1カバレッジ幅Woは第2カバレッジ幅Wrより狭い。また、カバレッジ幅は、光出射端面Eoから後端面Erに向かって一定または増加しており、かつ増加は不連続である。変化部P1、P2は、カバレッジ幅が光出射端面Eoから後端面Erに向かって不連続に増加する箇所の例である。
さらに、光出射側領域Aoにおける電流注入領域Aciの面積を光出射側電流注入面積So、後側領域Arにおける電流注入領域Aciの面積を後側電流注入面積Srとする。
以上のように構成された半導体レーザ素子1は、簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制されている。
以下、具体的に説明する。低反射率の光出射端面Eoと高反射率の後端面Erを有する端面発光型の半導体レーザ素子1の導波路領域Awgの内部では、光強度およびキャリア密度に、延伸方向(共振器長方向とも記載する場合がある)における分布が生じている。光強度は光出射端面Eo側にて後端面Er側よりも高い。一方、キャリア密度は光出射端面Eo側にて後端面Er側よりも低い。これは、光出力が高いことによってキャリアがより消費されるからである。また、このような共振器長方向における光強度およびキャリア密度の分布に起因して、導波路領域Awgにおける発熱や利得にも光導波方向における分布が生じる。発熱量は光出射端面Eo側にて後端面Er側よりも多い。一方、利得は光出射端面Eo側にて後端面Er側よりも低い。光出射側領域Aoは熱支配領域ということもできる。後側領域Arはキャリア支配領域ということもできる。
半導体レーザ素子1では、第1カバレッジ幅Woが第2カバレッジ幅Wrより狭いことによって、光出射端面Eo側の光出射側領域Aoでは後端面Er側の後側領域Arよりも電流注入領域Aciの幅が広い。その結果、キャリア消費が激しい光出射側領域Aoでの電流注入をより多くすることができるので、光出力を高くすることができる。
また、光出射側領域Aoで電流注入領域Aciの幅が広いことによって、上部電極6を経由した放熱が、光出射側領域Aoにてより効果的に発生する。すなわち光出射側領域Aoで放熱性が向上し、キャリアの熱によるオーバーフローが抑制されるため、光出力をより高くすることができる。
さらには、光出射側領域Aoで放熱性が向上することで、光出射側領域Aoで熱レンズ効果の程度が抑制されるので、FFPhの増加が抑制される。具体的には、たとえば15A以上の高電流注入領域では、発熱による熱レンズ効果が顕著になり、熱レンズ効果によってFFPhが増加するおそれがある。熱レンズ効果を抑制してFFPhを低減するためには、導波路領域Awgの共振器長方向にわたって全体的に放熱性を向上させる必要はなく、発熱が顕著な光出射端面Eo側で放熱性を向上させれば十分な効果が得られることが、本発明者らの鋭意検討により初めて分かった。つまり、第1カバレッジ幅Woが第2カバレッジ幅Wrより狭いことによって、FFPh低減の効果が得られることが分かった。
さらには、第2カバレッジ幅Woが第1カバレッジ幅Wrより広いことによって、光出射側領域Aoと比較して後側領域Arにて高くなる高次モード発振利得が効果的に低減される。そのため、FFPhの増加がさらに抑制される。マルチモード半導体レーザ素子においては、高次のモードほど、広い角度で放射する、すなわちFFPhの増加への寄与度が高い。そのため、第2カバレッジ幅Woが第1カバレッジ幅Wrより広いことによって、高次モードでのレーザ発振を抑制することや発振モード数を少なくすることが、FFPhの低減において重要である。
なお、たとえば、後端面Er側で高次モードのレーザ発振を抑制するためには、後端面Er側でカバレッジ幅が広い領域が、共振器長方向にわたってある程度長さだけ存在することが望ましい。同時に、キャリア消費が激しい光出射側領域Aoでの電流注入をより多くし、光出力を高くするためには、光出射端面Eo側で、幅が広い電流注入領域が、共振器長方向にわたってある程度長さだけ存在することが望ましい。以上のことから、本発明者らは、光出射側領域Aoにおける電流注入領域Aciの面積である光出射側電流注入面積Soと、後側領域Arにおける電流注入領域Aciの面積である後側電流注入面積Srとの面積比が、光出力および電気-光変換効率の向上や、FFPhの増加の抑制にとって重要であることを初めて見出した。
さらに、光出射側領域Aoにおけるカバレッジ幅を小さくして電流注入領域Aciの幅を導波路領域Awgの幅になるべく近づけることがFFPhの低減のために好ましい。たとえば、第1カバレッジ幅Woを5μm以下にすることが好ましい。
(So/Srの好適な範囲)
半導体レーザ素子1において、光出射側電流注入面積Soが後側電流注入面積Srの100%より大きく200%以下であることが好ましい。以下、光出射側電流注入面積Soと後側電流注入面積Srとの面積比の好適な範囲について説明する。
実施例としての半導体レーザ素子1と同じ構成の半導体レーザ素子と、カバレッジ幅が共振器長方向にわたって10μmで一定である以外は実施例の半導体レーザ素子と同じ構成である比較例の半導体レーザ素子とを作製し、光出力、光-電気変換効率、FFPhを測定した。なお、各半導体レーザ素子の共振器長(図1におけるL)はいずれも4500μmとした。また、実施例の半導体レーザ素子については、第1カバレッジ幅Woを5μm、第2カバレッジ幅Wrを25μmとした。また、カバレッジ幅が異なる領域の長さ(図1におけるL1、L2、L3)は各実施例で異なる値とした。
また、各半導体レーザ素子に注入する電流値は10A、15Aまたは20Aとした。電流値が10Aであれば、たとえば9W程度の光出力が得られる。
10Aは従来のマルチモード半導体レーザ素子で使用されていた標準的な電流値である。また、15A、20Aは、近年マルチモード半導体レーザ素子での使用が検討され始めている電流値である。マルチモード半導体レーザ素子の高出力化のためには、電流値として15A、18A、更には20A以上での使用が必要になる。なお、ここで記載した電流値は、対象としている半導体レーザ素子で使用可能な最大の電流値である。なお、対象としている半導体レーザ素子で使用可能最大電流値が、たとえば18Aであっても、小さい光出力しか必要ない使用条件の場合は、実際に注入する電流が18Aよりも小さい場合もあるのは勿論である。しかし、マルチモード半導体レーザ素子は、FFPhが電流とともに増加するので、その半導体レーザ素子における使用可能最大電流値を考えて設計することが重要である。
また、各半導体レーザ素子は、後述するサブマウントにジャンクションダウンの状態で搭載し、電流を注入した。
実施例および比較例の半導体レーザ素子について、5μmである第1カバレッジ幅Woの領域の長さL1の、電流注入領域Aciの全長(L1+L2+L3)に対する割合(L1/(L1+L2+L3))[%]を計算した。また、10μmであるカバレッジ幅の領域の長さL2の、L1+L2+L3に対する割合(L2/(L1+L2+L3))[%]を計算した。また、25μmである第2カバレッジ幅Wrの領域の長さL3の、L1+L2+L3に対する割合(L3/(L1+L2+L3))[%]を計算した。そして、これらの割合とSo/Srとの関係を計算した。その結果を表1に示す。So/Srは、比較例の半導体レーザ素子では100%であり、実施例の半導体レーザ素子では101%〜140.7%である。
Figure 2021034401
図3は、実施例および比較例について、So/Srと光出力の変化との関係を示す図である。図4は、実施例および比較例について、So/Srと電気−光変換効率の変化との関係を示す図である。図5は、実施例および比較例について、So/SrとFFPhの変化との関係を示す図である。なお、光出力、FFPh、電気−光変換効率の変化は、いずれも、比較例における値からの変化量で示してある。なお、一点鎖線、実線、または破線は、電流値が10A、15A、20Aのそれぞれの場合における、丸、四角、または三角で示す測定点に基づくアイガイドである。
図3、4、5から解るように、So/Srが100%から増加するにしたがって、光出力および電気−光変換効率は増加し、FFPhは減少した。このような光出力の増加、電気−光変換効率の増加、またはFFPhの減少の理由は、キャリア消費が激しい光出射側領域Aoでの電流注入をより多くできることや、光出射側領域Aoで放熱性が向上してキャリアの熱によるオーバーフローが抑制されることや、光出射側領域Aoで熱レンズ効果の程度が抑制されることや、高次モード発振利得が効果的に低減されることなどの効果によるものと考えられる。また、光出力の増加量、電気−光変換効率の増加量、およびFFPhの減少量は電流値が大きくなるにしたがって急峻に増加しており、上記効果が高電流注入であるほど顕著に発揮されることが確認された。また、So/Srが100%からわずかに1%だけ増加した101%でも上記効果が発揮され、5%だけ増加した105%ではさらに効果的であるという、予測以上の効果が確認された。たとえば、So/Srが101%の場合、電流値が20Aでは電気−光変換効率は0.9%も増加した。また、So/Srが105%の場合、電気−光変換効率は1.4%とさらに増加し、かつ光出力の増加やFFPhの減少量も十分であった。したがって、So/Srは101%以上または105%以上でもよい。
ただし、第2カバレッジ幅Wrの領域の長さL3がある程度以上大きくなると、So/Srは増加するが、電流注入領域Aciの総面積が小さくなるので、電流注入のための電圧が上昇する。その結果、電気−光変換効率は低下する。さらに、後側領域Arにおける発熱が無視できなくなってくると、活性層10の発光効率が低下して光出力が低下したり、高次モード発振利得の低減効果が薄れてFFPhが増加したりする。さらに、第1カバレッジ幅Woの領域の長さL1がある程度大きくなると、So/Srは増加するが、キャリアの分布を光出射端面Eo側に偏らせにくくなるので、光出力および電気−光変換効率が低下する。So/Srの増加にしたがう光出力および電気−光変換効率の低下、FFPhの増加は、電流値が大きくなるにしたがって急峻であることも確認された。
以上のことから、図3、4、5に示されるように、So/Srが100%から増加するにしたがって、光出力および電気−光変換効率は増加し、FFPhは減少するが、ある程度以上増加すると、光出力および電気−光変換効率は減少し、FFPhは増加すると考えられる。すなわち、So/Srには最適な範囲があることが確認された。なお、So/Srが100%から増加すると直ぐに上述した電圧上昇の影響が現れるため、電気−光変換効率のピークは、光出力やFFPhよりもSo/Srが100%に近い値において現れると考えられる。
図3、4、5のアイガイドが示すように、電流値が10A以下では、So/Srは100%より大きく200%以下であることが好ましい。また、15A以下では、So/Srが100%より大きく175%以下であれば、光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善されるので好ましい。また、20A以下では、So/Srが100%より大きく150%以下であれば、光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善されるので好ましい。
また、光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善される好適なSo/Srの最大値は、電流値に対して線形に低下している。したがって、たとえば電流値が18Aにおける、光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善される好適なSo/Srの最大値は、15Aおよび20Aにおける好適なSo/Srの最大値から容易に推測することができる。具体的には、18A以下では、So/Srが100%より大きく160%以下であれば、光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善されるので好ましい。
また、So/Srが105%以上148%以下であれば、20A以下にて光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善されており、かつ従来の標準的な電流値である10Aから高電流注入領域といえる15A〜20AにわたってFFPhが比較例よりも0.4度以上減少するので好ましい。さらには、So/Srが113%以上145%以下であれば、20A以下にて光出力、電気−光変換効率およびFFPhが同時に比較例よりも改善されており、かつ10Aから20AにわたってFFPhが比較例よりも0.6度以上減少するので好ましい。
(実施形態2)
図6は、実施形態2に係る半導体レーザ素子の模式図である。
半導体レーザ素子1Aは、光出射端面EAoと、後端面EArと、導波路領域AAwgと、電流注入領域AAciと、を備えている。
半導体レーザ素子1Aは、実施形態1に係る半導体レーザ素子1と同様に端面発光型のかつリッジ構造を有するレーザ素子であり、光出射端面EAoから、半導体レーザ素子1Aが発振したレーザ光を出射する。後端面EArは、図中Z方向において光出射端面EAoに対向する面である。後端面EArには、レーザ光の波長において高反射率の高反射率反射膜が設けられている。また、光出射端面EAoには、レーザ光の波長において、高反射率反射膜よりも反射率が低い低反射率反射膜が設けられている。光出射端面EAoと後端面EArとによってレーザ共振器が構成される。図中、Lはレーザ共振器長である。
導波路領域AAwgは、光出射端面EAoと後端面EArとの間で延伸方向に延びるマルチモードの導波路領域である。導波路領域AAwgの光軸は延伸方向に平行である。導波路領域AAwgは、X方向において、半導体レーザ素子1Aが発振したレーザ光をマルチモードで導波する幅を有している。また、導波路領域AAwgは、レーザ増幅媒体としての活性層を含んでおり、電流を注入することによって発光し、かつ光増幅作用を発揮する。
電流注入領域AAciは、導波路領域AAwgに電流を注入する領域である。半導体レーザ素子1Aは、半導体レーザ素子1と同様の断面構造を有する。電流注入領域AAciおよび導波路領域AAwgについては、半導体レーザ素子1の電流注入領域Aciおよび導波路領域Awgと同様なので、説明を省略する。
半導体レーザ素子1Aでは、導波路領域AAwgの幅と電流注入領域AAciの幅との差の1/2をカバレッジ幅として定義する。電流注入領域AAciの幅方向両側におけるカバレッジ幅は、必ずしも同じ幅である必要はないが、半導体レーザ素子1Aから出射されるレーザ光の放射角などの対称性を考慮すると、両側が同じカバレッジ幅となることが好ましい。本実施形態では、両側が同じカバレッジ幅であることとする。
また、導波路領域AAwgにおいて、延伸方向(Z方向)における中心線CLよりも光出射端面EAo側に位置する領域を光出射側領域AAoとする。また、導波路領域AAwgにおいて、延伸方向における中心線CLよりも後端面EAr側に位置する領域を後側領域AArとする。光出射側領域AAo、後側領域AArの長さはいずれもL/2である。
ここで、半導体レーザ素子1Aでは、導波路領域AAwgはZ方向に沿って幅が一定である。一方、電流注入領域AAciは、その幅が、光出射端面EAoから後端面EArに向かって一定の部分と不連続に変化している3箇所の部分がある。具体的には、電流注入領域AAciは、光出射端面EAoから長さLA1にわたって一定の幅であるが、光出射側領域AAoに存在する変化部PA1において幅が段階的に減少し、さらに長さLA2にわたって一定の幅である。そして、後側領域AArに存在する変化部PA2において幅が段階的に減少し、さらに長さLA3にわたって一定の幅である。そして、後側領域AArに存在する変化部PA3において幅が不連続に減少し、さらに長さLA4にわたって一定の幅であり、後端面EArに到達する。ここで、図中に示すように、変化部PA3を拡大すると、変化部PA3は、幅が不連続に変化する2つの部分と、2つの部分の間で幅が連続的に減少する部分とで構成されている。連続的に減少する部分の長さはレーザ共振器長Lに比べて微少であり、たとえば0.001L〜0.01L(すなわち、Lの0.1%〜1%)である。このような連続的な変化があると、端点の電界集中により半導体レーザ素子1Aの信頼性が低下するおそれがより少なくなる。
したがって、光出射側領域AAoにおけるカバレッジ幅の最小値を第1カバレッジ幅WAoし、後側領域AArにおけるカバレッジ幅の最大値をWArとすると、第1カバレッジ幅WAoは第2カバレッジ幅WArより狭い。また、カバレッジ幅は、光出射端面EAoから後端面EArに向かって一定または増加しており、かつ増加は不連続である。
さらに、光出射側領域AAoにおける電流注入領域AAciの面積を光出射側電流注入面積SAo、後側領域AArにおける電流注入領域AAciの面積を後側電流注入面積SArとしたときに、たとえば、SAoがSArの100%より大きく200%以下である。
以上のように構成された半導体レーザ素子1Aは、半導体レーザ素子1と同様に、簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制されている。
なお、半導体レーザ素子1、1Aは、いずれも、カバレッジ幅が、光出射端面から後端面に向かって一定または増加し、かつ、カバレッジ幅が不連続に変化する箇所が1箇所以上存在している。これによって、簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制される。
半導体レーザ素子1、1Aにおいて、カバレッジ幅が不連続に変化する箇所は2箇所または3箇所である。カバレッジ幅が光出射端面から後端面に向かって一定または不連続に増加し、かつ、カバレッジ幅が一定の領域がある程度の長さであることが、放熱性、共振器方向における電流注入の非対称な分布、後端面側における高次モード発振の抑制効果を同時に実現する上で好ましい。また、カバレッジ幅が不連続に変化する箇所は1箇所以上が好ましく、箇所の数は限定されないが、カバレッジ幅が一定の領域の長さを確保する上では、2〜4箇所が好ましい。
なお、実施形態に係る半導体レーザ素子では、導波路領域の幅は、半導体レーザ素子1、1Aのように光軸方向において一定でもよいし、直線または曲線のように連続的に変化してもよいし、階段状のように不連続に変化していてもよい。したがって、導波路領域は、光出射端面側の幅が広いフレア型でもよい。また、導波路領域の幅の変化は、単調増加または単調減少であり、かつ連続的であると、構造が簡易であるので、製造が容易で好ましい。導波路領域がいずれの場合でも、FFPhの増加をより効果的に抑制するために、光軸は延伸方向に対して平行であることが好ましい。
また、半導体レーザ素子から出射されるレーザ光を光ファイバに結合させる場合、光出射端面での導波路領域の幅(導波路幅)が、光ファイバのコア径に対して±50μm以内の幅であると、光結合の観点から好適である。導波路幅は、たとえば80μm〜250μmの範囲であり、さらに好ましくは、100μm〜200μmの範囲である。シングルモード発振する半導体レーザ素子や、導波路幅が50μm程度のマルチモード半導体レーザ素子とは異なり、ここで記載する、より広い導波路幅を持つマルチモード半導体レーザ素子は、導波路構造により許容されるモード数が増える。そのため、本発明のように、モード数を低減させることを考慮しながら、FFPhの増加の抑制を考えることがより重要になってくる。
また、電流非注入領域は、導波路領域と光出射端面との間および導波路領域と後端面との間の両方またはいずれか一方にも設けられていてもよい。これにより半導体レーザ素子の信頼性を向上させることができる。ここで、電流非注入領域は、電流を注入しない領域を指す。カバレッジ幅を定義している領域は、導波路領域Awgに電流を注入しない、電流非注入領域である。
また、半導体レーザ素子1、1Aは公知の半導体プロセスを用いて作製することができる。たとえば、半導体レーザ素子1において、フォトリソグラフィとエッチングとによって、パッシベーション膜5に開口部5aを形成し、真空蒸着法やスパッタリング法を用いて上部電極6を形成することで、電流注入領域を形成できる。電流非注入領域の形成方法としては、パッシベーション膜5を除去しない方法や、p型コンタクト層13の一部を除去する方法や、パッシベーション膜5を除去した箇所にp型コンタクト層13とショットキー接触する電極を形成する方法などがある。
半導体レーザ素子1、1Aの導波路構造はリッジ構造により実現されているが、これに限定されず、SAS構造(Self−Aligned Structure)やBH構造(Buried−Hetero structure)などの導波路構造を採用することも可能である。また、量子井戸を混晶化することによって、導波路を形成する技術を採用してもよい。上記実施形態は、屈折率導波路型の半導体レーザ素子の例であるが、屈折率導波路型に限らず、利得導波路型の半導体レーザ素子でもよい。また、リッジ構造の導波路領域の場合、リッジ構造の外側に当該リッジ構造とほぼ同じ高さの半導体層の部分があっても、導波路としての機能は変わらない。また、導波路領域の幅は導波路構造に応じて適宜定義できる。たとえばBH構造の導波路構造を有する半導体レーザ素子の場合、導波路領域の幅とは、BH構造を構成する、たとえば活性層である導波路の幅と考えることができる。
(実施形態3)
図7は、実施形態3に係る半導体レーザバー素子の模式図である。半導体レーザバー素子100は、複数の半導体レーザ素子1が並列配置された構成を有する半導体レーザ素子であり、複数の導波路領域と複数の電流注入領域とを備える。半導体レーザバー素子100は、たとえば半導体基板上に複数の半導体レーザ素子1を形成したものを、所望の数の半導体レーザ素子1が含まれるようにカッティングすることで作製することができる。半導体レーザバー素子100は、簡易な構成にて、光出力および電気-光変換効率が高いとともに、FFPhの増加が抑制された半導体レーザバー素子である。
(実施形態4)
図8は、実施形態4に係るチップオンサブマウントの模式図である。チップオンサブマウント200は、実施形態1に係る半導体レーザ素子1と、半導体レーザ素子1が搭載されるサブマウント201と、を備える。
サブマウント201は、AlNなどからなるセラミックス基板202と、セラミックス基板202の主表面上に形成された、Auなどからなる金属膜203、204、205とを備えている。金属膜204、205は同一の主表面に形成されており、互いに絶縁されている。半導体レーザ素子1は、はんだ206によってサブマウント201の金属膜204に接合されている。
半導体レーザ素子1は、ジャンクションダウン状態でサブマウント201に搭載されている。すなわち、半導体レーザ素子1は、活性層10との間に基板2が介在せず、活性層10により近い上部電極6側がサブマウント201に接合されている。これにより活性層10で発生した熱がサブマウント201に好適に放熱される。なお、下部電極3はAuなどからなるボンディングワイヤ207によって金属膜205と電気的に接続されている。これにより、半導体レーザ素子1には金属膜204、205を介して電流が注入される。
チップオンサブマウント200では、半導体レーザ素子1がジャンクションダウン状態でサブマウント201に搭載されているが、ジャンクションアップ状態で搭載されていてもよい。ジャンクションアップ状態の場合、上部電極6に対して放熱構造を設けることが好ましい。
なお、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。たとえば、半導体レーザ素子1Aを含む半導体レーザバー素子や半導体レーザ素子1Aを備えたチップオンサブマウントも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
1、1A 半導体レーザ素子
2 基板
3 下部電極
4 半導体積層部
5 パッシベーション膜
5a 開口部
6 上部電極
7 n型バッファ層
8 n型クラッド層
9 n型ガイド層
10 活性層
11 p型ガイド層
12 p型クラッド層
13 p型コンタクト層
100 半導体レーザバー素子
200 チップオンサブマウント
201 サブマウント
202 セラミックス基板
203、204、205 金属膜
206 はんだ
207 ボンディングワイヤ
Aci、AAci 電流注入領域
Ao、AAo 光出射側領域
Ar、AAr 後側領域
Awg、AAwg 導波路領域
CL 中心線
Eo、EAo 光出射端面
Er、EAr 後端面
P1、P2、PA1、PA2、PA3 変化部
R リッジ構造
So、SAo 光出射側電流注入面積
Sr、SAr 後側電流注入面積
Wo、WAo 第1カバレッジ幅
Wr、WAr 第2カバレッジ幅

Claims (12)

  1. 光出射端面と、
    前記光出射端面に対向する後端面と、
    前記光出射端面と前記後端面との間で延伸方向に延びるマルチモードの導波路領域と、
    前記導波路領域に電流を注入する電流注入領域と、
    を備え、
    前記導波路領域の幅と前記電流注入領域の幅との差の1/2をカバレッジ幅とし、前記延伸方向における中心線よりも前記光出射端面側に位置する光出射側領域における前記カバレッジ幅の最小値を第1カバレッジ幅、前記中心線よりも前記後端面側に位置する後側領域における前記カバレッジ幅の最大値を第2カバレッジ幅としたとき、前記第1カバレッジ幅が前記第2カバレッジ幅より狭く、かつ前記光出射側領域における前記電流注入領域の面積を光出射側電流注入面積、前記後側領域における前記電流注入領域の面積を後側電流注入面積としたときに、前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく200%以下である
    ことを特徴とする半導体レーザ素子。
  2. 前記カバレッジ幅は、前記光出射端面から前記後端面に向かって一定または増加する
    ことを特徴とする請求項1に記載の半導体レーザ素子。
  3. 前記カバレッジ幅が前記光出射端面から前記後端面に向かって不連続に増加する箇所が存在する
    ことを特徴とする請求項1または2に記載の半導体レーザ素子。
  4. 前記第1カバレッジ幅が5μm以下である
    ことを特徴とする請求項1〜3のいずれか一つに記載の半導体レーザ素子。
  5. 前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく175%以下である
    ことを特徴とする請求項1〜4のいずれか一つに記載の半導体レーザ素子。
  6. 前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく160%以下である
    ことを特徴とする請求項1〜4のいずれか一つに記載の半導体レーザ素子。
  7. 前記光出射側電流注入面積が前記後側電流注入面積の100%より大きく150%以下である
    ことを特徴とする請求項1〜4のいずれか一つに記載の半導体レーザ素子。
  8. 前記光出射側電流注入面積が前記後側電流注入面積の105%以上148%以下である
    ことを特徴とする請求項1〜4のいずれか一つに記載の半導体レーザ素子。
  9. 前記光出射側電流注入面積が前記後側電流注入面積の113%以上145%以下である
    ことを特徴とする請求項1〜4のいずれか一つに記載の半導体レーザ素子。
  10. 光出射端面と、
    前記光出射端面に対向する後端面と、
    前記光出射端面と前記後端面との間で延伸方向に延びるマルチモードの導波路領域と、
    前記導波路領域に電流を注入する電流注入領域と、
    を備え、
    前記導波路領域の幅と前記電流注入領域の幅との差の1/2をカバレッジ幅とすると、前記カバレッジ幅は、前記光出射端面から前記後端面に向かって一定または増加し、かつ、前記カバレッジ幅が不連続に変化する箇所が1箇所以上存在する
    ことを特徴とする半導体レーザ素子。
  11. 請求項1〜10のいずれか一つに記載の半導体レーザ素子と、
    前記半導体レーザ素子が搭載されるサブマウントと、
    を備えることを特徴とするチップオンサブマウント。
  12. 前記半導体レーザ素子はジャンクションダウン状態で前記サブマウントに搭載されている
    ことを特徴とする請求項11に記載のチップオンサブマウント。
JP2019148933A 2019-08-14 2019-08-14 半導体レーザ素子およびチップオンサブマウント Active JP7295739B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019148933A JP7295739B2 (ja) 2019-08-14 2019-08-14 半導体レーザ素子およびチップオンサブマウント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019148933A JP7295739B2 (ja) 2019-08-14 2019-08-14 半導体レーザ素子およびチップオンサブマウント

Publications (2)

Publication Number Publication Date
JP2021034401A true JP2021034401A (ja) 2021-03-01
JP7295739B2 JP7295739B2 (ja) 2023-06-21

Family

ID=74676048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019148933A Active JP7295739B2 (ja) 2019-08-14 2019-08-14 半導体レーザ素子およびチップオンサブマウント

Country Status (1)

Country Link
JP (1) JP7295739B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146034A (ja) * 1997-05-30 1999-02-16 Denso Corp レーザダイオード
US6375364B1 (en) * 2000-01-06 2002-04-23 Corning Lasertron, Inc. Back facet flared ridge for pump laser
JP2003101139A (ja) * 2001-09-21 2003-04-04 Nec Corp 端面発光型半導体レーザおよび半導体レーザ・モジュール
JP2008305957A (ja) * 2007-06-07 2008-12-18 Opnext Japan Inc 半導体レーザ素子及びその製造方法
WO2017122782A1 (ja) * 2016-01-13 2017-07-20 古河電気工業株式会社 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146034A (ja) * 1997-05-30 1999-02-16 Denso Corp レーザダイオード
US6375364B1 (en) * 2000-01-06 2002-04-23 Corning Lasertron, Inc. Back facet flared ridge for pump laser
JP2003101139A (ja) * 2001-09-21 2003-04-04 Nec Corp 端面発光型半導体レーザおよび半導体レーザ・モジュール
JP2008305957A (ja) * 2007-06-07 2008-12-18 Opnext Japan Inc 半導体レーザ素子及びその製造方法
WO2017122782A1 (ja) * 2016-01-13 2017-07-20 古河電気工業株式会社 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール

Also Published As

Publication number Publication date
JP7295739B2 (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
JP5261857B2 (ja) 端面発光型半導体レーザおよび半導体レーザ・モジュール
JP4805887B2 (ja) 半導体レーザ装置
JP7137556B2 (ja) 半導体レーザ装置、半導体レーザモジュール、溶接用レーザ光源システム、及び、半導体レーザ装置の製造方法
JP2009295680A (ja) 半導体レーザ装置
JP4233366B2 (ja) 光ポンピング可能な垂直エミッタを有する面発光半導体レーザ装置
JP6998774B2 (ja) 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール
JP2002124733A (ja) 半導体レーザダイオード
JP2010232424A (ja) 半導体光増幅装置及び光モジュール
JP3926313B2 (ja) 半導体レーザおよびその製造方法
US7257139B2 (en) Semiconductor laser device and optical pickup apparatus using the same
JP2018085468A (ja) 半導体レーザ、光源ユニット及びレーザ光照射装置
JP4077348B2 (ja) 半導体レーザ装置およびそれを用いた光ピックアップ装置
JPH08330671A (ja) 半導体光素子
JP2005268298A (ja) 半導体レーザ
WO2009119131A1 (ja) 半導体発光素子及びその製造方法
JP7295739B2 (ja) 半導体レーザ素子およびチップオンサブマウント
JP3576764B2 (ja) グレーティング結合型面発光装置
US20180175589A1 (en) Semiconductor laser, light source unit, communication system, and wavelength division multiplexing optical communication system
JP2004266095A (ja) 半導体光増幅器
JP2021073725A (ja) 半導体レーザ、光源ユニット及びレーザ光照射装置
JP2006186090A (ja) 半導体レーザ装置およびそれを用いた光ピックアップ装置
JP2009076640A (ja) 半導体発光素子
JP2004103679A (ja) 半導体発光素子および半導体発光素子モジュール
KR100388823B1 (ko) 레이저 다이오드
JP3998492B2 (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R151 Written notification of patent or utility model registration

Ref document number: 7295739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151