JP2020158572A - ポリ塩化ビニル系炭素繊維強化複合材料 - Google Patents

ポリ塩化ビニル系炭素繊維強化複合材料 Download PDF

Info

Publication number
JP2020158572A
JP2020158572A JP2019057123A JP2019057123A JP2020158572A JP 2020158572 A JP2020158572 A JP 2020158572A JP 2019057123 A JP2019057123 A JP 2019057123A JP 2019057123 A JP2019057123 A JP 2019057123A JP 2020158572 A JP2020158572 A JP 2020158572A
Authority
JP
Japan
Prior art keywords
vinyl chloride
carbon fiber
chloride resin
resin composition
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019057123A
Other languages
English (en)
Other versions
JP7332313B2 (ja
Inventor
亮介 中尾
Ryosuke Nakao
亮介 中尾
修平 冠
Shuhei Kammuri
修平 冠
誉大 山本
Yoshihiro Yamamoto
誉大 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019057123A priority Critical patent/JP7332313B2/ja
Priority to PCT/JP2020/011966 priority patent/WO2020196153A1/ja
Publication of JP2020158572A publication Critical patent/JP2020158572A/ja
Application granted granted Critical
Publication of JP7332313B2 publication Critical patent/JP7332313B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】炭素繊維基材への含浸性が良好な塩化ビニル系樹脂組成物を用いたCFRPの提供。【解決手段】塩化ビニル系樹脂組成物と、炭素繊維基材とからなる複合材料と、前記複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物とを備える炭素繊維強化複合材料であって、塩化ビニル系樹脂組成物及び炭素繊維基材が、下記(1)及び(2)を満たす。(1)塩化ビニル系樹脂組成物は、特定の条件での複素粘度ηが、1<η<1500。(2)塩化ビニル系樹脂組成物中の各添加剤の溶解度パラメータと塩化ビニル系樹脂の溶解度パラメータから算出される溶解指標Ra(pi)、塩化ビニル系樹脂組成物中の各添加剤の溶解度パラメータと、炭素繊維基材の溶解度パラメータとから算出される溶解指標Ra(ci)、及び塩化ビニル系樹脂組成物中の各添加剤の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下。【選択図】なし

Description

本発明は、炭素繊維基材に塩化ビニル系樹脂組成物を含浸させた複合材料と、前記複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物とを備える炭素繊維強化複合材料に関する。
炭素繊維とマトリックス樹脂とからなる炭素繊維強化複合材料(以下、CFRPと略すことがある)は、比強度、比弾性率が高く、力学特性に優れ、耐候性、耐薬品性などの高機能特性を有する。そのため、CFRPは、航空機構造部材、風車のブレード、自動車外板や、一般産業用途においても注目され、その需要は年々高まりつつある。
マトリックス樹脂には、炭素繊維含浸時には低粘度であり、炭素繊維と優れた密着性を有するエポキシ樹脂で代表される熱硬化性樹脂が従来から知られている。近年では、マトリックス樹脂として、耐衝撃性の改善や高生産性への要求、リサイクル化への関心から、ポリオレフィンや、ポリアミド系ポリマーアロイなどの熱可塑性樹脂の開発が進められている。
炭素繊維の優れた特性である軽量化と機械的強度を活かすためには、炭素繊維がマトリックス樹脂中に均一分散していることが重要であり、含浸時の樹脂粘度が低いことが必要である。しかしながら、一般に熱可塑性樹脂は高温条件では熱分解が進むことがあり、さらに溶融状態でも高粘度のものが多く、樹脂の含浸が不足するなどの課題を生じ易い。
一方で、炭素繊維の優れた機械特性を活かすには、炭素繊維とマトリックス樹脂の界面接着性が優れることも重要である。例えばプロピレン系樹脂においては、炭素繊維に対する界面接着性が悪く、単にプロピレン系樹脂と炭素繊維を溶融混練しても期待する機械物性を得ることは困難である。この問題点を改善する方法として、無水マレイン酸などをプロピレン系樹脂にグラフト結合させた変性プロピレン系樹脂が開発され、これを添加することによりプロピレン系樹脂と炭素繊維との界面接着性の改善が図られている。
上記課題を材料面、プロセス面で解決することにより、ポリオレフィンやポリアミド系ポリマーアロイなどをマトリックス樹脂とするCFRPが実用化されているものの、依然として、マトリックス樹脂に依存する耐薬品性や難燃性の性能で劣ることが課題となる場合があった。
汎用の熱可塑性樹脂である塩化ビニル樹脂は、難燃性、耐久性、耐油・耐薬品性に優れ、且つエチレン系樹脂やプロピレン系樹脂に比べてクリープ変形が極めて少なく、機械的強度も優れる材料であることが知られている。
しかしながら、塩化ビニル樹脂は、熱可塑性樹脂の中でも溶融粘度が大きく、且つ成形加工温度、すなわちCFRPの製造に関しては、炭素繊維へ塩化ビニル樹脂を含浸させる際の加工温度が塩化ビニル樹脂の熱分解温度に近いため炭素繊維への含浸は困難を伴うことが推測され、その実用化例も見られない。実際、特許文献1では、塩化ビニル樹脂は副成分としての配合量に留まり、且つ塩化ビニル樹脂を溶解する熱硬化性樹脂との混合物として取り扱われるもののみであった。
塩化ビニル樹脂は、塩素基を有する極性ポリマーであるため、非極性ポリマーであるプロピレン樹脂よりも炭素繊維との界面接着性は優れると推測される。しかしながら、塩化ビニル樹脂は成形加工時において、熱分解や金型への付着が生じやすいため、熱分解反応を抑制する熱安定剤の配合や、成形加工過程において接触する必要のあるスクリューや金型などの金属表面への付着を防止するため、滑剤などの添加が必須となる。したがって、塩化ビニル樹脂ではその他の熱可塑性樹脂よりも、添加剤の含有比率が高い場合が一般的である。結果として、添加剤を多く含む塩化ビニル系樹脂組成物と炭素繊維の界面接着性に関しては、高含有の添加剤がどのように影響するか把握されていないのが現状である。
特開2017−95537号公報
上記のように、塩化ビニル系樹脂組成物においては、溶融粘度が高く、熱安定性が低く、添加剤含有比率が高い。そのため、塩化ビニル系樹脂組成物は、炭素繊維基材に含浸し難く、複合化が困難と推測される。現状、どのような塩化ビニル系樹脂組成物がCFRP作成に適しているか、検討および解明が十分に成されていない。したがって、依然として、炭素繊維基材への含浸性が良好な塩化ビニル系樹脂組成物が求められている。また、そのような塩化ビニル系樹脂組成物を炭素繊維基材に含浸させたCFRPが求められている。
さらに、マトリックス樹脂全てに塩化ビニル系樹脂組成物を用いた場合に、樹脂含浸性の向上を優先させるために、低重合度の塩化ビニル樹脂を用いたり、低分子構造の添加剤を多く含んだりすることで、本来の塩化ビニル系樹脂組成物の機械的物性を犠牲にしうることも懸念された。
本発明者等は、上記課題を解決するため、鋭意検討の結果、特定の条件を満たす塩化ビニル系樹脂組成物(A)を使用し、さらに複合材料の表面の少なくとも一部を塩化ビニル系樹脂組成物で被覆することにより、上記課題を解決しうることを見出し、本発明に至った。即ち、本発明の要旨は、以下のとおりである。
[1] 塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)とからなる複合材料と、前記複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物(C)とを備える炭素繊維強化複合材料であって、
前記塩化ビニル系樹脂組成物(A)が、塩化ビニル系樹脂および少なくとも1種の添加剤を含み、
前記塩化ビニル系樹脂組成物(A)および前記炭素繊維基材(B)が、下記特性(1)および特性(2):
・特性(1):塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、1<η<1500であること。
・特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、下記数式(I)より算出される溶解指標(Ra(pi))、
及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(II)より算出される溶解指標(Ra(ci))、
及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下であること。
Figure 2020158572
Figure 2020158572
Figure 2020158572
(数式(I)及び(II)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
(数式(III)中、Πは総乗を意味し、具体的には各添加剤(i)の各成分をi=1,2,3・・・nとする場合、塩化ビニル系樹脂(p)及び炭素繊維基材(B)に対して算出されるRa(pi)及びRa(ci)と前記重量分率C(i)の積を表す。また、その冪乗に掛かる値nは、各添加剤(i)の成分数を示す。)
を満たすことを特徴とする、炭素繊維強化複合材料。
[2] 塩化ビニル系樹脂組成物(C)が、前記複合材料の表面の全てを被覆する、[1]に記載の炭素繊維強化複合材料。
[3] 塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、10≦η≦1000である、[1]または[2]に記載の炭素繊維強化複合材料。
[4] 前記添加剤が、熱安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、顔料、難燃剤、および可塑剤からなる群から選択される少なくとも1種である、[1]〜[3]のいずれかに記載の炭素繊維強化複合材料。
[5] 前記塩化ビニル系樹脂組成物(A)が、400以上1500以下の平均重合度を有する塩化ビニル系樹脂を含み、又は、前記塩化ビニル系樹脂組成物(C)が、600以上の平均重合度を有する塩化ビニル系樹脂を含む、[1]〜[4]のいずれかに記載の炭素繊維強化複合材料。
[6] 前記塩化ビニル系樹脂組成物(C)が、塩素化塩化ビニル系樹脂を含む、[1]〜[5]のいずれかに記載の炭素繊維強化複合材料。
[7] 前記塩化ビニル系樹脂組成物(C)が、塩化ビニル系樹脂発泡体を含む、[1]〜[5]のいずれかに記載の炭素繊維強化複合材料。
[8] [1]〜[7]のいずれかに記載の炭素繊維強化複合材料からなる、成形体。
本発明においては、特定の条件を満たす塩化ビニル系樹脂組成物(A)を用いることで、炭素繊維基材(B)への含浸性に優れ、曲げ強度が良好なCFRPを得ることができる。さらに複合材料の表面の少なくとも一部を塩化ビニル系樹脂組成物で被覆することにより、難燃性や軽量性が良好なCFRPを得ることができる。
<炭素繊維強化複合材料>
本発明による炭素繊維強化複合材料は、塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)とからなる複合材料と、前記複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物(C)とを備える炭素繊維強化複合材料であって、下記特性(1)および特性(2)を満たすことを特徴とする。
<特性(1)>
特性(1):塩化ビニル系樹脂組成物(A)が、200℃、周波数10Hzでの複素粘度ηが、1<η<1500の範囲であること。
塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、10≦η≦1000Pa・sであることがより好ましく、20≦η≦800Pa・sであることが好ましい。上記複素粘度ηが1500Pa・s未満であることにより、炭素繊維フィラメント束の内部まで樹脂を含浸させることができ、炭素繊維の優れた機械特性を活かすことができる。一方、上記複素粘度ηが1Pa・s超であることにより、CFRPとしての機械強度を損なわない程度の、マトリックス樹脂自体の機械強度を得ることができる。
<特性(2)>
特性(2):
塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、下記数式(I)より算出される溶解指標(Ra(pi))、
及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(II)より算出される溶解指標(Ra(ci))、
及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下であること。
Figure 2020158572
Figure 2020158572
Figure 2020158572
(数式(I)及び(II)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
(数式(III)中、Πは総乗を意味し、具体的には各添加剤(i)の各成分をi=1,2,3・・・nとする場合、塩化ビニル系樹脂(p)及び炭素繊維基材(B)に対して算出されるRa(pi)及びRa(ci)と前記重量分率C(i)の積を表す。また、その冪乗に掛かる値nは、各添加剤(i)の成分数を示す。)
塩化ビニル系樹脂組成物(A)は、炭素繊維基材(B)表面への界面接着性に優れる、すなわち相溶性が高い方が良い。
下記の実施形態は本発明を説明するための例示であり、本発明は下記の実施形態に何ら限定されるものではない。本発明においては、相溶性の代用指標として、一般的に溶媒−溶質間の相溶性の指標として採用されるハンセン溶解度パラメータ(Hansen solubility parameters)(以下、HSPと略すことがある)を用いた。
(HSPの定義)
ハンセン溶解度パラメータとは、一般にSP値(δ)として知られるヒルデブランド(Hildebrand)の溶解度パラメータが、溶媒-溶質間に作用する力は分子間力のみであると仮定されたものであるのに対し、HSPは溶解性を、分散項δD、極性項δP、水素結合項δHの3次元空間に表したものである。分散項δDは分散力による効果、極性項δPは双極子間力による効果、水素結合項δHは水素結合力による効果を示すものである。
ヒルデブランドSP値(δ)とハンセン溶解度パラメータ(HSP)には、下記数式(IV)の関係があり、SP値はHSPの、δD、δP、δHを3成分とするベクトルの長さ(totHSP)に相当する。
Figure 2020158572
したがって、HSPはヒルデブランドSP値の情報を完全に包含し、且つベクトルの向きまで含めて溶解性を評価できる点で、より優れた方法であるといえる。
なお、ハンセン溶解度パラメータの定義と計算は、Charles M.Hansen著、Hansen Solubility Parameters:A Users Handbook(CRCプレス,2007年)に記載されている。
また、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)を用いることにより、簡便にHSPを推算することができる。
(HSPの決定方法と考え方)
一般に、特定の物質(溶質)のHSPは、その物質のサンプルをハンセン溶解度パラメータが確定している数多くの異なる溶媒に溶解させて溶解度を測る試験を行うことによって決定され得る。具体的には、上記溶解度試験に用いた溶媒のうちその物質を溶解した溶媒の3次元上の点をすべて球の内側に内包し、溶解しない溶媒の点は球の外側になるような球(溶解度球)を探し出し、その球の中心座標をその物質のHSPとする。
ここで、例えば、上記物質のHSPの測定に用いられなかったある別の溶媒のHSPがδD,δP,δHであった場合、その座標で示される点が上記物質の溶解度球の内側に内包されれば、その溶媒は、上記物質を溶解すると考えられる。一方、その座標点が上記物質の溶解度球の外側にあれば、この溶媒は上記物質を溶解することができないと考えられる。
本発明においては、一般溶媒に不溶とされる炭素材料も対象物質にしているが、後者の場合では、その溶解度では無く、炭素材料の分散度(dispersion)と、凝集、沈降程度を尺度としてHSPが算出される。例えば、次の技術論文が参考とされる。C. M.Hansen,A.L.Smith,Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers,Carbon,42,pp1591−1597,(2004)。
特定の2分子(溶媒と溶質)に着目した場合、HSP空間上でのHSP間の距離(Ra)は下記数式(V)で定義され、2分子が相溶するかどうかの溶解指標となる。
Figure 2020158572
(数式(V)中、δD1およびδD2は、ハンセン溶解度パラメータにおける、特定の2分子の分散項を表す。同様に、δP、δHは、各々極性項および水素結合項をそれぞれ示す。単位はいずれも(MPa)1/2である。)
以上のようなHSPを本発明に活用する際には、塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)の相溶性が対象となるが、本発明者らは、塩化ビニル系樹脂組成物(A)は塩化ビニル樹脂を主成分としながらも各種添加剤を多く含むことから、用いられる各添加剤(i)と用いられる塩化ビニル樹脂(p)の相溶性、及び用いられる各添加剤(i)と炭素繊維基材(B)の相溶性に着目することが重要と考え、特性(2)の発明に至った。
すなわち、本発明においては、特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、上記数式(I)より算出される溶解指標(Ra(pi))、及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、上記数式(II)より算出される溶解指標(Ra(ci))、
及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、上記数式(III)により算出した値Sが150以下であることが好ましく、さらに130以下であることがより好ましい。Sの最大値が150以下であれば、添加剤(i)と塩化ビニル系樹脂(p)の相溶性が高く、塩化ビニル系樹脂に取り込まれやすく、且つブリードアウトした場合にも基材(B)との相溶性が高く、結果として塩化ビニル系樹脂組成物(A)と炭素繊維基材(B)の界面接着を十分なものとする。
<塩化ビニル系樹脂組成物(A)・(C)>
本発明において、塩化ビニル系樹脂組成物(A)と塩化ビニル系樹脂組成物(C)は異なる特性を有する組成物である。例えば、塩化ビニル系樹脂組成物(A)は、炭素繊維基材(B)に含浸し易くするために、塩化ビニル系樹脂組成物(C)よりも200℃、周波数10Hzでの複素粘度ηが低いことが好ましい。
塩化ビニル系樹脂組成物(A)および塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂(p)としては特に限定されず、塩化ビニル単量体の単独重合体の他、例えば、(1)塩化ビニル単量体と塩化ビニル単量体以外の重合性単量体との共重合体、(2)塩化ビニル系樹脂以外の重合体に塩化ビニル単量体または塩化ビニル系樹脂をグラフトさせたグラフト共重合体等が挙げられる。さらに、これらの塩化ビニル系樹脂を塩素化した塩素化塩化ビニル系樹脂も挙げられる。これら塩化ビニル系樹脂は単独で用いられてもよいし、2種以上が併用されてもよい。
(1)塩化ビニル単量体と塩化ビニル単量体以外の重合性単量体との共重合体における重合性単量体としては特に限定されないが、炭素数2以上16以下のα−オレフィン(例えば、エチレン、プロピレン、およびブチレン);炭素数2以上16以下の脂肪族カルボン酸のビニルエステル(例えば、酢酸ビニルおよびプロピオン酸ビニル);炭素数2以上16以下のアルキルビニルエーテル(例えば、ブチルビニルエーテルおよびセチルビニルエーテル);炭素数1以上16以下のアルキル(メタ)アクリレート(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレートおよびブチルアクリレート);アリール(メタ)アクリレート(例えば、フェニルメタクリレート);芳香族ビニル(例えば、スチレンおよびα−置換スチレン(例えば、α−メチルスチレン));ハロゲン化ビニル(例えば、塩化ビニリデンおよびフッ化ビニリデン);およびN−置換マレイミド(N−フェニルマレイミドおよびN−シクロヘキシルマレイミド)が挙げられる。
(2)塩化ビニル単量体または塩化ビニル系樹脂とともにグラフト共重合体を与える重合体としては、塩化ビニルモノマーにグラフト重合可能な重合体であれば単独重合体および共重合体を問わず、いかなるものも含まれる。例えば、α−オレフィンとビニルエステルとの共重合体(例えば、エチレン−酢酸ビニル共重合体);α−オレフィンとビニルエステルと一酸化炭素との共重合体(例えば、エチレン−酢酸ビニル−一酸化炭素共重合体);α−オレフィンとアルキル(メタ)アクリレートとの共重合体(例えば、エチレン−メチルメタクリレート共重合体およびエチレン−エチルアクリレート共重合体);α−オレフィンとアルキル(メタ)アクリレートと一酸化炭素との共重合体(例えば、エチレン−ブチルアクリレート−一酸化炭素共重合体);異なる2種以上のα−オレフィンの共重合体(例えば、エチレン−プロピレン共重合体);不飽和ニトリルとジエンとの共重合体(例えば、アクリロニトリル−ブタジエン共重合体);ポリウレタン;および塩素化ポリオレフィン(例えば、塩素化ポリエチレンおよび塩素化ポリプロピレン)が挙げられる。
塩化ビニル系樹脂(p)の平均重合度は、特に限定されるものではないが、例えば400以上1500以下であることが好ましく、600以上1000以下であることがより好ましい。平均重合度が上記下限値以上であることにより、塩化ビニル系樹脂による好ましい機械的物性(例えば強靭性)を得やすい。平均重合度が上記上限値以下であることにより、炭素繊維基材に含浸させる際の溶融粘度を適性にし易い。
塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂は、炭素繊維強化複合材料の機械物性等を向上させるために、塩化ビニル系樹脂組成物(A)に用いる塩化ビニル系樹脂よりも平均重合度を高くすることができる。例えば、塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂は、平均重合度が600以上であることが好ましく、800以上2000以下であることがより好ましい。
通常の塩化ビニル系樹脂よりもさらに耐熱性や難燃性の向上を期待する場合には、塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂は、塩素化塩化ビニル系樹脂を主成分とするものを選択すると良い。
一般に塩素化塩化ビニル系樹脂組成物は、塩化ビニル系樹脂組成物よりも溶融粘度が高く熱分解し易いため、炭素繊維への含浸が難しい。したがって、塩化ビニル系樹脂組成物(A)に塩素化塩化ビニル系樹脂組成物を用いる場合には、低重合度の塩素化塩化ビニル樹脂を用いたり、添加剤の添加量増やしたりする必要があり、機械的物性を損なう恐れがある。
したがって、塩化ビニル系樹脂組成物(A)を含浸させた炭素繊維機材(B)を備える複合材料の表面の少なくとも一部を、塩素化塩化ビニル系樹脂を含む塩素化塩化ビニル系樹脂組成物(C)で被覆することにより、期待する耐熱性・難燃性と、機械物性を維持したCFRPが得られる。
塩化ビニル系樹脂組成物(A)および(C)に用いる塩化ビニル系樹脂の塩素化度は、例えば、56質量%〜72質量%である。塩化ビニル系樹脂組成物の塩素化度が56.8質量%程度の塩化ビニル系樹脂であることで、炭素繊維基材(B)への含浸性が良好な程度の粘度を維持できる。また、塩素化度が60質量%〜72質量%程度であることにより、耐熱性・難燃性の向上が期待される。例えば、炭素繊維強化複合材料の耐熱性・難燃性を向上させるために、被覆用の塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂の塩素化度は、塩化ビニル系樹脂組成物(A)に用いる塩化ビニル系樹脂の塩素化度よりも高いことが好ましい。なお、塩素含有率は、JIS K 7229に準拠して測定することができる。
通常の塩化ビニル系樹脂(p)よりもさらに軽量化や防音特性の向上を期待する場合には、塩化ビニル系樹脂組成物(C)が塩化ビニル系樹脂発泡体を含むものであることが好ましい。一般に塩化ビニル系樹脂組成物では、発泡剤の配合による化学的発泡や、窒素注入による物理的発泡により発泡体が得られるが、炭素繊維に含浸させる樹脂にこれらの手段を活用すると繊維内に気泡を生じることとなり、得られたCFRPの機械物性を損なう恐れがある。したがって、炭素繊維機材(B)への含浸には、発泡体ではない塩化ビニル系樹脂を含む塩化ビニル系樹脂組成物(A)を用い、その外層を塩化ビニル系樹脂発泡体を含む塩化ビニル系樹脂組成物(C)を用いて被覆することにより、期待する軽量・防音特性と、機械物性を維持したCFRPが得られる。
(添加剤)
塩化ビニル系樹脂組成物(A)に加えられる各種添加剤としては、熱安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、顔料、難燃剤、および可塑剤等が挙げられる。前記添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記熱安定剤としては特に限定されず、熱安定剤および熱安定化助剤などが挙げられる。前記熱安定剤としては特に限定されず、有機錫系安定剤、鉛系安定剤、カルシウム−亜鉛系安定剤、バリウム−亜鉛系安定剤、およびバリウムーカドミウム系安定剤等が挙げられる。
前記有機錫系安定剤としては、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、およびジブチル錫ラウレートポリマー等が挙げられる。上記安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記熱安定化助剤としては特に限定されず、例えば、エポキシ化大豆油、りん酸エステル、ポリオール、ハイドロタルサイト、およびゼオライト等が挙げられる。上記熱安定化助剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記滑剤としては、内部滑剤および外部滑剤が挙げられる。前記内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。前記内部滑剤としては特に限定されず、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、エポキシ大豆油、グリセリンモノステアレート、ステアリン酸、およびビスアミド等が挙げられる。上記滑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。前記外部滑剤としては特に限定されず、パラフィンワックス、ポリオレフィンワックス、エステルワックス、およびモンタン酸ワックス等が挙げられる。上記滑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記加工助剤としては特に限定されず、従来公知の加工助剤を使用することができ、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等のアルキルメタクリレートの単独重合体または共重合体、アルキルメタクリレートと、メチルアクリレート、エチルアクリレート、ブチルアクリレート等のアルキルアクリレートとの共重合体、アルキルメタクリレートと、スチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル化合物との共重合体、アルキルメタクリレートと、アクリロニトリル、メタクリロニトリル等のビニルシアン化合物等との共重合体等が挙げられ、これらは1種または2種以上を組み合わせて用いることができる。これらのなかでも、重量平均分子量が10万〜200万であるアルキルアクリレート−アルキルメタクリレート共重合体等を好適に使用することができる。具体的には、n−ブチルアクリレート−メチルメタクリレート共重合体、および2−エチルヘキシルアクリレート−メチルメタクリレート−ブチルメタクリレート共重合体等が挙げられる。上記加工助剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記衝撃改質剤としては特に限定されず、特に限定されるものではなく従来公知の衝撃改質剤を使用することができ、ポリブタジエン、ポリイソプレン、ポリクロロプレン、塩素化ポリエチレン、フッ素ゴム、スチレン−ブタジエン系共重合体ゴム、メタクリル酸メチル−ブタジエン−スチレン系共重合体、メタクリル酸メチル−ブタジエン−スチレン系グラフト共重合体、アクリロニトリル−スチレン−ブタジエン系共重合体ゴム、アクリロニトリル−スチレン−ブタジエン系グラフト共重合体、スチレン−ブタジエン−スチレンブロック共重合体ゴム、スチレン−イソプレン−スチレン共重合体ゴム、スチレン−エチレン−ブチレン−スチレン共重合体ゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム(EPDM)、シリコーン含有アクリル系ゴム、シリコーン/アクリル複合ゴム系グラフト共重合体、シリコーン系ゴム等が挙げられる。前記衝撃改質剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記耐熱向上剤としては特に限定されず、α−メチルスチレン系、およびN−フェニルマレイミド系樹脂等が挙げられる。前記耐熱向上剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記酸化防止剤としては特に限定されず、4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)等のフェノール系酸化防止剤、トリス(ミックスドモノ及びジ−ノニルフェニル)ホスファイト等のホスファイト系酸化防止剤、ジステアリルチオジプロピオネート等のチオエーテル系酸化防止剤等が挙げられる。中でも、高温分解阻害機能が低い4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)等のフェノール系酸化防止剤が特に好ましい。前記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記紫外線吸収剤としては特に限定されず、サリチル酸エステル系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、およびシアノアクリレート系紫外線吸収剤等が挙げられる。前記紫外線吸収剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記帯電防止剤としては特に限定されず、従来公知の帯電防止剤を使用することができ、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤等を使用することがきる。アニオン性界面活性剤としては、脂肪酸塩類、高級アルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩類、脂肪族アミン、アミドの硫酸塩類、二塩基性脂肪酸エステルのスルホン塩類、脂肪酸アミドスルホン酸塩類、アルキルアリールスルホン酸塩類、ホルマリン縮合のナフタレンスルホン酸塩類及びこれらの混合物等を挙げることができる。カチオン性界面活性剤としては、脂肪族アミン塩類、第四級アンモニウム塩類、アルキルピリジウム塩及びこれらの混合物等を挙げることができる。非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエステル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、ポリオキシエチレンソルビタンアルキルエステル類、およびこれらの混合物等を挙げることができる。非イオン性界面活性剤と、アニオン性界面活性剤あるいはカチオン性界面活性剤との混合物でもよい。両性界面活性剤としては、イミダゾリン型、高級アルキルアミノ型(ベタイン型)、硫酸エステル、リン酸エステル型、スルホン酸型等を挙げることができる。帯電防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記光安定剤としては特に限定されず、ヒンダードアミン系光安定剤等が挙げられる。前記光安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記充填剤としては特に限定されず、タルク、重質炭酸カルシウム、沈降性炭酸カルシウム、膠質炭酸カルシウム等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、クレー、マイカ、ウォラストナイト、ゼオライト、シリカ、酸化亜鉛、酸化マグネシウム、カーボンブラック、グラファイト、ガラスビーズ、ガラス繊維、炭素繊維、金属繊維等の無機質系のもののほか、ポリアミド等のような有機繊維が挙げられる。上記充填剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
前記顔料としては特に限定されず、有機顔料および無機顔料が挙げられる。前記有機顔料としては、アゾ系有機顔料、フタロシアニン系有機顔料、スレン系有機顔料、および染料レーキ系有機顔料等が挙げられる。上記無機顔料としては、酸化物系無機顔料、クロム酸モリブデン系無機顔料、硫化物・セレン化物系無機顔料、およびフェロシアニン化物系無機顔料等が挙げられる。上記顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
難燃剤としては、例えば金属水酸化物、臭素系化合物、トリアジン環含有化合物、亜鉛化合物、リン系化合物、ハロゲン系難燃剤、シリコーン系難燃剤、イントメッセント系難燃剤、酸化アンチモン等が挙げられ、これらは1種または2種以上を組み合わせて用いることができる。
前記可塑剤は、成形時の加工性を高める目的で添加されていてもよい。前記可塑剤としては特に限定されず、従来公知の可塑剤を用いることができ、例えばフタル酸エステル可塑剤、や非フタル酸系の可塑剤を用いることができる。フタル酸エステル可塑剤としては、フタル酸ジオクチル(DOP)等が挙げられる。また、非フタル酸系の可塑剤としては、トリメリット酸系化合物、リン酸系化合物、アジピン酸系化合物、クエン酸系化合物、エーテル系化合物、ポリエステル系化合物、大豆油系化合物、シクロヘキサンジカルボキシレート系化合物、テレフタル酸系化合物等が挙げられる。前記可塑剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
塩化ビニル系樹脂組成物(A)に含まれる添加剤(i)の合計含有量は、特に規定されないが、式(III)の構成要素として各添加剤の重量分率C(i)を含むことから分かるように、製造上支障がない限り少ない方が好ましい。具体的には、添加剤(i)の合計含有量は、塩化ビニル系樹脂100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。少量である方が、炭素繊維基材(B)界面近傍に滲出する影響を軽減することができる。
塩化ビニル系樹脂組成物(A)に含まれる可塑剤の含有量は、塩化ビニル系樹脂組成物(A)に多量に含まれるとCFRPの機械強度を損なう恐れがあるため、少ない方が好ましい。具体的には、可塑剤の含有量は、塩化ビニル系樹脂100質量部に対して、好ましくは80質量部以下であり、より好ましくは50質量部以下であり、さらに好ましくは10質量部以下であり、さらにより好ましくは1質量部以下であり、前記可塑剤は含まれないことが最も好ましい。
例えば、耐熱性や難燃性の向上を期待する場合には、塩化ビニル系樹脂(p)として塩素化塩化ビニル系樹脂を主成分とするものを選択すると良い。一般に塩素化塩化ビニル系樹脂組成物は、塩化ビニル系樹脂組成物よりも溶融粘度が高く熱分解し易いため、炭素繊維への含浸が難しい。したがって、塩化ビニル系樹脂組成物(A)に塩素化塩化ビニル系樹脂を用いる場合には、低重合度の塩素化塩化ビニル系樹脂を用いたり、添加剤の添加量増やしたりすることにより、期待する耐熱性・難燃性と、機械物性を維持したCFRPが得られる。
<炭素繊維基材(B)>
本発明における炭素繊維および炭素繊維基材についての定義を下記に示す。
炭素繊維とは、炭素を含む材料で構成された繊維のことである。その他の繊維と併用した場合、単独で用いた場合も含む概念である。
炭素繊維基材とは、複数の炭素繊維からなる炭素繊維束を経糸束および緯糸束とする炭素繊維織物のことである。
炭素繊維は、短炭素繊維、長炭素繊維、連続炭素繊維を含む概念である。
短炭素繊維とは、1mm以下の繊維長を有する炭素繊維のことである。
長炭素繊維とは、5cm以下の繊維長を有する炭素繊維のことである。
連続炭素繊維とは、短繊維と長繊維、以外の炭素繊維のことである。
(炭素繊維の材料)
炭素繊維の材料としては特に限定されず、PAN(ポリアクリロニトリル)系炭素繊維およびピッチ系炭素繊維などの炭素繊維であれば良く、その他の繊維;スチール繊維などの金属繊維;ガラス繊維、セラミックス繊維、ボロン繊維などの無機繊維;ならびに、アラミド、ポリエステル、ポリエチレン、ナイロン、ビニロン、ポリアセタール、ポリパラフェニレンベンズオキサゾール、高強度ポリプロピレンなどの有機繊維;ケナフ、麻などの天然繊維と複数種を組み合わされて使用されてよい。比強度の観点からは、炭素繊維のみから構成されることが好ましい。
本発明で用いられる炭素繊維は、短炭素繊維、長炭素繊維、連続炭素繊維を適宜用いることができるが、得られるCFRPの機械物性の観点から連続炭素繊維が好ましい。
(炭素繊維基材(B)の形態・製造方法)
繊維の形態としては連続繊維であれば特に限定されず、例えば、トウ、トウの方向を一方向に引き揃え横糸補助糸で保持した形態、繊維を経緯にして織物とした形態(クロス);繊維の方向を一方向に引き揃えた複数の繊維シートを、それぞれ繊維の方向が異なるように重ね補助糸でステッチして留めたマルチアキシャルワープニットの形態などが挙げられる。炭素繊維を上記形態に基づく各製造方法で製造することで、炭素繊維基材(B)を得ることができる。
各炭素繊維は、一般的に単繊維であり、また、炭素繊維は複数集まって炭素繊維束を構成する。各炭素繊維束を構成している炭素繊維の本数は、1000〜50000本であることが好ましく、2000〜40000本であることがより好ましく、5000〜25000本であることがさらに好ましい。
フィラメントの繊維径は3μm以上であることが好ましく、また、12μm以下であることが好ましい。繊維径が3μm以上であれば十分な強度が得られ、例えばフィラメントが、各種加工プロセスにおいて、ロールやスプール等の表面で横移動を起こす際に、切断したり毛羽だまりが生じたりすることを抑制できる。上限については、炭素繊維の製造が容易であるという理由から、通常12μm程度である。
複数の炭素繊維束は、特に限定されないが、シート状とされることが好ましい。シート状とされた炭素繊維束の目付は、例えば100g/m以上600g/m以下が好ましく、150g/m以上500g/m以下がより好ましい。目付が前記下限値以上であることは、得られたCFRPシートを積層などさせて二次加工する際に効率的である点で好ましく、前記上限値以下であることは、含浸性を得やすいなどの点で好ましい。
前記炭素繊維基材(B)としては、樹脂の含浸を容易にする目的で、予め開繊処理されている炭素繊維束(以下、開繊炭素繊維束ということがある)を用いることが好ましい。開繊工程としては特に限定されるものではなく、例えばスペーサ粒子を含ませる方法、丸棒で繊維をしごく方法、気流を用いる方法、超音波等で繊維を振動させる方法等を挙げることができる。好ましくは、スペーサ粒子を含ませる方法であり、このように繊維間距離を広げておくことで、製造段階で炭素繊維に高い張力が付与されても、繊維間の距離が予め広くされているので、樹脂の含浸が容易になる。また、繊維に張力が付与されても、繊維間距離が狭くなりにくい。
スペーサ粒子は、各繊維束において炭素繊維間に入り込み、それにより、炭素繊維束を開繊させる。炭素繊維間に入り込んだスペーサ粒子は、炭素繊維間を架橋させるとよい。ここで、「架橋」するとは、炭素繊維間に入り込んだスペーサ粒子が少なくとも2つの炭素繊維を架け渡すように配置される構造を有することを意味する。またスペーサ粒子は、粒子表面に存在する炭素同素体を介して炭素繊維に接着されるとよい。炭素繊維が炭素繊維間を架橋し、また、スペーサ粒子が炭素繊維に接着することで、繊維束の開繊状態をより強固に保持しやすくなる。
スペーサ粒子は特に限定されないが、例えば、炭素同素体を含んでもよい。スペーサ粒子において、炭素同素体は、例えば、無定形炭素、黒鉛、ダイヤモンドなどが挙げられる。無定形炭素としてはアモルファスカーボンが挙げられる。これらの中では、無定形炭素が好ましく、アモルファスカーボンがより好ましい。
ここで、炭素同素体は、熱硬化性樹脂の炭素由来であることが好ましく、すなわち、炭素同素体は、熱硬化性樹脂を炭化することで得られることが好ましい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、オキサジン系樹脂などが挙げられ、低温での炭化処理によって、強固なアモルファスカーボンの皮膜を形成できる観点から、オキサジン系樹脂が好ましい。また、オキサジン系樹脂としては、例えば、ベンゾオキサジン樹脂、ナフトキサジン樹脂などが挙げられる。これらの中では、より低温で炭化しやすい点からナフトキサジン樹脂が好ましく、本発明のCFRP製造時の温度および圧力の条件下であっても、過度に軟化しにくい。このため、繊維間距離が十分に確保され、樹脂の含浸性がより一層高くなる。
また、スペーサ粒子は炭素同素体から構成された炭素同素体粒子であってもよいが、コア粒子と、コア粒子を被膜する炭素同素体とを含む被膜粒子であってもよい。スペーサ粒子は、樹脂含浸性の観点から、被膜粒子であることが好ましい。被膜粒子は、その表面全体が炭素同素体により被膜されてもよいし、表面の一部が炭素同素体により被膜されてもよい。コア粒子は、炭素繊維束に熱可塑性樹脂を含浸する際の圧力および温度で変形ないし破壊されないものであれば特に制限なく使用することができ、例えば、無機粒子、有機粒子等を使用することができる。コア粒子は、無機粒子または有機粒子を単独で使用してもよいし、両者を併用してもよい。
スペーサ粒子の平均粒子径は、1〜20μmであることが好ましい。この範囲の大きさのスペーサ粒子を使用することにより、スペーサ粒子を炭素繊維間に入り込ませやすくなるとともに、炭素繊維束をより広く開繊させることができる。スペーサ粒子のより好ましい平均粒子径は2〜20μmであり、特に好ましくは4〜15μmである。
開繊処理した炭素繊維束におけるスペーサ粒子の合計付着量は、開繊炭素繊維束基準で0.5〜20質量%が好ましく、1〜10質量%がより好ましい。付着量を下限値以上とすることで、炭素繊維束を適切に開繊できる。また、付着量を上限値以下とすることで、開繊炭素繊維束が必要以上にスペーサ粒子を含有し、機械物性が低下することが防止される。
[炭素繊維強化複合材料の製造方法]
本発明による炭素繊維強化複合材料は、一例として、(1)基材準備工程、(2)樹脂含浸工程を含む方法により製造することができる。以下、各工程について詳述する。
(1)基材準備工程
(1)基材準備工程は、上記で説明した炭素繊維基材(B)を準備する工程である。炭素繊維基材(B)としては、上記で説明した通りであり、例えば、適切な炭素繊維の材料、形態、や目付量を選択することができる。また、市販の炭素繊維束を用いて所望の組織となるような織布を作製してもよい。
炭素繊維基材の準備工程は、炭素繊維束を開繊する工程を含むことが好ましい。以下、炭素繊維束を開繊する工程について説明する。炭素繊維束の開繊は種々の方法が考えられるが、一例として、炭素繊維束が、炭素繊維間に配置されたスペーサ粒子を備えてもよい。炭素繊維間にスペーサ粒子が配置されることにより、炭素繊維束が開繊され、熱可塑性樹脂を炭素繊維織物に十分に含浸することができる。その他、物理的な開繊などの処理を行うと、繊維束が横に開繊され、織物のピッチ幅が増加し、繊維強化複合材の意匠性が悪化する場合がある。上記のような炭素繊維表面にスペーサ粒子を備える炭素繊維束から構成された炭素繊維織物は、物理的に開繊されたものではないことから、繊維強化複合材の意匠性の悪化を抑制することができ、かつスペーサ粒子によって炭素繊維束が十分に開繊されていることから、熱可塑性樹脂の含浸性を向上させることができると考えられる。
開繊炭素繊維束は、炭素繊維束を開繊含浸液に接触させ、加熱することで製造することができる。炭素繊維束を開繊した後に、当該開繊炭素繊維束を用いて炭素繊維織物を得てもよいが、炭素繊維束を用いて炭素繊維織物を製造した後、上記方法により炭素繊維束を開繊するのが好ましい。
炭素繊維束を開繊含浸液に接触させるタイミングは、炭素繊維織物を作製する前に予め炭素繊維束を開繊含浸液に接触させてもよく、また、炭素繊維束を経糸束および緯糸束として炭素繊維織物を織布し、得られた炭素繊維織物を開繊含浸液に接触させて炭素繊維束開繊してもよい。
開繊含浸液の接触は、開繊含浸液を炭素繊維束に含浸させることで行ってもよい。具体的には、開繊含浸液を炭素繊維束にスプレー、塗布などしてもよいし、開繊含浸液に炭素繊維束を浸漬させてよい。開繊含浸液に炭素繊維束を接触させることで、樹脂粒子が、炭素繊維束の炭素繊維間の隙間に入り込み、それにより、炭素繊維束を開繊させることができる。
炭素繊維束の開繊に使用する開繊含浸液は、熱硬化性樹脂を形成し得るモノマー(以下、単に「モノマー」ともいう)を含む。モノマーは、反応することで熱硬化性樹脂となるものである。熱硬化性樹脂は上記のようにオキサジン系樹脂が好ましいが、熱硬化性樹脂がオキサジン系樹脂である場合、モノマーは、例えば、フェノール類、ホルムアルデヒド、およびアミン類である。オキサジン系樹脂は、上記のとおり、ナフトキサジン樹脂が好ましい。
(2)樹脂含浸工程
(2)樹脂含浸工程は、上記で準備した炭素繊維基材(B)に塩化ビニル系樹脂組成物(A)を含浸する工程である。本発明による炭素繊維強化複合材料は、上記した開繊炭素繊維束から構成される炭素繊維織物に塩化ビニル系樹脂組成物(A)を含浸することにより製造することができる。
例えば、開繊炭素繊維束から構成される炭素繊維基材(B)に、塩化ビニル系樹脂組成物(A)からなるフィルムを重ね合わせ熱プレス成形したり、炭素繊維基材(B)上に塩化ビニル系樹脂組成物(A)の溶融押出し成形を行ったりすることにより、塩化ビニル系樹脂組成物(A)を炭素繊維基材(B)に含浸することができる。炭素繊維強化複合材料は、塩化ビニル系樹脂組成物(A)を含浸した炭素繊維基材(B)を複数枚重ね合わせてもよく、この際、各炭素繊維織物の組織方向が一定の角度でずれるように該炭素繊維基材(B)を重ね合わせることにより、より一層機械強度に優れる炭素繊維強化複合材料を得ることができる。
熱プレスには、押出成形やプレス成型を用いることができ、成形型を使用することにより、所望形状の炭素繊維強化複合材料を得ることができる。熱プレス成型を行う際の温度は、使用する塩化ビニル系樹脂組成物(A)が軟化ないし溶融する温度以上で行うことができる。
以下、実施例により本発明をさらに詳細に説明するが、本発明の要旨を超えない限り以下の実施例に限定されるものではない。
<樹脂フィルム(I)作成>
塩化ビニル樹脂(徳山積水工業製、SLP40、重合度約400)を溶液濃度約10%になるようにテトラヒドロフランへ溶解した。続いて、当該溶液に、前記塩化ビニル樹脂100質量部に対して、添加剤(i)として、熱安定剤(メチル錫メルカプト、液体安定剤、日東化成社製 AT5300)2質量部を加え、十分撹拌させて、塩化ビニル系樹脂組成物(A)を得た。得られた塩化ビニル系樹脂組成物(A)をガラス板上にガラス棒を用いて溶液を塗布し、静置し溶媒を揮発させて、樹脂フィルムを得た。得られた樹脂フィルムをガラス板から剥離させた後、さらに60℃の巡風式オーブンにて約3時間乾燥させて、CFRP作成用の樹脂フィルム(I)を得た。
<樹脂フィルム(II)作成>
上記樹脂フィルム(I)作成において、塩化ビニル樹脂(徳山積水工業製、SL―P40、重合度約400)の代わりに、塩化ビニル樹脂(徳山積水工業製 TS−640M、重合度約640)を用いる他は同様のプロセスにより、CFRP作成用の樹脂フィルム(II)を得た。
<樹脂フィルム(III)作成>
上記樹脂フィルム(I)作成において、塩化ビニル樹脂(徳山積水工業製、SLP400、重合度約400)代わりに、塩素化塩化ビニル樹脂(徳山積水工業製、HA−05K、重合度約360、塩素化度約67%)を用いる他は同様のプロセスにより、CFRP作成用の樹脂フィルム(III)を得た。
<樹脂フィルム(IV)作成>
上記樹脂フィルム(I)作成において、添加剤として化学発泡剤(三菱レイヨン社製、商品名「P−530A」))20質量部をさらに加えた他は同様のプロセスにより、CFRP作成用の樹脂フィルム(IV)を得た。
<樹脂フィルム(V)作成>
上記樹脂フィルム(I)作成において、塩化ビニル樹脂(徳山積水工業製、SL―P40、重合度約400)の代わりに、塩化ビニル樹脂(徳山積水工業製 TS−1000R、重合度約1000)を用いる他は同様のプロセスにより、CFRP作成用の樹脂フィルム(V)を得た。
<炭素繊維基材(B)作成>
1,5−ジヒドロキシナフタレン10質量部、40質量%メチルアミン水溶液4質量部、およびホルマリン(ホルムアルデヒドの含有量:37質量%)8質量部からなるモノマーと、溶媒としてエタノール水(エタノールの含有量:50質量%)800質量部とを均一に混合して、モノマーを溶解してなるモノマー溶液を作製した。次に上記モノマー溶液にジビニルベンゼン架橋重合体からなる粒子(積水化学工業株式会社社製、商品名「ミクロパールSP」、平均粒径10μm)を10質量部添加し、開繊含浸液を作製した。
続いて、PAN系炭素繊維束から構成される炭素繊維織物(炭素繊維数:3000本、炭素繊維の平均径:7μm、目付:200g/m2、厚み:0.19mm、平織)を用意した。当該炭素繊維織物を上記の開繊含浸液に浸漬した後に引き上げ、その後、200℃で2分間加熱した。この加熱によって、ナフトキサジン樹脂の重合反応と、炭化が生じ、ナフトキサジン樹脂由来のアモルファスカーボンが生成し、開繊炭素繊維束の織物が得られた。開繊炭素繊維束における有機粒子および炭素同素体の合計付着量は、1質量%であった。この開繊炭素繊維束を炭素繊維基材(B)とした。
(実施例1)
<CFRPのプレス成形>
上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(I)を2枚、下側に樹脂フィルム(I)および樹脂フィルム(II)を各1枚で上下より挟み込み、200℃にて0〜6MPaへ段階的に加圧し、合計10分間プレスすることによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実−1」とした。
(実施例2)
上記樹脂フィルム(I)および樹脂フィルム(II)作成において、熱安定剤を10質量部へ増量した他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実−2」とした。
(実施例3)
上記樹脂フィルム(I)作成において、添加剤として内部滑剤(エメリーオレオケミカル社製 LOXIOL G60 グリセリンモノステアレート)を10質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実−3」とした。
(実施例4)
上記樹脂フィルム(I)作成において、添加剤として可塑剤(ジェイプラス社製 ジオクチルフタレート)を0.1質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実−4」とした。
(実施例5)
前記実施例1のCFRPのプレス成形において、上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(I)および樹脂フィルム(III)を各1枚、下側に樹脂フィルム(I)および樹脂フィルム(III)を各1枚で上下より挟み込んだ他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実−5」とした。
(実施例6)
前記実施例1のCFRPのプレス成形において、上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(I)および樹脂フィルム(IV)を各1枚、下側に樹脂フィルム(I)を2枚で上下より挟み込んだ他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実−6」とした。
(比較例1)
前記実施例1のCFRPのプレス成形において、上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(V)を2枚、下側に樹脂フィルム(V)を2枚で上下より挟み込んだ他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「比−2」とした。
(比較例2)
上記樹脂フィルム(I)作成において、内部滑剤(エメリーオレオケミカル社製 LOXIOL G60 グリセリンモノステアレート)25質量部をさらに加えた樹脂フィルムを、上記にて得られた炭素繊維基材(B)の上側2枚、下側に2枚で上下より挟み込んだ他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「比−2」とした。
<複素粘度ηの測定>
上記樹脂フィルム作成に用いた塩化ビニル系樹脂組成物(A)について、以下の方法により、複素粘度ηを測定した。測定結果を表1に示した。
上記樹脂フィルムを、30(mm)×90(mm)のサイズに切り出し、約5gとなるように重さを量り、170℃、約3分間、熱プレス成形し、約1分間冷却することにより、厚み1mmの粘度測定用サンプルを作成した。
測定には粘弾性測定装置(MCR102 Anton Paar社製)を使用し、平行平板の半径を25mm、平行間距離1mm、温度200℃、角周波数10Hzの条件で測定し、複素粘度ηを算出した。
<値Sの算出>
まず、各添加剤のサンプルをハンセン溶解度パラメータ(HSP)が確認されているMasterデータベースより選定した約30種類の溶媒に溶解させて溶解性を評価し、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)Ver.4.0.05を用いて、各添加剤(i)、塩化ビニル樹脂(p)、炭素繊維基材(B)のHSPを推算した。続いて、推算した各HSPを用いて、上記数式(I)〜(III)により、指標となる値Sを算出した。各配合条件で算出した指標Sを表1に示した。
<曲げ強度測定>
上記で作成したサンプル「実−1」〜「実−4」および「比−1」〜「比−2」から、測定用試料として長さ(l)40±1mm、幅(b)15±0.2mm、厚さhmmサイズの試験片について、支点間距離(L)は40×h(mm)として、作成した試験片について、試験機(SHIMADZU社製、AUTOGRAPH AGS−H)を用い、JIS K 7074に準拠して、3点曲げ方式にて曲げ強度(MPa)を測定した。測定結果を表1に示した。
(繊維体積率:Vfの算出)
本発明による炭素繊維強化複合材料の繊維体積率(Vf)の計算は下記の通り算出した。
Vf(%)=100×炭素繊維の厚み(mm)÷炭素繊維強化複合材料の厚み(mm)
(Vf50%の曲げ強度の算出)
Vfが50±2%の範囲にあるサンプルの曲げ強度をN=3以上測定し、測定値から、直線近似を行い、Vf50%の時の曲げ強度を算出し、以下の評価基準により評価を行った。評価結果を表1に示した。
(評価規準)
400MPa以上:○
300MPa以上400MPa未満:△
300MPa未満:×
<難燃性評価>
上記で作成したサンプル「実−1」および「実−5」を試料とし、20mm垂直燃焼試験 (UL94規格)と類似の評価法により、その難燃性を下記の基準で相対評価した。評価結果を表1に示した。
[評価基準]
・○:ベンチマークより優れる難燃性を有する。
・BM:ベンチマーク
<軽量性評価>
上記で作成したサンプル「実−1」および「実−6」を試料とし、水中置換法(JISK7112)と類似の方法にて、密度を測定し、軽量性を下記の基準で相対評価した。評価結果を表1に示した。
[評価基準]
・○:ベンチマークより低密度である。
・BM:ベンチマーク
Figure 2020158572

Claims (8)

  1. 塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)とからなる複合材料と、前記複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物(C)とを備える炭素繊維強化複合材料であって、
    前記塩化ビニル系樹脂組成物(A)が、塩化ビニル系樹脂および少なくとも1種の添加剤を含み、
    前記塩化ビニル系樹脂組成物(A)および前記炭素繊維基材(B)が、下記特性(1)および特性(2):
    ・特性(1):塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、1<η<1500であること。
    ・特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、下記数式(I)より算出される溶解指標(Ra(pi))、
    及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(II)より算出される溶解指標(Ra(ci))、
    及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下であること。
    Figure 2020158572
    Figure 2020158572
    Figure 2020158572
    (数式(I)及び(II)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
    (数式(III)中、Πは総乗を意味し、具体的には各添加剤(i)の各成分をi=1,2,3・・・nとする場合、塩化ビニル系樹脂(p)及び炭素繊維基材(B)に対して算出されるRa(pi)及びRa(ci)と前記重量分率C(i)の積を表す。また、その冪乗に掛かる値nは、各添加剤(i)の成分数を示す。)
    を満たすことを特徴とする、炭素繊維強化複合材料。
  2. 前記塩化ビニル系樹脂組成物(C)が、前記複合材料の表面の全てを被覆する、請求項1に記載の炭素繊維強化複合材料。
  3. 塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、10≦η≦1000である、請求項1または2に記載の炭素繊維強化複合材料。
  4. 前記添加剤が、熱安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、顔料、難燃剤、および可塑剤からなる群から選択される少なくとも1種である、請求項1〜3のいずれか一項に記載の炭素繊維強化複合材料。
  5. 前記塩化ビニル系樹脂組成物(A)が、400以上1500以下の平均重合度を有する塩化ビニル系樹脂を含み、又は、前記塩化ビニル系樹脂組成物(C)が、600以上の平均重合度を有する塩化ビニル系樹脂を含む、請求項1〜4のいずれか一項に記載の炭素繊維強化複合材料。
  6. 前記塩化ビニル系樹脂組成物(C)が、塩素化塩化ビニル系樹脂を含む、請求項1〜5のいずれか一項に記載の炭素繊維強化複合材料。
  7. 前記塩化ビニル系樹脂組成物(C)が、塩化ビニル系樹脂発泡体を含む、請求項1〜6のいずれか一項に記載の炭素繊維強化複合材料。
  8. 請求項1〜7のいずれか一項に記載の炭素繊維強化複合材料からなる、成形体。
JP2019057123A 2019-03-25 2019-03-25 ポリ塩化ビニル系炭素繊維強化複合材料 Active JP7332313B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019057123A JP7332313B2 (ja) 2019-03-25 2019-03-25 ポリ塩化ビニル系炭素繊維強化複合材料
PCT/JP2020/011966 WO2020196153A1 (ja) 2019-03-25 2020-03-18 ポリ塩化ビニル系炭素繊維強化複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057123A JP7332313B2 (ja) 2019-03-25 2019-03-25 ポリ塩化ビニル系炭素繊維強化複合材料

Publications (2)

Publication Number Publication Date
JP2020158572A true JP2020158572A (ja) 2020-10-01
JP7332313B2 JP7332313B2 (ja) 2023-08-23

Family

ID=72641850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057123A Active JP7332313B2 (ja) 2019-03-25 2019-03-25 ポリ塩化ビニル系炭素繊維強化複合材料

Country Status (1)

Country Link
JP (1) JP7332313B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880170A (ja) * 1972-01-31 1973-10-26
JPH03158211A (ja) * 1989-11-16 1991-07-08 Sekisui Chem Co Ltd 繊維強化ポリ塩化ビニル系樹脂複合材の製造方法
JPH0428534A (ja) * 1990-05-25 1992-01-31 Teijin Ltd 繊維強化複合成型物の製造法及びそれに用いる中間素材
JPH08267565A (ja) * 1995-03-31 1996-10-15 Sekisui Chem Co Ltd 繊維強化熱可塑性樹脂複合管の製造方法
JPH11291416A (ja) * 1998-04-13 1999-10-26 Asahi Glass Engineering Co Ltd 繊維補強塩化ビニル系樹脂成形体およびその製造方法
JP2002001811A (ja) * 2000-06-23 2002-01-08 Sekisui Chem Co Ltd 塩化ビニル系樹脂管の製造方法
JP2011213061A (ja) * 2010-04-01 2011-10-27 Mitsubishi Plastics Inc 積層体
JP2016092381A (ja) * 2014-11-11 2016-05-23 株式会社フジクラ 電磁波遮蔽用樹脂組成物、及び、ケーブル
JP2017066568A (ja) * 2015-10-02 2017-04-06 平岡織染株式会社 消臭性織物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880170A (ja) * 1972-01-31 1973-10-26
JPH03158211A (ja) * 1989-11-16 1991-07-08 Sekisui Chem Co Ltd 繊維強化ポリ塩化ビニル系樹脂複合材の製造方法
JPH0428534A (ja) * 1990-05-25 1992-01-31 Teijin Ltd 繊維強化複合成型物の製造法及びそれに用いる中間素材
JPH08267565A (ja) * 1995-03-31 1996-10-15 Sekisui Chem Co Ltd 繊維強化熱可塑性樹脂複合管の製造方法
JPH11291416A (ja) * 1998-04-13 1999-10-26 Asahi Glass Engineering Co Ltd 繊維補強塩化ビニル系樹脂成形体およびその製造方法
JP2002001811A (ja) * 2000-06-23 2002-01-08 Sekisui Chem Co Ltd 塩化ビニル系樹脂管の製造方法
JP2011213061A (ja) * 2010-04-01 2011-10-27 Mitsubishi Plastics Inc 積層体
JP2016092381A (ja) * 2014-11-11 2016-05-23 株式会社フジクラ 電磁波遮蔽用樹脂組成物、及び、ケーブル
JP2017066568A (ja) * 2015-10-02 2017-04-06 平岡織染株式会社 消臭性織物

Also Published As

Publication number Publication date
JP7332313B2 (ja) 2023-08-23

Similar Documents

Publication Publication Date Title
KR101843220B1 (ko) 탄소 섬유 강화 폴리프로필렌 수지 조성물, 성형 재료 및 성형품
US10570259B2 (en) Composition and formed article
JP6003224B2 (ja) 複合強化繊維束、その製造方法、および成形材料
JP5468964B2 (ja) 積層体
US20080045108A1 (en) Resin Composition And Moldings Thereof
JP2009197359A (ja) 強化繊維、および繊維強化複合材料
JP5994791B2 (ja) アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース
JP6497050B2 (ja) 繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形品
JP2020158571A (ja) ポリ塩化ビニル系炭素繊維強化複合材料
JPWO2018101022A1 (ja) 繊維強化樹脂用組成物及びその製造方法、繊維強化樹脂、並びに成形体
JP5525781B2 (ja) 積層体
US20200190729A1 (en) Reinforcing fiber bundle, reinforcing fiber-opening woven fabric, fiber reinforced composite, and methods for producing thereof
JP2020158572A (ja) ポリ塩化ビニル系炭素繊維強化複合材料
WO2020196153A1 (ja) ポリ塩化ビニル系炭素繊維強化複合材料
JP2020158750A (ja) ポリ塩化ビニル系炭素繊維強化複合材料
JP4898973B1 (ja) 壁面パネル、横矢板及び親杭横矢板式防水防護柵
JP2020158749A (ja) ポリ塩化ビニル系炭素繊維強化複合材料
JP2015178611A (ja) 複合強化繊維束および成形材料
JP7512126B2 (ja) ポリ塩化ビニル系炭素繊維強化複合材料
JP2011021184A (ja) 樹脂組成物およびその製造方法
US20220145528A1 (en) Method for producing opened carbon fibre bundle and fibre reinforced composite material
JP2021138906A (ja) ポリ塩化ビニル系炭素繊維強化複合材料
JP2022043969A (ja) 炭素繊維強化複合材料
JP2022044368A (ja) 炭素繊維強化複合材料
JP2011246595A (ja) ガラス繊維強化複合材料およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R151 Written notification of patent or utility model registration

Ref document number: 7332313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151