JP2021025125A - 成膜装置および成膜方法 - Google Patents

成膜装置および成膜方法 Download PDF

Info

Publication number
JP2021025125A
JP2021025125A JP2020016383A JP2020016383A JP2021025125A JP 2021025125 A JP2021025125 A JP 2021025125A JP 2020016383 A JP2020016383 A JP 2020016383A JP 2020016383 A JP2020016383 A JP 2020016383A JP 2021025125 A JP2021025125 A JP 2021025125A
Authority
JP
Japan
Prior art keywords
magnet
target
drive unit
unit
ball screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020016383A
Other languages
English (en)
Other versions
JP2021025125A5 (ja
JP7374008B2 (ja
Inventor
前田 幸治
Koji Maeda
幸治 前田
篤史 島田
Atsushi Shimada
篤史 島田
克志 及川
Katsushi Oikawa
克志 及川
哲也 宮下
Tetsuya Miyashita
哲也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to CN202080055400.6A priority Critical patent/CN114174552A/zh
Priority to EP20850802.8A priority patent/EP4012066A4/en
Priority to US17/631,188 priority patent/US20220178014A1/en
Priority to PCT/JP2020/026077 priority patent/WO2021024660A1/ja
Priority to KR1020227006267A priority patent/KR20220038145A/ko
Publication of JP2021025125A publication Critical patent/JP2021025125A/ja
Publication of JP2021025125A5 publication Critical patent/JP2021025125A5/ja
Priority to JP2023104931A priority patent/JP2023115150A/ja
Priority to JP2023104954A priority patent/JP2023115151A/ja
Application granted granted Critical
Publication of JP7374008B2 publication Critical patent/JP7374008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ターゲットのエロージョンを効果的に制御することができる成膜装置および成膜方法を提供する。【解決手段】処理容器と、処理容器内で基板を保持する基板保持部と、基板保持部の上方に配置されたカソードユニットと、処理容器内にプラズマ生成ガスを導入するガス導入機構とを具備し、カソードユニットは、ターゲット31と、ターゲットに電力を供給する電源と、ターゲットの裏面側に設けられたマグネット35と、マグネットを駆動するマグネット駆動部36とを備え、マグネット駆動部は、マグネットをターゲットに沿って揺動させる揺動駆動部70と、マグネットを、揺動駆動部による駆動とは独立して、ターゲットの主面に対して垂直な方向に駆動させる垂直駆動部80とを有し、マグネトロンスパッタにより基板上にスパッタ粒子を堆積させる成膜装置。【選択図】図3

Description

本開示は、成膜装置および成膜方法に関する。
金属膜を成膜する技術の一つとして、ターゲットからのスパッタ粒子を基板上に堆積させるスパッタ成膜が用いられている。特許文献1には、スパッタ成膜を行う成膜装置として、ターゲットの裏面側にマグネットを設け、ターゲットに印加された電圧により生じた電界およびマグネットによる磁界により高密度にプラズマ化してスパッタ成膜を行うマグネトロンスパッタ装置が記載されている。また、特許文献1には、マグネットを走査する機構を設け、スパッタ成膜の際のターゲットのエロージョンを制御することが記載されている。
特開2015−86438号公報
本開示は、ターゲットのエロージョンを効果的に制御することができる成膜装置および成膜方法を提供する。
本開示の一態様に係る成膜装置は、処理容器と、前記処理容器内で基板を保持する基板保持部と、前記基板保持部の上方に配置されたカソードユニットと、前記処理容器内にプラズマ生成ガスを導入するガス導入機構と、を具備し、前記カソードユニットは、前記基板にスパッタ粒子を放出するためのターゲットと、前記ターゲットに電力を供給する電源と、前記ターゲットの裏面側に設けられ、前記ターゲットに漏洩磁場を与えるマグネットと、前記マグネットを駆動するマグネット駆動部と、を備え、前記マグネット駆動部は、前記マグネットを前記ターゲットに沿って揺動させる揺動駆動部と、前記マグネットを、前記揺動駆動部による駆動とは独立して、前記ターゲットの主面に対して垂直な方向に駆動させる垂直駆動部と、を有し、前記ターゲット近傍にマグネトロンプラズマを形成してマグネトロンスパッタにより前記基板上に前記スパッタ粒子を堆積させる。
本開示によれば、ターゲットのエロージョンを効果的に制御することができる成膜装置および成膜方法が提供される。
第1の実施形態に係る成膜装置を示す断面図である。 第1の実施形態に係る成膜装置の概略平面図である。 第1の実施形態に係る成膜装置のマグネット駆動部を詳細に説明するための断面図である。 第1の実施形態に係る成膜装置における制御部のマグネット駆動部を制御する部分を説明するブロック図である。 ターゲットライフ(電力積算量)と放電が失活するAr流量との関係を、種々のカソードマグネットとターゲット電極との距離において求めた結果を示す図である。 特許文献1のカソードマグネットを揺動させる装置における、初期ターゲットとエロージョン進行時のターゲットの漏洩磁場強度を説明する図である。 特許文献1のカソードマグネットを揺動させる装置でカソードマグネットの揺動高さ位置を変化させた場合における、初期ターゲットとエロージョン進行時のターゲットの漏洩磁場強度を説明する図である。 第1の実施形態の装置における、初期ターゲットとエロージョン進行時のターゲットの漏洩磁場強度を説明する図である。 従来のプラズマ着火時におけるカソードマグネットのX方向位置を示す概略平面図である。 放電電圧とカソードマグネットのX方向位置との関係を示す図である。 第1の実施形態のプラズマ着火時におけるカソードマグネットのX方向位置を示す概略平面図である。 プラズマ着火時のマグネットの位置が左端と中央部の場合の着火状態を示す図であり、(a)はArガス流量を200sccmにした場合、(b)はArガス流量を11.5sccmにした低流量(低圧)の場合である。 カソードマグネットのプラズマ着火時のX方向位置がターゲットの一方の端部の場合における、着火後にカソードマグネットが移動する方向を示す図である。 カソードマグネットのプラズマ着火時のX方向位置がターゲットの中央部の場合における、着火後にカソードマグネットが移動する方向を示す図である。 第2の実施形態に係る成膜装置の概略平面図である。 第2の実施形態に係る成膜装置のマグネット駆動部を詳細に説明するための断面図である。 従来の成膜装置のマグネット駆動部によるカソードマグネットの移動を説明するための図である。 図17のマグネット駆動部でカソードマグネットを移動させた場合のターゲットのエロージョン状態を説明するための図である。 第2の実施形態におけるカソードマグネットの具体的な走査態様の一例を示す模式図である。 図19のようにカソードマグネットを走査させた場合のターゲットのエロージョン状態を説明するための図である。 第2の実施形態におけるカソードマグネットの具体的な走査態様の他の例を示す模式図である。 図21のようにカソードマグネットを走査させた場合のターゲットのエロージョン状態を説明するための図である。 第3実施形態に係る成膜装置のマグネット駆動部を詳細に説明するための断面図である。 第3の実施形態におけるカソードマグネットの具体的な走査態様の一例を示す模式図である。 図24のようにカソードマグネットを走査させた場合のターゲットのエロージョン状態を説明するための図である。
以下、添付図面を参照して実施形態について具体的に説明する。
[第1の実施形態]
図1は第1の実施形態に係る成膜装置を示す断面図、図2はその概略平面図である。本実施形態の成膜装置1は、基板W上にスパッタによって金属、合金、または化合物の膜を成膜するものである。基板Wは特に限定されないが、例えばSi等の半導体基体を有する半導体ウエハを挙げることができる。
成膜装置1は、処理容器10と、基板保持部20と、カソードユニット30と、ガス供給部40と、シャッター50と、制御部60とを備える。
処理容器10は、例えばアルミニウム製であり、基板Wの処理を行う処理室を画成する。処理容器10は、接地電位に接続されている。処理容器10は、上部が開口された容器本体10aと、容器本体10aの上部開口を塞ぐように設けられた蓋体10bとを有する。蓋体10bは、略円錐台状をなしている。
処理容器10の底部には排気口11が形成され、排気口11には排気装置12が接続されている。排気装置12は、圧力制御弁、および真空ポンプを含んでおり、排気装置12により、処理容器10内が所定の真空度まで真空排気されるようになっている。
処理容器10の側壁には、隣接する搬送室(図示せず)との間で基板Wを搬入出するための搬入出口13が形成されている。搬入出口13はゲートバルブ14により開閉される。
基板保持部20は、略円板状をなし、処理容器10内の底部近傍に設けられ、基板Wを水平に保持するようになっている。基板保持部20は、ベース部21および静電チャック22を有する。ベース部21は例えばアルミニウムからなる。静電チャック22は、誘電体からなり、内部に電極23が設けられている。電極23には直流電源(図示せず)から直流電圧が印加され、これによる静電気力により基板Wが静電チャック22の表面に静電吸着される。
また、基板保持部20の内部には温調機構(図示せず)が設けられていてもよい。温調機構としては、例えば、基板保持部20に温調媒体を通流する機構やヒーターを用いることができる。
基板保持部20は、支軸26を介して処理容器10の下方に設けられた駆動装置25に接続されている。支軸26は駆動装置25から処理容器10の底壁を貫通して延び、その先端が基板保持部20の底面中央に接続されている。駆動装置25は、支軸26を介して基板保持部20を回転および昇降するように構成されている。支軸26と処理容器10の底壁との間は、封止部材28により封止されている。封止部材28を設けることにより、処理容器10内を真空状態に保ったまま支軸26が回転および昇降動作することが可能となる。封止部材28として、例えば磁性流体シールを挙げることができる。
カソードユニット30は、処理容器10の蓋体10bの傾斜面に設けられる。図2に示すように、本例では、4つのカソードユニット30が同じ高さ位置に等間隔で設けられている。カソードユニットの数はこれに限らず1個以上の任意の個数であってよい。カソードユニット30は、ターゲット31と、ターゲット31を保持するターゲット電極32と、ターゲット電極32を介してターゲットに電力を供給する電源33とを有する。
ターゲット31は、堆積しようとする膜を構成する金属、合金、または化合物からなり、平面形状が矩形状をなす。ターゲット31を構成する材料は、成膜しようとする膜に応じて適宜選択され、例えばCoFeBやNiFe等の磁性材料や、Cu等の非磁性材料を挙げることができる。また、導電性材料に限らず絶縁性材料であってもよい。4つのターゲット31は異なる材料で構成されていてもよいし、同じ材料で構成されていてもよい。後述するように、ターゲット31に電圧が印加されることにより、スパッタ粒子が放出される。成膜の際には、1または2以上のターゲット31に電圧を印加してスパッタ粒子を放出させることができる。
ターゲット電極32は、処理容器10の蓋体10bの傾斜面に形成された穴部10cの内側に絶縁性部材34を介して取り付けられている。電源33は直流電源であり、ターゲット電極32に負の直流電圧を印加する。ターゲット電極32はカソードとして機能する。なお、電源33は交流電源であってもよい。ターゲット31が絶縁材料の場合は交流電源が用いられる。
ターゲット31の外周には、シールド部材37が設けられている。シールド部材37は、ターゲットから放出されたスパッタ粒子が処理容器10の壁部やターゲット電極32等のターゲット裏面側へ回りこむことを防止する機能を有している。また、ターゲット31から放出されるスパッタ粒子の放出方向を規制する機能も有する。
ターゲット電極32の裏面側(外側)には、カソードマグネット(マグネット)35が設けられている。カソードマグネット35は、ターゲット31に漏洩磁場を与え、マグネトロンスパッタを行うためのものである。カソードマグネット35は処理容器10の外側に設けられ、マグネット駆動部36により駆動されるように構成されている。
図3はマグネット駆動部36を詳細に説明するための断面図である。図3に示すように、マグネット駆動部36は、カソードマグネット35をターゲット31の長辺方向(X方向)に沿って揺動させる揺動駆動部70と、カソードマグネット35をターゲット31の主面に対して垂直な方向(Z方向)に駆動させる垂直駆動部80とを有する。垂直駆動部80は、揺動駆動部70とは独立してカソードマグネット35をZ方向に駆動させる。これにより、カソードマグネット35は、ターゲット31の長辺方向に沿ったX方向に揺動するとともに、それとは独立してターゲット31の主面に対して垂直方向であるZ方向に移動できるように構成される。すなわち、カソードマグネット35は3次元走査することができる。
本実施形態では、揺動駆動部70および垂直駆動部80ともにボールねじ機構を用いた例を示す。揺動駆動部70は、X方向に延びるX方向ボールねじ(図示せず)を内蔵するX方向ボールねじ機構部71と、X方向ボールねじを回転させるモータ72と、X方向ボールねじ機構部71に沿って延びるガイド部材73とを有する。また、揺動駆動部70は、さらにX方向ボールねじに螺合され、ガイド部材73にガイドされてX方向に移動するX方向移動部材74を有する。カソードマグネット35はX方向移動部材74に支持されており、モータ72でX方向ボールねじ機構部71のX方向ボールねじを回転させることによりX方向移動部材74とともにカソードマグネット35がガイド部材73に沿ってX方向に駆動される。一方、垂直駆動部80は、Z方向に延びるZ方向ボールねじ(図示せず)を内蔵するZ方向ボールねじ機構部81と、Z方向ボールねじを回転させるモータ82と、Z方向ボールねじ機構部81に沿って伸びるガイド部材83と、Z方向ボールねじに螺合されるZ方向移動部材(図示せず)とを有している。Z方向移動部材はガイド部材83にガイドされるように構成されている。X方向ボールねじ機構部71はZ方向移動部材に支持されており、モータ82でZ方向ボールねじ機構部81のZ方向ボールねじを回転させることによりX方向ボールねじ機構部71がZ方向移動部材とともにガイド部材83に沿ってZ方向に駆動される。これにより、X方向ボールねじ機構部71とともにカソードマグネット35がZ方向に駆動される。
なお、揺動駆動部70および垂直駆動部80の駆動機構は上記のボールねじ機構に限らない。揺動駆動部70が、X方向に延び、カソードマグネット35をX方向移動させる第1の移動部を有し、垂直駆動部80が第1の移動部をZ方向に移動させる第2の移動部を有する構成であれば、他の駆動機構を用いることができる。上記ボールねじ機構の場合は、X方向ボールねじ機構部71が第1の移動部を構成し、Z方向ボールねじ機構部81が第2の移動部を構成する。
ガス供給部40は、ガス供給源41と、ガス供給源41から延びるガス供給配管42と、ガス供給配管42に設けられたマスフローコントローラのような流量制御器43と、ガス導入部材44とを有している。ガス供給源41からは、処理容器10内において励起されるプラズマ生成ガスとして不活性ガス、例えば、Ar、Ne、Kr等の希ガス(図1はArガスの例を示す)が、ガス供給配管42およびガス導入部材44を介して処理容器10内に供給される。
処理容器10内に供給されたガスは、電源33からターゲット電極32を介してターゲット31に電圧が印加されることにより励起される。このとき、カソードマグネット35の漏洩磁場がターゲット31の周囲に及ぼされることで、ターゲット31の周囲に集中してマグネトロンプラズマが形成される。この状態でプラズマ中の正イオンがターゲット31に衝突し、ターゲット31からその構成元素がスパッタ粒子として放出され、マグネトロンスパッタによりスパッタ粒子が基板W上に堆積される。
シャッター50は、成膜に使用していないターゲット31を遮蔽する機能を有する。シャッター50は処理容器10の蓋部10bに沿った円錐台状をなし4つのターゲット31の投影領域をカバーする大きさを有し、ターゲット31よりも若干大きいサイズの開口部51が形成されている。そして、成膜に使用されるターゲット31に開口部51が対応し、他のターゲット31はシャッター50により遮蔽される。シャッター50は、処理容器10の天井部の中心に設けられた回転軸52を介して回転自在に取り付けられている。回転軸52は処理容器10の上方に設けられた回転機構53に接続されており、シャッター50は回転機構53により回転される。
制御部60は、コンピュータからなり、成膜装置1の各構成部、例えば、電源33、排気装置12、マグネット駆動部36、ガス供給部40、回転機構53等を制御する、CPUからなる主制御部を有する。また、その他に、キーボードやマウス等の入力装置、出力装置、表示装置、記憶装置を有する。制御部60の主制御部は、記憶装置に処理レシピが記憶された記憶媒体をセットすることにより、記憶媒体から呼び出された処理レシピに基づいて成膜装置1に所定の動作を実行させる。特に、本実施形態では、制御部60は、カソードマグネット35を駆動するマグネット駆動部36の動作制御に特徴がある。
具体的には、制御部60は、例えば、図4に示すように、マグネットデータ記憶部91と、マグネット駆動コントローラ92と、放電電圧等の放電パラメータを検出するセンサ93とを有している。マグネットデータ記憶部91には、例えば、ターゲットエロージョンに基づくターゲット形状に応じたカソードマグネット35の漏洩磁場強度等が記憶されている。そして、マグネットデータ記憶部91に予め記憶されたデータに基づいて、マグネット駆動コントローラ92がマグネット駆動部36によるカソードマグネット35の駆動(垂直駆動部80による駆動)を制御するようにすることができる。また、センサ93によりリアルタイムで放電パラメータを監視し、放電パラメータが一定に保持されるようにマグネット駆動コントローラ92がマグネット駆動部36によるカソードマグネット35の駆動(垂直駆動部80による駆動)を制御するようにすることもできる。
また、マグネット駆動コントローラ92は、揺動駆動部70によるプラズマ着火時のカソードマグネット35の位置、およびプラズマ着火後の揺動駆動部70によるカソードマグネット35の移動方向を制御することもできる。
次に、以上のように構成される成膜装置の動作について説明する。
まず、ゲートバルブ14を開け、処理容器10に隣接する搬送室(図示せず)から、搬送装置(図示せず)により基板Wを処理容器10内に搬入し、基板保持部20に保持させる。
そして、処理容器10内を真空引きするとともに、処理容器10内を予め定められた圧力に制御する。次いで、あらかじめシャッター50により、使用するターゲット31を遮蔽し放電させてターゲットの表面を清浄化させる。その後、シャッター50により使用しないターゲット31を遮蔽し、使用するターゲット31に開口部51を対応させた状態で成膜処理を開始する。
ガス供給部40から処理容器10内へ不活性ガス、例えばArガスを導入する。次いで、電源33からターゲット電極32を介してターゲット31に電圧を印加してArガスを励起させる。このときカソードマグネット35の漏洩磁場がターゲットの周囲に及ぼされることにより、プラズマがターゲット31の周囲に集中してマグネトロンプラズマが形成される。この状態でプラズマ中の正イオンがターゲット31に衝突し、ターゲット31からその構成元素がスパッタ粒子として放出され、マグネトロンスパッタによりスパッタ粒子が基板W上に堆積される。
このようなマグネトロンスパッタ成膜においては、ターゲットを長期に亘って使用することによりターゲットエロージョンが進行する。ターゲットエロージョンが進行するとやがてターゲットはライフエンドに至る。漏洩磁場の変動等により、ターゲットエロージョンの進行には偏りが生じるため、従来から、それにともなって、ライフエンドに至るまでの間の成膜性能(成膜速度、分布)の変動や着火性能の不安定性が生じることが課題とされてきた。特に、膜の平坦性や膜質が要求される用途では超高真空下(0.02Pa以下)にて低圧スパッタが行われるが、低圧スパッタでは成膜性能や着火性能の変動が顕著である。また、ターゲットエロージョンの進行の偏りにより、ターゲットの利用率が十分ではなくターゲットライフエンドが短くなる点も課題である。このため、ターゲット直上の漏洩磁場変動を少なくし、ターゲットが急峻なエロージョンに至らずターゲット全面を均等にスパッタする技術が求められる。
このような観点から、特許文献1では、ターゲットとして面積の大きい矩形状のものを用いるとともに、カソードマグネットをターゲットに沿って連続的に揺動させている。
しかし、カソードマグネットの揺動のみでは、カソードマグネットの磁気回路に基づき、ターゲットに急峻なエロージョンが形成される。このため、着火・放電の不安定性や成膜速度の変動が生じてしまう。このような傾向は、特にターゲットが磁性材料である場合に顕著である。
実際に、ターゲット材料として磁性材料であるCoFe30Bを用い、放電安定性を評価した。ここでは、ターゲットライフ(電力積算量)と放電が失活するAr流量との関係を、種々のカソードマグネットとターゲット電極との距離において求めた。その結果を図5に示す。ここでは、ターゲットの厚さ:5mm、供給パワー:500Wとした。
図5に示すように、ターゲットライフ(電力積算量)が増加し、ターゲットエロージョンが進行すると、カソードマグネットとターゲット電極との距離が同一では、放電が失活するArガス流量が増加していくことがわかる。また、ターゲットライフが増加した際に低流量(低圧)下で安定放電させるためには、カソードマグネットとターゲット電極との距離を増加させる必要があることがわかる。
すなわち、特許文献1の装置では、ターゲットエロージョンが進行していくと、放電安定性を確保するために、例えば、カソードマグネットとターゲット電極との距離を変えて、カソードマグネットの漏洩磁場の強度を調整するといった対策が必要となる。
特許文献1の装置では、シム調整等によりカソードマグネットの揺動高さ位置自体を変化させることができる。しかし、これにより、漏洩磁場の強度自体は調整できるものの、カソードマグネットは同じ高さで揺動するのみである。このため、ターゲットエロージョンの形状を変化させることはできず、成膜性能変動を回避すること、および、ターゲットの利用率を向上させてターゲットライフエンドを延長させることは困難である。
このときの具体例を図6、図7に基づいて説明する。
特許文献1のカソードマグネットを揺動させる装置においては、図6に示すように、エロージョンが進行していない初期のターゲットでは、漏洩磁場を揺動させることによりターゲットに対して均一な磁場強度が付与される。しかし、エロージョンが進行していくと、カソードマグネットの磁気回路に基づき、例えばターゲットの中央のエロージョンが大きい急峻なエロージョン形状が形成される。このためターゲットライフが短くなるとともに、局所的に漏洩磁場強度が増大し、着火不安定性を誘発する。
一方、シム調整等によりカソードマグネットの揺動高さ位置を変えることにより、図7に示すように、エロージョン進行時の漏洩磁場の強度自体を調整することはできる。しかし、カソードマグネットが揺動する高さは同じであり、漏洩磁場の強度が全体的に変化するのみで、急峻なエロージョン形状は大きく変化しない。
これに対し、本実施形態では、マグネット駆動部36の揺動駆動部70によりカソードマグネット35をターゲット31の主面に沿ったX方向に揺動するとともに、それとは独立してターゲット31の主面に対して垂直方向であるZ方向に移動することができる。このため、カソードマグネット35を任意に3次元走査することができる。したがって、マグネット駆動部36の揺動駆動部70によりカソードマグネット35をX方向に揺動する際に、垂直駆動部80によりカソードマグネット35をZ方向に移動させてターゲット31直上の漏洩磁場強度を制御することができる。
具体的には、図8に示すように、垂直駆動部80によりターゲット31のエロージョンが大きい部分(中央部分)ではカソードマグネット35をターゲット31から遠ざけ、エロージョンが小さい部分(端部)ではカソードマグネット35をターゲット31に近づけるように制御する。
このときのカソードマグネット35の駆動制御としては、以下の(1)、(2)が例示される。
(1)あらかじめターゲット31のエロージョンパターンを解析し、その際のターゲット形状に応じた漏洩磁場強度をシミュレーションにより求めておき、そのデータを用いて垂直駆動部80を制御する。この場合、シミュレーションにより求めたターゲット形状に応じた漏洩磁場強度データをマグネットデータ記憶部91に記憶しておき、そのデータに基づいてマグネット駆動コントローラ92が垂直駆動部80を制御する。
(2)放電電圧等の放電パラメータをリアルタイムで監視し、その放電パラメータが一定に保持されるように垂直駆動部80を制御する。この場合、センサ93により放電パラメータをリアルタイムで監視し、センサ93の検出に基づいてマグネット駆動コントローラ92により垂直駆動部80をフィードバック制御する。
以上のように、マグネット駆動部36の垂直駆動部80の制御によりターゲット31直上の漏洩磁場強度を制御することにより、ターゲット全面のエロージョン形状の均一性を高めることが可能となる。このため、放電安定性、ならびに成膜速度および成膜分布の安定性を確保することができる。また、ターゲットエロージョンが均一に進行することにより、ターゲット利用率が向上してターゲットライフエンドを延ばすことが可能となり、一つのターゲットによる生産可能枚数を増大させて生産性を高めることができる。
次に、マグネット駆動部36のターゲット31の長手方向(X方向)に沿って揺動する際の制御について説明する。マグネット駆動部36において、プラズマ着火時のカソードマグネット35のX方向位置を制御することにより、放電安定性やターゲット利用率をより高めることが可能となる。
カソードマグネット35をX方向に揺動するに際し、従来は、その初期位置を、常にターゲット31(ターゲット電極32)の一方の端部、例えば図9に示すように左端にすることが一般的であり、カソードマグネット35をその初期位置にした状態でプラズマを着火している。
しかし、ターゲット端部は、プラズマの着火の際のカソードマグネットの位置としては適していないことが判明した。これは、ターゲット端部は、非エロージョン部が存在し、また周辺部品の影響があるため、ターゲット中央部分のエロージョン部に比べて、カソードマグネットからの漏洩磁場強度が小さいためであると考えられる。
図10は、放電電圧とカソードマグネットのX方向位置との関係を示す図である。カソードマグネット位置は0mmが左端、50mmが中央、100mmが右端である。この図に示すように、カソードマグネット35が左端に位置しているときに放電電圧の急激な低下が見られる。この放電電圧の低下はプラズマの失火または失火寸前であることを示している。このことは、カソードマグネット35がターゲット端部に存在しているとプラズマ着火に不利であることを示している。
したがって、カソードマグネット35のプラズマ着火時のX方向位置が、図11に示すように、ターゲット31のX方向中央部になるように、マグネット駆動部36の揺動駆動部70を制御することが好ましい。特に、膜の平坦性や膜質が要求される用途では超高真空下(0.02Pa以下)にて低圧スパッタが行われる場合には、プラズマ着火し難いため、このようなカソードマグネットのX方向位置制御が有効である。
次に、このことを検証した結果について説明する。
図12は、プラズマ着火時のマグネットの位置が左端と中央部の場合の着火状態を示す図であり、(a)はArガス流量を200sccmにした場合、(b)はArガス流量を11.5sccmにした低流量(低圧)の場合である。図中〇は通常に着火した場合を示し、Rは着火リトライの場合を示す。(a)に示すように、Arガス流量が200sccmでは、カソードマグネットの位置にかかわらず通常に着火した。一方、(b)に示すように、Arガス流量が11.5sccmと低流量(低圧)化した場合は、カソードマグネットの位置が左端では全て着火リトライとなり着火が不安定であったのに対し、カソードマグネットが中央部の場合は着火が安定していた。
また、カソードマグネット35のプラズマ着火時のX方向位置が従来のようにターゲットの一方の端部の場合、図13に示すように、着火後にカソードマグネット35が移動する方向は同一方向(A方向)に限られるため、放電時間(成膜時間)によりターゲット左右のエロージョンが不均一となる傾向がある。このため、ターゲットの利用率が低くなることがある。
これに対しては、上述のように、プラズマ着火時のカソードマグネット35のX方向位置をターゲット中央部にした上で、図14に示すように、着火後にカソードマグネット35が移動する方向を、一の基板では一方の方向(A方向)で、次の基板では反対方向(B方向)と交互に変わるようにマグネット駆動部36の揺動駆動部70を制御することが好ましい。また、一のロットの基板に対しては一方の方向(A方向)で、次のロットの基板に対しては反対方向(B方向)とロットごとに交互に変わるように、揺動駆動部70を制御してもよい。さらには、何枚かの基板ごとに方向を変えるように制御してもよい。これにより、ターゲット31のエロージョンがより均一となり、ターゲットの利用率を高めることが可能となる。
<第2の実施形態>
次に、第2の実施形態について説明する。
図15は、第2の実施形態に係る成膜装置の概略平面図であり、図16は第2の実施形態に係る成膜装置のマグネット駆動部を詳細に説明するための断面図である。
第2の実施形態に係る成膜装置の基本構成は、第1の実施形態に係る成膜装置とほぼ同じであるが、第1の実施形態のマグネット駆動部36の代わりにマグネット駆動部136を設けた点が第1の実施形態とは異なっている。
また、図15に示すように、本実施形態では、カソードマグネット35の長さが、ターゲット31の短辺よりも短く、カソードマグネット35がターゲットの長辺方向のみならず、短辺方向にも移動可能となっている。
本実施形態のマグネット駆動部136は、カソードマグネット35を、ターゲット31の長辺方向および短辺方向に沿って平面的に移動可能に構成されている。具体的には、図16に示すように、本実施形態のマグネット駆動部136は、第1の実施形態と同様のカソードマグネット35をターゲット31の長辺方向(X方向)に沿って揺動させる揺動駆動部70を有している。また、カソードマグネット35をターゲット31の短辺方向(Y方向)に沿って駆動させる短辺方向駆動部110を有している。なお、マグネット駆動部136は、第1の実施形態のマグネット駆動部36が備えている垂直駆動部80を有していない。
短辺方向駆動部110は、Y方向に延びるY方向ボールねじ(図示せず)を内蔵するY方向ボールねじ機構部111と、Y方向ボールねじを回転させるモータ112と、Y方向ボールねじ機構部111に沿って延びるガイド部材113とを有する。Y方向ボールねじ機構部111は、揺動駆動部70のX方向移動部材74に支持されている。また、短辺方向駆動部110は、さらにY方向ボールねじに螺合され、ガイド部材113にガイドされてY方向に移動するY方向移動部材114を有する。Y方向移動部材114にはカソードマグネット35が支持されており、モータ112でY方向ボールねじ機構111のY方向ボールねじを回転させることによりY方向移動部材114とともにカソードマグネット35がガイド部材113に沿ってY方向に駆動される。したがって、揺動駆動部70と短辺方向駆動部110により、カソードマグネット35を、ターゲット31のXY平面内で自在に移動することが可能となる。
なお、揺動駆動部70および短辺方向駆動部110の駆動機構は上記のボールねじ機構に限らない。揺動駆動部70が、X方向に延び、カソードマグネット35をX方向移動させる第1の移動部を有し、短辺方向駆動部110がカソードマグネット35をY方向に移動させる第2の移動部を有する構成であれば、他の駆動機構を用いることができる。上記ボールねじ機構の場合は、X方向ボールねじ機構部71が第1の移動部を構成し、Y方向ボールねじ機構部111が第2の移動部を構成する。
本実施形態においても、第1の実施形態と同様、処理容器10内を予め定められた圧力に制御し、シャッター50により使用しないターゲット31を遮蔽し、使用するターゲット31に開口部51を対応させた状態で成膜処理を開始する。成膜処理においては、処理容器10内へ不活性ガス、例えばArガスを導入し、次いで、電源33からターゲット電極32を介してターゲット31に電圧を印加してArガスを励起させる。このときカソードマグネット35の漏洩磁場がターゲットの周囲に及ぼされることにより、プラズマがターゲット31の周囲に集中してマグネトロンプラズマが形成され、マグネトロンスパッタによりスパッタ粒子が基板W上に堆積される。
上述したように、特許文献1のようにカソードマグネットの揺動のみでは、カソードマグネットの磁気回路に基づき、深く急峻なエロージョンが形成される。すなわち、漏洩磁界はカソードマグネット35の端部で大きくなるため、漏洩磁界によるエロージョンはカソードマグネット35の端部で激しくなる。したがって、図17に示すように、カソードマグネット35をターゲット31の長手方向に揺動させただけでは、図18のように揺動するカソードマグネットの端部の移動軌跡に沿った部分にエロージョンが激しい急峻なエロージョン領域140が生じる。このとき、このエロージョン領域140が2箇所のみであり、エロージョン領域140のみ次々とエロージョンされると、ターゲットライフが短くなってしまう。また、局所的に急峻なエロージョン領域が生じることによりターゲットの利用率も低くなる。
そこで、本実施形態では、マグネット駆動部136は、カソードマグネット35を、ターゲット31の長辺方向のみならず短辺方向にも移動可能とし、ターゲット31の裏面でXY平面上を自在に移動できるようにした。具体的には、マグネット駆動部136の揺動駆動部70によりカソードマグネット35を長辺方向(X方向)に揺動させ、かつ短辺方向移動部110により短辺方向(Y方向)に移動させ得るようにした。
これにより、ターゲット31において急峻なエロージョンが形成される領域を広げることができ、局所的にエロージョンが進行することを抑制することができる。このため、ターゲットライフを延長することができ、ターゲット31の利用率も高めることができる。
このときのカソードマグネット35の具体的な走査態様としては、例えば図19に示すように、カソードマグネット35のY方向位置を任意の位置に位置させた状態で、カソードマグネット35をX方向に揺動させる態様を挙げることができる。この場合は、図20に示すように、急峻なエロージョン領域140が平行に4箇所形成され、エロージョン領域140を広げることができる。
また、図21に示すように、揺動駆動部70と短辺方向駆動部110とを同時に駆動させてカソードマグネット35をXY平面内で任意の軌跡、例えば8の字に走査させる態様を挙げることができる。この場合は、図22に示すように、急峻なエロージョン領域140が2箇所ずつ交差するように合計4箇所形成され、同様にエロージョン領域140を広げることができる。
<第3の実施形態>
次に、第3の実施形態について説明する。
図23は第3実施形態に係る成膜装置のマグネット駆動部を詳細に説明するための断面図である。
第3の実施形態に係る成膜装置は、基本構成は第1の実施形態および第2の実施形態に係る成膜装置とほぼ同じであるが、マグネット駆動部の構成が異なっている。
また、本実施形態では、第2の実施形態と同様、カソードマグネット35の長さが、ターゲット31の短辺よりも短く、カソードマグネット35がターゲットの長辺方向のみならず、短辺方向にも移動可能となっている(図15参照)。
本実施形態のマグネット駆動部236は、カソードマグネット35をターゲット31の長辺方向および短辺方向に沿って平面的に移動可能であるとともに、ターゲット31平面に対して垂直方向に移動可能に構成されている。具体的には、図23に示すように、本実施形態のマグネット駆動部236は、揺動駆動部70、垂直駆動部80、および短辺方向駆動部110を有する。揺動駆動部70および短辺方向駆動部110の構成は第2の実施形態と同様である。また、垂直駆動部80の構成は第1の実施形態と同様である。
なお、揺動駆動部70、短辺方向駆動部110、および垂直方向駆動部80の駆動機構は上記のボールねじ機構に限らない。揺動駆動部70、短辺方向駆動部110、および垂直方向駆動部80が、それぞれカソードマグネット35をX方向移動させる第1の移動部、Y方向移動させる第2の駆動部、Z方向移動させる第3の駆動部を有していればよい。上記ボールねじ機構の場合は、X方向ボールねじ機構部71が第1の移動部を構成し、Y方向ボールねじ機構部111が第2の移動部を構成し、Z方向ボールねじ機構部81が第3の移動部を構成する。
本実施形態においても、第1および第2の実施形態と同様、処理容器10内を予め定められた圧力に制御し、シャッター50により使用しないターゲット31を遮蔽し、使用するターゲット31に開口部51を対応させた状態で成膜処理を開始する。成膜処理においては、処理容器10内へ不活性ガス、例えばArガスを導入し、次いで、電源33からターゲット電極32を介してターゲット31に電圧を印加してArガスを励起させる。このときカソードマグネット35の漏洩磁場がターゲットの周囲に及ぼされることにより、プラズマがターゲット31の周囲に集中してマグネトロンプラズマが形成され、マグネトロンスパッタによりスパッタ粒子が基板W上に堆積される。
本実施形態では、マグネット駆動部236は、カソードマグネット35を、ターゲット31の長辺方向および短辺方向に移動可能とするとともに、ターゲット31平面に対して垂直方向にも移動可能とした。すなわち、マグネット駆動部236の揺動駆動部70によりカソードマグネット35を長辺方向(X方向)に揺動させ、短辺方向移動部110により短辺方向(Y方向)に移動させ、かつ垂直方向移動部80により垂直方向(Z方向)に移動させ得るようにした。
このように、カソードマグネット35がX方向およびY方向に移動可能なことに加え、垂直方向であるZ方向にも移動可能なことにより、ターゲット31においてエロージョンが形成される領域を広げ、かつエロージョン幅を広げることができる。つまり、カソードマグネット35が、XY平面で移動することによりターゲット31において漏洩磁場が強いエロージョン領域が広がり、かつZ方向に移動することにより漏洩磁場強度を弱めてエロージョンの深さを浅く、かつエロージョン幅自体を広くすることができる。このため、ターゲットライフを延長する効果、およびターゲット31の利用率を高める効果を第2の実施形態に比べ、より高めることができる。
例えば、図24に示すように、図19と同様、カソードマグネット35のY方向位置を任意の位置に位置させた状態でカソードマグネット35をX方向に揺動させることに加えて、カソードマグネット35のZ方向位置を調整する態様を挙げることができる。この場合は、図25に示すように、エロージョン領域140が平行に4箇所形成され、エロージョン領域140を広げることができ、しかもエロージョン領域140を浅く、かつその幅を広くすることができる。もちろん、図21と同様、カソードマグネット35をXY平面内で任意の軌跡、例えば8の字に走査させることに加えて、カソードマグネット35のZ方向位置を調整してもよい。その場合も同様の効果を得ることができる。
<他の適用>
以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、成膜装置の全体構成は、実施形態に記載したものに限るものではなく、ターゲットの位置や角度、大きさは任意であり、一つのターゲットに配置するマグネットの数も任意である。また、第1の実施形態から第3の実施形態の要素を適宜組み合わせて実施してもよい。
1;成膜装置
10;処理容器
10a;容器本体
10b;蓋体
20;基板保持部
30;カソードユニット
31;ターゲット
32;ターゲット電極
33;電源
35;カソードマグネット
36,136,236;マグネット駆動部
40;ガス供給部
50;シャッター
60;制御部
70;揺動駆動部
80;垂直駆動部
91;マグネットデータ記憶部
92;マグネット駆動コントローラ
93;センサ
110;短辺方向駆動部
W;基板

Claims (25)

  1. 処理容器と、
    前記処理容器内で基板を保持する基板保持部と、
    前記基板保持部の上方に配置されたカソードユニットと、
    前記処理容器内にプラズマ生成ガスを導入するガス導入機構と、
    を具備し、
    前記カソードユニットは、
    前記基板にスパッタ粒子を放出するためのターゲットと、
    前記ターゲットに電力を供給する電源と、
    前記ターゲットの裏面側に設けられ、前記ターゲットに漏洩磁場を与えるマグネットと、
    前記マグネットを駆動するマグネット駆動部と、
    を備え、
    前記マグネット駆動部は、
    前記マグネットを前記ターゲットに沿って揺動させる揺動駆動部と、
    前記マグネットを、前記揺動駆動部による駆動とは独立して、前記ターゲットの主面に対して垂直な方向に駆動させる垂直駆動部と、
    を有し、
    前記ターゲット近傍にマグネトロンプラズマを形成してマグネトロンスパッタにより前記基板上に前記スパッタ粒子を堆積させる、成膜装置。
  2. 前記ターゲットは矩形状をなす、請求項1に記載の成膜装置。
  3. 前記揺動駆動部は、前記ターゲットの長手方向に沿って前記マグネットを揺動させる、請求項2に記載の成膜装置。
  4. 前記揺動駆動部は、前記マグネットの揺動方向に延び、前記マグネットを前記揺動方向に移動させる第1の移動部を有し、前記垂直駆動部は、前記第1の移動部を前記ターゲットの主面に垂直な方向に移動させる第2の移動部を有する、請求項1から請求項3のいずれか一項に記載の成膜装置。
  5. 前記揺動駆動部は、前記揺動方向に延びる第1ボールねじを有する前記第1の移動部としての第1ボールねじ機構部と、前記第1ボールねじに螺合され、前記揺動方向に移動する第1の移動部材と、前記第1ボールねじを回転させる第1モータと、前記第1の移動部材を前記揺動方向にガイドする第1ガイドとを有し、
    前記垂直駆動部は、前記ターゲットの主面に垂直な方向に延びる第2ボールねじを有する前記第2の移動部としての第2ボールねじ機構部と、前記第2ボールねじに螺合され、前記ターゲットの主面に垂直な方向に移動する第2の移動部材と、前記第2ボールねじを回転させる第2モータと、前記第2の移動部材を前記ターゲットの主面に垂直な方向にガイドする第2ガイドとを有し、
    前記第1ボールねじ機構部は、前記第2の移動部材に支持され、前記マグネットは、前記第1の移動部材に支持される、請求項4に記載の成膜装置。
  6. 前記マグネット駆動部を制御する制御部をさらに具備し、
    前記制御部は、前記マグネットを揺動している際に、前記マグネットから前記ターゲットにおよぼされる漏洩磁場強度が適切になるように前記マグネット駆動部の前記垂直駆動部による前記マグネットの駆動を制御する、請求項1から請求項5のいずれか一項に記載の成膜装置。
  7. 前記制御部は、前記ターゲットのエロージョンが大きい部分では、前記マグネットを前記ターゲットから遠ざけ、エロージョンが小さい部分では前記マグネットを前記ターゲットに近づけるように前記マグネット駆動部の前記垂直駆動部による前記マグネットの駆動を制御する、請求項6に記載の成膜装置。
  8. 前記制御部は、マグネットデータ記憶部と、マグネット駆動コントローラとを有し、前記マグネットデータ記憶部には、ターゲットエロージョンに基づくターゲット形状に応じた前記マグネットの漏洩磁場強度が記憶され、前記マグネットデータ記憶部に記憶されたデータに基づいて、前記マグネット駆動コントローラが前記マグネット駆動部の前記垂直駆動部による前記マグネットの駆動を制御する、請求項6または請求項7に記載の成膜装置。
  9. 前記制御部は、放電パラメータを検出するセンサと、マグネット駆動コントローラとを有し、前記センサにより前記放電パラメータを監視し、前記放電パラメータが一定に保持されるように、前記マグネット駆動コントローラが前記マグネット駆動部の前記垂直駆動部による前記マグネットの駆動を制御する、請求項6に記載の成膜装置。
  10. 前記マグネット駆動部を制御する制御部をさらに具備し、
    前記制御部は、前記マグネトロンプラズマ着火時における、前記マグネットの前記ターゲットに沿った方向の位置が、前記ターゲットの中央部になるように、前記マグネット駆動部の前記揺動駆動部を制御する、請求項1から請求項5のいずれか一項に記載の成膜装置。
  11. 前記制御部は、前記マグネトロンプラズマ着火後に前記マグネットが前記ターゲットに沿って移動する方向が、一の基板に対しては第1の方向、次の基板では前記第1の方向とは反対の第2の方向、または一のロットの基板に対しては第1の方向、次のロットの基板に対しては第2の方向と、基板ごとまたはロットごとに交互に変わるように前記マグネット駆動部の前記揺動駆動部を制御する、請求項10に記載の成膜装置。
  12. 処理容器と、
    前記処理容器内で基板を保持する基板保持部と、
    前記基板保持部の上方に配置されたカソードユニットと、
    前記処理容器内にプラズマ生成ガスを導入するガス導入機構と、
    を具備し、
    前記カソードユニットは、
    前記基板にスパッタ粒子を放出するためのターゲットと、
    前記ターゲットに電力を供給する電源と、
    前記ターゲットの裏面側に設けられ、前記ターゲットに漏洩磁場を与えるマグネットと、
    前記マグネットを駆動するマグネット駆動部と、
    を備え、
    前記マグネット駆動部は、前記マグネットを、前記ターゲットの長辺方向および短辺方向に沿って移動可能に構成されており、
    前記ターゲット近傍にマグネトロンプラズマを形成してマグネトロンスパッタにより前記基板上に前記スパッタ粒子を堆積させる、成膜装置。
  13. 前記マグネット駆動部は、
    前記マグネットを前記ターゲットの長辺方向に沿って揺動させる揺動駆動部と、
    前記マグネットを前記ターゲットの短辺方向に沿って移動させる短辺方向駆動部と、
    を有する、請求項12に記載の成膜装置。
  14. 前記揺動駆動部は、前記マグネットの揺動方向に延び、前記マグネットを前記揺動方向に移動させる第1の移動部を有し、前記短辺方向駆動部は、前記マグネットを前記短辺方向に移動させる第2の移動部を有する、請求項13に記載の成膜装置。
  15. 前記揺動駆動部は、前記揺動方向に延びる第1ボールねじを有する前記第1の移動部としての第1ボールねじ機構部と、前記第1ボールねじに螺合され、前記揺動方向に移動する第1の移動部材と、前記第1ボールねじを回転させる第1モータと、前記第1の移動部材を前記揺動方向にガイドする第1ガイドとを有し、
    前記短辺方向駆動部は、前記短辺方向に延びる第2ボールねじを有する前記第2の移動部としての第2ボールねじ機構部と、前記第2ボールねじに螺合され、前記短辺方向に移動する第2の移動部材と、前記第2ボールねじを回転させる第2モータと、前記第1の移動部材を前記短辺方向にガイドする第2ガイドとを有し、
    前記第2ボールねじ機構部は、前記第1の移動部材に支持され、前記マグネットは、前記第2の移動部材に支持される、請求項14に記載の成膜装置。
  16. 前記マグネット駆動部は、前記マグネットを、前記ターゲットの主面に対して垂直な方向に駆動させる垂直駆動部をさらに有する、請求項13に記載の成膜装置。
  17. 前記揺動駆動部は、前記マグネットの揺動方向に延び、前記マグネットを前記揺動方向に移動させる第1の移動部を有し、前記短辺方向駆動部は、前記マグネットを前記短辺方向に移動させる第2の移動部を有し、前記垂直駆動部は、前記第1の移動部を前記ターゲットの主面に垂直な方向に移動させる第3の移動部を有する、請求項16に記載の成膜装置。
  18. 前記揺動駆動部は、前記揺動方向に延びる第1ボールねじを有する前記第1の移動部としての第1ボールねじ機構部と、前記第1ボールねじに螺合され、前記揺動方向に移動する第1の移動部材と、前記第1ボールねじを回転させる第1モータと、前記第1の移動部材を前記揺動方向にガイドする第1ガイドとを有し、
    前記短辺方向駆動部は、前記短辺方向に延びる第2ボールねじを有する前記第2の移動部としての第2ボールねじ機構部と、前記第2ボールねじに螺合され、前記短辺方向に移動する第2の移動部材と、前記第2ボールねじを回転させる第2モータと、前記第1の移動部材を前記短辺方向にガイドする第2ガイドとを有し、
    前記垂直駆動部は、前記ターゲットの主面に垂直な方向に延びる第3ボールねじを有する前記第3の移動部としての第3ボールねじ機構部と、前記第3ボールねじに螺合され、前記ターゲットの主面に垂直な方向に移動する第3の移動部材と、前記第3ボールねじを回転させる第3モータと、前記第3の移動部材を前記ターゲットの主面に垂直な方向にガイドする第3ガイドとを有し、
    前記第2ボールねじ機構部は、前記第1の移動部材に支持され、前記第1ボールねじ機構は、前記第3の移動部材に支持され、前記マグネットは、前記第2の移動部材に支持される、請求項17に記載の成膜装置。
  19. 処理容器と、
    前記処理容器内で基板を保持する基板保持部と、
    前記基板保持部の上方に配置されたカソードユニットと、
    前記処理容器内にプラズマ生成ガスを導入するガス導入機構と、
    を具備し、
    前記カソードユニットは、
    前記基板にスパッタ粒子を放出するためのターゲットと、
    前記ターゲットに電力を供給する電源と、
    前記ターゲットの裏面側に設けられ、前記ターゲットに漏洩磁場を与えるマグネットと、
    前記マグネットを駆動するマグネット駆動部と、
    を備え、
    前記マグネット駆動部は、
    前記マグネットを前記ターゲットに沿って揺動させる揺動駆動部と、
    前記マグネットを、前記揺動駆動部による駆動とは独立して、前記ターゲットの主面に対して垂直な方向に駆動させる垂直駆動部と、
    を有する成膜装置により前記基板上に前記スパッタ粒子を堆積させて成膜する成膜方法であって、
    前記処理容器内に前記プラズマ生成ガスを導入しつつ、前記ターゲットに電力を供給して、前記ターゲット近傍にマグネトロンプラズマを形成してマグネトロンスパッタにより前記基板上に前記スパッタ粒子を堆積させることと、
    前記スパッタ粒子を堆積させている間、前記マグネット駆動部の前記揺動駆動部により前記マグネットを揺動させることと、
    前記マグネットを揺動している際に、前記マグネットから前記ターゲットにおよぼされる漏洩磁場強度が適切になるように、前記マグネット駆動部の前記垂直駆動部により前記マグネットを駆動させることと、
    を有する、成膜方法。
  20. 前記ターゲットのエロージョンが大きい部分では、前記マグネットを前記ターゲットから遠ざけ、エロージョンが小さい部分では前記マグネットを前記ターゲットに近づけるように、前記マグネット駆動部の前記垂直駆動部により前記マグネットを駆動させる、請求項19に記載の成膜方法。
  21. あらかじめ記憶された、ターゲットエロージョンに基づくターゲット形状に応じた前記マグネットの漏洩磁場強度のデータに基づいて、前記マグネット駆動部の前記垂直駆動部により前記マグネットを駆動させる、請求項19または請求項20に記載の成膜方法。
  22. 放電パラメータを監視し、前記放電パラメータが一定に保持されるように、前記マグネット駆動部の前記垂直駆動部による前記マグネットの駆動を制御する、請求項19に記載の成膜方法。
  23. 前記マグネトロンプラズマ着火時における、前記マグネットの前記ターゲットに沿った方向の位置が、前記ターゲットの中央部になるように、前記マグネット駆動部の前記揺動駆動部を制御することをさらに有する、請求項19から請求項22のいずれか一項に記載の成膜方法。
  24. 前記マグネトロンプラズマ着火後に前記マグネットが前記ターゲットに沿って移動する方向が、一の基板に対しては第1の方向、次の基板では前記第1の方向とは反対の第2の方向、または一のロットの基板に対しては第1の方向、次のロットの基板に対しては第2の方向と、基板ごとまたはロットごとに交互に変わるように前記マグネット駆動部の前記揺動駆動部を制御することをさらに有する、請求項23に記載の成膜方法。
    処理容器と、
    前記処理容器内で基板を保持する基板保持部と、
    前記基板保持部の上方に配置されたカソードユニットと、
    前記処理容器内にプラズマ生成ガスを導入するガス導入機構と、
    を具備し、
    前記カソードユニットは、
    前記基板にスパッタ粒子を放出するためのターゲットと、
    前記ターゲットに電力を供給する電源と、
    前記ターゲットの裏面側に設けられ、前記ターゲットに漏洩磁場を与えるマグネットと、
    前記マグネットを駆動するマグネット駆動部と、
    を備える成膜装置により前記基板上に前記スパッタ粒子を堆積させて成膜する成膜方法であって、
    前記処理容器内に前記プラズマ生成ガスを導入しつつ、前記ターゲットに電力を供給して、前記ターゲット近傍にマグネトロンプラズマを形成してマグネトロンスパッタにより前記基板上に前記スパッタ粒子を堆積させることと、
    前記スパッタ粒子を堆積させている間、前記マグネット駆動部により、前記ターゲットの長辺方向および短辺方向に沿って、前記ターゲットを移動させることと、
    を有する、成膜方法。
  25. 前記ターゲットを移動させることは、前記ターゲットの長辺方向および短辺方向に沿って移動させることに加えて、前記ターゲットの主面に対して垂直な方向に移動させる、請求項24に記載の成膜方法。





JP2020016383A 2019-08-08 2020-02-03 成膜装置および成膜方法 Active JP7374008B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20850802.8A EP4012066A4 (en) 2019-08-08 2020-07-02 FILM FORMING APPARATUS AND FILM FORMING METHOD
US17/631,188 US20220178014A1 (en) 2019-08-08 2020-07-02 Film forming apparatus and film forming method
PCT/JP2020/026077 WO2021024660A1 (ja) 2019-08-08 2020-07-02 成膜装置および成膜方法
KR1020227006267A KR20220038145A (ko) 2019-08-08 2020-07-02 성막 장치 및 성막 방법
CN202080055400.6A CN114174552A (zh) 2019-08-08 2020-07-02 成膜装置和成膜方法
JP2023104931A JP2023115150A (ja) 2019-08-08 2023-06-27 成膜装置および成膜方法
JP2023104954A JP2023115151A (ja) 2019-08-08 2023-06-27 成膜装置および成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146662 2019-08-08
JP2019146662 2019-08-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2023104954A Division JP2023115151A (ja) 2019-08-08 2023-06-27 成膜装置および成膜方法
JP2023104931A Division JP2023115150A (ja) 2019-08-08 2023-06-27 成膜装置および成膜方法

Publications (3)

Publication Number Publication Date
JP2021025125A true JP2021025125A (ja) 2021-02-22
JP2021025125A5 JP2021025125A5 (ja) 2022-09-22
JP7374008B2 JP7374008B2 (ja) 2023-11-06

Family

ID=74662202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020016383A Active JP7374008B2 (ja) 2019-08-08 2020-02-03 成膜装置および成膜方法

Country Status (1)

Country Link
JP (1) JP7374008B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264887A1 (ja) * 2021-06-17 2022-12-22 東京エレクトロン株式会社 成膜方法および成膜装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143766A (ja) * 1997-07-23 1999-02-16 Matsushita Electric Ind Co Ltd 薄膜形成方法及び装置
JPH11311432A (ja) * 1997-05-26 1999-11-09 Toto Ltd レンジフード
JP2008057011A (ja) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ 成膜装置及び成膜方法
JP2008156732A (ja) * 2006-12-26 2008-07-10 Victor Co Of Japan Ltd マグネトロンスパッタリング装置及びそれを用いた成膜方法
JP2010031353A (ja) * 2008-03-13 2010-02-12 Canon Anelva Corp スパッタリングカソード、スパッタリングカソードを備えたスパッタリング装置、成膜方法、および電子装置の製造方法
JP2011137205A (ja) * 2009-12-28 2011-07-14 Canon Anelva Corp スパッタ成膜装置および膜の製造方法
JP2013199668A (ja) * 2012-03-23 2013-10-03 Kyocera Corp スパッタリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311432A (ja) * 1997-05-26 1999-11-09 Toto Ltd レンジフード
JPH1143766A (ja) * 1997-07-23 1999-02-16 Matsushita Electric Ind Co Ltd 薄膜形成方法及び装置
JP2008057011A (ja) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ 成膜装置及び成膜方法
JP2008156732A (ja) * 2006-12-26 2008-07-10 Victor Co Of Japan Ltd マグネトロンスパッタリング装置及びそれを用いた成膜方法
JP2010031353A (ja) * 2008-03-13 2010-02-12 Canon Anelva Corp スパッタリングカソード、スパッタリングカソードを備えたスパッタリング装置、成膜方法、および電子装置の製造方法
JP2011137205A (ja) * 2009-12-28 2011-07-14 Canon Anelva Corp スパッタ成膜装置および膜の製造方法
JP2013199668A (ja) * 2012-03-23 2013-10-03 Kyocera Corp スパッタリング装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264887A1 (ja) * 2021-06-17 2022-12-22 東京エレクトロン株式会社 成膜方法および成膜装置

Also Published As

Publication number Publication date
JP7374008B2 (ja) 2023-11-06

Similar Documents

Publication Publication Date Title
TWI780110B (zh) 用於多陰極基板處理的方法及設備
TWI553729B (zh) Plasma processing method
US8764949B2 (en) Prediction and compensation of erosion in a magnetron sputtering target
JP2020025083A (ja) 制御方法及びプラズマ処理装置
WO2013179544A1 (ja) マグネトロンスパッタ装置
US9318306B2 (en) Interchangeable sputter gun head
JP7134009B2 (ja) 成膜装置および成膜方法
JP5364172B2 (ja) スパッタリング装置による成膜方法およびスパッタリング装置
JP2019189908A (ja) 成膜装置および成膜方法
JP2020026547A (ja) 成膜装置および成膜方法
WO2013179548A1 (ja) マグネトロンスパッタ装置、マグネトロンスパッタ方法及び記憶媒体
JP7374008B2 (ja) 成膜装置および成膜方法
JP6588351B2 (ja) 成膜方法
WO2021024660A1 (ja) 成膜装置および成膜方法
JPH10152772A (ja) スパッタリング方法及び装置
JP7329913B2 (ja) プラズマ成膜方法
US20240117486A1 (en) Film forming apparatus and film forming method
US20220415634A1 (en) Film forming apparatus, processing condition determination method, and film forming method
US20240021423A1 (en) Film forming apparatus and method of controlling film forming apparatus
JPWO2004047160A1 (ja) 半導体装置の製造方法
JP2019218604A (ja) 成膜装置及びスパッタリングターゲット機構
JP7325278B2 (ja) スパッタ方法およびスパッタ装置
US20220098717A1 (en) Film forming apparatus and film forming method
JP2009068075A (ja) 成膜装置及び成膜方法
JP2022101218A (ja) スパッタ装置及びスパッタ装置の制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150