JP2009076640A - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP2009076640A
JP2009076640A JP2007243752A JP2007243752A JP2009076640A JP 2009076640 A JP2009076640 A JP 2009076640A JP 2007243752 A JP2007243752 A JP 2007243752A JP 2007243752 A JP2007243752 A JP 2007243752A JP 2009076640 A JP2009076640 A JP 2009076640A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
light emitting
cladding layer
type cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007243752A
Other languages
English (en)
Inventor
Takeshi Osato
毅 大郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007243752A priority Critical patent/JP2009076640A/ja
Priority to US12/212,176 priority patent/US7928453B2/en
Publication of JP2009076640A publication Critical patent/JP2009076640A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Abstract

【課題】高出力動作が可能で信頼性の高い半導体発光素子を再現性よく得る。
【解決手段】端面発光型の半導体発光素子を、基板1と、該基板1上に積層された第一導電型クラッド層2と、第一導電型クラッド層2の上に積層された活性層5を含む活性領域層15と、光出射端面近傍領域の少なくとも活性領域層15の光出射部領域上の厚みが、他の領域の厚みと比較して薄くなるように、活性領域層15の上に積層された第二導電型クラッド層7と、第二導電型クラッド層7の上、または第二導電型クラッド層7および第二導電型クラッド層7が積層されていない活性層域層の上に積層された、第二導電型クラッド層7の屈折率よりも高い屈折率を有する第二導電型再成長層9とを備えた構成とする。
【選択図】図2D

Description

本発明は半導体発光素子およびその製造方法に関し、特に半導体発光素子において端面破壊を抑制する構造に関するものである。
劈開により得られる半導体レーザの共振器端面には表面準位が多数存在しており、キャリアの非発光再結合により温度上昇が生じる。そのため共振器内部の温度よりも端面近傍での温度が高くなり、端面近傍でのバンドギャップの減少が生じてレーザ光を自己吸収するようになる。その結果、さらに温度が上昇するといった温度上昇の正帰還が起こる。最終的に端面温度が材料の融点に達し、物理的な破壊が生じてレーザ出力が低下するというCOMD(Catastrophic Optical Mirror Damage)と呼ばれる現象が知られている。このような端面破壊を抑制する方法としては、(1)端面付近のバンドギャップエネルギーを大きくしてレーザ光を自己吸収しない構造(窓構造)を用いる方法、(2)レーザの光スポット径を広げることにより活性層のピーク光密度を下げる方法などが提案されている。
(1)の具体案としては、引用文献1において、光出射端面近傍の量子井戸活性層近傍まで上部クラッド層をエッチングし、上部クラッド層に添加されているドーパントと同じドーパントを添加した再成長層を形成することにより、ドーパントを量子井戸層へと拡散、混晶化させることによって窓構造を形成するものが提案されている。
また、引用文献2では光出射端面近傍の量子井戸を含む活性層をエッチングにより除去し、量子井戸層よりもバンドギャップの大きい材料で埋め込み、かつドーパントを井戸活性層に拡散させて窓構造を形成することが提案されている。
一方、(2)の具体案としては、pn接合面に対して平行方向に発光領域を広げるブロードエリア構造にすること、および垂直方向に発光領域を広げるブロードガイド構造にすることによりレーザの光スポット径を広げる方法がある。ブロードエリア構造とは、電流注入を行うストライプ幅を広げた構造であり、半導体レーザを高出力化させる方法として一般的に知られている。一方、ブロードガイド構造とはSCH構造における光ガイド層の厚みを増すことで光スポット径を拡大するものである。いずれもレーザの光スポット径を広げることにより活性層のピーク光密度を下げる効果を奏するものである。
特開2000−31596号公報 特開2002−141611号公報
しかしながら、引用文献1に記載の窓構造は熱拡散を利用しているがために素子特性の再現性が悪いという問題があり、引用文献2に記載の窓構造は、量子井戸層の一部を除去する必要があるために素子特性が悪化するという問題があった。
一方、(2)のブロードガイド構造の場合、ストライプ幅を広げることで横高次モード発振やフィラメント発振が生じやすくなり、全体を均一に発振させることが難しいという問題があり、ブロードエリア構造の場合、光ガイド層を変化させることによりビームプロファイル(NFP、FFP)が変化してしまうため、電流閾値やスロープ効率などへの影響が大きく、設計自由度が制限されてしまうという問題があった。
本発明は、上記事情に鑑みて、高出力動作が可能で信頼性の高い半導体発光素子を提供すること、および、再現性のよい半導体発光素子の製造方法を提供することを目的とするものである。
本発明の半導体発光素子は、端面発光型の半導体発光素子であって、基板と、該基板上に積層された第一導電型クラッド層と、該第一導電型クラッド層の上に積層された、活性層を含む活性領域層と、光出射端面近傍領域の少なくとも光出射部領域上の厚みが他の領域の厚みと比較して薄くなるように前記活性領域層の上に積層された第二導電型クラッド層と、該第二導電型クラッド層の上に積層された、該第二導電型クラッド層よりも高い屈折率を有する第二導電型再成長層とを備えていることを特徴とするものである。
また、本発明の別の半導体発光素子は、端面発光型の半導体発光素子であって、基板と、該基板上に積層された第一導電型クラッド層と、該第一導電型クラッド層の上に積層された、活性層を含む活性領域層と、光出射端面近傍領域の少なくとも前記活性領域層の光出射部領域上を除く前記活性領域層の上に積層された第二導電型クラッド層と、該第二導電型クラッド層および該第二導電型クラッド層が積層されていない前記活性領域層の上に積層された、前記第二導電型クラッド層よりも高い屈折率を有する第二導電型再成長層とを備えていることを特徴とするものである。
すなわち、本発明の半導体発光素子は、光出射端面近傍領域の少なくとも活性領域層の光出射部領域上のクラッド層の厚みが薄く、あるいはクラッド層がないことにより、この領域において他の領域と比較して再成長層が活性層に近接して配置されていることを特徴とするものである。
上記半導体発光素子においては、前記基板がGaAsからなり、前記第一導電型クラッド層が、(Alx1Ga1-x1)z1Inz1-1P(0≦x1≦0.7)あるいはAlx2Ga1-x2Asからなり、前記活性領域層が、前記第一導電型クラッド層側からノンドープあるいは第一導電型のInx3Ga1-x3As1-y3Py3光ガイド層(0≦x3≦0.3)、Inx4Ga1-x4As1-y4Py4活性層(0≦x4≦0.4、0≦y4≦0.1)、およびノンドープあるいは第二導電型のInx5Ga1-x5As1-y5Py5光ガイド層(0≦x5≦0.3)からなり、前記第二導電型クラッド層が、(Alx1Ga1-x1)z2In1-z2P(0≦x1≦0.7)あるいはAlx6Ga1-x6Asからなり、前記第二導電型再成長層が、前記第二導電型クラッド層の屈折率よりも高い屈折率である組成比のAlx7Ga1-x7Asからなることが望ましい。
本発明の半導体発光素子の製造方法は、端面発光型の半導体発光素子の製造方法であって、基板上に第一導電型クラッド層、活性層を含む活性領域層、第二導電型クラッド層を含む半導体層をこの順に積層する第一の工程と、光出射端面近傍領域の少なくとも前記活性領域層の光出射部領域を含む一部領域に開口を有するマスクを用いて、該一部領域の第二導電型クラッド層のすべて、もしくは一部を除去する第二の工程と、前記第二導電型クラッド層の上、または該第二導電型クラッド層と該第二導電型クラッド層が積層されていない前記活性領域層との上に、前記第二導電型クラッド層の屈折率よりも高い屈折率を有する再成長層を積層する第三の工程とを含むことを特徴とするものである。
本発明の半導体発光素子および製造方法において、積層されている上述の各層の間には、バッファ層、エッチングストップ層などの他の層が挿入されていてもよい。また、各層はいずれも臨界膜厚を超えない組成比および膜厚で構成されている。なお、元素の組成比を示すサフィックスの範囲が0を含む場合、その元素を含まない組成とすることを意味する。例えば、(Alx1Ga1-x1)z1Inz1-1P(0≦x1≦0.7)においてx1=0とした場合には、Gaz1In1-z1P層となる。
上記において、光出射端面近傍領域とは、光出射端面から所定距離素子内部側に至る領域をいう。
また上記において、第一導電型および第二導電型は、互いに逆極性を示すものであり、第一導電型がn型であれば第二導電型はp型であり、第一導電型がp型であれば第二導電型はn型であることを意味する。
本発明の半導体発光素子は、光出射端面近傍領域の少なくとも活性領域層の光出射部領域上において、他の領域と比較して再成長層が活性領域層に近接して配置されていることにより、光出射端面におけるビームスポット径を、素子内部のビーム径よりも大きくすることができ、従来技術の項で述べた、活性層の光出射端面近傍領域にドーパント拡散の処理を施して形成される窓構造を備えた素子と同様の、光出射端面における光パワー密度の低減効果を得ることができる。光パワー密度を低減することにより、COMDの発生を抑制することができるため、結果として、従来の第二導電型クラッド層が活性領域上に一様に設けられている素子と比較して高出力まで高い信頼性を得ることができる。
図1は、後述の図2Dに示すような、光出射端面近傍領域に第二導電型クラッド層が存在せず、この領域にAlx6Ga1-x6Asからなる再成長層を備えた構成の半導体発光素子であり、InGaAs量子井戸活性層(波長1.0μm、厚さ70Å)、GaAs光ガイド層(各層の厚さ660Å)、GaInPクラッド層(各層の厚さ2.0 μm)を有する構成における半導体発光素子の光出射端面近傍領域よりも素子内部でのビームプロファイル(図中実線で示す)と、再成長層であるAlx6Ga1-x6AsのAl組成比をそれぞれx6=0.4、0.35、0.3(いずれも波長1.0 μmにおいて屈折率がGaInP層よりも高い。)とした素子の光出射端面におけるビームプロファイル(それぞれ一点鎖線、破線、二点鎖線で示す)を示すものである。
図1において横軸の0の地点が量子井戸活性層の厚み方向中央位置に相当し、横軸は
量子井戸活性層に厚み方向中央位置からの厚み方向の距離を示すものである。Alx6Ga1-x6As層は、Alの比率x6が小さくなるにつれての屈折率が上昇し、それに伴い活性層における等価屈折率は低下していく。図1に示すグラフから、光出射端面近傍領域の第二導電型クラッド層が存在しない本発明の構造の素子は、素子内部に対して光出射端面における光パワー密度が低減していることが分かる。特にここでは、再成長層の屈折率が高いほど、光パワー密度の低減効果が高いことが分かる。このように、本発明の半導体発光素子は、素子内部のビーム径よりも光出射端面でのビーム径を大きくすることができ、光出射端面での光パワー密度を低減できることが明らかである。
本発明の半導体発光素子の製造方法によれば、従来窓構造を形成する際に行われるドーパント拡散や活性層のエッチング除去などを行わないため再現性に優れており、高出力動作が可能で信頼性の高い素子を再現性よく製造することができる。
窓構造を備える素子の場合には、従来技術に記載の特許文献1および特許文献2に記載のように、製造工程において、ドーパントを活性層に拡散させる工程が必要であったが、本製造方法にはこのような工程が必要ないため、工程の複雑化を避けることができる。
以下、本発明の第1の実施形態の半導体発光素子について図2A〜2Dを用いて詳細に説明する。図2A〜図2Dは半導体発光素子の製造工程を示す斜視図である。
これらの構造は有機金属気相成長(MOCVD)法などを用いて積層することができる。MOCVD法の場合、原料としてTEG(トリエチルガリウム)、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、AsH3(アルシン)、PH3(ホスフィン)、ドーパントとしてSiH4(シラン)、DEZ(ジエチル亜鉛)またはCp2Mgなどを用いる。
図2A〜2Dは第一の実施形態の半導体発光素子の製造過程を示す斜視図である。半導体の積層はウエハ上に行い、最後にへき開によりチップ化するが、図2においては説明の便宜上チップ化した形状で示している。
図2Aに示すように、まず第一導電型GaAs基板(ウエハ)1上に、第一導電型GaAsバッファ層2、第一導電型(Alx1Ga1-x1)zIn1-zP(0≦x1≦0.7)あるいはAlx2Ga1-x2Asクラッド層3、ノンドープまたは第一導電型Inx3Ga1-x3As1-y3Py3(x3=0.49y3、0≦x3≦0.3)光ガイド層4、Inx4Ga1-x4As1-y4Py4(0≦x4≦0.4、0≦y4≦0.1)活性層5、ノンドープまたは第二導電型Inx5Ga1-x5As1-y5Py5(x5=0.49y5、0≦x5≦0.3)光ガイド層6、第二導電型(Alx1Ga1-x1)zIn1-zP(0≦x1≦0.7)あるいはAlx6Ga1-x6Asクラッド層7、第二導電型キャップ層8をこの順に1回目の結晶成長により積層配置する(第一の工程)。ここで、キャップ層8は後述の再成長層9を積層する面が全て同一材料の層となるようにして、再成長する結晶の品質を悪化させないことを目的として設けるので、光ガイド層の構成材料と同じ組成であることが望ましい。ここでは、第一導電型光ガイド層4、活性層5および第二導電型光ガイド層6により活性領域層15が構成されている。
第二導電型キャップ層8の上に誘電体マスクとなるSiO2を形成して、図2Bに示すように、光出射端面近傍領域においてキャップ層8およびクラッド層7をウェットエッチングにより除去する(第二の工程)。図2Aにおいて共振器長Lに対し、除去される光出射端面近傍領域は図中斜線で示す、端面から所定距離L1だけ素子内部側に至る領域である。共振器長Lが0.5〜2.0mm程度であるのに対し、L1は20〜50μm程度である。
エッチングの後、SiO2マスクの除去を行い、図2Cに示すように、第二導電型クラッド層の屈折率よりも高い屈折率を有するAlx7Ga1-x7As第二導電型再成長層9、第二導電型コンタクト層10を2回目の結晶成長により形成する(第三の工程)。さらに、コンタクト層10上にSiO2膜11を形成し、(011)方向に通常の光リソグラフィーにより1〜200μm幅程度のストライプ領域に相当する部分のSiO2膜11を除去する。
その後、図2Dに示すように、全体の厚みが100μm程度になるまで基板1の研磨を行い、最後に電極12を基板1の裏面に、電極13をコンタクト層10の上に蒸着および熱処理により形成する。この半導体積層試料から共振器長0.50〜2.0mm程度のLDバーを劈開により切り出し、対向する2つの共振器面の一方に高反射膜を、光出射端面となる他方に低反射膜をコーティングし、さらに劈開によりチップ化を行い半導体発光素子としてヒートシンクに実装される。この際、半導体発光素子は、放熱効果を高めるため発光部のあるpn接合部を下にしてヒートシンクに実装される。
基板上に積層された各半導体層はいずれも臨界膜厚を超えないようにその組成と膜厚を設定する。上記(Alx1Ga1-x1)zIn1-zP(0≦x1≦0.7)からなる層におけるzは約0.49とするのが一般的である。また、Inx3Ga1-x3As1-y3Py3(x3=0.49y3、0≦x3≦0.3)光ガイド層4、Inx5Ga1-x5As1-y5Py5(x5=0.49y5、0≦x5≦0.3)についてもx3、x5は、それぞれ各層が臨界膜厚を超えない程度の範囲で組成比を変化させてもよい。
また、第二導電型クラッド層と光ガイド層の材料の組合せは、第二導電型クラッド層をウエットエッチングする際、自動的に光ガイド層直上にてエッチングが停止する材料の組合せとすることが望ましい。あるいは、第二導電型クラッド層と光ガイド層との間にエッチングストップ層を挿入するようにしてもよい。
なお本実施の形態による半導体発光素子の発振波長λは、Inx4Ga1-x4As1-y4Py4(0≦x4≦0.4、0≦y4≦0.1)からなる組成の活性層の組成比を変化させることにより900<λ<1200nmの範囲までの制御が可能である。各層の成長法としては固体あるいはガスを原料とする分子線エピタキシャル成長法を用いてもよい。
また本実施の形態では素子の劈開端面に高反射率および低反射率コーティングを施しているが両劈開面に無反射コーティングを施すことにより、レーザ発振しないスーパールミネッセントダイオード(SLD)や半導体光増幅器(SOA)などの半導体発光素子を作製することもできる。
図3、図4は、第一の実施形態の変形例を示す斜視図である。対応する層には第一の実施形態で用いた符号と同一の符号を付している。
上記第一の実施の形態の半導体発光素子は、光出射端面から所定距離素子内部側に至る光出射端面近傍領域の第二導電型クラッド層を全て除去し、第二導電型クラッド層は、この光出射端面近傍領域以外の領域にのみ積層されているものであるが、図3に示す変形例の半導体発光素子のように、光出射端面近傍領域の第二導電型クラッド層の厚みdが、それ以外の領域の厚みdと比較して薄くなる構造でもよい。
さらに、図4にさらに別の変形例の半導体発光素子として示すように、第二導電型クラッド層7は、光出射端面近傍領域の活性層5の光出射部領域上の厚みdが、他の領域の厚みdと比較して薄くなるように積層されていればよい。図4では光出射部領域上に第二導電型クラッド層7が存在するが、この領域のクラッド層7を全て除去し、光出射部領域上には第二導電型クラッド層7が存在しない構造であってもよい。
また、上記各実施形態の半導体発光素子は、共振器端面の一方が光出射端面である場合にその一方の光出射端面において第二導電型クラッド層の少なくとも一部が除去された構成であるが、後方出射光を利用するよう構成する場合などには、両端面の近傍領域について第二導電型クラッド層の少なくとも一部を除去する構成とすることが望ましい。
上述したいずれの構造においても光出射端面領域の少なくとも活性領域層の光出射部領域上において、第二導電型クラッド層7が存在しない、あるいはそれ以外の領域と比較してクラッド層の厚みが薄く形成されているものであるため、再成長層9がその他の領域と比較して活性領域に近く配置されることになる。再成長層9は第二導電型クラッド層の屈折率よりも高い屈折率を有するため、光出射端面での光出射領域(ビームスポット径)を拡大させ、光パワー密度を低減させることができるので、高出力でも端面破壊を抑制することができる。
上記第一の実施の形態の半導体発光素子について、各層の層構成(組成、厚み)の具体例を以下に挙げる。以下において、上記実施形態の層に対応する層は同一符号としている。
n型GaAs基板1、n型GaAsバッファ層(0.2μm厚、キャリア濃度7.0×1017cm-3)2、n型In0.49Ga0.51P下部クラッド層(2.0μm厚、キャリア濃度7.0×1017cm-3)3、ノンドープまたはn型GaAs光ガイド層(660Å厚)4、InGaAs量子井戸活性層(発振波長1.0μm、厚さ70Å)5、ノンドープまたはp型GaAs光ガイド層(660Å厚)6、p型In0.49Ga0.51P上部クラッド層(1.5μm厚、キャリア濃度7.0×1017cm-3)7、p型GaAsキャップ層(100Å厚、キャリア濃度7.0×1017cm-3)8、Al0.35Ga0.65As再成長層(1.5μm厚、キャリア濃度7.0×1017cm-3)9、p+型GaAsコンタクト層(0.2μm厚、キャリア濃度7.0×1017cm-3)10とする。これらの層は、成長温度550℃〜700℃、成長温度10.3kPaの条件下で結晶成長させることができる。
上記のような層構成の場合において、p型GaInPクラッド層7のすべて、もしくは一部をウェットエッチングにより除去する際には、エッチャントとして塩酸系のものを用いることで、光ガイド層であるGaAs層の直上でエッチングを停止させることができる。またクラッド層の途中でエッチングを止める場合には厚さ100Å程度のGaAsもしくはInGaAsP層をエッチングストップ層としてクラッド層内に挿入しておくことが望ましい。
ここでは、GaAs基板がn型導電性のもので記述しているがp型導電性の基板を用いてもよく、この場合にはすべての層の導電性を反対にすれば良い。
上述の第一の実施の形態の半導体発光素子は、横方向の光閉じこめを行っていない構造であるため基本横モード発振を高出力まで維持することが難しい。第二の実施形態として、横方向の光閉じ込め構造を備え、基本横モード発振を高出力まで可能とした半導体発光素子の構成を図5A、図5Bを参照して説明する。
製造方法は、図2A、図2Bで示した第二の工程までは第一の実施形態と同様である。その後、第二導電型再成長層9を2回目の結晶成長にて積層させる工程までも同様であるが、本実施形態においては、第二導電型再成長層9の上に第二導電型キャップ層21を成長させる。
その後、図5Aに示すように、電流注入領域となるストライプ領域にSiO2マスク22を形成し、HBrエッチャントを用いてマスク外の領域を活性層よりも下の層まで(ここでは、第一導電型クラッド層の途中まで)除去する。
次に、図5Bに示すように、3回目の結晶成長として、HBrエッチャントにより除去した領域に第二導電型ブロック層23、第一導電型ブロック層24を成長させて該領域を埋め込む。その後SiO2マスク22を除去し、4回目の結晶成長により第二導電型上部クラッド層25、第二導電型コンタクト層26を成長させる。
その後全体の厚みが100μm程度になるまで基板1の研磨を行い、最後に電極27を基板裏面に、電極28をコンタクト層上に蒸着および熱処理により形成する。この試料から共振器長0.50〜2.0mm程度のLDバーを劈開により切り出し、対向する2つの共振器面の一方に高反射膜を、光出射端面となる他方に低反射膜をコーティングし、さらに劈開によりチップ化を行い半導体発光素子としてヒートシンクに実装される。この際、半導体発光素子は、放熱効果を高めるため発光部のあるpn接合部を下にしてヒートシンクに実装される。
この第二の実施形態の半導体発光素子は、第一の実施形態の半導体発光素子で得られる効果に加えて、横方向に対しても活性層において光が閉じこめられる構造であるため基本横モード発振を高出力動作においても維持することができるという効果を得ることができる。
第二の実施形態の半導体素子の各層の層構成(組成、厚み)の具体例を以下に挙げる。
再成長層9までは上述した第一の実施形態の具体例と同一のものを用い、p型GaAsキャップ層21(100Å厚、キャリア濃度7.0×1017cm-3、)、p型In0.49Ga0.51Pブロック層23、n型In0.49Ga0.51Pブロック層24、p型Al0.35Ga0.65As上部クラッド層25(1.0μm厚、キャリア濃度7.0×1017cm-3)、p型GaAsコンタクト層26(0.2μm厚、キャリア濃度7.0×1017cm-3)とする。
本発明の効果を示す説明図 第一の実施形態に係る半導体発光素子の製造工程を示す斜視図(その1) 第一の実施形態に係る半導体発光素子の製造工程を示す斜視図(その2) 第一の実施形態に係る半導体発光素子の製造工程を示す斜視図(その3) 第一の実施形態に係る半導体発光素子を示す斜視図 第一の実施形態の変形例(その1) 第一の実施形態の変形例(その2) 第二の実施形態に係る半導体発光素子の製造工程を示す斜視図 第二の実施形態に係る半導体発光素子を示す斜視図
符号の説明
1 第一導電型基板
2 第一導電型バッファ層
3 第一導電型クラッド層
4 ノンドープまたは第一導電型光ガイド層
5 活性層
6 ノンドープまたは第二導電型光ガイド層
7 第二導電型クラッド層
8 第二導電型キャップ層
9 第二導電型再成長層
10 第二導電型コンタクト層
11 SiO2
15 活性領域層

Claims (4)

  1. 端面発光型の半導体発光素子であって、
    基板と、
    該基板上に積層された第一導電型クラッド層と、
    該第一導電型クラッド層の上に積層された、活性層を含む活性領域層と、
    光出射端面近傍領域の少なくとも前記活性領域層の光出射部領域上の厚みが他の領域の厚みと比較して薄くなるように前記活性領域層の上に積層された第二導電型クラッド層と、
    該第二導電型クラッド層の上に積層された、該第二導電型クラッド層よりも高い屈折率を有する第二導電型再成長層とを備えていることを特徴とする半導体発光素子。
  2. 端面発光型の半導体発光素子であって、
    基板と、
    該基板上に積層された第一導電型クラッド層と、
    該第一導電型クラッド層の上に積層された、活性層を含む活性領域層と、
    光出射端面近傍領域の少なくとも前記活性領域層の光出射部領域上を除く前記活性領域層の上に積層された第二導電型クラッド層と、
    該第二導電型クラッド層および該第二導電型クラッド層が積層されていない前記活性領域層の上に積層された、前記第二導電型クラッド層よりも高い屈折率を有する第二導電型再成長層とを備えていることを特徴とする半導体発光素子。
  3. 前記基板がGaAsからなり、
    前記第一導電型クラッド層が、(Alx1Ga1-x1)z1Inz1-1P(0≦x1≦0.7)あるいはAlx2Ga1-x2Asからなり、
    前記活性領域層が、前記第一導電型クラッド層側からノンドープあるいは第一導電型のInx3Ga1-x3As1-y3Py3光ガイド層(0≦x3≦0.3)、Inx4Ga1-x4As1-y4Py4活性層(0≦x4≦0.4、0≦y4≦0.1)、およびノンドープあるいは第二導電型のInx5Ga1-x5As1-y5Py5光ガイド層(0≦x5≦0.3)からなり、
    前記第二導電型クラッド層が、(Alx1Ga1-x1)z2In1-z2P(0≦x1≦0.7)あるいはAlx6Ga1-x6Asからなり、
    前記第二導電型再成長層が、前記第二導電型クラッド層の屈折率よりも高い屈折率である組成比のAlx7Ga1-x7Asからなることを特徴とする請求項1または2記載の半導体発光素子。
  4. 端面発光型の半導体発光素子の製造方法であって、
    基板上に第一導電型クラッド層、活性層を含む活性領域層、第二導電型クラッド層を含む半導体層をこの順に積層する第一の工程と、
    光出射端面近傍領域の少なくとも前記活性領域層の光出射部領域上を含む一部領域に開口を有するマスクを用いて、該一部領域の第二導電型クラッド層のすべて、もしくは一部を除去する第二の工程と、
    前記第二導電型クラッド層の上、または該第二導電型クラッド層と該第二導電型クラッド層が積層されていない前記活性領域層との上に、前記第二導電型クラッド層の屈折率よりも高い屈折率を有する再成長層を積層する第三の工程とを含むことを特徴とする半導体発光素子の製造方法。
JP2007243752A 2007-09-20 2007-09-20 半導体発光素子 Abandoned JP2009076640A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007243752A JP2009076640A (ja) 2007-09-20 2007-09-20 半導体発光素子
US12/212,176 US7928453B2 (en) 2007-09-20 2008-09-17 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243752A JP2009076640A (ja) 2007-09-20 2007-09-20 半導体発光素子

Publications (1)

Publication Number Publication Date
JP2009076640A true JP2009076640A (ja) 2009-04-09

Family

ID=40470679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243752A Abandoned JP2009076640A (ja) 2007-09-20 2007-09-20 半導体発光素子

Country Status (2)

Country Link
US (1) US7928453B2 (ja)
JP (1) JP2009076640A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240449B2 (en) * 2014-05-26 2016-01-19 Yu-chen Chang Zero-dimensional electron devices and methods of fabricating the same
WO2018004554A1 (en) * 2016-06-29 2018-01-04 Intel Corporation Quantum dot devices with modulation doped stacks
CN109873295B (zh) * 2019-04-17 2020-07-31 中国工程物理研究院应用电子学研究所 一种片上集成级联放大半导体激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125147A (ja) * 1992-10-14 1994-05-06 Hitachi Ltd 半導体レーザ装置及びその製造方法
JPH077230A (ja) * 1993-04-21 1995-01-10 Sumitomo Electric Ind Ltd 屈折率反導波型半導体レーザ
JP2000031596A (ja) * 1998-07-10 2000-01-28 Nec Corp 半導体レーザ及び半導体レーザの製造方法
JP2002141611A (ja) * 2000-08-24 2002-05-17 Fuji Photo Film Co Ltd 半導体発光素子およびその製造方法
JP2003060312A (ja) * 2001-08-15 2003-02-28 Fuji Photo Film Co Ltd 半導体レーザ素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943970A (en) * 1988-10-24 1990-07-24 General Dynamics Corporation, Electronics Division Surface emitting laser
JPH0513809A (ja) * 1991-07-03 1993-01-22 Nec Corp 半導体発光素子
KR100631832B1 (ko) * 2003-06-24 2006-10-09 삼성전기주식회사 백색 발광소자 및 그 제조방법
US7528403B1 (en) * 2005-04-25 2009-05-05 California Institute Of Technology Hybrid silicon-on-insulator waveguide devices
WO2007004701A1 (en) * 2005-07-04 2007-01-11 Showa Denko K.K. Gallium nitride-based compound semiconductor lihgt-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125147A (ja) * 1992-10-14 1994-05-06 Hitachi Ltd 半導体レーザ装置及びその製造方法
JPH077230A (ja) * 1993-04-21 1995-01-10 Sumitomo Electric Ind Ltd 屈折率反導波型半導体レーザ
JP2000031596A (ja) * 1998-07-10 2000-01-28 Nec Corp 半導体レーザ及び半導体レーザの製造方法
JP2002141611A (ja) * 2000-08-24 2002-05-17 Fuji Photo Film Co Ltd 半導体発光素子およびその製造方法
JP2003060312A (ja) * 2001-08-15 2003-02-28 Fuji Photo Film Co Ltd 半導体レーザ素子

Also Published As

Publication number Publication date
US7928453B2 (en) 2011-04-19
US20090078947A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4805887B2 (ja) 半導体レーザ装置
US6707071B2 (en) Semiconductor light-emitting device
JPH10126010A (ja) 半導体レーザ装置の製造方法
JP5247444B2 (ja) 半導体レーザ装置
US20210167582A1 (en) Semiconductor laser element
US8111726B2 (en) Semiconductor laser device
JPH07162086A (ja) 半導体レーザの製造方法
US6987285B2 (en) Semiconductor light emitting device in which high-power light output can be obtained with a simple structure including InGaAsP active layer not less than 3.5 microns and InGaAsP and InP cladding
JP4077348B2 (ja) 半導体レーザ装置およびそれを用いた光ピックアップ装置
JP2007250637A (ja) Iii族窒化物半導体光素子
US6567444B2 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
JP2009076640A (ja) 半導体発光素子
JP4028158B2 (ja) 半導体光デバイス装置
JP4599700B2 (ja) 分布帰還型半導体レーザ
US8526477B2 (en) Semiconductor light emitting device
JP2010021430A (ja) 半導体光素子
KR20060038057A (ko) 반도체 레이저 소자 및 그 제조 방법
JP3658048B2 (ja) 半導体レーザ素子
JP4345673B2 (ja) 半導体レーザ
JP2006339311A (ja) 半導体レーザ
KR20040040377A (ko) 반도체 레이저장치
JP2004103679A (ja) 半導体発光素子および半導体発光素子モジュール
JP2001057458A (ja) 半導体発光装置
US20010019567A1 (en) Semiconductor laser device and method for manufacturing the same
JP2008282975A (ja) 半導体光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20111125