JP2021008683A - 合成皮革及びその製造方法 - Google Patents

合成皮革及びその製造方法 Download PDF

Info

Publication number
JP2021008683A
JP2021008683A JP2019122349A JP2019122349A JP2021008683A JP 2021008683 A JP2021008683 A JP 2021008683A JP 2019122349 A JP2019122349 A JP 2019122349A JP 2019122349 A JP2019122349 A JP 2019122349A JP 2021008683 A JP2021008683 A JP 2021008683A
Authority
JP
Japan
Prior art keywords
amino acid
seq
modified fibroin
fibroin
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019122349A
Other languages
English (en)
Inventor
玄 石
Gen Ishi
玄 石
本章 渡邉
Motoaki Watanabe
本章 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Industries Corp
Spiber Inc
Original Assignee
Kojima Press Industry Co Ltd
Spiber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd, Spiber Inc filed Critical Kojima Press Industry Co Ltd
Priority to JP2019122349A priority Critical patent/JP2021008683A/ja
Publication of JP2021008683A publication Critical patent/JP2021008683A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】耐水性に優れた合成皮革を提供すること。【解決手段】不織布と高分子物質とを含む基材層を備え、不織布及び高分子物質の少なくとも一方が耐水性付与物質を含有する、合成皮革。【選択図】図1

Description

本発明は、合成皮革及びその製造方法に関する。
従来から、天然皮革の代替品として人工皮革等の合成皮革が使用されている。合成皮革は、供給に限界がある天然皮革とは異なって、人工的に大量生産が可能なため、近年では、衣料品、靴、バック等の装飾品、各種のカバー、家具類等、より広い用途に用いられるようになってきている。
例えば、特許文献1には、糊剤高分子物質で前処理した不織布にポリウレタン樹脂溶液を含浸させて湿式凝固させた後、糊剤高分子物質を除去して人工皮革を製造する方法において、不織布を反応性メチルHシリコンと金属触媒との混合エマルジョンに含浸させた後100〜150℃にて加熱する工程を含むことを特徴とする人工皮革の製造方法が開示されている。
特開平10−131059号公報
ところが、特許文献1に開示されるような人工皮革等の合成皮革の多くのものは、ポリウレタンを含み、それによって、天然皮革に類似した柔軟性及び弾力性が実現されている。しかし、このような合成皮革は、ポリウレタン特有の柔軟性に富むものの、耐水性(耐加水分解性)に劣るといった欠点を有していた。そのため、従来の合成皮革には、耐水性の向上が強く望まれている。
本発明は、上記事情に鑑みたものであり、耐水性に優れた合成皮革を提供することを目的とする。本発明はまた、耐水性に優れた合成皮革を容易に製造し得る、合成皮革の製造方法を提供することを目的とする。
本発明は、例えば、以下の各発明に関する。
[1]
不織布と高分子物質とを含む基材層を備え、上記不織布及び上記高分子物質の少なくとも一方が耐水性付与物質を含有する、合成皮革。
[2]
上記不織布が、上記耐水性付与物質を含有する、[1]に記載の合成皮革。
[3]
上記不織布が、改変フィブロインを含有する、[2]に記載の合成皮革。
[4]
上記改変フィブロインが、改変クモ糸フィブロインである、[3]に記載の合成皮革。
[5]
上記改変フィブロインと上記耐水性付与物質が共有結合している、[3]又は[4]に記載の合成皮革。
[6]
上記高分子物質が、上記耐水性付与物質を含有する、[1]〜[5]のいずれかに記載の合成皮革。
[7]
上記高分子物質が、改変フィブロインを含有する、[6]に記載の合成皮革。
[8]
上記改変フィブロインが、改変クモ糸フィブロインである、[7]に記載の合成皮革。
[9]
上記改変フィブロインと上記耐水性付与物質が共有結合している、[7]又は[8]に記載の合成皮革。
[10]
不織布に高分子物質を含む含浸液を含浸し、上記高分子物質を凝固させて基材層を形成する工程を備え、上記不織布及び上記高分子物質の少なくとも一方が耐水性付与物質を含有する、合成皮革の製造方法。
本発明によれば、耐水性に優れた合成皮革を提供することができる。また、本発明によれば、耐水性に優れた合成皮革を容易に製造し得る、合成皮革の製造方法を提供することができる。
一実施形態に係る合成皮革の模式断面図である。 一実施形態に係る合成皮革の模式断面図である。 改変フィブロインのドメイン配列の一例を示す模式図である。 天然由来のフィブロインのz/w(%)の値の分布を示す図である。 天然由来のフィブロインのx/y(%)の値の分布を示す図である。 改変フィブロインのドメイン配列の一例を示す模式図である。 改変フィブロインのドメイン配列の一例を示す模式図である。 一実施形態に係る合成皮革の製造方法の模式図である。 一実施形態に係る合成皮革の製造方法の模式図である。 一実施形態に係るエレクトロスピニング装置の説明図である。 吸湿発熱性試験の結果の一例を示すグラフである。 合成皮革の写真である。
以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。便宜上、実質的に同一の要素には同一の符号を付し、その説明を省略する場合がある。なお、本発明は以下の実施形態に限定されるものではない。
本実施形態にかかる合成皮革は、不織布と高分子物質とを含む基材層を備える。基材層は、不織布と、不織布に含浸された高分子物質からなる含浸体とが一体化されなる層ということもでき、又は高分子物質で形成された層の中に不織布が埋設されてなる層ということもできる。
本実施形態において、不織布及び高分子物質(高分子物質で形成された層)の少なくとも一方は、耐水性付与物質を含有する。すなわち、不織布のみが耐水性付与物質を含有していてよく(高分子物質は耐水性付与物質を含有しない)、高分子物質のみが耐水性付与物質を含有していてよく(不織布は耐水性付与物質を含有しない)、不織布及び高分子物質の両方が耐水性付与物質を含有していてもよい。また、少なくとも主材たる不織布が耐水性付与物質を含有していることが好ましい。さらに、不織布及び高分子物質の両方が耐水性付与物質を含有する場合、それぞれに含まれる耐水性付与物質の種類は同一であってもよく、異なっていてもよい。さらに、不織布又は高分子物質が耐水性付与物質を含有する場合、それぞれ耐水性付与物質を1種単独で含有していてもよく、2種以上を含有していてもよい。
合成皮革は、人造皮革とも呼ばれ、例えば、織布、編布、不織布等を基材とし、基材に塩化ビニル、ポリウレタン等の樹脂(高分子)を含浸若しくはコーティングする、又は樹脂(高分子)層を形成することにより、天然皮革様の外観及び機能を有するものである。本明細書において、合成皮革には、いわゆる人工皮革(基材に特殊不織布(ランダム三次元立体構造を有する繊維層を主とした基材にポリウレタン又はそれに類する可撓性を有する高分子物質を含浸させたもの)を用いているもの)も含まれる。
図1は、一実施形態に係る合成皮革の模式断面図である。図1に示す合成皮革10は、不織布1と高分子物質2とを含む基材層3を備える。基材層3は、例えば、不織布1が埋設された高分子物質2の層からなるものであってよい。基材層3は、無孔質層であってもよく、多孔質層であってもよい。
(不織布)
不織布は、耐水性付与物質を含有しないものであってよく、耐主性付与物質を含有するものであることが好ましい。耐水性付与物質は、合成皮革の耐水性を向上させ得る物質である。合成皮革が耐水性付与物質を含むことにより、例えば、合成皮革の撥水性が向上する、合成皮革の水接触時の収縮が抑制される等の効果が発揮され、合成皮革の防水性がより一層向上することになる。
耐水性付与物質の具体例としては、例えば、フッ素系ポリマー及びシリコーン系ポリマー、並びにヒドロキシル基含有ポリマーに疎水性官能基が結合した修飾ヒドロキシル基含有ポリマー等の疎水性ポリマーが挙げられる。不織布がタンパク質繊維を含む場合、耐水性付与物質の更なる具体例として、タンパク質と反応して結合を形成可能な第一の反応性基を2つ以上有する多官能反応剤(第一の反応剤)、タンパク質と反応して結合を形成可能な第一の反応性基を1つ以上、及び機能性基を有する反応剤等のタンパク質結合剤を挙げることができる。
フッ素系ポリマーとしては、フッ素を含むポリマーであれば特に制限されない。フッ素系ポリマーは、例えば、フッ素を含むオレフィンを重合して得られるポリマーであってよい。フッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリトリフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリパーフルオロアルキルビニルエーテル、ポリパーフルオロプロピレン、ポリテトラフルオロエチレン−パーフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、及びポリフッ化ビニル−エチレン共重合体が挙げられる。フッ素系ポリマーとしては、例示したポリマーを構成するモノマー2種以上を重合して得られる共重合体(ランダム共重合体、ブロック共重合体又は交互共重合体を含む。)であってもよい。
シリコーン系ポリマーとしては、主鎖にポリシロキサン構造を有するポリマーであれば特に制限されない。シリコーン系ポリマーは、例えば、シロキサン構造単位を有するモノマー1種又は2種以上を重合して得られる単独重合体又は共重合体(ランダム共重合体、ブロック共重合体又は交互共重合体を含む。)であってよい。シリコーン系ポリマーとしては、シロキサン構造単位を有するモノマー1種又は2種以上と、シロキサン構造単位を有しないモノマー1種又は2種以上とを重合して得られる共重合体(ランダム共重合体、ブロック共重合体又は交互共重合体を含む。)であってもよい。
修飾ヒドロキシル基含有ポリマーは、ヒドロキシル基含有ポリマーに疎水性官能基が結合したポリマーである。修飾ヒドロキシル基含有ポリマーは、例えば、ヒドロキシル基含有ポリマーと、疎水性官能基を有する反応剤とを反応させることで得ることができる。
ヒドロキシル基含有ポリマーは、ヒドロキシル基を有する高分子化合物であれば、特に制限なく使用することができる。ヒドロキシル基含有ポリマーの具体例としては、例えば、デンプン、グリコーゲン、セルロース、キチン、アガロース、ヒアルロン酸、コンドロイチン硫酸、ペクチン及びカラギーナン等の多糖類、ポリビニルアルコール(PVA)及びフェノール樹脂等の合成高分子が挙げられる。ヒドロキシル基含有ポリマーとしては、生分解性を有するという観点からは、多糖類が好ましい。また、ヒドロキシル基含有ポリマーとしては、生分解性を有することに加え溶解性が高いという観点からは、デンプンが好ましい。
疎水性官能基を有する反応剤は、疎水性官能基を有し、更にヒドロキシル基含有ポリマーと結合可能な結合性官能基を有する化合物である。結合性官能基は、ヒドロキシル基含有ポリマーと、水素結合又は共有結合で結合可能であればよいが、ヒドロキシル基含有ポリマーと共有結合で結合可能な官能基であることが好ましく、ヒドロキシル基含有ポリマー中のヒドロキシル基と共有結合で結合可能な官能基であることがより好ましい。疎水性官能基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基等のアルキル基、フェニル基、ナフチル基等の芳香族基、並びにアセチル基、プロパノイル基、ベンゾイル基等のアシル基が挙げられる。疎水性官能基を有する反応剤としては、例えば、疎水性官能基を有するイソシアネート(R−N=C=O:Rは疎水性官能基)、酸無水物(R−C(=O)−O−C(=O)−R:Rは疎水性官能基)、エポキシド、アジリジン及びアルキルハライド等が挙げられる。
不織布における、上述した疎水性ポリマーの含有量は、不織布全量を基準として、0.001〜70質量%であってよく、0.01〜65質量%であってよく、0.1〜60質量%であってよく、1〜50質量%であってよく、1〜40質量%であってよく、1〜30質量%であってよく、1〜20質量%であってよく、1〜10質量%であってよく、1〜5質量%であってよい。
タンパク質結合剤としては、例えば、タンパク質と反応して結合を形成可能な第一の反応性基を2つ以上有する多官能反応剤(第一の反応剤)、タンパク質と反応して結合を形成可能な第一の反応性基を1つ以上、及び機能性基を有する反応剤(機能性反応剤)を挙げることができる。
第一の反応剤は、タンパク質に含まれるアミド基、ヒドロキシル基、フェノール性水酸基、アミノ基、カルボキシル基、チオール基、セレノール基、イミダゾリル基、インドリル基及びグアニジノ基からなる群より少なくとも一種の反応性官能基と反応して結合を形成可能な第一の反応性基を有する。
第一の反応性基としては、例えば、下記式(A−1)、(A−2)、(A−3)、(A−4)、(A−5)又は(A−6)で表される基が挙げられる。各式中の波線は、各基の結合手を示す。
式(A−1)中、Xは酸素原子(O)又は硫黄原子(S)を示す。式(A−3)中、Xは脱離基を示す。式(A−4)中、Xは酸素原子(O)、硫黄原子(S)、−NR−で表される基、又は、−C(R−で表される基を示す。Rは、例えば、水素原子、アルキル基、アリール基、ハロゲン化アルキル基又はハロゲン化アリール基、アリールスルホニル基、アルキルスルホニル基、アシル基、カーバメート基であってよい。Rは、電子求引性基を示す。式(A−5)中、Xは酸素原子(O)又は硫黄原子(S)を示し、Yはハロゲン原子、ヒドロキシル基、−Rで表される基、−ORで表される基、又は、−OCORで表される基を示す。Rは、例えば、アルキル基、アリール基、ハロゲン化アルキル基又はハロゲン化アリール基であってよい。式(A−6)中、Xは酸素原子(O)又は硫黄原子(S)を示し、Yは酸素原子(O)、硫黄原子(S)又はNRで表される基を示す。Rは例えば、アルキルスルホニル基、アリールスルホニル基、アシル基、カーバメート基、アルキル基、アリール基、ハロゲン化アルキル基又はハロゲン化アリール基であってよい。
機能性反応剤は、第一の反応剤と、第一の反応性基と反応して結合を形成可能な第二の反応性基(1つ)、及び機能性基を有する反応剤(第二の反応剤)とを反応させて得ることができる。
第二の反応性基としては、例えば、ヒドロキシル基、チオール基、アミノ基、下記式(B−1)で表される基等が挙げられる。
式(B−1)中、Xは酸素原子(O)又は硫黄原子(S)を示す。
機能性基としては、例えば、アルキル基、アルケニル基、アルキニル基等の炭化水素基;アリール基、複素環基等の環構造を有する基;保護基で保護された反応性基(ヒドロキシ基、アミノ基、チオール基等);カルボニル基(−C(=O)−)、エーテル結合(−O−)、アミド結合(>NC(=O)−)、ウレタン結合(>NC(=O)O−)、ウレア結合(>N(C=O)N<)カーボネート結合(−OC(=O)O−)等の構造を有する基;アルコキシシリル基、スルホニル基(−S(=O)−)、カルボキシル基(−C(=O)OH)、スルホン酸基(−S(=O)OH)、及び、第四級アンモニウム基等が挙げられる。
第一の反応剤の具体例としては、例えば、ヘキサンジイソアネート(HDI)を挙げることができる。第二の反応剤の具体例としては、例えば、ブタノール(BuOH)を挙げることができる。
耐水性付与物質は、合成皮革の撥水性が向上すると共に水接触時の収縮も抑制できるという観点から、フッ素系ポリマー及びシリコーン系ポリマーが好ましい。
耐水性付与物質は、合成皮革(基材層)の質感及び触感等がより一層優れるという観点から、低分子化合物(例えば、分子量500以下)の架橋剤ではないことが好ましい。特に、耐水性付与物質が付与される不織布や高分子物質がタンパク質である場合、低分子化合物の架橋剤によりタンパク質の分子間架橋が形成されると、耐水性及び強度等の向上が図れる一方、合成皮革の質感及び触感等が充分ではない場合があるからである。
不織布は、例えば、タンパク質繊維を少なくとも一部に含む繊維を用いて、公知の製造方法により製造することができる。具体的には、例えば、タンパク質繊維を少なくとも一部に含む繊維から、乾式法、湿式法及びエアレイド法等でウェブ(単層ウェブ、及び積層ウェブを含む。)を形成させた後、ケミカルボンド法(浸漬法、スプレー法等)及びニードルパンチ法等によりウェブの繊維間を結合させて、不織布を得ることができる。
不織布はまた、例えば、タンパク質を、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、ギ酸、又はヘキサフルオロイソプロパノール(HFIP)等の溶媒に、必要に応じて、溶解促進剤としての無機塩と共に添加し、溶解してドープ液を作製した後、当該ドープ液を用いてエレクトロスピニング法(静電紡糸法)により紡糸することにより得ることもできる。
不織布は、繊維密度(目付)、空隙率、かさ密度等の数値範囲が、防水性と透湿性とを充分に確保し得る範囲となるように適宜設定される。なお、それら目付、空隙率、かさ密度等の調整は、例えば、ウェブを構成する繊維量を増減すること、積層ウェブの場合は、積層数を増減することにより行うことができる。
不織布に耐水性付与物質を含有させる方法としては、例えば、耐水性付与物質を含有する原料糸(例えば、耐水性付与物質を混合した原料糸、耐水性付与物質が結合した原料糸)を用いる他は、上述のタンパク質繊維を少なくとも一部に含む繊維を用いた公知の製造方法又はドープ液を用いたエレクトロスピニング法で不織布を製造する方法(第一実施形態に係る方法)、耐水性付与物質を含まずに製造した不織布に対して、耐水性付与物質を結合させる方法(第二実施形態に係る方法)が挙げられる。
第二実施形態に係る方法は、不織布に耐水性付与物質を結合させる工程(結合工程)を含む。結合工程は、例えば、不織布に耐水性付与物質を塗布又は浸漬等の手段により接触させ、必要に応じて加熱又はプラズマ照射等を行い、不織布と耐水性付与物質を結合させることで実施することができる。耐水性付与物質が、例えば、シリコーン系ポリマー及びフッ素系ポリマー等の疎水性ポリマーである場合、結合工程は、例えば、不織布に耐水性付与物質又は耐水性付与物質の前駆体(モノマー)を接触させた状態でプラズマを照射して、不織布と耐水性付与物質とを共有結合させる工程であってよい。耐水性付与物質の前駆体(モノマー)を使用した場合であっても、プラズマの照射により、耐水性付与物質の前駆体(モノマー)が重合して耐水性付与物質(シリコーン系ポリマー及びフッ素系ポリマー等の疎水性ポリマー)が形成されるため、耐水性付与物質を含む不織布を得ることができる。
照射するプラズマは、不織布及び耐水性付与物質(又はその前駆体)の種類等に応じて、適宜設定してよい。放電ガスの流量は、例えば、0.1L/min以上10L/min以下の範囲内であってよい。発生させるプラズマのプラズマ密度は、例えば、1×1013cm−3以上1×1015cm−3以下の範囲内であってよい。放電ガスは、例えば、ヘリウム、ネオン、アルゴン等の希ガス、酸素、窒素等であってよい。放電ガスとして、大気を使用することもできる。
プラズマ照射は、公知のプラズマ照射装置を使用して実施することができる。プラズマ照射装置としては、例えば、Europlasma社製のプラズマ処理装置を使用することができる。
原料糸は、単独糸であってもよく、複合糸(例えば、混紡糸、混繊糸、カバーリング糸等。)であってもよく、これらを組み合わせて用いてもよい。単独糸及び複合糸は、短繊維を撚り合わせたスパン糸であってもよく、長繊維を撚り合わせたフィラメント糸であってもよい。
原料糸に含まれる繊維としては、例えば、タンパク質繊維、ナイロン、ポリエステル及びポリテトラフルオロエチレン等の合成繊維、キュプラ、レーヨン及びリヨセル等の再生繊維、綿、麻及び絹等の天然繊維が挙げられる。
不織布は、改変フィブロインを含有することが好ましく、改変クモ糸フィブロインを含有することがより好ましい。改変フィブロイン(好ましくは、改変クモ糸フィブロイン)を含有することにより、本実施形態に係る合成皮革に保温性、吸湿発熱性及び/又は難燃性の性質を更に付与することができ、合成皮革としての価値がより高くなる。改変フィブロインは、改変フィブロイン繊維(タンパク質繊維)として不織布に含まれていてもよい。改変フィブロインの好ましい態様は後述する。
(高分子物質)
高分子物質は、一般に、溶液の状態で不織布に含浸され、脱溶媒により凝固(固化)して、不織布の繊維間の隙間に、繊維に固着した状態で存在する。即ち、高分子物質は、不織布と一体化された、所謂含浸体として、不織布と共に合成皮革の基材層を構成し、不織布の繊維同士を相互に連結させて、基材層の形状を保持し、且つ基材層に対して所定の強度を付与している。このような高分子物質としては、例えば、ポリ塩化ビニル、ポリオレフィン、ポリスチレン、ポリウレタン、ポリエステル樹脂、エポキシ樹脂、アクリル系高分子、アクリロニトリル系高分子等の合成樹脂、並びにタンパク質等が挙げられる。ポリウレタンとしては、例えば、ポリエーテル系ポリウレタン、ポリエステル系ポリウレタン、ポリカーボネート系ポリウレタン等を挙げることができ、これらを1種単独で又は2種以上を組み合わせて用いてもよい。ポリウレタンは、例えば、ジイソシアネートとポリオールとを反応させてプレポリマーを合成し、当該プレポリマーと鎖延長剤とを反応させることにより、合成することができる。ジイソシアネートは、芳香族化合物であっても、脂肪族化合物であってもよい。ポリオールは、例えば、ポリエステル、ポリエーテル、ポリカーボネート、シリコーン、フッ素樹脂等であってよい。ポリオールとしてポリエーテルを用いると、耐加水分解性、耐カビ性及び耐寒性に優れ、ポリオールとしてポリカーボネートを用いると、耐加水分解性及び耐カビ性に優れる。鎖延長剤は、例えば、グリコール、ジアミン、反応停止剤等であってよい。高分子物質は、改変フィブロインを含有することが好ましく、改変クモ糸フィブロインを含有することがより好ましい。改変フィブロイン(好ましくは、改変クモ糸フィブロイン)を含有することにより、本実施形態に係る合成皮革に保温性、吸湿発熱性及び/又は難燃性の性質を更に付与することができ、合成皮革としての価値がより高くなる。改変フィブロインの好ましい態様は後述する。
高分子物質(高分子物質で形成された層)は、耐水性付与物質を含有しないものであってもよく、耐水性付与物質を含有するものであることが好ましい。耐水性付与物質の具体例としては、不織布で説明したものが挙げられる。
高分子物質(高分子物質で形成された層)に耐水性付与物質を含有させる方法としては、例えば、耐水性付与物質を含有する高分子物質の組成物を成形する方法(第一実施形態に係る方法)、耐水性付与物質を含まずに製造した高分子物質で形成された層に対して、耐水性付与物質を結合させる方法(第二実施形態に係る方法)が挙げられる。第二実施形態に係る方法は、不織布に代えて高分子物質で形成された層を用いること以外は、上述した方法で実施することができる。
基材層は、不織布及び高分子物質以外に編織体を含んでいてもよい。編織体とは、編地及び織地の総称である。編地は、横編、丸編等の緯編組織を有する編地(単に「緯編地」ともいう。)、トリコット、ラッセル等の経編組織を有する編地(単に「経編地」ともいう。)のいずれであってもよい。織地は、平織、綾織、又は繻子織のうちのいずれの組織を有する織地であってもよい。編織体は、編成又は織成により得られる未加工の編織体そのものであってもよいし、編成又は織成後に撥水加工等の加工を施した編織体であってもよい。
編織体は、原料糸を編成又は織成して得ることができる。編成方法及び織成方法としては公知の方法を利用することができる。使用される編機としては、例えば、丸編機、経編機、横編機などが使用でき、生産性の観点からは、丸編機の使用が好ましい。横編機としては、成型編み機、無縫製編機などがあるが、特に最終製品の形態で編地を製造可能であることから、無縫製編機の使用がより好ましい。使用される織機としては、例えば、有杼織機、及び、グリッパー織機、レピア織機、エアジェット織機等の無杼織機が挙げられる。
原料糸は、単独糸であってもよく、複合糸(例えば、混紡糸、混繊糸、カバーリング糸等。)であってもよく、これらを組み合わせて用いてもよい。単独糸及び複合糸は、短繊維を撚り合わせたスパン糸であってもよく、長繊維を撚り合わせたフィラメント糸であってもよい。原料糸に含まれる繊維としては、例えば、タンパク質繊維、ナイロン、ポリエステル、ポリテトラフルオロエチレン等の合成繊維、キュプラ、レーヨン及びリヨセル等の再生繊維、綿、麻及び絹等の天然繊維が挙げられる。
基材層が不織布及び高分子物質以外に編織体を含む場合、編織体は、例えば、その両面に不織布を貼り合わせて一体化したものとして基材層に含まれていてよい。
基材層の厚みは、特に制限はないが、例えば、100〜2000μmであってよく、100〜1000μmであってよく、500〜1000μmであってよく、500〜750μmであってよい。
基材層は、下記式Aに従って求められる最高吸湿発熱度が0.025℃/g超であってよい。
式A:最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
なお、式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。
基材層は、最高吸湿発熱度が0.026℃/g以上であってもよく、0.027℃/g以上であってもよく、0.028℃/g以上であってもよく、0.029℃/g以上であってもよく、0.030℃/g以上であってもよく、0.035℃/g以上であってもよく、0.040℃/g以上であってもよい。最高吸湿発熱度の上限に特に制限はないが、通常、0.060℃/g以下である。
基材層は、限界酸素指数(LOI)値が、18以上であってよく、20以上であってもよく、22以上であってもよく、24以上であってもよく、26以上であってもよく、28以上であってもよく、29以上であってもよく、30以上であってもよく、31以上であってもよく、32以上であってもよく、33以上又は33超であってもよい。本明細書において、LOI値は、消防庁危険物規制課長 消防危50号平成7年5月31日の粉粒状又は融点の低い合成樹脂の試験方法に準拠して測定される値である。
基材層は、下記式Bに従って求められる保温性指数が0.18超であってよい。
式B:保温性指数=保温率(%)/試料の目付け(g/m
ここで、本明細書において、保温率は、サーモラボII型試験機(30cm/秒の有風下)を用いたドライコンタクト法で測定した保温率を意味し、後述する実施例に記載の方法により測定される値である。
基材層の保温性指数は、0.20以上であってよく、0.22以上であってよく、0.24以上であってよく、0.26以上であってよく、0.28以上であってよく、0.30以上であってよく、0.32以上であってよい。保温性指数の上限に特に制限はないが、例えば、0.60以下、又は0.40以下であってよい。
他の実施形態において、合成皮革は、基材層以外の層を備えていてもよい。図2は、他の実施形態に係る合成皮革の模式断面図である。図2に示す合成皮革20は、不織布1と高分子物質2とを含む基材層3と、基材層3の一方の面に積層された接着剤層4(第一の接着剤層)と、接着剤層4(第一の接着剤層)の基材層3が積層された面の反対側の面に積層された表皮層5(第一の表皮層)と、を備える。また、更に他の実施形態において、合成皮革は、基材層3と、基材層3の一方の面に積層された接着剤層4(第一の接着剤層)と、接着剤層4(第一の接着剤層)の基材層3が積層された面の反対側の面に積層された表皮層5(第一の表皮層)と、基材層3の接着剤層4(第一の接着剤層)が積層された面の反対側の面に積層された接着剤層(第二の接着剤層)と、第二の接着剤層の基材層3が積層された面の反対側の面に積層された表皮層(第二の表皮層)と、を備えていてもよい。ただし、表皮層5が基材層3に対して直接に接合可能なものであれば、基材層3と表皮層5との間に接着剤層4を必ずしも介在させる必要はない。このような合成皮革は、好ましくは衣料用又は靴用として用いられる。
他の実施形態において、合成皮革は、基材層と、基材層の一方の面に積層されたポリウレタン微多孔質被膜層(第一の微多孔質被膜層)と、を備えていてもよい。また、合成皮革は、基材層と、基材層の一方の面に積層されたポリウレタン微多孔質被膜層(第一の微多孔質被膜層)と、第一の微多孔質被膜層が積層された面の反対側の面に積層されたポリウレタン微多孔質被膜層(第二の微多孔質被膜層)と、を備えていてもよい。ポリウレタン微多孔質被膜層とは、ポリウレタンを主成分とする微多孔質構造を有する層をいう。ポリウレタン微多孔質被膜層は、その表面にエンボス加工(熱ロールでプレスすることによる加工等)、パフスエード加工(サンドペ−パーをかけることによる加工等)、グラビア加工(グラビア印刷による加工等)等の表面加工が施されていてもよい。
更に他の実施形態において、合成皮革は、基材層に起毛・シャーリング加工が施してあってもよい。このような合成皮革は、基材層の表面が起毛しているため、基材層に用いられる不織布の繊度が合成皮革の風合いに影響を与える。また、このような合成皮革は、通気性に優れる。
(改変フィブロイン)
本実施形態に係る改変フィブロインは、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
本明細書において「改変フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。本明細書でいう「天然由来のフィブロイン」もまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。
「改変フィブロイン」は、天然由来のフィブロインのアミノ酸配列をそのまま利用したものであってもよく、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2〜27である。(A)モチーフのアミノ酸残基数は、2〜20、4〜27、4〜20、8〜20、10〜20、4〜16、8〜16、又は10〜16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2〜200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10〜200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2〜300の整数を示し、10〜300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
天然由来のフィブロインは、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質であり、具体的には、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、及びAAA27840.1(アミノ酸配列))が挙げられる。
クモ類が産生するフィブロインとしては、例えば、クモ目(Araneae)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。より具体的には、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)、AcSp、PySp、Flag等が挙げられる。
クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin−3(adf−3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin−4(adf−4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin−like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。
本実施形態に係る改変フィブロインは、改変絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)であってもよく、改変クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)であってもよい。改変フィブロインとしては、難燃性により優れることから、改変クモ糸フィブロインが好ましい。
改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第2の改変フィブロイン)、(A)モチーフの含有量が低減されたドメイン配列を有する改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。
第1の改変フィブロインとしては、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインにおいて、(A)モチーフのアミノ酸残基数は、3〜20の整数が好ましく、4〜20の整数がより好ましく、8〜20の整数が更に好ましく、10〜20の整数が更により好ましく、4〜16の整数が更によりまた好ましく、8〜16の整数が特に好ましく、10〜16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10〜200残基であることが好ましく、10〜150残基であることがより好ましく、20〜100残基であることが更に好ましく、20〜75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1〜3のいずれかに示されるアミノ酸配列又は配列番号1〜3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1−i)配列番号4(recombinant spider silk protein ADF3KaiLargeNRSH1)で示されるアミノ酸配列、又は(1−ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1〜13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1−i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図3に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
ここで、天然由来のフィブロインにおけるz/wについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、フィブロイン中のGGXからなるアミノ酸配列の含有割合が6%以下である天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、z/wを算出した。その結果を図4に示す。図4の横軸はz/w(%)を示し、縦軸は頻度を示す。図4から明らかなとおり、天然由来のフィブロインにおけるz/wは、いずれも50.9%未満である(最も高いもので、50.86%)。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、フェニルアラニン(F)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2−i)配列番号6(Met−PRT380)、配列番号7(Met−PRT410)、配列番号8(Met−PRT525)若しくは配列番号9(Met−PRT799)で示されるアミノ酸配列、又は(2−ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2−i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met−PRT313)で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ−REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端に所定のヒンジ配列とHisタグ配列が付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8〜11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.8%である。
(2−i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2−ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2−ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン−S−トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む改変フィブロインのより具体的な例として、(2−iii)配列番号12(PRT380)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(2−iv)配列番号12、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16(PRT313)、配列番号12、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2−iii)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2−iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2−iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のフィブロインから(A)モチーフを10〜40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1〜3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を図3を参照しながら更に詳細に説明する。図3には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ−第1のREP(50アミノ酸残基)−(A)モチーフ−第2のREP(100アミノ酸残基)−(A)モチーフ−第3のREP(10アミノ酸残基)−(A)モチーフ−第4のREP(20アミノ酸残基)−(A)モチーフ−第5のREP(30アミノ酸残基)−(A)nモチーフという配列を有する。
隣合う2つの[(A)モチーフ−REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ−REP]ユニットが存在してもよい。図3には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣合う2つの[(A)モチーフ−REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図3中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8〜11.3となる[(A)モチーフ−REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ−REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣合う2つの[(A)モチーフ−REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図3に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9〜11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8〜3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9〜8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9〜4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
ここで、天然由来のフィブロインにおけるx/yについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ−REP]で表されるドメイン配列で構成される天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、x/yを算出した。ギザ比率が1:1.9〜4.1の場合の結果を図5に示す。
図5の横軸はx/y(%)を示し、縦軸は頻度を示す。図5から明らかなとおり、天然由来のフィブロインにおけるx/yは、いずれも64.2%未満である(最も高いもので、64.14%)。
第3の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3−i)配列番号17(Met−PRT399)、配列番号7(Met−PRT410)、配列番号8(Met−PRT525)若しくは配列番号9(Met−PRT799)で示されるアミノ酸配列、又は(3−ii)配列番号17、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3−i)の改変フィブロインについて説明する。配列番号17で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met−PRT313)で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ−REP]を1つ挿入したものである。配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列は、第2の改変フィブロインで説明したとおりである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8〜11.3におけるx/yの値は15.0%である。配列番号17で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.8%である。配列番号10、配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3−i)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3−ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3−ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3(ギザ比率が1:1.8〜11.3)となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(3−iii)配列番号18(PRT399)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(3−iv)配列番号18、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号18、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3−iii)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3−iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3−iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第4の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、第4の改変フィブロインは、上述した第2の改変フィブロインと、第3の改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4−i)配列番号7(Met−PRT410)、配列番号8(Met−PRT525)、配列番号9(Met−PRT799)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(4−ii)配列番号7、配列番号8、配列番号9、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
第5の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
局所的に疎水性指標の大きい領域は、連続する2〜4アミノ酸残基で構成されていることが好ましい。
上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105−132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ−REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1〜4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4−1=7。「−1」は重複分の控除である。)。例えば、図6に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図6に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図6の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインのより具体的な例として、(5−i)配列番号19(Met−PRT720)、配列番号20(Met−PRT665)若しくは配列番号21(Met−PRT666)で示されるアミノ酸配列、又は(5−ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5−i)の改変フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、配列番号7(Met−PRT410)で示されるアミノ酸配列に対し、C末端側の端末のドメイン配列を除いて、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号8(Met−PRT525)で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5−i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5−ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5−ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(5−iii)配列番号22(PRT720)、配列番号23(PRT665)若しくは配列番号24(PRT666)で示されるアミノ酸配列、又は(5−iv)配列番号22、配列番号23若しくは配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号22、配列番号23及び配列番号24で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5−iii)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列からなるものであってもよい。
(5−iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5−iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第6の改変フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図7は、改変フィブロインのドメイン配列を示す模式図である。図7を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図7に示した改変フィブロインのドメイン配列(「[(A)モチーフ−REP]−(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図7中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図7中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図7の改変フィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図7の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、−0.8以上であることが好ましく、−0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図7の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6−i)配列番号25(Met−PRT888)、配列番号26(Met−PRT965)、配列番号27(Met−PRT889)、配列番号28(Met−PRT916)、配列番号29(Met−PRT918)、配列番号30(Met−PRT699)、配列番号31(Met−PRT698)、配列番号32(Met−PRT966)、配列番号41(Met−PRT917)若しくは配列番号42(Met−PRT1028)で示されるアミノ酸配列を含む改変フィブロイン、又は(6−ii)配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41若しくは配列番号42で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
(6−i)の改変フィブロインについて説明する。配列番号25で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met−PRT410)中のQQを全てVLに置換したものである。配列番号26で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。配列番号27で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。配列番号28で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。配列番号29で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列(Met−PRT525)中のQQを全てVLに置換したものである。配列番号31で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号32で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met−PRT410)中に存在する20個のドメイン配列の領域を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号41で示されるアミノ酸配列(Met−PRT917)は、配列番号7で示されるアミノ酸配列中のQQを全てLIに置換し、かつ残りのQをVに置換したものである。配列番号42で示されるアミノ酸配列(Met−PRT1028)は、配列番号7で示されるアミノ酸配列中のQQを全てIFに置換し、かつ残りのQをTに置換したものである。
配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41及び配列番号42で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。
(6−i)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41又は配列番号42で示されるアミノ酸配列からなるものであってもよい。
(6−ii)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41又は配列番号42で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6−ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6−ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む改変フィブロインのより具体的な例として、(6−iii)配列番号33(PRT888)、配列番号34(PRT965)、配列番号35(PRT889)、配列番号36(PRT916)、配列番号37(PRT918)、配列番号38(PRT699)、配列番号39(PRT698)、配列番号40(PRT966)、配列番号43(PRT917)若しくは配列番号44(PRT1028)で示されるアミノ酸配列を含む改変フィブロイン、又は(6−iv)配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43若しくは配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43及び配列番号44で示されるアミノ酸配列は、それぞれ配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41及び配列番号42で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43及び配列番号44で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
(6−iii)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43又は配列番号44で示されるアミノ酸配列からなるものであってもよい。
(6−iv)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43又は配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6−iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6−iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変フィブロインは、第1の改変フィブロイン、第2の改変フィブロイン、第3の改変フィブロイン、第4の改変フィブロイン、第5の改変フィブロイン、及び第6の改変フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ改変フィブロインであってもよい。
改変フィブロインとしては、親水性改変フィブロインであってもよく、疎水性改変フィブロインであってもよい。本明細書において、「親水性改変フィブロイン」とは、改変フィブロインを構成する全てのアミノ酸残基の疎水性指標(HI)の総和を求め、次にその総和を全アミノ酸残基数で除した値(平均HI)が0以下である改変フィブロインである。疎水性指標は表1に示したとおりである。また、「疎水性改変フィブロイン」とは、平均HIが0超である改変フィブロインである。親水性改変フィブロインは、特に難燃性に優れている。疎水性改変フィブロインは、特に吸湿発熱性及び保温性に優れている。
親水性改変フィブロインとしては、例えば、配列番号4で示されるアミノ酸配列、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列、配列番号13、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列、配列番号18、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列、配列番号17、配列番号11、配列番号14又は配列番号15で示されるアミノ酸配列、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列を含む改変フィブロインが挙げられる。
疎水性改変フィブロインとしては、例えば、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号33又は配列番号43で示されるアミノ酸配列、配列番号35、配列番号37、配列番号38、配列番号39、配列番号40、配列番号41又は配列番号44で示されるアミノ酸配列を含む改変フィブロインが挙げられる。
本実施形態に係るタンパク質は、当該タンパク質をコードする核酸を使用して、常法により製造することができる。当該タンパク質をコードする核酸は、塩基配列情報に基づいて、化学合成してもよく、PCR法等を利用して合成してもよい。
タンパク質繊維は、例えば、タンパク質を溶解可能な溶媒で溶解させてドープ液とし、湿式紡糸、乾式紡糸、乾湿式紡糸又は溶融紡糸等の公知の紡糸方法により紡糸して得ることができる。タンパク質を溶解可能な溶媒としては、例えば、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、ギ酸、及びヘキサフルオロイソプロパノール(HFIP)等が挙げられる。当該溶媒には、溶解促進剤として無機塩を添加してもよい。
(合成皮革の製造方法)
本実施形態に係る合成皮革の製造方法は、例えば、不織布に高分子物質を含む含浸液を含浸し、次いで高分子物質を凝固させて基材層を形成する工程(基材層形成工程)を備える。不織布、高分子物質及び基材層は、上述で説明したものと同様の態様を適用できる。
本実施形態に係る製造方法において、不織布及び高分子物質の少なくとも一方は、耐水性付与物質を含有する。すなわち、不織布のみが耐水性付与物質を含有していてよく(高分子物質は耐水性付与物質を含有しない)、高分子物質のみが耐水性付与物質を含有していてよく(不織布は耐水性付与物質を含有しない)、不織布及び高分子物質の両方が耐水性付与物質を含有していてもよい。耐水性付与物質は、上述で説明したものと同様の態様を適用できる。
基材層形成工程は、例えば、不織布を含浸液に浸漬させたり、不織布に含浸液を噴霧したりして、不織布と含浸液とを接触させて、不織布に含浸液を含浸させた後、凝固用の液体に接触(例えば浸漬)させることで含浸液中の成分を凝固させて基材層を形成する方法(湿式法)等により実施することができる。また、溶媒の種類(例えば低沸点のもの等)によっては、上記のようにして含浸液を含浸させた不織布を、凝固液に接触させることなく、含浸液の溶媒を揮発させる等して脱溶媒を行うことで含浸液中の成分を凝固させて基材層を形成する方法等により、基材層形成工程を実施することもできる。
含浸液に用いられる溶媒は、高分子物質の種類によって適宜選択することができ、例えば、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、ギ酸、アルコール、若しくはヘキサフルオロイソプロパノール(HFIP)等の有機溶媒が挙げられる。
図8は、湿式法で合成皮革を製造する際の製造装置の一例を示す模式図である。図8に示す製造装置800を使用した製造方法では、まず、不織布81を巻き取ったロールから不織布81を引き出し、含浸液を含む含浸槽82に不織布81を浸漬させる。次いで、凝固液を含む凝固槽83中で、不織布81に含浸された高分子物質を凝固させる。そして、洗浄液を含む湯洗槽84を通して洗浄した後、乾燥機85で乾燥させて、合成皮革86をロールに巻き取ることで、合成皮革を製造することができる。
凝固液の種類は、不織布及び高分子物質の種類、並びに含浸液の溶媒の種類に応じて、適宜選択することができる。例えば、高分子物質がポリウレタンを含む場合、例えば、含浸液の溶媒としてN,N−ジメチルホルムアミド、凝固液として水(湯)を採用することができる。また、例えば、高分子物質がタンパク質を含む場合、例えば、含浸液の溶媒としてジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、ギ酸、及びヘキサフルオロイソプロパノール(HFIP)並びにこれらに溶解促進剤としての無機塩を添加したもの、凝固液としてメタノール、エタノール及び2−プロパノール等の炭素数1〜5の低級アルコール、アセトン、並びに水を採用することができる。凝固液には必要に応じて種々の添加剤が添加されていてもよい。
本実施形態に係る製造方法は、基材層形成工程の後に、仕上工程(表面研削、コーティング、染色等)等を更に備えていてもよい。例えば、仕上工程として、離型紙上に表皮層樹脂を塗布する工程と、表皮層樹脂の離型紙とは反対側の面に接着剤樹脂を塗布する工程と、接着剤樹脂の表皮層樹脂とは反対側の面に基材層を重ね、熱圧着する工程と、を備える方法により、合成皮革を製造することができる。このような製造方法により製造された合成皮革は、図2に示す合成皮革であってよい。図9は、図2に示す合成皮革を製造する際の製造装置の一例を示す模式図である。図9に示す製造装置900を使用した製造方法では、まず、離型紙を巻き取ったロールから離型紙91を引き出し、離型紙91上に表皮層樹脂(高分子)92を塗布し、乾燥機93で乾燥させる。次いで、表皮層樹脂(高分子)92の表面(離型紙91と接している面とは反対側の面)に接着剤層樹脂94を塗布し、乾燥機93で乾燥させる。そして、基材層96を巻き取ったロールから基材層96を引き出し、接着剤層樹脂94の表面(表皮層樹脂(高分子)92と接している面とは反対側の面)に重ね、熱プレスロール95により熱圧着して接合させ、基材層96と、接着剤層樹脂94と、表皮層樹脂(高分子)92と、離型紙91とがこの順に積層した合成皮革97をロールに巻き取ることで、合成皮革を製造することができる。
接着剤層樹脂94としては、特に制限はなく、従来の合成皮革に使用されている接着剤を使用することができる。接着剤としては、例えば、ポリオレフィン、ポリスチレン、ポリウレタン、アクリル、EVA(エチレン酢酸ビニル共重合体)等の合成樹脂を挙げることができる。表皮層樹脂(高分子)92としては、例えば、上述した高分子物質(基材層に含まれる高分子物質)を挙げることができる。
接着剤層樹脂94により形成される接着剤層の厚みは、特に制限はないが、例えば、1〜50μmであってよく、1〜40μmであってよく、5〜30μmであってよく、5〜20μmであってよい。
なお、図8や図9に示される製造装置等を用いることなく、又はそれらとは別の装置を用いて、本実施形態に係る合成皮革を非連続的に製造することもできる。例えば、巻き取られていない所定大きさの不織布の全体を、独立した構造の含浸槽内の含浸液に浸漬させた後、不織布に含浸された高分子物質を、凝固液を用いて、又は用いることなく、凝固させる。その後、必要に応じて、洗浄及び乾燥を行うことで目的とする合成皮革を得ることができる。
不織布がタンパク質を含む場合、不織布は、例えばエレクトロスピニング法で形成することができる。エレクトロスピニング法(静電紡糸法)は、供給側電極(紡糸口金と兼用できる)と捕集側電極(例えば、金属ロール又は金属ネット等)間に電圧を印加し、紡糸口金から押し出したドープ液に電荷を与えて捕集側電極に吹き飛ばす。この際にドープ液は伸張されて繊維形成される。印加電圧は、通常5〜100kVであり、好ましくは10〜50kVである。電極間距離は、通常1〜25cmであり、好ましくは2〜20cmである。
図10は、一実施形態に係るエレクトロスピニング装置100の説明図である。金属製口金ノズル33(供給側電極)と金属製ネット38(捕集側電極)との間に電源35により電圧をかける。マイクロシリンジ31内のドープ液32をシリンジポンプを用いて矢印P方向に移動させ、金属製口金ノズル33からドープ液32を押し出し、電荷によってドープ液を伸張し繊維状物36にして金属製ネット38の表面に集積させることで、タンパク質繊維を含む不織布39を得ることができる。得られた不織布は、次いで溶媒を離脱してもよい。溶媒を脱離する方法としては、例えば、減圧乾燥又は脱溶媒槽への浸漬が挙げられる。
本実施形態に係る合成皮革は、下記式Aに従って求められる最高吸湿発熱度が0.025℃/g超であってよい。
式A:最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
なお、式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。
本実施形態に係る合成皮革は、最高吸湿発熱度が0.026℃/g以上であってもよく、0.027℃/g以上であってもよく、0.028℃/g以上であってもよく、0.029℃/g以上であってもよく、0.030℃/g以上であってもよく、0.035℃/g以上であってもよく、0.040℃/g以上であってもよい。最高吸湿発熱度の上限に特に制限はないが、通常、0.060℃/g以下である。
本実施形態に係る合成皮革は、限界酸素指数(LOI)値が、18以上であってよく、20以上であってもよく、22以上であってもよく、24以上であってもよく、26以上であってもよく、28以上であってもよく、29以上であってもよく、30以上であってもよい。
本実施形態に係る合成皮革は、下記式Bに従って求められる保温性指数が0.20以上であってよい。
式B:保温性指数=保温率(%)/試料の目付け(g/m
ここで、本明細書において、保温率は、サーモラボII型試験機(30cm/秒の有風下)を用いたドライコンタクト法で測定した保温率を意味し、後述する実施例に記載の方法により測定される値である。
本実施形態に係る合成皮革の保温性指数は、0.22以上であってよく、0.24以上であってよく、0.26以上であってよく、0.28以上であってよく、0.30以上であってよく、0.32以上であってよい。保温性指数の上限に特に制限はないが、例えば、0.60以下、又は0.40以下であってよい。
(合成皮革の用途)
本実施形態に係る合成皮革は、従来の合成皮革(例えば、合成樹脂で構成される合成皮革)と同じ用途に使用することができる。本実施形態に係る合成皮革は、例えば、衣料品、靴及び鞄等の装飾品、各種のカバー及び家具類等、並びに自動車内装材等の用途に使用することができる。
以下、試験例等に基づいて本発明をより具体的に説明する。ただし、本発明は以下の試験例に限定されるものではない。
〔試験例1:改変フィブロインの製造〕
配列番号37で示されるアミノ酸配列を有する改変フィブロイン(PRT918)、配列番号40で示されるアミノ酸配列を有する改変フィブロイン(PRT966)、及び配列番号15で示されるアミノ酸配列を有する改変フィブロイン(PRT799)を設計した。設計した改変フィブロインをコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト、終止コドン下流にEcoRIサイトを付加した。この核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET−22b(+)に組換えて発現ベクターを得た。
得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
当該シード培養液を500mLの生産培地(表5)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル−β−チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS−PAGEを行い、IPTG添加に依存した目的とする改変フィブロインサイズのバンドの出現により、目的とする改変フィブロインの発現を確認した。
IPTGを添加してから2時間後に回収した菌体を20mM Tris−HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris−HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris−HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris−HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、改変フィブロイン(PRT918、PRT966及びPRT799)を得た。
PRT918及びPRT966は、平均HIが0超である疎水性改変フィブロインである。PRT799は、平均HIが0以下である親水性改変フィブロインである。
〔試験例2:改変フィブロイン繊維の製造及び評価〕
(1)紡糸液(ドープ液)の調製
4質量%になるように塩化リチウムを溶解したDMSOを溶媒として用い、上記で製造した改変フィブロイン(PRT799)の凍結乾燥粉末を、濃度24質量%となるように溶媒に添加した。90℃のアルミブロックヒーターで1時間溶解させた後、不溶物と泡を取り除き、紡糸液(ドープ液)とした。
(2)紡糸
紡糸液をリザーブタンクに充填し、0.1又は0.2mm径のモノホールノズルからギアポンプを用い100質量%メタノール凝固浴槽中へ吐出させた。吐出量は0.01〜0.08mL/分に調整した。凝固後、100質量%メタノール洗浄浴槽で洗浄及び延伸を行った。洗浄及び延伸後、乾熱板を用いて乾燥させ、得られた原糸(改変フィブロイン繊維)を巻き取った。
(3)評価用織生地の製造
得られた改変フィブロイン繊維から諸撚糸を作製した。作製した諸撚糸を平織りして織生地を得た。
(4)評価用織生地への耐水性付与物質の結合
得られた織生地にフッ素系コーティング用モノマーを塗布し、プラズマ処理装置(Europlasma社製)を用いてプラズマ処理を施した。プラズマ処理により、フッ素系コーティング用モノマーが重合したフッ素系ポリマー(耐水性付与物質)が共有結合した織生地を得た。フッ素系コーティング用モノマーとして、Nanofics110(試験例2−1)及びNanofics120(試験例2−2)(いずれもEuroplasma社製)を使用した。
(5)撥水性評価
プラズマ処理を施した試験例2−1及び試験例2−2の織生地について、撥水度試験(スプレー試験)を実施した。撥水度試験(スプレー試験)は、ISO4920:2012に準じて実施した。以下に示す6段階(スコア0〜5)の評価基準に従い、目視で判定を実施した。また、比較のために、プラズマ処理を施していない織生地(試験例2−3)についても、上記と同様な撥水度試験を実施した。
スコア5:表面に湿潤及び水滴の付着がない。
スコア4:表面に湿潤しないが,水滴の付着がある。
スコア3:表面に小さな湿潤がある。
スコア2:湿潤が広がり,いくつかは互いに接続している。
スコア1:水が当たった部分に完全な湿潤を示す。
スコア0:表面全体に湿潤を示す。
結果を表6に示す。プラズマ処理を施していない試験例2−3の織生地はスコア0であったのに対し、プラズマ処理を施した試験例2−1及び試験例2−2の織生地はいずれもスコア4であり、耐水性(撥水性)が付与されていた。
(6)触感評価及び収縮性評価
試験例2−1〜2−3の織生地から、一辺5cmの正方形状の試験片をそれぞれ切り出した。試験片の一方の表面に、鉛筆で一辺30mmの正方形の頂点(4点)をマークした。各試験片を40℃の水に10分間浸漬した後、次いで室温で真空乾燥させる工程を5サイクル繰り返した。真空乾燥は、真空定温乾燥機(VOS−310C,東京理化器械(株)製)を用いて、設定圧力−0.1MPaで30分間行った。また、各サイクル終了時に、触感を官能評価すると共に、マークした4点間の距離を測定して収縮率を評価した。
触感は、以下の基準に従って判定した。結果を表7に示す。プラズマ処理を施した試験例2−1及び試験例2−2の織生地はいずれもプラズマ処理を施していない試験例2−3の織生地と比べて触感の低下が抑制されていた。
評点5:オリジナルと同様に良好である。
評点4:良好であるが、オリジナルと比べて若干劣る。
評点3:悪くはないが、やや堅い。
評点2:悪く、かつ堅いが、曲げられる。
評点1:とても悪く、堅く、かつ曲げられない。
収縮率は、下記式に従って算出した。なお、「各辺の長さの平均値」は、マークした4点で作られる四角形の各辺の長さの総和を4で割った値である。
収縮率(%)={1−(各辺の長さの平均値(mm)/30mm)}×100
結果を表8に示す。プラズマ処理を施した試験例2−1及び試験例2−2の織生地はいずれもプラズマ処理を施していない試験例2−3の織生地と比べて収縮率が小さかった。
なお、試験例2の評価は、改変フィブロイン繊維を使用した織生地に対して実施したが、改変フィブロイン繊維を使用した不織布でも同様の効果が得られることが理解される。
〔試験例3:改変フィブロイン繊維の製造及び評価〕
(1)紡糸液(ドープ液)の調製
4質量%になるように塩化リチウムを溶解したDMSOを溶媒として用い、上記で製造した改変フィブロイン(PRT918)の凍結乾燥粉末を、濃度24質量%となるように溶媒に添加した。90℃のアルミブロックヒーターで1時間溶解させた後、不溶物と泡を取り除き、紡糸液(ドープ液)とした。
(2)紡糸
紡糸液をリザーブタンクに充填し、0.1又は0.2mm径のモノホールノズルからギアポンプを用い100質量%メタノール凝固浴槽中へ吐出させた。吐出量は0.01〜0.08mL/分に調整した。凝固後、100質量%メタノール洗浄浴槽で洗浄及び延伸を行った。洗浄及び延伸後、乾熱板を用いて乾燥させ、得られた原糸(改変フィブロイン繊維)を巻き取った。
(3)評価用編生地の製造
得られた改変フィブロイン繊維を裁断して改変フィブロインステープルを作製した。作製した改変フィブロインステープルを開繊開毛した後、公知の紡績装置により紡績し、紡績糸を得た。得られた紡績糸を、ホールガーメント横編機(MACH2XS,島精機製)を使用して編み、編生地を得た。
(4)評価用編生地への耐水性付与物質の結合
得られた編生地にフッ素系コーティング用モノマーを塗布し、プラズマ処理装置(Europlasma社製)を用いてプラズマ処理を施した。プラズマ処理により、フッ素系コーティング用モノマーが重合したフッ素系ポリマー(耐水性付与物質)が共有結合した編生地を得た(試験例3−1)。フッ素系コーティング用モノマーとして、Nanofics120(Europlasma社製)を使用した。
(5)撥水性評価
プラズマ処理を施した試験例3−1の編生地、及びプラズマ処理を施していない編生地(試験例3−2)について、試験例1と同様の方法で、撥水度試験(スプレー試験)を実施した。結果を表9に示す。プラズマ処理を施していない試験例3−2の編生地はスコア0であったのに対し、プラズマ処理を施した試験例3−1の編生地はスコア5であり、耐水性(撥水性)が付与されていた。
(6)触感評価及び収縮性評価
試験例3−1及び試験例3−2の編生地から、一辺5cmの正方形状の試験片をそれぞれ切り出した。試験片の一方の表面に、鉛筆で一辺30mmの正方形の頂点(4点)をマークした。予備処理として、各試験片を40℃の水に10分間浸漬した後、次いで室温で真空乾燥させる工程を5サイクル繰り返した。真空乾燥は、真空定温乾燥機(VOS−310C,東京理化器械(株)製)を用いて、設定圧力−0.1MPaで30分間行った。
次いで、予備処理を経た試験片に対し、洗浄工程、乾燥工程、浸水工程及び乾燥工程をこの順に5サイクル繰り返した。洗浄工程では、パナソニック(株)製洗濯機(NA−VG1100L)を使用し、ライオン(株)製洗剤(トップクリアリキッド)を用いて、試験片に対して、洗浄を5分間行った後、すすぎを2回行い、次いで脱水1分間を行った。乾燥工程では、真空定温乾燥機(VOS−310C,東京理化器械(株)製)を用いて、設定圧力−0.1MPaで30分間、室温で試験片の乾燥を行った。浸水工程では、試験片を40℃の水に10分間浸漬した。各サイクル終了時に、試験例1と同様の基準で、触感を官能評価すると共に、マークした4点間の距離を測定して収縮率を評価した。
触感の官能評価結果を表10に示す。なお、「開始時」は、予備処理後、サイクルを開始する前の評価結果である。プラズマ処理を施した試験例3−1の編生地は、プラズマ処理を施していない試験例3−2の編生地と比べて触感の低下が抑制されていた。
収縮率の評価結果を表11に示す。プラズマ処理を施した試験例3−1の編生地は、プラズマ処理を施していない試験例3−2の編生地と比べて収縮率が小さかった。
なお、試験例3の評価は、改変フィブロイン繊維を使用した編生地に対して実施したが、改変フィブロイン繊維を使用した不織布でも同様の効果が得られることが理解される。
〔試験例4:改変フィブロイン繊維の製造及び評価〕
(1)紡糸液(ドープ液)の調製
4質量%になるように塩化リチウムを溶解したDMSOを溶媒として用い、上記で製造した改変フィブロイン(PRT799)の凍結乾燥粉末を、濃度24質量%となるように溶媒に添加した。シェーカーを使用して、改変フィブロインを3時間かけて溶解させた後、溶液中の不溶物(ゴミ等)と泡を取り除き、紡糸液(ドープ液)とした。ドープ液の溶液粘度は90℃において5000cP(センチポアズ)であった。
(2)紡糸
得られたドープ液と公知の乾湿式紡糸装置とを用いて乾湿式紡糸を行って、改変フィブロインからなるモノフィラメントを得た。なお、ここでは、乾湿式紡糸を下記の条件で行った。
凝固液(メタノール)の温度:5〜10℃
延伸倍率:6倍
乾燥温度:80℃
(3)評価用編生地の製造
上記のようにして得た改変フィブロイン繊維を用いて公知の方法により紡績糸を製造し、この改変フィブロイン繊維からなる紡績糸と公知の編機とを用いて、横編みにより5cm角の編生地を得た。なお、改変フィブロイン繊維からなる紡績糸の番手は58.1Nmであり、編機のゲージ数は18であった。
(4)評価用編生地への耐水性付与物質の結合
得られた5cm角の編生地を、ヘキサンジイソアネート(HDI,第一の反応剤)20mL中に浸漬した。次いで、HDIが含浸した編生地をアルミホイルに挟み、130℃で30分加熱した。加熱後、編生地を取り出し、ブタノール(BuOH,第二の反応剤)20ml中に浸漬し、100℃で240分反応させた。反応後の編生地をTHFで洗浄して、耐水性付与物質(第一の反応剤及び第二の反応剤)が結合した、試験例4−1の編生地を得た。
(3)で得られた5cm角の編生地を、試験例4−2の編生地として評価した。
(3)で得られた5cm角の編生地を、ヘキサンジイソアネート(HDI,第一の反応剤)20mL中に浸漬した。次いで、HDIが含浸した編生地をアルミホイルに挟み、130℃で30分加熱した。その後、編生地をTHFで洗浄して、第一の反応剤のみが結合した、試験例4−3の編生地を得た。
(5)収縮性評価
試験例4−1の編生地、並びに比較例3及び比較例4の編生地について、収縮性を評価した。各編生地に鉛筆で3cm角の正方形を描き、評価サンプルとした。評価サンプルをパナソニック(株)製洗濯機(NA−VG1100L)の洗濯モード「お家クリーニング」で洗濯した。次いで、同じ洗濯機で15分脱水し、120分自然乾燥させた。洗濯前後の正方形の縦横の長さをそれぞれ測定し、縦向及び横方向の収縮率を求めた。同じ試験を3回行い、3回の平均値を評価結果とした。結果を表12に示す。
(6)質感評価
試験例4−1の編生地、並びに比較例3及び比較例4の編生地について、肌触りを三段階で評価した。比較例3の編生地の肌触りを基準(B)とし、それより風合いに優れる場合をA、肌触りが荒く風合いに劣る場合をCとして評価した。結果を表12に示す。
なお、試験例4の評価は、改変フィブロイン繊維を使用した編生地に対して実施したが、改変フィブロイン繊維を使用した不織布でも同様の効果が得られることが理解される。
〔試験例5:改変フィブロイン繊維の製造及び評価〕
<試験例5−1>
(1)紡糸液(ドープ液)の調製
デンプン(和光純薬工業株式会社製)200mgを11400mgの溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に溶解させた後、これにフェニルイソシアネート(東京化成工業株式会社製)400mgを添加し、90℃で4時間撹拌して反応させた。これにより、デンプンのヒドロキシル基とフェニルイソシアネートのイソシアネート基とが反応して、フェニル基(機能性官能基)が、ウレタン結合を介して結合した修飾デンプン(修飾ヒドロキシル基含有ポリマー)を得た。修飾デンプンは、仕込み比から求めた修飾率(ヒドロキシル基が機能性官能基に変換された割合)が100%であった。
反応液を室温まで冷却した後、改変フィブロイン(PRT799)の凍結乾燥粉末300mgを反応液に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。紡糸液中の修飾デンプンの含有量は、修飾デンプンとデンプンの総含有量を基準として、17質量%である。
(2)改変フィブロインと耐水性付与物質を含む繊維の製造
調製した紡糸液を60℃にて目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから窒素ガスを用い100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であり、吐出圧は0.3MPaであった。凝固後、得られた原糸を巻き取り速度3.00m/分で巻き取り、自然乾燥させて、改変フィブロインと耐水性付与物質(修飾デンプン)を含む繊維を得た。
(3)収縮性評価
得られた繊維を長さ約10cmに切断し、水への浸漬前の糸の長さ(cm)を測定した。次いで、糸を40℃の水浴に1分間浸漬した。その後、糸を水浴から取り出して、15分間室温で真空乾燥させた後、乾燥後の糸の長さを測定した。繊維の収縮率を以下の式に従って算出した。結果を表13に示す。
収縮率(%)={(浸漬前の長さ/浸漬・乾燥後の長さ)−1}×100
<試験例5−2>
(1)紡糸液(ドープ液)の調製
デンプン(和光純薬工業株式会社製)253mgを7600mgの溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に溶解させた後、これに無水酢酸(和光純薬工業株式会社製)147mgを添加し、90℃で4時間撹拌して反応させた。これにより、デンプンのヒドロキシル基と無水酢酸とが反応して、アセチル基(機能性官能基)が結合した修飾デンプン(修飾ヒドロキシル基含有ポリマー)を得た。修飾デンプンは、仕込み比から求めた修飾率(ヒドロキシル基が機能性官能基に変換された割合)が100%であった。
反応液を室温まで冷却した後、改変フィブロイン(PRT799)の凍結乾燥粉末2000mgを反応液に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。紡糸液中の修飾デンプンの含有量は、修飾デンプンとデンプンの総含有量を基準として、17質量%である。
(2)改変フィブロインと耐水性付与物質を含む繊維の製造
調製した紡糸液を使用して、試験例5−1と同様の手順で改変フィブロインと耐水性付与物質(修飾デンプン)を含む繊維を得た。
(3)収縮性評価
得られた繊維について、試験例5−1と同様の手順で収縮性評価を実施した。結果を表13に示す。
<試験例5−3>
(1)紡糸液(ドープ液)の調製
デンプン(和光純薬工業株式会社製)215mgを7600mgの溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に溶解させた後、これに無水酢酸(和光純薬工業株式会社製)185mgを添加し、90℃で4時間撹拌して反応させた。これにより、デンプンのヒドロキシル基と無水酢酸とが反応して、アセチル基(機能性官能基)が結合した修飾デンプン(修飾ヒドロキシル基含有ポリマー)を得た。修飾デンプンは、仕込み比から求めた修飾率(ヒドロキシル基が機能性官能基に変換された割合)が50%であった。
反応液を室温まで冷却した後、改変フィブロイン(PRT799)の凍結乾燥粉末2000mgを反応液に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。紡糸液中の修飾デンプンの含有量は、修飾デンプンとデンプンの総含有量を基準として、17質量%である。
(2)改変フィブロインと耐水性付与物質を含む繊維の製造
調製した紡糸液を使用して、試験例5−1と同様の手順で改変フィブロインと耐水性付与物質(修飾デンプン)を含む繊維を得た。
(3)収縮性評価
得られた繊維について、試験例5−1と同様の手順で収縮性評価を実施した。結果を表13に示す。
<試験例5−4>
(1)紡糸液(ドープ液)の調製
ポリビニルアルコール(PVA)(和光純薬工業株式会社製)128mgを7600mgの溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に溶解させた後、これにフェニルイソシアネート(東京化成工業株式会社製)272mgを添加し、90℃で4時間撹拌して反応させた。これにより、PVAのヒドロキシル基とフェニルイソシアネートとが反応して、フェニル基(機能性官能基)が、ウレタン結合を介して結合した修飾PVA(修飾ヒドロキシル基含有ポリマー)を得た。修飾PVAは、仕込み比から求めた修飾率(ヒドロキシル基が機能性官能基に変換された割合)が100%であった。
反応液を室温まで冷却した後、改変フィブロイン(PRT799)の凍結乾燥粉末2000mgを反応液に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。紡糸液中の修飾PVAの含有量は、修飾PVAとPVAの総含有量を基準として、17質量%である。
(2)改変フィブロインと耐水性付与物質を含む繊維の製造
調製した紡糸液を使用して、試験例5−1と同様の手順で改変フィブロインと耐水性付与物質(修飾PVA)を含む繊維を得た。
(3)収縮性評価
得られた繊維について、試験例5−1と同様の手順で収縮性評価を実施した。結果を表13に示す。
<試験例5−5>
(1)紡糸液(ドープ液)の調製
ポリビニルアルコール(PVA)(和光純薬工業株式会社製)193mgを7600mgの溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に溶解させた後、これにフェニルイソシアネート(東京化成工業株式会社製)207mgを添加し、90℃で4時間撹拌して反応させた。これにより、PVAのヒドロキシル基とフェニルイソシアネートとが反応して、フェニル基(機能性官能基)が、ウレタン結合を介して結合した修飾PVA(修飾ヒドロキシル基含有ポリマー)を得た。修飾PVAは、仕込み比から求めた修飾率(ヒドロキシル基が機能性官能基に変換された割合)が50%であった。
反応液を室温まで冷却した後、改変フィブロイン(PRT799)の凍結乾燥粉末2000mgを反応液に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。紡糸液中の修飾PVAの含有量は、修飾PVAとPVAの総含有量を基準として、17質量%である。
(2)改変フィブロインと耐水性付与物質を含む繊維の製造
調製した紡糸液を使用して、試験例5−1と同様の手順で改変フィブロインと耐水性付与物質(修飾PVA)を含む繊維を得た。
(3)収縮性評価
得られた繊維について、試験例5−1と同様の手順で収縮性評価を実施した。結果を表13に示す。
<試験例5―6>
(1)紡糸液(ドープ液)の調製
改変フィブロイン(PRT799)の凍結乾燥粉末1200mgを溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。
(2)繊維の製造
調製した紡糸液を使用して、試験例5−1と同様の手順で繊維を得た。
(3)収縮性評価
得られた繊維について、試験例5−1と同様の手順で収縮性評価を実施した。結果を表13に示す。
<試験例5−7>
(1)紡糸液(ドープ液)の調製
改変フィブロイン(PRT799)の凍結乾燥粉末3000mg、及びデンプン(和光純薬工業株式会社製)600mgを溶媒(4重量%のLiClを含むジメチルスルホキシド(DMSO))に添加し、90℃で12時間撹拌して溶解させ、透明な紡糸液(ドープ液)を得た。
(2)繊維の製造
調製した紡糸液を使用して、試験例5−1と同様の手順で繊維を得た。
(3)収縮性評価
得られた繊維について、試験例5−1と同様の手順で収縮性評価を実施した。結果を表13に示す。
改変フィブロインと、耐水性付与物質(ヒドロキシル基含有ポリマー(修飾デンプン又は修飾PVA))を含む繊維は、耐水性付与物質を含まない繊維と比べて、収縮率が低減されていた。合成皮革の製造において、このような耐水性付与物質を、不織布及び高分子物質の少なくとも一方に含有させることで、耐水性に優れた合成皮革を得ることができる。
〔試験例6:改変フィブロイン編地の難燃性評価〕
4.0質量%になるようにLiClを溶解させたジメチルスルホキシド(DMSO)を溶媒として用意し、そこに改変フィブロイン(PRT799)の凍結乾燥粉末を、濃度24質量%となるよう添加し、シェーカーを使用して3時間溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
調製した紡糸原液を90℃にて目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は90℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
得られた原料繊維(撚り合せたフィラメント糸)を使用して、丸編機を使用した丸編みで編地を製造した。編地は、太さ180デニール、ゲージ数18とした。得られた編地から20g切り出して試験片とした。
燃焼性試験は、消防庁危険物規制課長 消防危50号平成7年5月31日の粉粒状又は融点の低い合成樹脂の試験方法に準拠した。試験は、温度22℃、相対湿度45%、気圧1021hPaの条件下で実施した。測定結果(酸素濃度(%)、燃焼率(%)、換算燃焼率(%))を表14に示す。
難燃性試験の結果、改変フィブロイン(PRT799)繊維で編んだ編地の限界酸素指数(LOI)値は27.2であった。一般にLOI値が26以上あれば難燃性があるとされる。改変フィブロインは、難燃性に優れていることが分かる。
〔試験例7:改変フィブロイン編地の吸湿発熱性評価〕
4.0質量%になるようにLiClを溶解させたジメチルスルホキシド(DMSO)を溶媒として用意し、そこに改変フィブロインの凍結乾燥粉末を、濃度24質量%となるよう添加し、シェーカーを使用して3時間溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
調製した紡糸原液を60℃にて目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
比較のため、原料繊維として、市販されているウール繊維、コットン繊維、テンセル繊維、レーヨン繊維及びポリエステル繊維を用意した。
各原料繊維を使用して、横編機を使用した横編みで編地を製造した。原料繊維としてPRT918繊維を使用した編地は、太さ:1/30N(毛番手単糸)、ゲージ数:18とした。原料繊維としてPRT799繊維を使用した編地は、太さ:1/30N(毛番手単糸)、ゲージ数:16とした。その他の原料繊維を使用した編地は、PRT918繊維及びPRT799繊維を使用した編地とほぼ同一のカバーファクターとなるように太さ及びゲージ数を調整した。具体的には、以下のとおりである。
ウール 太さ:2/30N(双糸)、ゲージ数:14
コットン 太さ:2/34N(双糸)、ゲージ数:14
テンセル 太さ:2/30N(双糸)、ゲージ数:15
レーヨン 太さ:1/38N(単糸)、ゲージ数:14
ポリエステル 太さ:1/60N(単糸)、ゲージ数:14
10cm×10cmに裁断した編地を2枚合わせにし、四辺を縫い合わせて試験片(試料)とした。試験片を低湿度環境(温度20±2℃、相対湿度40±5%)で4時間以上放置した後、高湿度環境(温度20±2℃、相対湿度90±5%)に移し、試験片内部中央に取り付けた温度センサーにより30分間、1分間隔で温度の測定を行った。
測定結果から、下記式Aに従って、最高吸湿発熱度を求めた。
式A:最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
図11は、吸湿発熱性試験の結果の一例を示すグラフである。グラフの横軸は、試料を低湿度環境から高湿度環境に移した時点を0とし、高湿度環境での放置時間(分)を示す。グラフの縦軸は、温度センサーで測定した温度(試料温度)を示す。図11に示したグラフ中、Mで示した点が、試料温度の最高値に対応している。
最高吸湿発熱度の算出結果を表15に示す。
表15に示すとおり、改変フィブロイン(PRT918及びPRT799)は、既存の材料と比べて、最高吸湿発熱度が高く、吸湿発熱性に優れていることが分かる。
〔試験例8:改変フィブロイン編地の保温性評価〕
4.0質量%になるようにLiClを溶解させたジメチルスルホキシド(DMSO)を溶媒として用意し、そこに改変フィブロインの凍結乾燥粉末を、濃度24質量%となるよう添加し、シェーカーを使用して3時間溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
調製した紡糸原液を60℃にて目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
比較のため、原料繊維として、市販されているウール繊維、シルク繊維、綿繊維、レーヨン繊維及びポリエステル繊維を用意した。
各原料繊維を使用して、横編機を使用した横編みで編地を製造した。原料繊維としてPRT966繊維を使用した編地は、番手:30Nm、撚り本数:1、ゲージ数:18GG、目付け:90.1g/mとした。原料繊維としてPRT799繊維を使用した編地は、番手:30Nm、撚り本数:1、ゲージ数GG:16、目付け:111.0g/mとした。その他の原料繊維を使用した編地は、PRT966繊維及びPRT799繊維を使用した編地とほぼ同一のカバーファクターとなるように太さ及びゲージ数を調整した。具体的には、以下のとおりである。
ウール 番手:30Nm、撚り本数:2、ゲージ数:14GG、目付け:242.6g/m
シルク 番手:60Nm、撚り本数:2、ゲージ数:14GG、目付け:225.2g/m
綿 番手:34Nm、撚り本数:2、ゲージ数:14GG、目付け:194.1g/m
レーヨン 番手:38Nm、撚り本数:1、ゲージ数:14GG、目付け:181.8g/m
ポリエステル 番手:60Nm、撚り本数:1、ゲージ数:14GG、目付け:184.7g/m
保温性は、カトーテック株式会社製のKES−F7サーモラボII試験機を使用し、ドライコンタクト法(皮膚と衣服が乾燥状態で直接触れた時を想定した方法)を用いて評価した。20cm×20cmに裁断した編地1枚を試験片(試料)とした。試験片を、一定温度(30℃)に設定した熱板にセットし、風洞内風速30cm/秒の条件で、試験片を介して放散された熱量(a)を求めた。試験片をセットしない状態で、上記同様の条件で放散された熱量(b)を求め、下記の式に従い保温率(%)を算出した。
保温率(%)=(1−a/b)×100
測定結果から、下記式Bに従って、保温性指数を求めた。
式B:保温性指数=保温率(%)/試料の目付け(g/m
保温性指数の算出結果を表16に示す。保温性指数が高いほど、保温性に優れる材料と評価することができる。
表16に示すとおり、改変フィブロイン(PRT966及びPRT799)は、既存の材料と比べて、保温性指数が高く、保温性に優れていることが分かる。
〔試験例9:合成皮革の製造〕
表17に示す不織布及び含浸液を用い、不織布と高分子物質の基材層のみからなる合成皮革9−1〜9−4を下記のようにして製造した。また、基材層の表面に表皮層を積層してなる合成皮革9−5を下記のようにして製造した。それらの製造方法の詳細を以下に示す。なお、表17中、不織布1(改変フィブロイン不織布)は、下記のようにして、PRT966を用いて紡糸して得た繊維から製造した不織布である。不織布2(PET不織布)は、市販のポリエチレンテレフタレート繊維を用いて、不織布1と同様な方法で製造した不織布である。また、含浸液1(改変フィブロイン含浸液)及び含浸液2(ポリウレタン(PU)含浸液)の組成は、以下のとおりである。
・含浸液1(改変フィブロイン含浸液):5質量%PRT799を含み、溶媒はエタノール/水(3/7(w/w))の混合溶媒。
・含浸液2(ポリウレタン(PU)含浸液):PU樹脂(終濃度:5質量%)を含み、溶媒はMP−865PS(DIC社製)/DMF(1/5(w/w)の混合溶媒。
<合成皮革9−1の製造>
(不織布1の製造)
改変フィブロイン(PRT966)の凍結乾燥粉末を、ギ酸に濃度28質量%となるよう添加し、シェーカーを使用して3時間溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。得られた改変クモ糸フィブロイン溶液をドープ液(紡糸原液)とし、公知の乾湿式紡糸装置を用いた乾湿式紡糸によって改変クモ糸フィブロイン繊維を製造した。次いで、得られた改変フィブロイン繊維を50mmの短繊維となるように切断した後、公知のカード処理によりシート(ウェブ)を得た。その後、得られたシートを公知のニードルパンチ機でパンチして、改変フィブロイン繊維からなる、不織布1を製造した。なお、不織布1の目付(繊維密度)は100〜200g/mであった。また、乾湿式紡糸の条件は以下のとおりである。
凝固浴温度:2〜15℃
総延伸倍率:1〜4倍
乾燥温度:100℃
(合成皮革9−1の製造)
上記のようにして得た不織布1に前記した含浸液1をピックアップ率が400%になるように含浸させた。その後、含浸液1を含浸させた不織布1を水中に15分間浸漬し、含浸液1中から溶媒を離脱させて、含浸液1中の改変フィブロインを凝固させた。次いで、不織布1を水中から取り出した後、室温で乾燥させた。これにより、改変フィブロイン繊維不織布と、それに含浸して一体化した改変フィブロインからなる高分子物質とにて構成された(基材層のみからなる)合成皮革9−1を製造した。
<合成皮革9−2の製造>
(不織布2の製造)
市販のポリエチレンテレフタレート繊維を50mmの短繊維となるように切断した後、カード処理によりシートを得た。その後、ニードルパンチングを用いて、公知のニードルパンチ法により、ポリエチレンテレフタレート繊維からなる、目付100〜200g/mの不織布2を製造した。
(合成皮革9−2の製造)
上記のようにして得た不織布2に前記した含浸液1をピックアップ率が400%になるように含浸させた。その後、合成皮革1−1の製造時と同様にして、不織布2に含浸した含浸液1中の改変フィブロインを凝固させた後、乾燥させた。これにより、ポリエチレンテレフタレート繊維不織布と、それに含浸して一体化した改変フィブロインからなる高分子物質とにて構成された(基材層のみからなる)合成皮革9−2を製造した。
<合成皮革1−3の製造>
(不織布1の製造)
合成皮革9−1の製造時と同様にして、不織布1を製造した。
(合成皮革1−3の製造)
上記のようにして得た不織布1に前記した含浸液2をピックアップ率が400%になるように含浸させた。その後、含浸液2を含浸させた不織布1を15質量%のN,N−ジメチルホルムアミド(DMF)水溶液中に5分間浸漬し、含浸液2中から溶媒を離脱させて、含浸液2中のポリウレタン樹脂を凝固(固化)させた。次いで、不織布2をDMF水溶液中から取り出した後、室温で乾燥させた。これにより、改変フィブロイン繊維不織布と、それに含浸して一体化したポリウレタン樹脂からなる高分子物質とにて構成された(基材層のみからなる)合成皮革9−3を製造した。
<合成皮革1−4の製造>
(不織布2の製造)
合成皮革9−2の製造時と同様にして、不織布2を製造した。
(合成皮革1−4の製造)
上記のようにして得た不織布2を用い、合成皮革9−3の製造時と同様にして、不織布2に含浸液2を含浸させた後、含浸液2を凝固(固化)させ、更にそれを乾燥させた。これにより、ポリエチレンテレフタレート繊維不織布と、それに含浸して一体化したポリウレタン樹脂らなる高分子物質とにて構成された(基材層のみからなる)合成皮革9−4を製造した。
かくして得られた、不織布と高分子物質の少なくとも何れか一方が改変フィブロインからなる合成皮革9−1、9−2、9−3と、不織布と高分子物質の何れもがポリウレタン樹脂からなる合成皮革9−4とについて、それぞれ外観を観察したところ、前者の合成皮革が、後者の合成皮革と同様な外観を呈していることが確認された。
<合成皮革9−5製造>
(基材層の製造)
先ず、上記と同様にして合成皮革9−1を製造し、これを基材層として用いた。
(表皮層用樹脂の調製)
改変フィブロイン(PRT799)の凍結乾燥粉末を、ギ酸に濃度20質量%となるよう添加し、シェーカーを使用して40℃で1時間以上溶解させて、改変フィブロイン溶液を得た。その後、改変フィブロイン溶液に顔料を5質量%となるように添加した後、不溶物と泡を取り除いた。これにより、顔料を含む改変フィブロイン溶液からなる表皮層用樹脂を調製した。
(合成皮革9−5の製造)
上記のようにして得た表皮材層用樹脂を、鉄板上に貼り付けた離型紙の上に0.5mmの厚みとなるようにコーティングした後、90℃で10分間乾燥させて、表皮材層用樹脂を不完全に固化させた。その後、表皮層用樹脂を、鉄板に張り付けられた離型紙と共に、上記のようにして得た基材層に積層し、90℃で1分間加熱した。これにより、表皮層用樹脂を完全に固化させる一方、基材層に接着した。その後、鉄板と離型紙を表皮層用樹脂から剥がした。かくして、表皮層が、基材層の表面に接着されてなる、目的とする合成皮革9−5を製造した。その写真を図12に示した。
1…不織布、2…高分子物質、3…基材層、4…接着剤層、5…表皮層、10,20…合成皮革、31…マイクロシリンジ、32…ドープ液、33…金属製口金ノズル、35…電源、36…繊維状物、38…金属製ネット、39…不織布、81…不織布、82…含浸槽、83…凝固槽、84…湯洗槽、85…乾燥機、86…合成皮革、91…離型紙、92…表皮層樹脂(高分子)、93…乾燥機、94…接着剤層樹脂、95…熱プレスロール、96…基材層、97…合成皮革、100…エレクトロスピニング装置、800,900…合成皮革の製造装置。

Claims (10)

  1. 不織布と高分子物質とを含む基材層を備え、
    前記不織布及び前記高分子物質の少なくとも一方が耐水性付与物質を含有する、合成皮革。
  2. 前記不織布が、前記耐水性付与物質を含有する、請求項1に記載の合成皮革。
  3. 前記不織布が、改変フィブロインを含有する、請求項2に記載の合成皮革。
  4. 前記改変フィブロインが、改変クモ糸フィブロインである、請求項3に記載の合成皮革。
  5. 前記改変フィブロインと前記耐水性付与物質が共有結合している、請求項3又は4に記載の合成皮革。
  6. 前記高分子物質が、前記耐水性付与物質を含有する、請求項1〜5のいずれか一項に記載の合成皮革。
  7. 前記高分子物質が、改変フィブロインを含有する、請求項6に記載の合成皮革。
  8. 前記改変フィブロインが、改変クモ糸フィブロインである、請求項7に記載の合成皮革。
  9. 前記改変フィブロインと前記耐水性付与物質が共有結合している、請求項7又は8に記載の合成皮革。
  10. 不織布に高分子物質を含む含浸液を含浸し、前記高分子物質を凝固させて基材層を形成する工程を備え、
    前記不織布及び前記高分子物質の少なくとも一方が耐水性付与物質を含有する、合成皮革の製造方法。
JP2019122349A 2019-06-28 2019-06-28 合成皮革及びその製造方法 Pending JP2021008683A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019122349A JP2021008683A (ja) 2019-06-28 2019-06-28 合成皮革及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019122349A JP2021008683A (ja) 2019-06-28 2019-06-28 合成皮革及びその製造方法

Publications (1)

Publication Number Publication Date
JP2021008683A true JP2021008683A (ja) 2021-01-28

Family

ID=74199709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019122349A Pending JP2021008683A (ja) 2019-06-28 2019-06-28 合成皮革及びその製造方法

Country Status (1)

Country Link
JP (1) JP2021008683A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054986A (ja) * 2019-09-30 2021-04-08 Spiber株式会社 難燃性組成物
CN115433369A (zh) * 2021-06-04 2022-12-06 西湖大学 一种羧基化丝蛋白的方法及由其制备的羧基化丝蛋白及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108188A (ja) * 1990-08-28 1992-04-09 Teijin Koodore Kk 高透湿性合成皮革
JPH07188563A (ja) * 1993-12-27 1995-07-25 Idemitsu Petrochem Co Ltd 絹フィブロイン超微粉末含有溶剤系樹脂組成物、フィルム又はシート及びこれを用いた積層体
JP2005042250A (ja) * 2003-07-23 2005-02-17 Kuraray Co Ltd 皮革様シートおよびその製造方法
US20050090169A1 (en) * 2002-06-20 2005-04-28 Masahisa Mimura Leathery sheet object, process for producing the same, and urethane compound modified with flurinated side chain
JP2007246461A (ja) * 2006-03-17 2007-09-27 Kozo Tsubouchi 細胞生育促進機能を有する経皮吸収可能な低分子絹ペプチドの製造と利用
JP2016537186A (ja) * 2013-10-21 2016-12-01 ザ ノース フェイス アパレル コーポレイションThe North Face Apparel Corp. 織地およびその他の基材用の機能性バイオマテリアルコーティング
JP2018525541A (ja) * 2015-07-14 2018-09-06 シルク セラピューティクス, インコーポレイテッド シルク性能衣服及び製品、並びにこれらを製造する方法
WO2019194146A1 (ja) * 2018-04-03 2019-10-10 Spiber株式会社 成形体及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108188A (ja) * 1990-08-28 1992-04-09 Teijin Koodore Kk 高透湿性合成皮革
JPH07188563A (ja) * 1993-12-27 1995-07-25 Idemitsu Petrochem Co Ltd 絹フィブロイン超微粉末含有溶剤系樹脂組成物、フィルム又はシート及びこれを用いた積層体
US20050090169A1 (en) * 2002-06-20 2005-04-28 Masahisa Mimura Leathery sheet object, process for producing the same, and urethane compound modified with flurinated side chain
JPWO2004001122A1 (ja) * 2002-06-20 2005-10-20 帝人コードレ株式会社 皮革様シート状物、その製造方法およびフッ素含有側鎖変性ウレタン化合物
JP2005042250A (ja) * 2003-07-23 2005-02-17 Kuraray Co Ltd 皮革様シートおよびその製造方法
JP2007246461A (ja) * 2006-03-17 2007-09-27 Kozo Tsubouchi 細胞生育促進機能を有する経皮吸収可能な低分子絹ペプチドの製造と利用
JP2016537186A (ja) * 2013-10-21 2016-12-01 ザ ノース フェイス アパレル コーポレイションThe North Face Apparel Corp. 織地およびその他の基材用の機能性バイオマテリアルコーティング
JP2018525541A (ja) * 2015-07-14 2018-09-06 シルク セラピューティクス, インコーポレイテッド シルク性能衣服及び製品、並びにこれらを製造する方法
WO2019194146A1 (ja) * 2018-04-03 2019-10-10 Spiber株式会社 成形体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054986A (ja) * 2019-09-30 2021-04-08 Spiber株式会社 難燃性組成物
CN115433369A (zh) * 2021-06-04 2022-12-06 西湖大学 一种羧基化丝蛋白的方法及由其制备的羧基化丝蛋白及其应用

Similar Documents

Publication Publication Date Title
JP6480026B2 (ja) 布帛及び培養細胞からの布帛の製造方法
Lu et al. Progress in recycling and valorization of waste silk
JP7372678B2 (ja) 成形体及びその製造方法
CN114390920A (zh) 化学连接的丝素蛋白涂层及其制备和使用方法
JP2021008683A (ja) 合成皮革及びその製造方法
WO2019194258A1 (ja) 混紡糸並びにその編織体及びその編織体の製造方法
WO2021016139A1 (en) Silk protein bonded layered materials and methods of making and using thereof
JPWO2019194249A1 (ja) ドープ液、改変フィブロイン繊維及びその製造方法
WO2020262602A1 (ja) 合成皮革及びその製造方法、並びに合成皮革用接着剤
JP2021080168A (ja) フィブロイン組成物、フィブロイン溶液、及びフィブロイン繊維の製造方法
WO2020175702A1 (ja) 防水透湿性生地、及びその製造方法
JP2021008678A (ja) 合成皮革及びその製造方法
JP2021054994A (ja) 繊維強化樹脂成形体及びその製造方法
JP2021008679A (ja) 合成皮革、及びその製造方法
JP2021008684A (ja) 合成皮革及びその製造方法
WO2020262489A1 (ja) 人工毛皮、及びその製造方法
JP2021008677A (ja) 合成皮革及びその製造方法
JP2021008685A (ja) 合成皮革及びその製造方法
JP2021008681A (ja) 人工タンパク質繊維綿
JP2021147426A (ja) タンパク質成形体及びその製造方法
JP2022160006A (ja) 合成皮革及びその製造方法
JP2022160015A (ja) 合成皮革用接着剤、並びに合成皮革及びその製造方法
JP2021008680A (ja) 人工タンパク質繊維綿
WO2019194246A1 (ja) 複合繊維及びその製造方法
WO2019194230A1 (ja) 高密度不織布、及び高密度不織布の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231121