JP2020186815A - 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 - Google Patents
物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 Download PDFInfo
- Publication number
- JP2020186815A JP2020186815A JP2020097426A JP2020097426A JP2020186815A JP 2020186815 A JP2020186815 A JP 2020186815A JP 2020097426 A JP2020097426 A JP 2020097426A JP 2020097426 A JP2020097426 A JP 2020097426A JP 2020186815 A JP2020186815 A JP 2020186815A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- base
- damping
- vibration
- damping unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N15/00—Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67703—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
- H01L21/67709—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using magnetic elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0472—Active magnetic bearings for linear movement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
- H01L21/67167—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67184—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67703—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
- H01L21/67736—Loading to or unloading from a conveyor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67784—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
- H02K41/033—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/09—Structural association with bearings with magnetic bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/18—Machines moving with multiple degrees of freedom
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Vibration Prevention Devices (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Bearings For Parts Moving Linearly (AREA)
Abstract
【課題】磁気軸受を使用して、物体を保持し、位置付け、及び/又は動かすための改良型の装置を提供する。【解決手段】物体を保持し、位置付け、かつ/又は動かすための装置は、ベース(30)と、ベース(30)に対して移動可能なキャリア(50)とを含む。装置は、少なくとも3つの磁気軸受であって、キャリアが少なくとも1つの所定の方向に関して変位しうるように、キャリア(50)が、これらの磁気軸受によって、非接触の様態でベース(30)のところで支持され、磁気軸受(10)のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される、少なくとも3つの磁気軸受を更に含む。装置は、キャリア(50)又はベース(30)に固定される、少なくとも1つの制振ユニット(100)を有する。【選択図】図11
Description
本開示の実施形態は、物体、詳細には基板を、保持し、位置付け、かつ/又は動かすための装置に関する。より具体的には、真空チャンバ内で、物体を非接触で保持し、位置付け、かつ/又は動かすよう構成された、磁気浮上システムについて説明する。実施形態は、物体を保持し、位置付け、かつ/又は動かすための装置のベースに、更に関する。また更に、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法について説明する。
例えばディスプレイ応用向けに、基板を処理して半導体構成要素を作製するために、比較的大きな面積の基板が様々な種類の表面処理プロセスを経る。例えば、このような基板の表面は、基板にコーティング又は表面構造物を形成することなどのために、機械的又は化学的に処理される。表面処理プロセスの一部は、詳細には、スパッタリング、物理的気相堆積、又は化学気相堆積などの表面処理プロセスが(場合によってはプラズマ支援も伴って)実施される必要がある場合には、クリーンルーム条件下或いは真空中で実施される。
基板には、時にミクロン範囲或いはナノメートル範囲の構造物が形成される必要があることから、これらの基板を、基板の平面とこの平面の法線の両方において、極めて精密に位置付けることが有益である。
基板環境の自由粒子(particle freedom)に関する要件により、基板、並びに、それに対応する保持、位置付け、及び/又は変位のための駆動装置の、非接触マウントを実装することが、有益になる。空気軸受は、ある種の条件における高純度の製造環境にのみ適している。なぜなら、空気軸受は、基板の付近に望ましくない気流を引き起こすことがあり、この気流は時に、基板処理における精度の維持を妨げうるからである。
ベース、及び、物体を支持するキャリアを有する、いわゆる磁気ウエハステージ、又は、磁気保持装置若しくは磁気位置付け装置も、存在している。ベースに対するキャリアの非接触マウントを提供するために、典型的には、複数の磁気軸受であって、各々が距離センサ及び制御回路を有する磁気軸受が設けられる。これらの磁気軸受は、ベースから特定の距離を保って、浮遊状態でキャリアを保持する。
能動的に制御され、したがって電気的に制御可能な磁気軸受の実行形態は、詳細には真空環境において、きわめて複雑になることが分かっている。
真空技術の分野における応用では、十分に真空対応可能な材料(詳細には金属)が、構成部品として、及び、ハウジングの構成要素に、使用される。しかし、このことは、個々の磁気軸受の磁気動作に悪影響を与えうる。電磁アクチュエータの電気的制御は、金属構成要素における渦電流の形成をもたらすことがあり、この渦電流は、一又は複数の磁気軸受の動作を阻害しうる。
複数の能動的に制御される磁気軸受を介して、ベースに対してキャリアを、磁気的に非接触でマウントさせる場合、振動・共振現象が発生しうる。複数の能動的に制御される磁気軸受を使用して、キャリアを非接触でマウントさせることで、キャリア及び/又はベースの振動が昂進することがあるが、これは、制御工学技術によるだけでは克服が困難である。
ベースに対してキャリアを非接触でマウントさせることにより、キャリアに、いわゆる剛性体振動(rigid−body vibration)が発生することがある。しかし、磁気による非接触支持によって、キャリアは、加振され(exciteted)て弾性共振振動状態になることもあり、キャリアにある種の弾性変形が起こる。ベースに対するキャリアの高精度の位置付けを得るためには、この変形についても勘案すべきである。キャリアはもはや剛性物体とみなすべきではなくなり、キャリアには固有振動及び振動関連変形が発生する。これらの事象は、磁気軸受を使用するキャリアの非接触マウントによって引き起こされうる。
したがって、本開示の1つの目的は、磁気軸受を使用して、物体を保持し、位置付け、及び/又は動かすための改良型の装置を提供することであり、かかる装置を用いることで、キャリア及び/又はベースの不可避な振動が、より良好に制御されうるか、又は、大部分が消去されうる。更なる目的は、単純で、真空対応可能であり、強固で、かつ、ユニバーサルに使用可能な手段を使用して、ベースのところでのキャリアの振動及び共振を低減すること、又は、能動的に制御される磁気軸受に対する振動の影響を最少化することである。
上記を鑑みて、物体を保持し、位置付け、かつ/又は動かすための装置が提供される。更に、物体を保持し、位置付け、かつ/又は動かすための装置のベースが提供される。また更に、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法が提供される。有利な設計が、従属請求項の主題である。
本開示の一態様により、物体を保持し、位置付け、かつ/又は動かすための装置が提供される。装置は、ベースと、ベースに対して移動可能なキャリアとを含む。装置は、ベースのところで非接触でキャリアを保持するための磁気軸受を更に含み、磁気軸受のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される。キャリアは、搬送方向に変位可能であるように、ベースのところで非接触で保持されうる。装置は、キャリア又はベースに固定されている、少なくとも1つの制振ユニットを含む。
一部の実施形態では、制振ユニットは機械的制振ユニットである。一部の実施形態では、制振ユニットは、チューニングされた又はチューニング可能なダンパ(特にマスダンパ又は振動ダンパ)を含む。
一部の実施形態では、制振ユニットは、受動的制振ユニット、半能動的制振ユニット、及び/若しくは能動的制振ユニット、又はこれらの組み合わせを含む。
一部の実施形態では、少なくとも1つの制振ユニットがキャリアに固定される。代替的又は追加的には、少なくとも1つの制振ユニットがベースに固定される。
一部の実施形態では、キャリアは基本振動数での振動を生じさせられることがあり、少なくとも1つの制振ユニットは、少なくとも0.1の減衰比Dを有する。
本開示の更なる態様により、物体を保持し、位置付け、かつ/又は動かすための装置が提供される。装置は、ベースと、ベースに対して移動可能なキャリアとを有する。装置は少なくとも3つの磁気軸受を含み、キャリアが少なくとも1つの所定の方向に関して変位しうるように、キャリアは、これらの磁気軸受によって、ベースのところで非接触で保持される。少なくとも3つの磁気軸受のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される。
磁気軸受を介してベースに対して非接触でマウントされるキャリアは、少なくとも、基本振動数での振動を生じさせられうる。振動加振は、詳細には、ベースに対するキャリアの浮上又は非接触支持がそのままでは外的干渉に曝されることになる場合に、少なくとも3つの磁気軸受の磁気支持を介して、強制的な様態で発生しうる。
装置には、少なくとも1つの機械的制振ユニットが設けられてよく、この機械的制振ユニットは、キャリア又はベースに固定され、かつ、少なくとも0.1の減衰比Dを有する。機械的制振ユニットは、キャリアの振動の、目標とされる又は広帯域の減衰を引き起こしうる。ここでの目的は、キャリアの基本振動数の5倍から10倍の範囲内のキャリアの振動加振を、減衰させることでありうる。この目的を達成するためには、少なくとも0.1の減衰比を有する分離型の機械的制振ユニットを使用することで足りうる。
本開示の更なる態様により、物体を保持し、位置付け、かつ/又は動かすための装置のベースが提供される。ベースは、ベース本体と、キャリアがベース本体に対して搬送方向に変位可能であるようにベース本体のところでキャリアを非接触で保持するために、ベース本体に配置された、能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータとを、含む。更に、少なくとも1つの制振ユニットが、ベース本体に固定される。
ベース本体は、例えば、真空チャンバに固定されうる静止軌道を含む、静止ベース本体でありうる。あるいは、ベース本体は、例えば真空チャンバ内に、移動可能に装着されうる。例えば、ベース本体は、回転モジュールの回転可能ロータの一部でありうるか、又は、軌道切り替え方向に移動可能でありうる軌道切り替えデバイスの一部でありうる。
本開示の更なる態様により、回転モジュールが提供される。回転モジュールは、真空チャンバと、真空チャンバ内に回転可能に装着されているロータとを含む。ロータは、ベース本体と、ベース本体のところでキャリアを非接触で保持するためにベース本体に配置された、能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータとを含む、ベースを含む。更に、少なくとも1つの制振ユニットがベース本体に固定される。
本開示の更なる態様により、物体を保持し、位置付け、かつ/又は動かすための装置のキャリアが提供される。キャリアは、ベースのところで非接触で保持されるよう構成され、かつ/又は、磁気軸受を介してベースに対して移動可能であり、磁気軸受のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される。少なくとも1つの制振ユニットがキャリアに固定される。
本開示の一態様により、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法が提供される。方法は、ベースのところでキャリアを非接触で保持するよう、少なくとも2つの磁気軸受を能動的に制御することと、キャリア又はベースに固定された少なくとも1つの制振ユニットを用いて、キャリアとベースの少なくとも一方の振動を減衰させることとを、含む。
本開示の更なる態様、利点、及び特徴が、本明細書及び添付図面から明らかになる。
本開示の上述の特徴を詳しく理解しうるように、上記で簡潔に要約した本開示のより具体的な説明が、実施形態を参照することによって得られる。添付図面は本開示の実施形態に関し、これらの図面について以下で説明する。図面には典型的な実施形態が示されており、かかる実施形態の詳細について以下で説明する。
様々な実施形態をこれより詳細に参照していく。これらの実施形態の一又は複数の例が、図に示されている。各例は、説明として提供されており、限定を意図するものではない。例えば、一実施形態の一部として図示又は説明されている特徴は、他の任意の実施形態に使用されるか、又は他の任意の実施形態と併用されて、更に別の実施形態を生み出すことが可能である。本開示はかかる修正例及び変形例を含むことが、意図されている。
図面についての以下の説明において、同じ参照番号は同じ又は類似の構成要素を表わしている。概括的に、個々の実施形態に関して相違点のみが説明される。別段の指定がない限り、一実施形態の一部分又は一態様の説明は、別の実施形態における対応する部分又は態様にも同様に当てはまる。
本書に記載の実施形態による、物体を保持し、位置付け、かつ/又は動かすために提供される装置は、ベースと、ベースに対して移動可能なキャリアとを含む。装置は、ベースに対してキャリアを非接触で保持するための少なくとも3つの磁気軸受を含み、キャリアは、少なくとも1つの所定の方向に、ベースに沿って変位しうる。少なくとも3つの磁気軸受のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される。
磁気軸受を介してベースに非接触でマウントされるキャリアは、少なくとも、基本振動数での振動を生じさせられうる。装置には、キャリア又はベースに固定されうる、少なくとも1つの機械的制振ユニットが設けられる。オプションで、少なくとも1つの機械的制振ユニットの減衰比Dは少なくとも0.1である。
減衰比Dは、線形減衰振動子(linear damped oscillator)に基づく減衰量の特性を示す、制振ユニットの無次元常数である。ばね/質量振動子又は単一質量振動子において、制振の度合い又は減衰比は、指数D=d/(2√km)と特定されてよく、式中、mは制振質量を、kはばね定数又はばね剛性を、かつ、dは減衰定数を意味する。制振ユニットの他の設計では、減衰比Dは、振動子の数理的説明における、局所関数の第1導関数に先行する因数の特性を示す。
物体を保持し、位置付け、かつ/又は動かすための装置の典型的かつ実践的な実行形態では、能動的な磁気軸受の電気的制御のみによって、キャリアの基本振動数の5倍から10倍の範囲内のキャリアの振動又は共振を低減又は減衰させることは、困難であるか、又は、不釣り合いに高い技術的複雑性を伴うだけである。この意味で、キャリアの基本振動数の5〜10倍の振動数範囲は、臨界(critical)調節範囲とみなされうる。
ベースにキャリアを非接触で磁気によりマウントさせることは、基本振動数を伴う、ベースに対するキャリアの少なくとも1つの振動によって、特徴付けられる。基本振動数はキャリアの一又は複数の剛性体振動の振動数であってよく、ベースにキャリアを非接触で磁気によりマウントさせることによって、キャリアがこの剛性体振動に曝される。基本振動数は、キャリアの複数の剛性体振動の重畳も含みうる。
基本振動数におけるキャリアの振動が、キャリアの多重的な加振振動モードの重畳を含むことも、想定されうる。基本振動数において、キャリアは、専ら又は主に、剛性体振動モードで振動しうる。しかし、基本波振動モードは、キャリアの一又は複数の弾性振動モードを伴う、一又は複数の剛性体振動の重畳も包含しうる。弾性振動モードはキャリアの固有の振動又は共振であってよく、キャリアは、外的な振動加振にかかる振動又は共振で反応する。
キャリアが、3つの異なる空間方向に沿ってベースにマウントされている場合、キャリアには、合計6つの剛性体振動(すなわち、3つの並進振動自由度及び3つの回転振動自由度)が発生しうる。
本書で言及されている基本振動数におけるキャリアの振動は、互いとは個別に、6つの基本振動数又は剛性体振動数の各々に関しうる。
制振ユニットは、典型的には、臨界制御範囲を下回る振動数範囲内(すなわち、キャリアの基本振動数の3〜5倍の範囲内)で、制振ユニットがキャリアの振動に対して最大の制振効果を有するように、設計される。制振ユニットは、制振ユニットが更に、上述の臨界制御範囲内(すなわち、キャリアの基本振動数の5〜10倍の振動数範囲内)で実質的な制振効果を提供するように、相対的に広帯域な様態で設計される。したがって、この臨界制御範囲内で発生しうるいかなる共振現象も、制振ユニットを介して、高い信頼性で減衰されうる。
制振ユニットによってもたらされる広帯域の制振効果により、制振ユニットの多用途応用が可能になり、主たる減衰振動数又は減衰共振振動数を、ベース、キャリア、及び磁気軸受によって形成された振動システムに合わせて精密にチューニングする必要がなくなる。機械的制振ユニットは、相対的に安価な手段、及び、比較的低い技術的複雑性を伴って、実使用上で実装されうる。
機械的制振ユニットは制振質量を含んでよく、制振質量の動きが、キャリアの振動又はベースの振動を減衰させうる。例えば、制振質量は、キャリアの振動を減衰させるために、キャリアに対して移動可能になるようにキャリアに機械的に接続されうる。詳細には、特定の振動数範囲におけるキャリアの振動は、キャリアに対する制振質量の振動を誘発することが可能であり、制振質量の振動は、キャリアの振動を低減する。
別の例では、機械的制振ユニットの制振質量は、ベースの振動を減衰させるために、ベースに対して移動可能になるようにベースに配置されうる。特定の振動数範囲におけるベースの振動は、ベースに対する制振質量の振動を誘発することが可能であり、これにより、ベースの振動が低減される。詳細には、機械的制振ユニットは、チューニングされた又はチューニング可能なマスダンパを含みうる。
本書において「受動的制振ユニット(passive damping unit)」とは、能動的制御を含まない制振ユニットであると理解されうる。例えば、制振質量は、キャリア又はベースに対する制振質量の誘発された動きが、キャリア又はベースの振動を自然に減衰させるように、キャリア又はベースに装着されうる。換言すると、受動的制振ユニットは、アクチュエータ及び/又はセンサを含まない。例えば、受動的制振ユニットは、ばね及び/又は弾性材料などの弾性構成要素によって揺動システム(キャリア又はベース)に接続された、制振質量を含みうる。弾性構成要素及び制振質量は、制振される揺動システムに適合しうる。例えば、制振質量の重量、及び、弾性構成要素のばね定数又は弾性は、この質量、及び/又は、揺動システムの基本振動数に適合しうる。
本書において「能動的制振ユニット(active damping unit)」とは、能動的制御を使用する制振ユニットであると理解されうる。詳細には、能動的制振ユニットは、適応型制振ユニットでありうる。例えば、揺動システムの動きは、例えば対応するアクチュエータによって、能動的に制御されうる。能動的制振ユニットは、コントローラ、加速センサ、速度センサ、及び/又は位置センサと、これらのセンサ(複数可)によって検出される信号(複数可)に応じて制御される、アクチュエータとを含みうる。
一部の実施形態では、能動的制振ユニットは制振質量を含み、アクチュエータは、制振質量の位置及び/又は動き(例えば制振質量の揺動運動)に影響を与えるよう構成されうる。制振質量と、アクチュエータと、コントローラとを含む能動的制振ユニットは、ベース又はキャリアに固定されうる。
能動的制振ユニットはより高価なものであるが、様々な揺動システムを制振するために、柔軟に利用されうる。例えば、能動的制振ユニットは、種々の基本振動数を有しうる、種々のサイズ、形状、及び重量のキャリア又はベースに固定されてよく、対応する臨界振動数範囲における揺動が、効果的に減衰されうる。
「半能動的制振ユニット(semi−active damping unit)」は、揺動エネルギーを電気エネルギーに転換するためのコンバータを含みうる。揺動システムの揺動エネルギーが部分的に電気エネルギーに転換される際に、振動は減衰される。なぜなら、揺動システムが機械的エネルギーを失うからである。一部の実行形態では、電気エネルギーは、例えばレジスタによって、熱として放散されうる。
半能動的制振ユニットは、揺動システムに接続された圧電素子などの、機械的エネルギーを電気エネルギーに転換するためのコンバータを含みうる。コンバータは、電気回路(例えば、コイルを含む共振回路)に連結されうる。共振回路の共振振動数は、揺動システムの一又は複数の臨界振動数に適合しうる。したがって、キャリア又はベースの振動が効果的に減衰されうる。
一実行形態により、制振ユニットは、制振質量を伴う受動ダンパを含む。制振質量を伴うかかる受動ダンパは、初期の構成及び設計は別にして、装置の稼働中の調整又は微細チューニングを要しない、無調節制振システムとなる。受動ダンパは更に、キャリア又はベースに、相対的に安価に実装され、配置されうる。加えて、受動ダンパは、真空安定性の点で利点をもたらしうる。受動ダンパは、例えば磁気軸受のコントローラから分離されている、真空気密封入、又は真空気密ハウジング内への埋設に、特に適している。
一部の実行形態により、制振ユニットは振動吸収装置として設計される。受動ダンパは、振動吸収装置として構成されるか、振動吸収装置を形成するかの、いずれかでありうる。振動吸収装置又は受動ダンパは、例えば、制振質量を有する単一質量振動子として構成されてよく、この制振質量は、少なくとも、制振ユニット又はキャリアに対する、安静位の周囲での運動の一自由度に対して、移動可能に装着される。
更なる設計により、振動吸収装置は、キャリアの基本振動数の2倍から8倍の吸収装置固有振動数を有する。制振ユニットは、詳細には、振動吸収装置として構成されている場合には、キャリアに発生することが予期される共振現象及び振動現象に合わせて別様にチューニングされうる。
一部の実行形態により、振動吸収装置は、キャリアの基本振動数の3倍から6倍の吸収装置固有振動数を有する。また、吸収装置固有振動数は、キャリアの基本振動数の2〜5倍、又は3〜4倍でありうる。
典型的な応用の場合、吸収装置固有振動数の範囲内でのキャリアの剛性体振動は、相対的に穏やかなものになる。能動的に制御可能な磁気軸受は、吸収装置固有振動数の範囲内のキャリアの振動加振を、十分に減衰させ、補償しうる。しかし、振動加振が基本振動数の5倍から10倍の範囲内である場合、磁気軸受の電子制御は限界に達しうる。
制振ユニットは、詳細には、臨界制御範囲内(すなわち、キャリアの基本振動数の5〜10倍の振動数範囲内)の振動を減衰させるために設けられる。しかし、制振ユニットは、減衰されるべき実際の振動数範囲に、厳密には合致しないことがある。吸収装置固有振動数は、典型的には、臨界制御範囲内の上記振動数を下回るように選択される。しかし、吸収装置固有振動数は、臨界制御範囲の振動数範囲内であること、又は、臨界制御範囲と重複することもある。
振動吸収装置を制振ユニットとして使用する際、振動吸収装置は、減衰されるべき実際の振動周波数に対して、意図的に「デチューンされる(detuned)」ことがある。例えば、振動吸収装置は、臨界制御範囲内の振動数に精密に合わせてチューニングされるのではなく、臨界制御範囲を下回る、したがって臨界制御範囲から外れた振動数に合わせてチューニングされることがある。臨界制御範囲が、例えば、キャリアの基本振動数の5〜10倍にわたっている場合には、吸収装置固有振動数は、この範囲を下回りうる。かかる応用の場合、吸収装置固有振動数は、キャリアの基本振動数の5倍未満となりうる。吸収装置固有振動数は、例えば、キャリアの基本振動数の4倍未満、又は3倍未満でありうる。
振動吸収装置固有振動数は臨界制御範囲から外れることがあるが、振動吸収装置は、それでもなお、臨界制御範囲内の振動数の有意な減衰をもたらしうる。振動吸収装置は、特に広帯域な減衰を、(すなわち、臨界範囲内の相対的に広い振動数範囲において)発生させうる。したがって、振動吸収装置は、キャリアの特定の振動周波数に合わせて精密にチューニングされる必要がなくなる。
異なっているが類似もしているキャリアの設計により、構造及び構成要素、又は組み立て許容誤差に応じて、(詳細には臨界制御範囲内の)キャリアの種々の基本振動数がもたらされる。臨界制御範囲を下回る吸収装置固有振動数を有する振動吸収装置を伴う制振ユニットを使用することで、制振ユニットが、相対的に広い振動数スペクトルのための臨界制御範囲において、キャリアの磁気支持に十分な減衰をもたらしうる。
前記応用及び制振ユニットを使用することで、臨界制御範囲の振動数範囲のほとんど全て、又は少なくともその大部分が、機械的に減衰されうる。各キャリア向けに制振ユニット(例えば振動吸収装置)を別様にチューニングすること、調整すること、又は校正することが、必要ではなくなりうる。別々のキャリア向けに同じ制振ユニットを使用すること(キャリアは種々の基本振動数を有しうる)も、想定されうる。
一部の実行形態により、制振ユニットはハウジングを有し、このハウジングの内部に制振質量が配置される。ハウジングは、一部の実施形態では真空気密でありうる。
真空気密ハウジングにより、制振ユニット及びキャリアを真空又は高真空内に配置することが可能になる。真空気密ハウジングは、ガス不浸透性である。摩擦又は振動に関連する、制振ユニットの制振質量のいかなる動きも、制振ユニットの外部チャンバから密封隔離されているハウジングの内部のみで行われる。
この方法では、制振ユニット向けの制振材料又は制振材料の組み合わせを使用することが可能になる。この方法でなければ、かかる使用により、真空環境において問題が起こるか、又は、磁気軸受、若しくは物体を保持し、位置付け、かつ/又は動かすために提供される装置の領域内の真空環境に不純物が生じることになる。
制振ユニットの真空気密の筐体又はハウジングを使用することによって、ハウジングの内部で制振ユニット及び制振質量を実装するため、及び、ハウジング内に制振質量を懸架するために、材料のほとんどあらゆる組み合わせが使用可能になる。例えば、発泡性の材料若しくはプラスチック、又はエラストマ材料も、使用可能となる。真空気密でなければ、真空環境内でアウトガスが発生する可能性があり、もしそうなれば、真空環境が汚染されることになる。
一部の実行形態により、制振質量は、ハウジングに対して移動可能に装着されうる。制振質量は、ハウジングの内部に移動可能に装着されうる。制振質量は、詳細には、ハウジングに移動可能に装着されうる。したがって、ハウジングは、制振ユニットの制振質量の可動懸架部のベースとしての役割を果たす。制振質量は、ハウジングの内部を完全に満たしているわけではない。ハウジングと制振質量との間の自由空間又は間隙には充填材料が提供されてよく、これにより、制振質量の移動可能装着も容易になる。
ハウジングの内部に制振質量を移動可能に装着又は懸架することによって、制振質量は刺激を受けて、キャリアの振動を減衰させる揺動状態となりうる。したがって、制振ユニットのハウジングに対する制振質量の振動の加振、及び、キャリアへの制振ユニット(若しくは制振ユニットのハウジング)の装着が、キャリアの振動又は共振の、目標とされる減衰を引き起こす。
一部の実行形態により、ハウジング又はハウジング内への制振質量の装着は、少なくとも1つの弾性圧縮可能な制振要素、及び/又は、少なくとも1つの弾性変形可能な装着要素を含む。弾性圧縮可能な制振要素、又はそれに対応する充填材料は、制振質量とハウジングとの間の自由空間又は間隙の中に配置されうる。この場合、制振質量は、ハウジングの内側に、弾性圧縮可能な制振要素を介して支持されうる。有利には、制振質量は、その両外側で、ハウジングの対向する両内側に、例えばそれぞれの側に弾性圧縮可能な制振要素を介して、機械的に支持され、したがって支持を得る。
ハウジングに対する制振質量の、意図される振動方向に関しては、制振質量とハウジングとの間の間隙又は自由空間は、少なくとも1つの弾性圧縮可能な制振要素で、完全に又はほぼ完全に満たされうるか、又は一杯にされうる。ハウジングに対する制振質量の振動又は動きは、常に、少なくとも1つの制振要素又は複数の制振要素が適切に弾性圧縮している状態で行われる。
制振質量は、弾性圧縮可能な制振要素の代わりに又はそれに加えて、一又は複数の弾性変形可能な装着要素を介して、ハウジング又はハウジング内に装着されうる。例えば、弾性変形可能な装着要素は、一又は複数のばね(板ばねなど)を含みうる。制振ユニットの減衰比は、弾性変形可能な装着要素によって、適宜調整されうる。減衰比及び/又は減衰振動数を調整するために、適切に構成されたばねが、ハウジング内での制振質量の移動可能懸架用に選択されうる。
振動吸収装置又は制振ユニットの吸収装置固有振動数が、少なくとも一又は複数の弾性変形可能な装着要素を介して適宜調整されることが、可能になる。
別の実施形態により、制振質量は、ハウジングの内側壁から特定の距離を保って配置されうる。制振質量と内側壁との間の間隙内に弾性圧縮可能な制振要素が配置されてよく、この弾性圧縮可能な制振要素は、非圧縮の初期状態では、内側壁と制振質量との間の距離を上回るか又はこの距離に等しい、外法寸法を有しうる。
一部の実施形態では、弾性圧縮可能な制振要素に加えて制振質量も、一又は複数の弾性変形可能な装着要素を使用して、制振ユニットのハウジング又はハウジング内に移動可能に装着される。制振質量が、一又は複数の弾性圧縮可能な制振要素を介してのみハウジング又はハウジング内に装着されることも、想定されうる。
一部の実施形態では、制振質量は、弾性圧縮可能な制振要素の2つの層の間に配置されうる。ハウジング内部の制振質量と制振要素との配置は、1つのハウジング壁とそれに対向するハウジング壁との間の間隙がほぼ完全に満たされるように、配置されうる。制振質量と制振要素のこの配置は、少なくとも対向するハウジングの両壁に支持されうる。弾性圧縮可能な制振要素が、非圧縮の初期状態では、内側壁と制振質量との間の距離を上回るか又はこの距離に等しい一又は複数の外法寸法を有するという事実により、真空気密ハウジングを密封する時点で弾性圧縮可能な制振要素が既に圧縮されており、したがって予負荷がかかっていることが、確実になりうる。この方法では、制振質量が、真空気密ハウジングの内部の、決まった位置に、かつ機械的に予負荷がかかった状態で配置されることが、確実になる。
一部の実行形態により、弾性変形可能な装着要素は、一方の端部で制振質量に接続される。弾性変形可能な装着要素は、反対側の端部でハウジングに接続されうる。弾性変形可能な装着要素は、弾性変形が可能なばね(例えば板ばね)として設計されうる。装着要素の弾性変形には機械的エネルギーの印加が必要でありうるが、機械的エネルギーはキャリアの振動加振により供給される。装着要素の弾性変形により、制振質量は、意図された様態で振動を開始しうる。
これにより、弾性変形可能な装着要素は二重の機能を果たすことになる。一方で、弾性変形可能な装着要素は、ハウジングの内部での制振質量の確実な固定を可能にする。他方では、吸収装置固有振動数、又は、制振ユニットのハウジングに対する制振質量の振動挙動が、弾性変形可能な装着要素の弾性特性によって特定され、規定されうる。
一部の実行形態により、装着要素は一又は複数の板ばねを含む。変動可能な数の板ばねを有することによって、制振ユニットのハウジングに対する制振質量の振動挙動が選択的に調整されうる。複数の板ばねが、互いに直に接するように置かれることもある。ハウジングの真空気密設計によって、板ばね同士の間の機械的摩擦、及び/又は、一又は複数のばねとハウジング若しくは制振質量との間の摩擦は、許容可能なものになりうる。
一部の実行形態により、外部からアクセス可能でありうるキャリアのキャビティ内に、少なくとも1つの制振ユニットが配置される。例えば、制振ユニットは引き出し状のものとして構成されてよく、これが、対応するよう設計されたキャリアの区画部内に挿入され、かつ/又は、この区画部に取り付けられうる。一部の実施形態では、キャビティ(又は引き出し用区画部)は、支持体の外縁部に凹設されうるか、又は組み込まれうる。したがって、制振ユニットは、特に省スペースな様態でキャリアに配置され、かつ/又は、キャリアに組み込まれうる。制振ユニットは、詳細にはキャリアに取り外し可能に固定されて、制振モジュールとなりうる。制振ユニットは適宜、キャリアに配置されうるか、又は、キャリアから取り外されうる。キャリアに制振ユニットを取り外し可能に配置することにより、制振ユニットを、実質的に同じ外法寸法と異なる制振特性とを有しうる異なる種類の制振ユニットと交換することも、可能になる。
一部の実行形態により、キャリアには複数の制振ユニットが配置されうる。例えば、キャリアは、引き出し用区画部の形態などの、外部からアクセス可能な複数のキャビティであって、各々が、一又は複数の制振ユニットを受容するよう構成されている、複数のキャビティを有しうる。詳細には、複数の制振ユニットは、キャリアに空間的に分布しうる。これらの制振ユニットは、詳細には、キャリアに、実質的に均等に、空間的に分布しうる。キャリアがおおよそ長方形である場合、制振ユニットは、キャリアの対向する両外側部及び/又は両外角部に配置されうる。
複数の制振ユニットを設けることによって、キャリアは、正確な様態で、振動加振に対して制振されうる。
一部の実行形態により、制振ユニットは、少なくとも0.2、少なくとも0.3、少なくとも0.4、少なくとも0.5、少なくとも0.6、又は少なくとも0.7の、減衰比Dを有する。したがって、制振ユニットは、0.1から0.7の減衰比、具体的には0.2から0.5の減衰比、より具体的には0.3から0.4の減衰比も有しうる。ベース、能動的に調節される磁気軸受、及びキャリアからなる動的システムでは、0.2から0.5の減衰比、より具体的には0.3から0.4の減衰比を提供することが、有利でありうる。
例示的なキャリア向けに約0.35の減衰比を有すると、臨界制御範囲内の振動数に関して(例えば、吸収装置固有振動数はキャリアの基本振動数のおよそ3〜3.5倍)、優良な制振結果が達成されうることが、実験で示された。
一部の実行形態により、能動的に制御可能な磁気軸受は各々、電気的に制御可能な電磁アクチュエータであって、相対部品と磁気的に相互作用し、ベースとキャリアとの間に特定の距離を維持するよう、電子部品ユニットを介して能動的に調節又は制御されうる、アクチュエータを有する。
軸受バランスの摂動は、少なくとも2つの能動的な磁気軸受を能動的に制御することによって、補償されうる。2つの能動的な磁気軸受が実装される場合、第3の磁気軸受は、受動的な磁気軸受として設計されうる。この第3の磁気軸受は、例えば一又は複数の永久磁石を含んでよく、この永久磁石を介して、軸受のエリア内のベースとキャリアとの間に一定の支持力が生成されうる。しかし、磁気軸受の全てが、能動的な、すなわち電気的に制御可能な磁気軸受として、設計されることもある。
電磁アクチュエータは、例えばアクチュエータと相対部品との間の距離が変動する場合、それに対応してより大きく又は小さく改変された制御電流により、活性化されうる。キャリアとベースとの間の距離を維持するために、関連するアクチュエータは相対部品に、より大きな又は小さな力、つまり改変された力を加える。一部の実施形態では、磁気軸受の少なくとも2つの電磁アクチュエータは、電子部品ユニットと共に、キャリアに配置されうる。これによって実装される信号経路の短縮が可能になり、それにより、電気的部品がキャリアとベースに広く分布している他の形態と比較して、キャリアの真空性能が向上しうる。
少なくとも2つの制御可能な磁気軸受の電磁アクチュエータは、典型的には、キャリアに配置される一方、電磁アクチュエータと磁気相互作用することになりうる相対部品は、ベースに配置されうる。キャリアとベースにおけるアクチュエータと相対部品との逆配置も、等しく想定されうる。この逆構成では、少なくとも制御可能な磁気軸受の電磁アクチュエータはベースに配置され、相対部品がキャリアに配置されうる。
相対部品は、典型的には、永久磁石又は強磁性体として設計される。設けられる磁気軸受の数は、3つの磁気軸受だけに限定されるわけではない。磁気軸受の数は、詳細には実現される動きの自由度の数によって、変動しうる。少なくとも3つの空間的に分離された磁気軸受を有することで、キャリアは、キャリアの重力に抗して、ベースに対して安定的な位置に保持されうる。ベースに対してキャリアを浮上させ、非接触でマウントさせることは、詳細には搬送を目的として(例えば、ベースに対するキャリアの線形運動のために)、提供されうる。この場合、少なくとも1つ又は複数の他の磁気軸受は、ベースに対するキャリアの、横方向の安定化のために提供されうる。他の磁気軸受によって、例えば、重力に直角な平面、又は、重力に直角で、かつ搬送方向に直角な平面において、非接触の磁気支持が実装されうる。
ベースに対するキャリアの、横方向又は横断方向の安定化のために、一又は複数の能動的に制御可能な磁気軸受が提供されうる。磁気軸受の電磁アクチュエータは、キャリア及び/又はベースに配置されうる。
物体を保持し、位置付け、かつ/又は動かすための装置は、詳細には、キャリアに配置された基板ホルダを有する。ベースに対してキャリアを動かすことによって、キャリアに装着された基板が、処理デバイス(典型的には表面処理デバイス)の作業エリア又は処理エリアに入りうる。ベースに対するキャリアの位置付け精度は、数ミクロンの範囲、或いはサブミクロン範囲(すなわちナノメートル範囲)におけるものでありうる。基板ホルダの代わりに、又はそれに加えて、処理ステーション(例えば気化器又は同等の表面処理デバイス)が、キャリアに配置されうる。
一部の実施形態では、キャリアは、基板を運ぶよう構成された基板キャリアである。キャリアは、基板保持面と、基板保持面に基板を(特に実質的に垂直な配向で)保持するよう構成された、基板保持デバイスとを含みうる。基板保持デバイスは、チャックデバイス(例えば、磁気チャック又は静電チャック)を含みうる。
一部の実行形態により、キャリアの能動的に制御可能な磁気軸受は各々、ベースとキャリアとの間の距離を測定するための距離センサを含む。各磁気軸受には、磁気軸受から磁気軸受の真正面にあるベースの区域までの距離を確認するための、少なくとも1つの距離センサが割り当てられうる。距離センサは、キャリア上の、関連する磁気軸受の電磁アクチュエータの直近に配置されうる。距離センサと電磁アクチュエータとの間の距離が短いことは、詳細にはコロケーション(collocation)の度合いを低減するのに有利である。距離センサは、キャリア上で電磁アクチュエータから離間していることもあり、この場合、距離センサは磁気軸受の外部に配置されうる。
距離センサは、電磁アクチュエータが取り付けられているキャリアの位置における、距離を測定しうる。ゆえに、電磁アクチュエータの制御電流の変化、及び、それによって得られるアクチュエータの力又は作用の変化は、アクチュエータとベース側の相対部品との間の距離に直接的な影響を与える。かかる距離変化は、距離センサを電磁アクチュエータに隣接するように配置することによって、直接的に測定可能である。
能動的に制御可能な磁気軸受の各々に距離センサが取り付けられていることによって、各磁気軸受のエリアにおけるベースとキャリアとの間の局所的な距離変化が、正確に検出され、個別に影響を受ける磁気軸受の適切な制御を行うために選択的に使用されうる。
一部の実行形態により、キャリアの能動的に制御可能な磁気軸受は各々、電子部品ユニットを有する。電子部品ユニットは、距離センサによって測定された距離に応じて関連する磁気軸受の電磁アクチュエータを作動させるために、使用されうる。各磁気軸受が、電子部品ユニットを有し、かつ、対応する距離センサが取り付けられていることで、距離センサによって測定された距離信号は、磁気軸受に内在するそれぞれの電子部品ユニットによって局所的に処理されうる。各磁気軸受の電磁アクチュエータに対応する制御電流又は制御信号が、磁気軸受のエリアにおいて、かつ/又は、磁気軸受に割り当てられた各電子部品ユニットによって、局所的に生成されうる。この方法では、距離センサと電子部品ユニットとの間、及び、電子部品ユニットと電磁アクチュエータとの間で必要となる配線の労力が、更に削減されうる。装置全体(特にキャリア)の真空性能は、更に向上し、増強されうる。
図1は、本書に記載の実施形態による、物体を保持し、位置付け、かつ/又は動かすための装置1の斜視図である。装置1は、ベース30であって、典型的には静止しており、かつ、1つのガイドレール又は互いに平行に配置された2つのガイドレール32、34を有しうる、ベース30を有する。ガイドレールは、装置1の搬送方向を規定する。
キャリア50は、能動的に制御可能な複数の磁気軸受10を介して、ガイドレール32、34のところに非接触で支持される。例えば、少なくとも3つの磁気軸受が設けられてよく、これらの磁気軸受のうちの少なくとも2つは能動的に制御可能でありうる。
図2は、磁気軸受10の概略構成を示している。
一部の実施形態では、磁気軸受10は、距離センサ20と、設定値エンコーダ25と、コントローラ2と、増幅器24と、電磁アクチュエータ12とを接続する、制御回路11を有しうる。電磁アクチュエータ12は、電磁石として構成されうる。一部の実施形態では、電磁アクチュエータは、電気信号で活性化されうるコイル16と、フェライト又は鉄芯14とを含む。電磁アクチュエータ12は、電磁石の代わりに、双方向に作用するローレンツアクチュエータ又は含浸コイルアクチュエータとして構成されることもある。コントローラ22によって生成されうる制御信号は、増幅器24によって増幅され、かつ、相対部品18に作用する力を生成するために、コイル16に送られうる。相対部品18は、ベース30の、ガイドレール32、34に沿った又はガイドレール32、34上の場所に、配置されうる。相対部品18は、強磁性磁石又は永久磁石でありうる。相対部品は、典型的には、ベースにおいて、ガイドレール32、34に平行に延在する。
他の実施形態では、電磁アクチュエータ12は、ベース30の、例えばガイドレールに沿った又はガイドレール上の場所に配置されてよく、相対部品18はキャリア50に配置されうる。
典型的には電磁アクチュエータ12の付近に配置される距離センサ20が、相対部品18又はキャリア50までの距離26を、恒常的又は周期的に測定する。距離センサ20によって測定された距離26は、距離信号の形態で、設定値エンコーダ25に送られる。これは、例としては、図2に示す中央コントローラ29に連結されてよく、中央コントローラ29は、例えば、ベース30とキャリア50との間に維持されるべき距離26の設定値を供給する。設定値エンコーダ25において設定値と実際値とが互いに比較され、これに対応する比較信号がコントローラ22に送られる。コントローラ22は、電磁アクチュエータ12を制御するために提供される制御信号を生成し、かつ、この制御信号を増幅器24に送る。
最終的にコイル16に送られうる、増幅された制御信号は、キャリア50とベース30との間に特定の距離26が維持されるように、かつ、必要な距離26からのずれがある場合には、電磁アクチュエータ12による出力が動的に調整されて、距離26を維持するように、算出され、規定される。
この場合、磁気軸受10の電子部品は、電子部品ユニット15において、少なくとも論理的に、ひとまとめにグループ化される。増幅器24、コントローラ22、設定値エンコーダ25、及び/又は距離センサ20などの電子部品は、例えば単一の集積回路の形態で、共通の回路基板上に載せられうる。したがって、電子部品ユニット15及び関連する配線のための空間要件は、引き下げられうるか又は最小化されうる。
図2に示す設計では、キャリア30又はベース30の、典型的には電磁アクチュエータ12の付近の場所に、運動センサ28がオプションで提供されうる。運動センサ28は、電子部品ユニット15及び制御回路11に組み込まれうる。詳細には、運動センサ28は、加速センサ及び/又は速度センサとして設計されうる。加速センサにより、運動状態(詳細には、キャリア50及び/又はベース30の振動挙動又は共振挙動)の測定又は確認が可能になる。
発生可能性のあるベース30及び/又はキャリア50の振動挙動又は共振挙動を、キャリア50又はベース30に配置された加速センサによって確認することが可能である。詳細には、加速センサによって確認された信号と距離センサ20によって確認された信号とを組み合わせることによって、ベース及び/又はキャリアの振動挙動又は共振挙動が確認されうる。例えば、距離センサ20がベース30とキャリア50との間で経時的に変動する距離を検出した場合、これは、ベース30が、既に振動を生じさせられていることか、さもなければ、(特に、運動センサ28によって運動が検出されなかった、又は無視できるほど小さな運動しか検出されなかった場合は、)機械的に摂動した(たとえば揺れた)ことを示す。
したがって、運動センサ28と距離センサ20とを組み合わせることで、システムの摂動及び振動の検出が可能になりうる。これにより、磁気軸受10は、かかる摂動又は振動を減衰させるよう、選択的に制御されうる。運動センサ28によって生成されうる運動信号も同様に、制御回路11のコントローラ22に送られうる。運動信号は、ベースのところでのキャリア50の非接触支持の、制振又は振動減衰のために、使用されうる。この目的のために、コントローラ22に振動減衰部(vibration dampening)23が装備されてよく、振動減衰部23は、振動を減衰させる様態で、運動センサ28の信号を処理する。
図1及び図2に示す例示的な実施形態は、キャリア50に磁気軸受10の能動的な構成要素を配置することを表わしているが、相対部品18又は複数の受動的な相対部品は、ベース30に配置される。相対部品18は受動的な構成要素でありうる。
磁気軸受10の能動的な構成要素がベース30に配置されること、及び、磁気軸受10の受動的な構成要素(特に一又は複数の相対部品18)が、ベース30に対して移動可能であるキャリア50に配置されることも、更なる実施形態により、同様に提示されている。
例えば、コイル16及び関連する距離センサ20を伴う電磁アクチュエータ12が、電子部品ユニット15、コントローラ22、振動減衰部23、増幅器、及び/又は設定値エンコーダ25と共に、ベース30に静止した様態で配置されうる。一又は複数の相対部品18は、キャリア50に配置されうる。
(場合によっては振動減衰部23と組み合わされる)運動センサ又は加速センサの使用は、オプションとしてのみ提供されるものである。運動センサ又は加速センサと、電子振動減衰部とによる振動減衰の代わりに、又はそれに加えて、装置1には、以下で図3〜図10に関連して詳述するような、少なくとも1つの制振ユニット100が設けられうる。
図1に概略的に示しているように、複数の磁気軸受10は、キャリア50及び/又はベース30の全体にわたって分布しうる。磁気軸受10の各々は、対応する制御回路を(ひいては対応する電子部品ユニットも)有しうる。このことにより、磁気軸受10の各々が、準自律的に(quasi−autonomously)、ベース30とキャリア50との間に特定の距離26を維持することが可能になる。
装置1には駆動装置38が装備されてよく、駆動装置38は、少なくとも1つの、ベース30に対するキャリア50の非接触線形運動を提供しうる。駆動装置38は、詳細には線形モータとして設計される。詳細には、駆動装置は、側方のガイドレールの間に延在する(例えば、図1の例示的な実施形態における)駆動レール36を含みうる。駆動レール36には永久磁石機構42又は強磁性材料が装備されてよく、それとキャリア50に配置されたコイル機構40が、磁気的に相互作用しうる。駆動装置38の電気で活性化されうる構成要素のうちの可能な限り多くが、キャリア50に配置されうる。あるいは、駆動装置38の電気で活性化されうる構成要素は、ベース30に配置されうる。
駆動装置は、誘導モータ又はリラクタンス駆動装置の形態に、設計されうる。駆動装置の実行形態に応じて、駆動レール36は、永久磁石材料若しくは強磁性材料、又は類似の材料から作製されうる。誘導モータを実装する場合、駆動レールは、アルミニウム若しくは別の金属も含みうるか、又は、かかる材料から製造されうる。
図1には、キャリア50向けの電源デバイス52が示されている。この例示的な実施形態では、電源デバイス52は、例えば相手側のベース30に配置される、ケーブルキャリアとして実装される。ケーブルキャリアが柔軟に設計されることにより、ベース30のガイドレール32、34に沿ってキャリア50を非接触で動かすこと、又は非接触でガイドすることが、可能になる。
一部の実施形態では、磁気軸受10の各々が、関連するそれぞれの電子部品ユニットを有しうる。あるいは、キャリア50が中央コントローラ29を有し、中央コントローラ29が、例えば、データの伝送のために全ての磁気軸受10(詳細には、磁気軸受の電子部品ユニット15)に連結されることが、想定されうる。
例として図7〜図10に示しているように、本書に記載の実施形態によるキャリア50には、少なくとも1つの、機械的制振ユニットでありうる制振ユニット100が装備されうる。図7においては、キャリア50に、少なくとも2つ又は4つの制振ユニット100が設けられうる。制振ユニット100は、図8にも別途図示している。
制振ユニット100は、ハウジング102を含みうる。ハウジング102は、閉ざされ、かつ/又は真空気密になるように、設計されうる。キャリア50に又はその中には、制振ユニット100又はハウジング102を受容するために、少なくとも1つのキャビティ54が形成されうる。例えば図7に示しているようなキャビティ54は、キャリア50の側壁51にある挿入スロットとして設計されてよく、この挿入スロットは、それに対応して設計された、制振ユニット100のハウジング102を受容しうる。一部の実施形態では、制振ユニット100は、ハウジング102を伴わずに、キャリア50に又はその中に、直接配置されうる。
制振ユニット100は、ハウジング102の内部104に配置される、制振質量112を有しうる。制振質量112は、例えば、ハウジング102の内部104に揺動するように又は移動可能に装着される、中実の金属ブロックとして設計されうる。制振ユニット100は、受動ダンパ110として、ひいては、例えば単一質量振動子又は振動吸収装置120として、設計されうる。
制振質量112は、ハウジング102の内部104に、揺動するように懸架されうる。この例示的な実施形態におけるハウジング102は、側壁106同士が互いにおおよそ平行に配向されている、立方体形状を有する。側壁106は、後部壁103及び前部壁105を介して、互いに接続されている。側壁106は、後部壁103及び前部壁105と共に、長方形のフレームを形成する。ハウジング102は、その底部にベース107を有する。内部104の上部は、側壁106の上に置かれるリッド108によって、閉鎖されうる。
一部の実施形態では、前部壁105は、ハウジング102のリッド108から上方へと、並びにベース107から下方へと、延在しうる。前部壁105が側壁106から側方へと突き出すことも、想定されうる。この場合、前部壁105は、側壁106、ベース107、及びリッド108によって形成されるハウジングの断面を越えて、フランジの様態で延在しうる。前部壁105は、周囲を取り巻くフランジ部109を含みうる。図8に示しているように、複数の貫通孔111がフランジ部に形成されうる。ハウジング102、したがって制振ユニット全体が、キャビティ54の開口フレーム、又は、キャリア50の対応するスロットの開口フレームに、複数の貫通孔111を利用して、しっかりと取り付けられうる。
ねじ又はねじ式ボルトなどの好適な固定用要素が貫通穴を通ってよく、これらの固定用要素は次いで、キャビティ54の開口フレームの領域に設けられた相手側の固定用手段と係合されうる。相手側の固定用手段は、例えばキャリア50のねじ穴として、実装されうる。図7及び図8には示していないが、制振ユニット100のキャリア50からの取り外しを可能にするために、前部壁105の外側にハンドルが取り付けられることもある。
図9の断面図には、制振質量112が、側壁106又は後部壁103から、及び前部壁105から、特定の距離を保って配置されうることが、示されている。図9の例示的な実施形態では、制振質量112は、弾性変形可能な装着要素140を介して、ハウジング102に固定されうる。弾性変形可能な装着要素140は、一方の端部で制振質量112に取り付けられる。弾性変形可能な装着要素140は、別の端部で、装着支持体144に固定されうるか、又は装着支持体144に接続される。装着支持体144は、ハウジング102のベース107の決まった位置に配置されうる。
図9に示しているように、制振質量112は、対向する2つの端部の各々で、2つの弾性変形可能な装着要素140を介して別々の装着支持体に取り付けられうる。弾性変形可能な装着要素140を、装着支持体144の代わりに、後部壁103又は前部壁105の内側に、かつ、対向する側壁の一方又は両方に固定することも、想定されうる。
図9に示す例示的な実施形態では、例えば、弾性変形可能な装着要素140は板ばね142として設計される。図9では、制振質量112が、弾性変形可能な装着要素140を介する移動可能な装着に加えて、少なくとも1つの(この場合は2つの)対向する制振要素130によって、ハウジング壁に支持されうることも、示されている。第1制振要素は、ベース107と制振質量112との間の間隙内に配置される。第2制振要素は、制振質量112とリッド108との間の間隙内に配置される。制振要素130は、弾性圧縮可能な制振要素でありうる。制振要素130は、例えば、プラスチック、発泡性材料、ポリマー材料、若しくはエラストマ材料、又はこれらの組み合わせで、作られうる。
リッド108が閉じられると、制振要素130には予備張力がかかりうる。制振質量112は、制振要素130を介して、ハウジング102の対向する壁部(この場合はリッド108とベース107)で、追加の支持を得ることが可能である。例えば制振マットとして設計されうる制振要素130は、非圧縮の初期状態では、制振質量112と、ハウジング102の対向する内側壁114、116との間の距離を上回る、厚さ又は伸長を有する。
ゆえに、制振質量112の機械的振動が減衰されうる。更に、制振質量112の振動振幅が、制振要素130の弾性特性及び圧縮可能性によって、効果的に制限されうる。
図10による代替的かつ例示的な実施形態では、制振質量112が、1つ、2つ、又はそれを上回る数の制振要素130だけを介して、ハウジング102の内部104に装着されている。制振質量の下側とハウジング102のベース107との間には、下側制振要素が配置される。反対側、すなわち、制振質量112の上部とリッド108との間には、上側制振要素が設けられうる。
制振質量112と、リッド108及びベース107の、対向する内側壁114、116との間の間隙115は、制振要素130によってほぼ完全に満たされている。制振要素130は、非圧縮の初期状態では、制振質量112の上部とリッド108の内側壁との間の間隙115を上回る伸長又は厚さを有する。制振質量112の底部とベース107の内側壁114との間の間隙115に関連する下側制振要素130の厚さについても、同じことが言える。この方法では、制振質量112がハウジング102の内部104にゆるく配置されるのではなく、外部振動によって誘発された制振質量112の運動には、制振要素130の弾性変形が常に必要になることが、確実になる。
最後に、図3〜図6は、一例における制振ユニット100の動作原理を示している。この例示的な実施形態では振動吸収装置120として設計される制振ユニット100は、キャリア50の基本振動数f0の2倍から8倍の、振動装置固有振動数Tf0を有する。この例示的な実施形態では、吸収装置固有振動数Tf0は、キャリア50の基本振動数f0のほぼ3倍である。実践的かつ例示的な一実施形態では、キャリアの基本振動数は、例えば、15Hz又は30Hzでありうる。したがって、吸収装置固有振動数TF0は、およそ45Hz又は90Hzとなる。典型的な応用の場合、吸収装置固有振動数は100Hzを下回るものでありうる。
制振ユニット100又は振動吸収装置120は、これにしたがって設計されうる。制振質量112の重量、及び、ハウジング102の内部104における制振質量112の移動可能な懸架又は装着は、制振ユニット100が必要な吸収装置固有振動数を常に有するように、選択される。
図3の図では、3つの異なる減衰比Dに関して、機械的制振ユニットの個別の制振効果が示されている。破線203は0.7の減衰比Dに対応し、実線202は0.35の減衰比Dに対応し、点線201は0.1の減衰比を表わしている。垂直軸は、正規化された振動振幅である。水平軸は、キャリアの基本振動数f0に正規化された、加振振動数である。D=0.1という相対的に弱い減衰では、振動の振幅は、f0から最大で2.3倍増大するが、振動数がもっと高くなると急激に低下することが、この図に明確に示されている。0.35の減衰比Dでは、f0を上回る加振振動数に関して、振動振幅の若干の増大が得られる。
その後の、より高い振動数でも、振幅は著しく低下する。0.7の減衰比Dで更に強く減衰されると、キャリア50の基本振動数f0を上回る振動加振では、振動振幅の増大がなくなる。これに対応するグラフ(破線203)は、他の2つのグラフに漸近的に近づいていく。
図5の図は、非常に類似した質的特性を示している。しかしこの場合には、振幅スケールはデシベル単位で対数的に表わされており、およそ45〜48Hzの吸収装置固有振動数を前提としている。この例示的な実施形態におけるキャリア50の基本振動数f0は15Hzである。図5は、0.1、0.35、又は0.7という異なる減衰比Dが、キャリアの振動振幅に対して強度の異なる効果を有することを、示している。
図4には、完全を期すために、位相図が示されている。ここで、振動数は、X軸上にプロットされており、同じくキャリア50の基本振動数f0に正規化されている。ここでは、吸収装置固有振動数Tf0の領域において、制振ユニットが、加振に対しておよそ90°の移相を伴って振動することが、視認できる。振動数が増大すると、吸収装置又は吸収装置の制振質量112が、加振に対してほぼ180°の位相オフセットを伴って振動する。
最後に、図6は、キャリア50の振動に対する種々の制振ユニットの効果の一例を示している。一点鎖線200は、制振ユニットがない場合のキャリア50の振動特性を示している。振動が、キャリアの基本振動数f0の領域において第1最大値150を有することが、明確に識別できる。振動数が基本振動数f0のおよそ5倍まで増大すると、振動振幅は著しく低下する。しかしその後、急激な上昇があり、グラフは、基本振動数f0のおよそ6.5倍の、第2最大値152を示す。およそ15Hzの基本振動数を前提とすると、第2最大値152は、およそ100Hzの振動数において発生する。便宜的に、第2最大値152の振動数を以後、「第2共振振動数」とする。
この振動数範囲において、キャリア50の共振及び揺動は、能動的な磁気軸受によって、補償可能ではなくなるか、又は、意図されている応用に通常不十分にしか補償されない。この臨界制御範囲において振動及び共振の十分な低減を得るために、キャリア50に、前述の制振ユニット100の少なくとも1つが装備される。制振ユニット100の固有振動数は第2共振振動数を下回るが、制振ユニットは、第2共振振動数の範囲において振動の顕著な減衰を引き起こす。
0.1の減衰比を有する曲線(点線201)と制振されない場合(一点鎖線200)との比較に基づくと、減衰比が0.1の場合、第2共振振動数における振幅は、制振されない場合よりも相当程度小さくなることが明確である。しかし、曲線の形状は定性的に類似している。
減衰比が0.35では、第2共振振動数において、振動振幅の更なる低下が得られる。これは、実線202の水平化にも関連するこれは、第2共振振動数の領域における共振が、制振されない場合、又は、減衰比D=0.1で減衰される場合ほどには、明確ではなくなるということを意味する。第2共振振動数のエリアにおける曲線の平坦形状又は水平状態が、磁気軸受10の能動的な調節に、最終的には有利になることがわかる。
より高い減衰比D=0.7で制振ユニットを使用すると、第2共振振動数の領域における揺動の振幅に対して、更なる影響はほとんど与えられなくなる。実際のところ、減衰比D=0.7であることにより、破線203の形状の先鋭化がもたらされることがあるが、このことは、磁気軸受10、及び、キャリア50の振動加振を補償ための磁気軸受の電気的調節に、不利になることが多い。
この実践的な状況では、0.2〜0.5の範囲における中程度の(したがって0.35の領域における)制振が共振の減衰に特に適していることが分かる。システム及び装置1の異なる設計、例えばより大きな又は小さなキャリアを伴う設計において、異なる数の磁気軸受10を使用する場合は、振動吸収装置固有振動数のその他の振動数範囲、及び、他の減衰比が有利になることが分かりうる。
全ての制振ユニット100に関して、当然ながら、振動吸収装置120の吸収装置固有振動数が、第2共振振動数を下回り、かつ、磁気軸受の臨界制御範囲を下回るように、有益に選択されることになる。したがって、実際に減衰されるべき振動数(すなわち第2共振振動数)に対してデチューンされる、振動吸収装置120が使用される。このことは、最終的に、振動吸収装置120が、減衰されるべき共振振動数に精密にチューニングされる必要がなく、この同じ振動吸収装置が、類似しているが同一ではない振動挙動を示す多様なキャリア50に使用されうるという、利点を有する。
本書に記載の一態様により、物体を保持し、位置付け、かつ/又は動かすための装置1000が提供される。装置1000は、上記の解説を参照しうるような上述の実施形態の特徴の一部又は全部を含みうるが、ここではかかる解説を繰り返さない。
図11は、装置1000の例示的な一実施形態を示している。装置1000は、ベース30と、ベース30に対して搬送方向に非接触で移動可能なキャリア50とを含む。キャリア50は、例えば、真空チャンバ内でベースのガイドレールに沿って物体1010を搬送するために、物体1010を運ぶよう構成される。例えば、物体1010は基板又はマスクでありうる。
キャリア50は、例えば、実質的に水平な配向又は実質的に垂直な配向で基板を保持するよう構成された、基板キャリアでありうる。キャリア50は、物体1010をキャリアの保持面に誘引するよう構成された、チャックデバイス(例えば磁気チャック又は静電チャック)を含みうる。
図11及び図12に概略的に示しているように、装置は、実質的に水平な配向で、ベースのところでキャリアを非接触で保持するよう、構成されうる。図13及び図14に概略的に示しているように、装置は、実質的に垂直な配向で、ベースのところでキャリアを非接触で保持するよう、構成されうる。例えば、キャリアの基板保持面と重力ベクトルとの間の角度は、20°未満(例えば−10°から+10°)でありうる。
装置1000は、ベース30のところでキャリア50を非接触で保持するための、磁気軸受10(例えば3つ以上の磁気軸受10)を更に含む。磁気軸受10のうちの少なくとも2つは能動的に制御可能である。一部の実施形態では、キャリア50は、少なくとも1つの所定の方向に(すなわち搬送方向に)、ベース30に対して非接触で変位しうる。能動的に制御可能な磁気軸受は、相対部品18と磁気的に相互作用するよう構成された、電磁アクチュエータ12を含みうる。相対部品18は磁性材料を含みうる。上記の解説を参照されたい。ここではかかる解説を繰り返さない。
磁気軸受10の電磁アクチュエータ12はベース30に配置されてよく、相対部品18はキャリア50に配置されうる。例えば、ベース30は、キャリアの搬送方向を規定する、1つ、2つ、又はそれを上回る数の軌道又はレールを含みうる。電磁アクチュエータ12は、1つ、2つ、又はそれを上回る数の軌道又はレールに設けられうる。電磁アクチュエータ12がベース30に設けられると、特に、ベース30が真空チャンバに固定されうる静止構成要素である場合には、電磁アクチュエータに動力及び/又は冷却流体を供給することが容易になりうる。相対部品18はキャリア50に設けられうる。キャリア50がベースに沿って搬送方向に動くと、続いて、キャリアの相対部品18が、ベースの電磁アクチュエータ12と磁気相互作用することになる。それにより、キャリアの搬送中に、キャリアがベースのところで非接触で保持されうる。
他の実施形態では、磁気軸受10の電磁アクチュエータ12はキャリア50に配置されてよく、相対部品18はベース30に配置されうる。この場合、コスト及び複雑性が低減されうる。なぜなら、ベース30に沿ってキャリアを搬送するのに、典型的には、キャリア50における電磁アクチュエータ12は限定された数で十分だからである。電磁アクチュエータ12は、典型的には受動的構成要素である相対部品18よりも、典型的には、高価かつ複雑なものである。
装置1000は、キャリア50に固定されうる、少なくとも1つの制振ユニット100を更に含む。詳細には、少なくとも1つの制振ユニット100は、キャリア50に、又はキャリアに設けられたキャビティ内に移動可能に配置されうる制振質量を含む、機械的制振ユニットでありうる。キャリアの揺動が減衰されうる。
一部の実行形態では、少なくとも1つの制振ユニット100は、チューニングされた又はチューニング可能な振動吸収装置でありうる。したがって、所定の又は調整可能な振動数範囲内のキャリアの振動が、振動吸収装置をチューニングすることによって、又は、適切にチューニングされた振動吸収装置を利用することによって、減衰されうる。
少なくとも1つの制振ユニット100は、本書に記載の実施形態のいずれかによる、受動的制振ユニット、能動的制振ユニット、又は半能動的制振ユニットでありうる。
図12の代替的な実施形態には、図11の装置に類似した装置1001が示されている。ここでは、少なくとも1つの制振ユニット100はベース30に固定されている。詳細には、制振ユニット100は、ベース30に(例えば対応するハウジング内に)移動可能に装着されうる制振質量を含む、機械的制振ユニットでありうる。ベースの揺動が減衰されうる。
本書に記載の他の実施形態と組み合わされうる一部の実施形態では、制振ユニット100は、ベースの、能動的に制御可能な磁気軸受から50cm以下、又は20cm以下の距離のところに配置される。例えば、ベース30に設けられた電磁アクチュエータ12と、ベースに固定された制振ユニット100との間の距離は、20cm以下、具体的には10cm以下、より具体的には5cm以下でありうる。
移動可能キャリアの揺動は、典型的には、ベース30の揺動よりも、対処する上で問題がより多く、より困難なものであることに、留意すべきである。例えば、ベース30は、特にベースが真空チャンバを通ってキャリアを導くための静止した軌道又はレールを含む静止構成要素である場合、重く安定的な様態で構築されたベース本体を含んでよく、かつ/又は、真空チャンバに固定されうる。固定的に装着され、かつ/又は重いベースは、キャリアなどの、移動可能でありかつ/又は軽量な構成要素ほどには、振動しないことが多い。
しかし、一部の応用では、ベース30の揺動に対処するのは困難でありうる。例えば、ベースを構造的に強化すること、及び/又は、ベースを静止構成要素に固定することが、常に可能というわけではない。更に、ベースは、常に静止構成要素であるわけではなく、移動可能に装着されることもある。例えば、ベースは、真空チャンバ内に移動可能に装着されうる軌道又はレールを含む、ベース本体を含みうる。時に、ベースの重量を減らすことが、例えばコストの面で、又は真空システムにおける空間要件の観点では、有益でありうる。したがって、制振ユニット100をベース30に(例えば磁気軸受10の付近に)固定することは、ベース30の振動を低減し、かつ/又は揺動ピークを消去するために、有益でありうる。
ベース30に固定された制振ユニット100は、上記の実施形態を参照しうるような、本書に記載の制振ユニット100のいずれかと類似の又は同一の様態で構成されうるが、ここにはかかる実施形態を再掲しない。例えば、制振ユニット100は、機械的制振ユニット、受動的制振ユニット、能動的制振ユニット、半能動的制振ユニット、チューニングされた若しくはチューニング可能なマスダンパ、及び/又は揺動ダンパでありうる。
詳細には、制振ユニット100は、機械的制振ユニット、特に受動的制振ユニットでありうる。詳細には、制振ユニットは、制振質量を含む振動吸収装置でありうる。
制振ユニット100がベースに固定されている場合、制振ユニット100は吸収装置固有振動数を有しうる。吸収装置固有振動数は、臨界振動数範囲(すなわち、キャリアの基本振動数の2倍から10倍に対応する振動数範囲)に適合しうる。例えば、吸収装置固有振動数は、キャリアの基本振動数の3倍から5倍でありうる。
本書に記載の他の実施形態と組み合わされうる一部の実施形態では、制振ユニット100は、少なくとも1つの制振要素及び/又は少なくとも1つの弾性要素を介してキャリア50に(図11参照)又はベースに(図12参照)接続されている制振質量を含む、振動吸収装置である。
少なくとも1つの制振要素130は、弾性変形可能な制振要素でありうる。例えば、弾性変形可能な制振要素は、制振質量112とキャリア50又はベース30との間で作用する、弾性材料を含みうる。詳細には、弾性変形可能な制振要素は、ポリウレタン、又は、sylomer(登録商標)などの別のポリマーを含みうる。
少なくとも1つの弾性要素は、ばね要素(特に板ばね)などの、弾性変形可能な装着要素140を含みうる。弾性変形可能な装着要素140は、制振質量112をキャリア又はベースに、移動可能に接続しうる。
制振ユニット100は、図7又は図8の制振ユニットにしたがって構成されうる。詳細には、制振ユニットは制振質量112を収容するハウジング102を含んでよく、このハウジング112は、キャリア又はベースに設けられたキャビティ内に受容されうる。
一部の実施形態では、少なくとも1つの制振ユニットがキャリア50に固定され、少なくとも1つの制振ユニットがベース30に固定される。
図13は、キャリアを保持し、位置付け、かつ/又は動かすための装置1003の概略断面図を示している。装置1003は図11の装置に類似している。しかし、装置1003は、キャリア50を、実質的に垂直な配向で、非接触で保持し、搬送するよう構成される。詳細には、ベース30のところで非接触で保持されるキャリア50は、実質的に、垂直方向Vに延在しうる。
例えば、ベース30の上側軌道1020は、少なくとも部分的にキャリアの上方に配置されてよく、ベース30の下側軌道1030は、少なくとも部分的にキャリアの下方に配置されうる。上側軌道1020に設けられた磁気軸受10の電磁アクチュエータ12は、キャリアに固定された相対部品18と、磁気的に相互作用しうる。したがって、キャリアは上側軌道1020の下方に、非接触で保持されうる。
一部の実施形態では、キャリアを搬送方向に非接触で動かすための駆動装置が、下側軌道1030に設けられうる。例えば、駆動装置は、ベース30に沿って搬送方向に、キャリアを非接触で動かすよう構成された、リニアモータを含みうる。
図13の実施形態では、少なくとも1つの制振ユニット100は、キャリア50に(特に、少なくとも1つの能動的に制御される磁気軸受の付近の、例えばキャリア50の上部に)固定される。制振ユニット100は、本書に記載の制振ユニットのいずれかにしたがって構成されうる。
図14は、実質的に垂直な配向で、キャリアを保持し、位置付け、かつ/又は動かすための装置1004の概略断面図を示している。装置1004は、図13に示す装置1003に類似している。
図14の実施形態では、少なくとも1つの制振ユニット100は、ベース30に(特に、少なくとも1つの能動的に制御される磁気軸受の付近に)配置される。制振ユニット100と電磁アクチュエータ12との間の距離は、20cm以下でありうる。所与の振動数範囲におけるベースの揺動が、制振ユニット100によって減衰されうる。
本書に記載の他の実施形態と組み合わされうる一部の実施形態では、複数の制振ユニット100が、例えば互いから搬送方向に離間して、ベースに固定されうる。例えば、ベースは、搬送方向に延在する少なくとも1つのレール又は軌道を含んでよく、複数の制振ユニット100が、レール又は軌道に配置されうる。例えば、ベース30に設けられた各電磁アクチュエータは、それに関連する、ベースの電磁アクチュエータの付近に配置された制振ユニット100を有しうる。キャリアとベースとの磁気相互作用によって誘発されうるベースの振動が、減衰されうる。
図14に概略的に示しているように、制振ユニット100は、オプションで、キャリアにも(例えば、能動的に制御される磁気軸受の相対部品18の付近に)固定されうる。換言すると、少なくとも1つの第1制振ユニットがキャリアに固定されてよく、少なくとも1つの第2制振ユニットがベースに固定されうる。少なくとも1つの第1制振ユニットは、キャリアの揺動特性(例えば質量や基本振動数など)に適合してよく、少なくとも1つの第2制振ユニットはベースの揺動特性に適合しうる。
別の態様により、物体を保持し、位置付け、かつ/又は動かすための装置のベースが提供される。ベースは、例えば、搬送方向に延在する一又は複数の軌道又はガイドレールを含む、ベース本体を含む。
ベースは、静止構成要素、又は移動可能に装着された構成要素でありうる。例えば、図15に示す実施形態では、ベースは、キャリアを非接触で保持するよう構成された回転モジュールの移動可能ロータの一部である。ロータは回転軸に対して回転可能である。したがって、ベースのところで非接触で保持されるキャリアが、真空チャンバ内で回転しうる。
能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータは、ベース本体に配置される。したがって、キャリアは、少なくとも2つの能動的な磁気軸受によって、ベースのところで非接触で保持されうる。キャリアは、ベースに沿って搬送方向に変位しうる。
更に、少なくとも1つの制振ユニットが、ベース本体に(例えば、電磁アクチュエータの付近に)、具体的には、関連する電磁アクチュエータから20cm以下の距離のところに、固定される。少なくとも1つの制振ユニットは、本書に記載の制振ユニットのいずれかにしたがって構成されうる。
図15は、本書に記載の実施形態による、回転モジュール1100の概略断面図である。回転モジュール1100は真空チャンバ1101を含む。
ロータ1102が、真空チャンバ内に設けられ、回転軸A(例えば垂直回転軸)に対して回転可能に装着される。換言すると、ロータは回転軸Aの周囲で回転しうる。ロータ1102は、本書に記載の実施形態のいずれかによるベース30を含む。
能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータは、キャリア50がロータ1102のところで非接触で保持されうるように、ロータに配置される。一部の実施形態では、2つ以上のキャリアが同時に、ロータ1102の所で保持され、かつ/又は、ロータによって回転しうる。例えば、ロータ1102は、回転軸の第1の側の、少なくとも1つの第1キャリアを保持するための少なくとも1つの第1軌道と、第1の側の反対側の回転軸の第2の側の、少なくとも1つの第2キャリアを保持するための少なくとも1つの第2軌道とを、含みうる。
ベース30は、静止構成要素でありうるか、又は、真空チャンバ内に移動可能に装着されうる。例えば、ベースは、キャリアの搬送方向を横切る方向に移動可能でありうる、ロータ1102の一部、軌道切り替えデバイスの一部、又は、キャリア移送デバイスの一部でありうる。例えば、キャリアが非接触で支持されているベースは、垂直方向及び/又は水平方向に(例えば軌道切り替え方向に)、移動可能でありうる。ベースを動かすためのモータなどのアクチュエータが、設けられうる。ベースが移動可能に装着されている場合、ベース30の重量を低減することは有益である。この場合、ベースは、真空チャンバなどの静止構成要素に、不可動に固定されるわけではない。したがって、ベース30は、移動可能なベースと移動可能なベースのところで非接触で保持されているキャリアとの磁気相互作用によって誘発されうる振動の影響を受けやすいことがある。前記振動は、ベースに固定された少なくとも1つの制振ユニットによって減衰されうる。
少なくとも1つの制振ユニット100は、ロータ1102の振動を減衰させるために、図15に概略的に示しているようにロータ1102に固定されうる。制振ユニット100の固有振動数は、ロータの基本振動数に適合しうる。代替的又は追加的には、制振ユニットは、チューニング可能な制振ユニット、又は、適応型制振ユニットなどの能動的制振ユニットでありうる。したがって、ロータの振動が効果的に減衰されうる。制振ユニット100は、上記の解説を参照しうるような本書に記載の制振ユニットのいずれかにしたがって構成されうるが、ここではかかる解説を繰り返さない。
図16は、本書に記載の実施形態による、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法を示すフロー図である。
ボックス710において、キャリアがベースのところで非接触で保持され、かつ/又は、ベースに対して搬送方向に搬送されるように、少なくとも2つの磁気軸受が能動的に制御される。例えば、キャリアは、例としては真空チャンバ内で、ベースの軌道又はレールに沿って搬送方向に、非接触で搬送されうる。代替的又は追加的には、ベースを含むロータを回転させることによって、キャリアが回転しうる。
ボックス720において、キャリア又はベースに固定された少なくとも1つの制振ユニットを用いて、キャリアとベースの少なくとも一方の振動が減衰される。振動は、キャリアがベースに対して搬送方向に動いている間に、制振ユニットによって減衰されうる。振動は、キャリアがベースのところで非接触で保持されている時に、制振ユニットによって減衰されうる。振動は、キャリアがベースに対して非接触で位置付けられている間に、減衰されうる。振動はベースを含むロータの回転中に減衰されてよく、キャリアは、ロータのところで非接触で保持される。本書に記載の実施形態による装置は、真空チャンバと、真空チャンバ内の堆積エリアに配置された少なくとも1つの堆積源とを含む真空システムの一部でありうる。堆積源は、真空システム内でキャリアによって保持されている物体にコーティング材を堆積させるよう、構成されうる。本書に記載の装置は、キャリアを堆積エリアへと非接触で搬送するよう構成されうる。真空システムは、例えば、キャリアを堆積エリアへと搬送するためにキャリアを回転させる、回転モジュールを更に含みうる。
本書に記載の第1態様により、物体を保持し、位置付け、かつ/又は動かすための装置について説明する。装置は、ベースと、ベースに対して移動可能なキャリアとを含む。装置は少なくとも3つの磁気軸受を更に含み、キャリアが少なくとも1つの所定の方向に関して変位しうるように、キャリアは、これらの磁気軸受によって、ベースのところで非接触で支持される。磁気軸受のうちの少なくとも2つは能動的に制御可能な磁気軸受として構成され、キャリアは、少なくとも、基本振動数での振動を生じさせられうる。装置は、キャリアに固定され、かつ、少なくとも0.1の減衰比を有する、少なくとも1つの機械的制振ユニットを有する。
他の実施形態と組み合わされうる一部の実施形態では、制振ユニットは、制振質量を伴う受動ダンパを含む。
他の実施形態と組み合わされうる一部の実施形態では、制振ユニットは振動吸収装置として構成される。
他の実施形態と組み合わされうる一部の実施形態では、振動吸収装置は、キャリアの基本振動数の2倍から8倍の吸収装置固有振動数を有する。
他の実施形態と組み合わされうる一部の実施形態では、振動吸収装置は、キャリアの基本振動数の3倍から6倍の吸収装置固有振動数を有する。
他の実施形態と組み合わされうる一部の実施形態では、制振ユニットはハウジングを有し、このハウジングの内部に制振質量が配置される。ハウジングは真空気密ハウジングでありうる。
他の実施形態と組み合わされうる一部の実施形態では、制振質量は、ハウジングに対して移動可能に装着される。
他の実施形態と組み合わされうる一部の実施形態では、制振質量のハウジングへの装着は、少なくとも1つの弾性圧縮可能な制振要素、及び/又は、少なくとも1つの弾性変形可能な装着要素を有する。
他の実施形態と組み合わされうる一部の実施形態では、制振質量はハウジングの内側壁から特定の距離を保って配置され、弾性圧縮可能な制振要素が、制振質量と内側壁との間の空間内に配置される。非圧縮の初期状態では、制振要素は、内側壁と制振質量との間の距離を上回るかこの距離に等しい、外法寸法を有しうる。
他の実施形態と組み合わされうる一部の実施形態では、装着要素は、一方の端部で制振質量に、かつ反対側の端部でハウジングに、接続される。
他の実施形態と組み合わされうる一部の実施形態では、装着要素は、一又は複数の板ばねを有する。
他の実施形態と組み合わされうる一部の実施形態では、制振ユニットは、外部からアクセス可能なキャリアのキャビティ内に配置される。
他の実施形態と組み合わされうる一部の実施形態では、複数の制振ユニットがキャリアに空間的に分布する。
他の実施形態と組み合わされうる一部の実施形態では、機械的制振ユニットは、少なくとも0.2、少なくとも0.3、少なくとも0.4、少なくとも0.5、少なくとも0.6、又は少なくとも0.7の、減衰比Dを有する。
他の実施形態と組み合わされうる一部の実施形態では、能動的に制御可能な磁気軸受は各々、電気的に制御可能な電磁アクチュエータであって、相対部品と磁気的に相互作用し、ベースとキャリアとの間に特定の距離を維持するよう、電子部品ユニットによって能動的に制御されうる、アクチュエータを有する。
以上の記述は、本開示の実施形態を対象としているが、本開示の基本的な範囲から逸脱することなく、本開示の他の実施形態及び更なる実施形態が考案されてよく、本開示の範囲は、以下の特許請求の範囲によって決まる。
以上の記述は、本開示の実施形態を対象としているが、本開示の基本的な範囲から逸脱することなく、本開示の他の実施形態及び更なる実施形態が考案されてよく、本開示の範囲は、以下の特許請求の範囲によって決まる。
また、本願は以下に記載する態様を含む。
(態様1)
物体を保持し、位置付け、かつ/又は動かすための装置であって、
ベース(30)、及び、前記ベース(30)に対して移動可能なキャリア(50)と、
少なくとも3つの磁気軸受であって、前記キャリアが少なくとも1つの所定の方向(2)に関して変位しうるように、前記キャリア(50)が、前記磁気軸受によって前記ベース(30)のところで非接触で保持され、前記磁気軸受(10)のうちの少なくとも2つが、能動的に制御可能な磁気軸受として構成され、前記キャリア(50)が、少なくとも、基本振動数(f0)での振動を生じさせられうる、少なくとも3つの磁気軸受と、
少なくとも1つの機械的制振ユニットであって、前記キャリア(50)に固定され、かつ、少なくとも0.1の減衰比Dを有する、少なくとも1つの機械的制振ユニットとを有する、装置。
(態様2)
物体を保持し、位置付け、かつ/又は動かすための装置であって、
ベース(30)、及び、前記ベース(30)に対して移動可能なキャリア(50)と、
前記キャリアが搬送方向に変位しうるように、前記ベース(30)のところで前記キャリアを(50)非接触で保持するための磁気軸受(10)であって、前記磁気軸受(10)のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される、磁気軸受(10)と、
前記キャリア(50)又は前記ベース(30)に固定される、少なくとも1つの制振ユニット(100)とを有する、装置。
(態様3)
前記制振ユニット(100)が、前記ベース(30)に、特に、能動的に制御可能な磁気軸受から50cm以下の距離のところで固定される、態様2に記載の装置。
(態様4)
前記制振ユニット(100)が、制振質量(112)を伴う受動ダンパ(110)を含む、態様1から3のいずれか一項に記載の装置。
(態様5)
前記制振ユニット(100)が、振動吸収装置(120)であって、特に、前記キャリア(50)の基本振動数(f0)の2倍から8倍の吸収装置固有振動数(Tf0)を有する振動吸収装置(120)として構成される、態様1から4のいずれか一項に記載の装置。
(態様6)
前記制振ユニット(100)がハウジング(102)を有し、前記ハウジングの内部(104)に制振質量(112)が配置され、特に、前記制振質量(112)が前記ハウジング(102)に対して移動可能に装着される、態様1から5のいずれか一項に記載の装置。
(態様7)
前記制振質量(112)の前記ハウジング(102)への装着が、少なくとも1つの弾性圧縮可能な制振要素(130)、及び/又は、少なくとも1つの弾性変形可能な装着要素(140)を有する、態様6に記載の装置。
(態様8)
前記制振質量(112)が、前記ハウジング(102)の内側壁から距離を保って配置され、前記制振質量(112)と前記内側壁との間の空間に、弾性圧縮可能な制振要素(130)が配置され、前記弾性圧縮可能な制振要素(130)が、非圧縮の初期状態では、前記内側壁と前記制振質量(112)との間の前記距離を上回るか又は前記距離に等しい、外法寸法を有する、態様6又は7に記載の装置。
(態様9)
前記制振ユニット(100)が、前記キャリア(50)のキャビティ(54)内、又は、前記ベース(30)のキャビティ内に配置される、態様1から8のいずれか一項に記載の装置。
(態様10)
複数の制振ユニット(100)が、前記キャリア(50)と前記ベース(30)の少なくとも一方に空間的に分布している、態様1から9のいずれか一項に記載の装置。
(態様11)
前記能動的に制御可能な磁気軸受は各々、電気的に制御可能であり、かつ相対部品(18)と磁気的に相互作用する、電磁アクチュエータ(12)を有し、前記電磁アクチュエータ(12)が、前記ベース(30)と前記キャリア(50)との間に特定の距離(26)を維持するよう、電子部品ユニット(15)によって能動的に制御されることが可能である、態様1から10のいずれか一項に記載の装置。
(態様12)
前記制振ユニット(100)が、能動的制振ユニット又は半能動的制振ユニットである、態様1から11のいずれか一項に記載の装置。
(態様13)
物体を保持し、位置付け、かつ/又は動かすための装置のベースであって、
ベース本体と、
キャリア(50)が前記ベース本体に対して搬送方向に変位可能であるように前記ベース本体のところで前記キャリアを非接触で保持するために、前記ベース本体に配置された、能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータと、
前記ベース本体に固定された、少なくとも1つの制振ユニット(100)とを備える、ベース。
(態様14)
回転モジュールであって、
真空チャンバと、
前記真空チャンバ内に回転可能に装着されるロータであって、態様13に記載のベースを備える、ロータとを備える、回転モジュール。
(態様15)
物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法であって、
ベースのところでキャリアを非接触で保持するよう、少なくとも2つの磁気軸受を能動的に制御することと、
前記キャリア又は前記ベースに固定された少なくとも1つの制振ユニットを用いて、前記キャリアと前記ベースの少なくとも一方の振動を減衰させることとを含む、方法。
また、本願は以下に記載する態様を含む。
(態様1)
物体を保持し、位置付け、かつ/又は動かすための装置であって、
ベース(30)、及び、前記ベース(30)に対して移動可能なキャリア(50)と、
少なくとも3つの磁気軸受であって、前記キャリアが少なくとも1つの所定の方向(2)に関して変位しうるように、前記キャリア(50)が、前記磁気軸受によって前記ベース(30)のところで非接触で保持され、前記磁気軸受(10)のうちの少なくとも2つが、能動的に制御可能な磁気軸受として構成され、前記キャリア(50)が、少なくとも、基本振動数(f0)での振動を生じさせられうる、少なくとも3つの磁気軸受と、
少なくとも1つの機械的制振ユニットであって、前記キャリア(50)に固定され、かつ、少なくとも0.1の減衰比Dを有する、少なくとも1つの機械的制振ユニットとを有する、装置。
(態様2)
物体を保持し、位置付け、かつ/又は動かすための装置であって、
ベース(30)、及び、前記ベース(30)に対して移動可能なキャリア(50)と、
前記キャリアが搬送方向に変位しうるように、前記ベース(30)のところで前記キャリアを(50)非接触で保持するための磁気軸受(10)であって、前記磁気軸受(10)のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される、磁気軸受(10)と、
前記キャリア(50)又は前記ベース(30)に固定される、少なくとも1つの制振ユニット(100)とを有する、装置。
(態様3)
前記制振ユニット(100)が、前記ベース(30)に、特に、能動的に制御可能な磁気軸受から50cm以下の距離のところで固定される、態様2に記載の装置。
(態様4)
前記制振ユニット(100)が、制振質量(112)を伴う受動ダンパ(110)を含む、態様1から3のいずれか一項に記載の装置。
(態様5)
前記制振ユニット(100)が、振動吸収装置(120)であって、特に、前記キャリア(50)の基本振動数(f0)の2倍から8倍の吸収装置固有振動数(Tf0)を有する振動吸収装置(120)として構成される、態様1から4のいずれか一項に記載の装置。
(態様6)
前記制振ユニット(100)がハウジング(102)を有し、前記ハウジングの内部(104)に制振質量(112)が配置され、特に、前記制振質量(112)が前記ハウジング(102)に対して移動可能に装着される、態様1から5のいずれか一項に記載の装置。
(態様7)
前記制振質量(112)の前記ハウジング(102)への装着が、少なくとも1つの弾性圧縮可能な制振要素(130)、及び/又は、少なくとも1つの弾性変形可能な装着要素(140)を有する、態様6に記載の装置。
(態様8)
前記制振質量(112)が、前記ハウジング(102)の内側壁から距離を保って配置され、前記制振質量(112)と前記内側壁との間の空間に、弾性圧縮可能な制振要素(130)が配置され、前記弾性圧縮可能な制振要素(130)が、非圧縮の初期状態では、前記内側壁と前記制振質量(112)との間の前記距離を上回るか又は前記距離に等しい、外法寸法を有する、態様6又は7に記載の装置。
(態様9)
前記制振ユニット(100)が、前記キャリア(50)のキャビティ(54)内、又は、前記ベース(30)のキャビティ内に配置される、態様1から8のいずれか一項に記載の装置。
(態様10)
複数の制振ユニット(100)が、前記キャリア(50)と前記ベース(30)の少なくとも一方に空間的に分布している、態様1から9のいずれか一項に記載の装置。
(態様11)
前記能動的に制御可能な磁気軸受は各々、電気的に制御可能であり、かつ相対部品(18)と磁気的に相互作用する、電磁アクチュエータ(12)を有し、前記電磁アクチュエータ(12)が、前記ベース(30)と前記キャリア(50)との間に特定の距離(26)を維持するよう、電子部品ユニット(15)によって能動的に制御されることが可能である、態様1から10のいずれか一項に記載の装置。
(態様12)
前記制振ユニット(100)が、能動的制振ユニット又は半能動的制振ユニットである、態様1から11のいずれか一項に記載の装置。
(態様13)
物体を保持し、位置付け、かつ/又は動かすための装置のベースであって、
ベース本体と、
キャリア(50)が前記ベース本体に対して搬送方向に変位可能であるように前記ベース本体のところで前記キャリアを非接触で保持するために、前記ベース本体に配置された、能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータと、
前記ベース本体に固定された、少なくとも1つの制振ユニット(100)とを備える、ベース。
(態様14)
回転モジュールであって、
真空チャンバと、
前記真空チャンバ内に回転可能に装着されるロータであって、態様13に記載のベースを備える、ロータとを備える、回転モジュール。
(態様15)
物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法であって、
ベースのところでキャリアを非接触で保持するよう、少なくとも2つの磁気軸受を能動的に制御することと、
前記キャリア又は前記ベースに固定された少なくとも1つの制振ユニットを用いて、前記キャリアと前記ベースの少なくとも一方の振動を減衰させることとを含む、方法。
Claims (15)
- 物体を保持し、位置付け、かつ/又は動かすための装置であって、
ベース(30)、及び、前記ベース(30)に対して移動可能なキャリア(50)と、
少なくとも3つの磁気軸受であって、前記キャリアが少なくとも1つの所定の方向(2)に関して変位しうるように、前記キャリア(50)が、前記磁気軸受によって前記ベース(30)のところで非接触で保持され、前記磁気軸受(10)のうちの少なくとも2つが、能動的に制御可能な磁気軸受として構成され、前記キャリア(50)が、少なくとも、基本振動数(f0)での振動を生じさせられうる、少なくとも3つの磁気軸受と、
少なくとも1つの機械的制振ユニットであって、前記キャリア(50)に固定され、かつ、少なくとも0.1の減衰比Dを有する、少なくとも1つの機械的制振ユニットとを有する、装置。 - 物体を保持し、位置付け、かつ/又は動かすための装置であって、
ベース(30)、及び、前記ベース(30)に対して移動可能なキャリア(50)と、
前記キャリアが搬送方向に変位しうるように、前記ベース(30)のところで前記キャリアを(50)非接触で保持するための磁気軸受(10)であって、前記磁気軸受(10)のうちの少なくとも2つは、能動的に制御可能な磁気軸受として構成される、磁気軸受(10)と、
前記キャリア(50)又は前記ベース(30)に固定される、少なくとも1つの制振ユニット(100)とを有する、装置。 - 前記制振ユニット(100)が、前記ベース(30)に、特に、能動的に制御可能な磁気軸受から50cm以下の距離のところで固定される、請求項2に記載の装置。
- 前記制振ユニット(100)が、制振質量(112)を伴う受動ダンパ(110)を含む、請求項1から3のいずれか一項に記載の装置。
- 前記制振ユニット(100)が、振動吸収装置(120)であって、特に、前記キャリア(50)の基本振動数(f0)の2倍から8倍の吸収装置固有振動数(Tf0)を有する振動吸収装置(120)として構成される、請求項1から4のいずれか一項に記載の装置。
- 前記制振ユニット(100)がハウジング(102)を有し、前記ハウジングの内部(104)に制振質量(112)が配置され、特に、前記制振質量(112)が前記ハウジング(102)に対して移動可能に装着される、請求項1から5のいずれか一項に記載の装置。
- 前記制振質量(112)の前記ハウジング(102)への装着が、少なくとも1つの弾性圧縮可能な制振要素(130)、及び/又は、少なくとも1つの弾性変形可能な装着要素(140)を有する、請求項6に記載の装置。
- 前記制振質量(112)が、前記ハウジング(102)の内側壁から距離を保って配置され、前記制振質量(112)と前記内側壁との間の空間に、弾性圧縮可能な制振要素(130)が配置され、前記弾性圧縮可能な制振要素(130)が、非圧縮の初期状態では、前記内側壁と前記制振質量(112)との間の前記距離を上回るか又は前記距離に等しい、外法寸法を有する、請求項6又は7に記載の装置。
- 前記制振ユニット(100)が、前記キャリア(50)のキャビティ(54)内、又は、前記ベース(30)のキャビティ内に配置される、請求項1から8のいずれか一項に記載の装置。
- 複数の制振ユニット(100)が、前記キャリア(50)と前記ベース(30)の少なくとも一方に空間的に分布している、請求項1から9のいずれか一項に記載の装置。
- 前記能動的に制御可能な磁気軸受は各々、電気的に制御可能であり、かつ相対部品(18)と磁気的に相互作用する、電磁アクチュエータ(12)を有し、前記電磁アクチュエータ(12)が、前記ベース(30)と前記キャリア(50)との間に特定の距離(26)を維持するよう、電子部品ユニット(15)によって能動的に制御されることが可能である、請求項1から10のいずれか一項に記載の装置。
- 前記制振ユニット(100)が、能動的制振ユニット又は半能動的制振ユニットである、請求項1から11のいずれか一項に記載の装置。
- 物体を保持し、位置付け、かつ/又は動かすための装置のベースであって、
ベース本体と、
キャリア(50)が前記ベース本体に対して搬送方向に変位可能であるように前記ベース本体のところで前記キャリアを非接触で保持するために、前記ベース本体に配置された、能動的に制御可能な磁気軸受の少なくとも2つの電磁アクチュエータと、
前記ベース本体に固定された、少なくとも1つの制振ユニット(100)とを備える、ベース。 - 回転モジュールであって、
真空チャンバと、
前記真空チャンバ内に回転可能に装着されるロータであって、請求項13に記載のベースを備える、ロータとを備える、回転モジュール。 - 物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法であって、
ベースのところでキャリアを非接触で保持するよう、少なくとも2つの磁気軸受を能動的に制御することと、
前記キャリア又は前記ベースに固定された少なくとも1つの制振ユニットを用いて、前記キャリアと前記ベースの少なくとも一方の振動を減衰させることとを含む、方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017002542.8A DE102017002542A1 (de) | 2017-03-16 | 2017-03-16 | Vorrichtung zum Halten, Positionieren und/oder Bewegen eines Objekts |
DE102017002542.8 | 2017-03-16 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018516839A Division JP6751437B2 (ja) | 2017-03-16 | 2017-08-29 | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020186815A true JP2020186815A (ja) | 2020-11-19 |
Family
ID=59829343
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018516839A Active JP6751437B2 (ja) | 2017-03-16 | 2017-08-29 | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 |
JP2020097426A Pending JP2020186815A (ja) | 2017-03-16 | 2020-06-04 | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018516839A Active JP6751437B2 (ja) | 2017-03-16 | 2017-08-29 | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11139759B2 (ja) |
JP (2) | JP6751437B2 (ja) |
KR (1) | KR102126341B1 (ja) |
CN (1) | CN108886008B (ja) |
DE (1) | DE102017002542A1 (ja) |
TW (1) | TWI672444B (ja) |
WO (1) | WO2018166640A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112867878B (zh) * | 2018-10-18 | 2023-06-13 | 应用材料公司 | 用于承载平面物体的载体、用于输送载体的输送系统、用于非接触式地输送载体的方法和用于生产涂布基板的方法 |
WO2020126040A1 (en) * | 2018-12-21 | 2020-06-25 | Applied Materials, Inc. | Magnetic levitation system, carrier for a magnetic levitation system, vacuum system, and method of transporting a carrier |
CN113574650A (zh) * | 2019-03-01 | 2021-10-29 | 应用材料公司 | 磁悬浮系统、用于磁悬浮系统的载体和操作磁悬浮系统的方法 |
CN113053714B (zh) * | 2019-12-27 | 2024-03-08 | 中微半导体设备(上海)股份有限公司 | 真空处理系统、基台的驱动装置及其控制方法 |
CN115003852B (zh) * | 2020-05-04 | 2024-11-01 | 应用材料公司 | 用于在真空处理系统中移动装置的运输系统、包括其的基板处理系统以及操作运输系统的方法 |
CN112267593A (zh) * | 2020-11-24 | 2021-01-26 | 金陵科技学院 | 一种永磁悬浮主动驱动质量装置 |
CN112943849A (zh) * | 2021-02-03 | 2021-06-11 | 中国人民解放军国防科技大学 | 一种复合隔振装置及振动试验平台 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11294520A (ja) * | 1998-04-08 | 1999-10-29 | Canon Inc | 除振装置、これを用いた露光装置およびデバイス製造方法、ならびに除振方法 |
JP2005030486A (ja) * | 2003-07-11 | 2005-02-03 | Nikon Corp | 制振装置及びステージ装置並びに露光装置 |
JP2007071238A (ja) * | 2005-09-05 | 2007-03-22 | Japan Aerospace Exploration Agency | 構造物の制振装置 |
JP2012094864A (ja) * | 2010-10-27 | 2012-05-17 | Asml Netherlands Bv | パターニングデバイスから基板上にパターンを転写するためのリソグラフィ装置、および制振方法 |
JP2012104862A (ja) * | 2007-10-04 | 2012-05-31 | Asml Netherlands Bv | リソグラフィ装置および投影アセンブリ |
JP2014135519A (ja) * | 2009-07-31 | 2014-07-24 | Asml Netherlands Bv | リソグラフィ装置 |
WO2015162177A1 (de) * | 2014-04-25 | 2015-10-29 | Mecatronix Ag | Vorrichtung zum halten, positionieren und/oder bewegen eines objekts |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2977043A (en) * | 1958-12-11 | 1961-03-28 | Gen Electric | Hermetic compressor unit mounting means |
FR2379732A1 (fr) * | 1977-02-04 | 1978-09-01 | Europ Propulsion | Dispositif de stabilisation horizontale d'une masse a support inertiel vertical |
AT382299B (de) * | 1983-08-01 | 1987-02-10 | Haas Franz Waffelmasch | Vorrichtung zur herstellung von waffelbloecken |
FR2630354B1 (fr) * | 1988-04-20 | 1990-08-31 | Mecanique Magnetique Sa | Dispositif vibrateur actif a suspension magnetique asservie selon trois axes |
EP0396849B1 (en) * | 1989-05-08 | 1994-08-10 | Nippon Ferrofluidics Corporation | Magnetic bearing device |
US5157296A (en) * | 1990-12-20 | 1992-10-20 | Massachusetts Institute Of Technology | Bearing for use in high resolution precision control device |
DE69316214T2 (de) * | 1992-07-07 | 1998-08-13 | Ebara Corp | Durch magnetische wirkung schwebende transportvorrichtung |
JP3270126B2 (ja) * | 1992-07-08 | 2002-04-02 | 株式会社荏原製作所 | 磁気軸受装置 |
JPH06218690A (ja) | 1993-01-26 | 1994-08-09 | Hitachi Ltd | 磁気的に結合された駆動装置の振動減衰方法 |
JP3456308B2 (ja) * | 1995-06-30 | 2003-10-14 | 株式会社ニコン | 磁気浮上型ステージ |
US5749444A (en) | 1995-10-31 | 1998-05-12 | Otis Elevator Company | Contactless slide guide for elevators |
JPH11154698A (ja) * | 1997-11-21 | 1999-06-08 | Nikon Corp | テーブル支持装置 |
JPH11231079A (ja) | 1998-02-13 | 1999-08-27 | Nikon Corp | ステージ装置および露光装置 |
US6566775B1 (en) * | 2000-01-10 | 2003-05-20 | Richard Benito Fradella | Minimal-loss flywheel battery and related elements |
JP2002151379A (ja) * | 2000-11-08 | 2002-05-24 | Nikon Corp | ステージ装置および露光装置 |
US6794777B1 (en) * | 2003-12-19 | 2004-09-21 | Richard Benito Fradella | Robust minimal-loss flywheel systems |
DE102004020605B4 (de) | 2004-04-27 | 2006-08-10 | Erwin W. Kötter Consulting Engineers e.K. | Schwingungstilger oder Schwingungsdämpfer |
KR100827738B1 (ko) * | 2004-12-20 | 2008-05-07 | 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 | 초전도 자기 부상에 의한 비접촉 반송 장치 |
JP5453104B2 (ja) * | 2006-12-18 | 2014-03-26 | ケーエルエー−テンカー・コーポレーション | 基板プロセス装置 |
NL1036623A1 (nl) * | 2008-03-26 | 2009-09-29 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method. |
US8531071B2 (en) * | 2009-12-28 | 2013-09-10 | Rolls-Royce Corporation | Turbine engine powered system with hybrid bearing |
CN101943243B (zh) * | 2010-06-25 | 2012-02-01 | 哈尔滨工程大学 | 电磁式两自由度半主动吸振器 |
DE102011080318A1 (de) | 2011-08-03 | 2013-02-07 | Carl Zeiss Smt Gmbh | Dämpfungsanordnung zur Dissipation von Schwingungsenergie eines Elementes in einem System, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage |
US9404556B2 (en) * | 2013-03-12 | 2016-08-02 | Waukesha Bearings Corporation | Damper |
JP6133128B2 (ja) * | 2013-05-23 | 2017-05-24 | 株式会社アルバック | 真空処理装置、制振装置 |
US10465557B2 (en) * | 2015-09-01 | 2019-11-05 | Rolls-Royce North American Technologies, Inc. | Magnetic squeeze film damper system for a gas turbine engine |
CN206447445U (zh) * | 2017-01-09 | 2017-08-29 | 升华电梯有限公司 | 直行电梯磁悬浮电梯导靴 |
-
2017
- 2017-03-16 DE DE102017002542.8A patent/DE102017002542A1/de not_active Withdrawn
- 2017-08-29 CN CN201780005260.XA patent/CN108886008B/zh active Active
- 2017-08-29 US US15/762,052 patent/US11139759B2/en active Active
- 2017-08-29 KR KR1020187010754A patent/KR102126341B1/ko active IP Right Grant
- 2017-08-29 JP JP2018516839A patent/JP6751437B2/ja active Active
- 2017-08-29 WO PCT/EP2017/071651 patent/WO2018166640A1/en active Application Filing
-
2018
- 2018-03-13 TW TW107108496A patent/TWI672444B/zh active
-
2020
- 2020-06-04 JP JP2020097426A patent/JP2020186815A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11294520A (ja) * | 1998-04-08 | 1999-10-29 | Canon Inc | 除振装置、これを用いた露光装置およびデバイス製造方法、ならびに除振方法 |
JP2005030486A (ja) * | 2003-07-11 | 2005-02-03 | Nikon Corp | 制振装置及びステージ装置並びに露光装置 |
JP2007071238A (ja) * | 2005-09-05 | 2007-03-22 | Japan Aerospace Exploration Agency | 構造物の制振装置 |
JP2012104862A (ja) * | 2007-10-04 | 2012-05-31 | Asml Netherlands Bv | リソグラフィ装置および投影アセンブリ |
JP2014135519A (ja) * | 2009-07-31 | 2014-07-24 | Asml Netherlands Bv | リソグラフィ装置 |
JP2012094864A (ja) * | 2010-10-27 | 2012-05-17 | Asml Netherlands Bv | パターニングデバイスから基板上にパターンを転写するためのリソグラフィ装置、および制振方法 |
WO2015162177A1 (de) * | 2014-04-25 | 2015-10-29 | Mecatronix Ag | Vorrichtung zum halten, positionieren und/oder bewegen eines objekts |
Also Published As
Publication number | Publication date |
---|---|
CN108886008A (zh) | 2018-11-23 |
JP6751437B2 (ja) | 2020-09-02 |
TW201835465A (zh) | 2018-10-01 |
JP2019512064A (ja) | 2019-05-09 |
KR20180116222A (ko) | 2018-10-24 |
CN108886008B (zh) | 2022-02-22 |
WO2018166640A1 (en) | 2018-09-20 |
US11139759B2 (en) | 2021-10-05 |
TWI672444B (zh) | 2019-09-21 |
KR102126341B1 (ko) | 2020-06-24 |
DE102017002542A1 (de) | 2018-09-20 |
US20200244192A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020186815A (ja) | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 | |
US5765800A (en) | Vibration damping apparatus | |
JP6862167B2 (ja) | 垂直方向に有効な空気ばねを備えた防振装置 | |
JP6352641B2 (ja) | コイルバネを有する振動絶縁装置 | |
KR102174195B1 (ko) | 자기 부상 시스템, 자기 부상 시스템을 위한 캐리어, 및 자기 부상 시스템을 동작시키는 방법 | |
KR102696558B1 (ko) | 능동형 관성 댐퍼 시스템 및 방법 | |
JP6440740B2 (ja) | 物体を保持、位置決めおよび/または移動させるための装置 | |
JP4739754B2 (ja) | アクティブ振動絶縁及びアクティブ振動相殺のためのシステム及び方法 | |
TW201941343A (zh) | 在真空環境中非接觸式運輸載體的磁浮系統及方法 | |
JPH11150062A (ja) | 除振装置及び露光装置並びに除振台の除振方法 | |
JP2023001194A (ja) | 荷電粒子ビーム描画装置 | |
JP2020011372A (ja) | 工作機械の制振装置 | |
JP2001050334A (ja) | アクティブ型除振装置 | |
JPH08195179A (ja) | 電子顕微鏡のアクティブ除振装置 | |
CN113574650A (zh) | 磁悬浮系统、用于磁悬浮系统的载体和操作磁悬浮系统的方法 | |
JP2001200886A (ja) | 能動除振装置 | |
JP2006234142A (ja) | 防振装置 | |
JPH11257421A (ja) | 制振装置 | |
JP2002195343A (ja) | アクティブ型防振台 | |
JPH10281215A (ja) | 除振台の駆動制御装置 | |
JPH09158978A (ja) | 精密除振台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200828 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210622 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220201 |