JP2020140923A - 固体酸化物形燃料電池セルスタックおよびその製造方法 - Google Patents

固体酸化物形燃料電池セルスタックおよびその製造方法 Download PDF

Info

Publication number
JP2020140923A
JP2020140923A JP2019037332A JP2019037332A JP2020140923A JP 2020140923 A JP2020140923 A JP 2020140923A JP 2019037332 A JP2019037332 A JP 2019037332A JP 2019037332 A JP2019037332 A JP 2019037332A JP 2020140923 A JP2020140923 A JP 2020140923A
Authority
JP
Japan
Prior art keywords
single cell
cathode
solid oxide
cell stack
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019037332A
Other languages
English (en)
Other versions
JP7147631B2 (ja
Inventor
卓磨 人見
Takuma Hitomi
卓磨 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019037332A priority Critical patent/JP7147631B2/ja
Priority to PCT/JP2020/000778 priority patent/WO2020179222A1/ja
Publication of JP2020140923A publication Critical patent/JP2020140923A/ja
Application granted granted Critical
Publication of JP7147631B2 publication Critical patent/JP7147631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/122Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】アノードの還元時に単セルに生じる熱応力に起因するクラック等の微構造破壊を抑制可能な固体酸化物形燃料電池セルスタック、また、これの製造に適した固体酸化物形燃料電池セルスタックの製造方法を提供する。【解決手段】固体酸化物形燃料電池セルスタック1は、アノード21、固体電解質22、および、カソード23がこの順に積層された平板形の単セル2を有し、単セル2は、カソード23側が凹反りとなるように変形された状態で保持されている。固体酸化物形燃料電池セルスタック1の製造方法は、凹面状に形成された凹表面420を有する凹面部材42の凹表面420に、アノード21、固体電解質22、および、カソード23がこの順に積層された平板形の単セル2のアノード21を向けた状態とし、単セル2をカソード23側から押さえ付け、カソード23側が凹反りとなるように単セル2を変形させて保持する工程を有している。【選択図】図1

Description

本発明は、固体酸化物形燃料電池セルスタックおよびその製造方法に関する。
従来、特許文献1などに知られるように、アノード、固体電解質、および、カソードがこの順に積層された平板形の単セルを有する固体酸化物形燃料電池セルスタックが公知である。固体酸化物形燃料電池セルスタックでは、一般に、金属製のセパレータ(インタコネクタ)を介して複数の単セルが積層されている。
特開2011−192487号公報
上述した固体酸化物形燃料電池セルスタックにおける単セルは、通常、酸化雰囲気中での焼成後、アノードを還元処理することによって製造される。また、発電時には、単セルのアノードは還元雰囲気に曝される。そのため、アノードの還元による収縮により、異種材料を組み合わせてなる単セルに熱応力が生じ、これに起因してクラック等の微構造破壊が生じる。とりわけ、カソードは材料強度が他に比べて小さいことが多いため、カソードやカソードと固体電解質との間で破壊現象が生じやすい。
本発明は、かかる課題に鑑みてなされたものであり、アノードの還元時に単セルに生じる熱応力に起因するクラック等の微構造破壊を抑制可能な固体酸化物形燃料電池セルスタック、また、これの製造に適した固体酸化物形燃料電池セルスタックの製造方法を提供しようとするものである。
本発明の一態様は、アノード(21)、固体電解質(22)、および、カソード(23)がこの順に積層された平板形の単セル(2)を有し、
上記単セルは、上記カソード側が凹反りとなるように変形された状態で保持されている、
固体酸化物形燃料電池セルスタック(1)にある。
本発明の他の態様は、凹面状に形成された凹表面(420)を有する凹面部材(42)の上記凹表面に、アノード(21)、固体電解質(22)、および、カソード(23)がこの順に積層された平板形の単セル(2)の上記アノードを向けた状態とし、上記単セルを上記カソード側から押さえ付け、上記カソード側が凹反りとなるように上記単セルを変形させて保持する工程を有する、固体酸化物形燃料電池セルスタックの製造方法にある。
上記固体酸化物形燃料電池セルスタックは、上記構成を有している。上記固体酸化物形燃料電池セルスタックでは、カソード側が凹反りとなるように変形された状態で保持されているので、カソードには内部圧縮応力が生じている。そのため、上記固体酸化物形燃料電池セルスタックでは、アノードの還元による収縮によって単セルに熱応力が生じ、カソードに引張応力が加わった場合でも、上記内部圧縮応力によって引張応力が緩和される。それ故、上記固体酸化物形燃料電池セルスタックによれば、カソードやカソードと固体電解質との間におけるクラック等の微構造破壊を抑制することが可能になる。
上記固体酸化物形燃料電池セルスタックの製造方法は、上記工程を有している。そのため、上記固体酸化物形燃料電池セルスタックの製造方法は、カソード側が凹反りとなるように変形された状態で保持された単セルを有する固体酸化物形燃料電池セルスタックの製造に好適である。
なお、特許請求の範囲および課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
図1は、実施形態1の固体酸化物形燃料電池セルスタックの断面の一部を模式的に示した説明図である。 図2は、実施形態1の固体酸化物形燃料電池セルスタックにおいて、(D−d)と(H−d)との関係を説明するための説明図であり、(a)は単セルをカソード側から見た際の平面視を示した図であり、(b)は(a)に示したII−II線断面図である。 図3は、実施形態1の固体酸化物形燃料電池セルスタックの変形例を模式的に示した説明図である。 図4は、実施形態2の固体酸化物形燃料電池セルスタックの断面の一部を模式的に示した説明図である。 図5は、実施形態3の固体酸化物形燃料電池セルスタックの製造方法の一部を模式的に示した説明図である。
(実施形態1)
実施形態1の固体酸化物形燃料電池セルスタックについて、図1〜図3を用いて説明する。図1に例示されるように、本実施形態の固体酸化物形燃料電池セルスタック1(以下、単に、「セルスタック」ということがある。)は、単セル2を有している。
単セル2は、アノード21、固体電解質22、および、カソード23がこの順に積層されている。単セル2は、平板状の形状を呈している。
セルスタック1では、単セル2が、カソード23側が凹反りとなるように変形された状態で保持されている。したがって、カソード23は、カソード23表面が凹面状となっている。具体的には、カソード23は、カソード23の厚み方向の端面を除いたカソード23の面内方向の外表面の中央部がへこんだ状態とされている。セルスタック1では、カソード23側が凹反りとなるように変形された状態で保持されているので、カソード23には内部圧縮応力が生じている。そのため、セルスタック1では、アノード21の還元による収縮によって単セル2に熱応力が生じ、カソード23に引張応力が加わった場合でも、上記内部圧縮応力によって引張応力が緩和される。それ故、セルスタック1によれば、カソード23やカソード23と固体電解質22との間におけるクラック等の微構造破壊を抑制することが可能になる。以下、本実施形態のセルスタック1について詳説する。
単セル2は、電極であるアノード21が支持体を兼ねるアノード支持方式、電極であるカソード23が支持体を兼ねるカソード支持方式、固体電解質22が支持体を兼ねる自立膜方式、単セル2以外の金属部材等が支持体となる他部材支持方式など、種々の支持方式にて構成することができる。図1では、アノード21の厚みが固体電解質22やカソード23の厚みよりも大きなアノード支持方式の単セル2が例示されている。単セル2がアノード支持方式である場合には、アノード21の還元時に単セル2に生じる熱応力の影響がカソード23に及びやすい。そのため、この場合には、本開示による効果を十分に享受することができる。また、他部材支持方式の場合には、電極であるアノード21またはカソード23に支持体としての機能が不要なため、電極厚みを薄くしやすくなり、ガス拡散抵抗の低減、オーミック抵抗の低減等に有利である。
図1では、固体電解質22の一方面にアノード21が接合され、固体電解質22の他方面に中間層24を介してカソード23が接合されてなる単セル2が例示されている。中間層24は、主に、固体電解質材料とカソード材料との反応を抑制するための層である。なお、単セル2は、固体電解質22とカソード23との間に中間層24が配置されていない構成とすることもできる。また、図1では、単セル2は四角形状に形成されており、カソード23の外形が、単セル2の各部位の外形に比べて小さく形成されている例が示されている。なお、単セル2は、円形状等の形状に形成されていてもよい。
固体電解質22を構成する固体電解質材料としては、例えば、イットリア安定化ジルコニア等の酸化ジルコニウム系酸化物などが挙げられる。アノード21を構成するアノード材料としては、例えば、Ni、NiO等の触媒と、上記酸化ジルコニウム系酸化物とを含む混合物などが挙げられる。カソード23を構成するカソード材料としては、例えば、ランタン−ストロンチウム−コバルト系酸化物、ランタン−ストロンチウム−コバルト−鉄系酸化物等の遷移金属ペロブスカイト型酸化物、あるいは、上記遷移金属ペロブスカイト型酸化物と、セリアやセリアにGd、Sm、Y、La、Nd、Yb、Ca、および、Hoから選択される1種または2種以上の元素等がドープされたセリア系固溶体とを含む混合物などが挙げられる。中間層24を構成する中間層材料としては、例えば、セリアや上記セリア系固溶体などが挙げられる。
単セル2において、単セル2の各部位を構成する材料のうち、カソード23を構成するカソード材料の曲げ強度が最も低い構成とすることができる。従来技術においてこのような構成を採用した場合には、材料強度的に最弱となるカソード23やカソード23と中間層24との接合部(中間層24がない場合にはカソード23と固体電解質22との接合部)で、アノード21の還元による熱応力に起因する破壊現象が生じやすかった。これに対して、本開示によれば、上記構成とした場合であっても、カソード23やカソード23と固体電解質22との間で上記破壊現象が生じ難くなる。そのため、上記構成によれば、本開示の効果を十分に享受することができる。
具体的には、カソード材料の曲げ強度をσ、中間層材料の曲げ強度をσ、固体電解質材料の曲げ強度をσ、アノード材料の曲げ強度をσとしたとき、単セル2は、σ<σ(中間層24がある場合)、σ<σ、σ<σの関係を満たすことができる。なお、曲げ強度は、室温における3点曲げ強度である。
単セル2において、単セル2の各部位を構成する材料のうち、カソード23を構成するカソード材料の線熱膨張係数が最も大きい構成とすることができる。従来技術においてこのような構成を採用した場合には、構成材料の線熱膨張係数差に起因してアノード21の還元前(単セル2の酸化雰囲気での焼成後)に内部引張応力がカソード23内に生じる。そして、アノード21の還元によりアノード21が収縮すると単セル2に圧縮方向の力が加わり、形状が保持されずにスタックに組み込まれた単セル2は、カソード23側に凸(カソード23側に凹)となりやすい。つまり、単セル2のカソード23側が凸反りとなりやすい。これにより、カソード23にはさらに内部引張応力が作用し、カソード23の界面等で破壊が生じやすかった。これに対して、本開示によれば、上記構成とした場合であっても、カソード23側が凹反りとなるように強制的に変形されたまま単セルが保持されることによってカソード23に内部圧縮応力が付加される。そして、これによってカソード23内の内部引張応力が緩和され、カソード23の界面等での破壊現象が生じ難くなる。そのため、上記構成によれば、本開示の効果を十分に享受することができる。
具体的には、カソード材料の線熱膨張係数をα、中間層材料の線熱膨張係数をα、固体電解質材料の線熱膨張係数をα、アノード材料の線熱膨張係数をαとしたとき、単セル2は、α<α(中間層24がある場合)、α<α、α<αの関係を満たすことができる。なお、線熱膨張係数は、700℃における値である。
単セル2は、(D−d)<(H−d)の関係を満たす構成とすることができる。但し、図2に例示されるように、dは平面視での単セル中心部Oにおけるカソード23の厚みである。Dは、単セル中心部Oにおける単セル2の厚みである。dおよびDは、いずれも単セル2の厚み方向に沿う断面を走査型電子顕微鏡(SEM)観察することにより求めることができる。dは、平面視でのカソード端部におけるカソード23の厚みである。Hは、単セル中心部Oにおける単セル2の厚み方向と垂直かつアノード21表面に接する面を基準面BPとしたとき、当該基準面BPからのカソード端部の高さである。dは、上記SEM観察により求めた、単セル中心部Oを中心として周方向8点のカソード端部厚み測定値の平均値である。Hは、上記SEM観察により求めた、単セル中心部Oを中心として周方向8点のカソード端部高さ測定値の平均値である。なお、単セル2が四角形状の場合、図2(a)に示した8つの点線の丸印の位置が、単セル中心部Oを中心とする周方向の8点の位置とされる。
単セル2が上記関係を満たす構成とされている場合には、カソード23側が凹反りとなるように単セル2が変形された状態が確実なものとなる。したがって、この場合には、カソード23に内部圧縮応力を確実に加えることが可能となり、アノード21の還元時に生じる熱応力に起因する内部引張応力の緩和を確実なものとすることができる。
セルスタック1は、単セル2のアノード21側に配置された金属部材3をさらに有することができる。金属部材3は、例えば、単セル2を支持する金属製の支持部材等として構成することができる。
本実施形態では、具体的には、金属部材3は、図1に例示されるように、単セル2のアノード21側を支持するセル支持面部30を有する構成とすることができる。セル支持面部30は、例えば、板状の形状を呈することができる。また、セル支持面部30は、複数の貫通孔31を有する構成とすることができる。この構成によれば、セル支持面部30によってアノード21面側から単セル2を確実に支持しつつ、複数の貫通孔31を通じて、単セル2のアノード21に燃料ガスFを供給したり、発電で生じた水蒸気ガス(不図示)を複数の貫通孔31を通じて排出したりすることができる。
金属部材3は、具体的には、Cr(クロム)、Fe(鉄)、Ni(ニッケル)、Co(コバルト)、Mn(マンガン)、Cu(銅)、Zn(亜鉛)、および、Ti(チタン)からなる群より選択される少なくとも1種の成分を含む金属より構成することができる。この構成によれば、単セル2と金属部材3との結合性(接合性)を確保しやすく、集電不良の抑制に有利である。金属部材3は、好ましくは、フェライト系ステンレス鋼(SUS430等)、オーステナイト系ステンレス鋼(SU304等)、Fe−Cr合金、Ni−Cr合金、Ni−Cr−Si合金などのCrを含有する合金などより構成することができる。この構成によれば、Crが昇温時に他の部材内に拡散し、焼結助剤として振る舞うことによって接合強度を向上させることができるなどの利点がある。
金属部材3の厚みは、電気伝導性、母材強度、電池作動時におけるクリープ防止等の観点から、好ましくは、0.1mm以上2mm以下、より好ましくは、0.3mm以上1.5mm以下、さらに好ましくは、0.5mm以上1mm以下とすることができる。なお、金属部材3の厚みは、単セル2が配置される部分にて測定される。
セルスタック1が上述した金属部材3を有する場合、単セル2は、金属部材3に固定されている構成とすることができる。この構成によれば、カソード23側が凸反りとなるような単セル2の変形を抑制しやすくなる。そのため、この構成によれば、金属部材3と単セル2との間の電子導電経路が途切れるのを抑制しやすくなり、集電性の悪化を抑制しやすくなる。単セル2の金属部材3への固定は、例えば、金属部材3に単セル2のアノード21面を直接または間接的に接合したり、金属部材3に単セル2を押し付けた状態としたりする方法などが挙げられる。
セルスタック1が上述した金属部材3を有する場合、セルスタック1は、単セル2と金属部材3との間に、単セル2と金属部材3とを結合する電気伝導性の結合層4を有する構成とすることができる。つまり、セルスタック1は、単セル2が上記変形状態を維持したまま結合層4を介して金属部材3に固定された構成とすることができる。この構成によれば、単セル2で発電した電気を結合層4を介して金属部材3にて集電しつつ、結合層4によって金属部材3に単セル2を確実に固定することができる。
結合層4は、具体的には、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Mn(マンガン)、Cr(クロム)、Ti(チタン)、V(バナジウム)、Sc(スカンジウム)、Ag(銀)、Au(金)、および、Pt(白金)族からなる群より選択される少なくとも1種の成分を含む金属より構成することができる。なお、Pt族は、Pt(白金)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Os(オスミウム)、Ir(イリジウム)であり、好ましいPt族は、電気伝導性、耐酸化性、シンタリング(粒成長)耐性などの観点から、Ptであるとよい。上記構成によれば、単セル2と金属部材3との結合性(接合性)を確保しやすく、集電不良の抑制に有利である。結合層4は、好ましくは、Ni、Cr、および、Feからなる群より選択される少なくとも1種の成分を含む金属より構成することができ、より好ましくは、Ni−Cr合金、Ni−Cr−Fe合金、Ni−Fe合金などより構成することができる。この構成によれば、高温下におけるヤング率が貴金属に比べて高いため、動作環境においても変形し難くなるなどの利点がある。
結合層4は、例えば、図1に例示されるように、凹面状に形成された凹表面40を有する構成とすることができる。この構成によれば、単セル2を、カソード23側が凹反りとなるように変形させた状態で保持しやすくなる。
単セル2が結合層4を介して金属部材3に固定されている場合、図1に例示されるように、単セル2のアノード21は、結合層4に結合しており、金属部材3に結合していない態様とされることができる。また、図3に例示されるように、単セル2のアノード21は、結合層4に結合しており、金属部材3に接する態様等とされていてもよい。この場合、結合層4は、例えば、アノード21を金属部材3に接するようにするための開口42を有することができる。なお、図1および図3では、結合層4の凹表面40が、結合層4の外縁から中央部に向かって滑らかにへこんでいる例が示されている。結合層4の凹表面40は、結合層4の外縁部から中央部に向かって段階的に結合層4の厚みが薄くされることによって外縁部に対して中央部がへこんでいる構成(不図示)とされていてもよい。この構成によれば、大きさの異なる穴が形成された結合層形成用シートを複数積層して一体化することによって結合層を形成することができるので、結合層の準備が簡単になるなどの利点がある。
結合層4は、図1および図3に例示されるように、上述したセル支持面部30に形成された貫通孔31を塞がないように設けられることができる。この構成によれば、発電によりアノード21で生じた水蒸気の排出、および、アノード21への燃料ガスFの供給を確実なものとすることができる。具体的には、結合層4は、セル支持面部30の貫通孔31に対応して形成された貫通孔41を有する構成とすることができる。なお、結合層4を多孔質に形成した場合には、貫通孔41は省略することができる。
セルスタック1は、図1および図3に例示されるように、セパレータ5をさらに有することができる。セパレータ5は、隣り合う単セル2同士を電気的に直列に接続するとともに、単セル2のアノード21側に供給される燃料ガスFと、単セル2のカソード23側に供給される酸化剤ガスAとを隔てる役割を有している。また、セルスタック1は、カソード23に接する集電体50を有する構成とすることができる。本実施形態では、具体的には、セパレータ5とカソード23との間に、カソード23に接するように集電体50を配置することができる。この構成によれば、スタック部材を用いて単セル2をスタック化した際に、結合層4の凹表面40に単セル2をカソード23側から集電体50によって押さえ付け、カソード23側が凹反りとなるように単セル2を変形させたまま保持しやすくなる。なお、セパレータ5、集電体50は、金属部材3と同様の金属材料等より構成することができる。また、集電体50は、セパレータ5と一体化されていてもよい。
セルスタック1は、図1に例示されるように、金属部材3に固定された単セル2とセパレータ5とが交互に積層された積層構造を有する構成とすることができる。なお、図1では、上述したセル支持面部30に結合層4を介して固定された単セル2の外周縁が、シール部材62を間に挟んだ状態でリテーナ部材61によって金属部材3に固定されている例が示されている。セルスタック1において、金属部材3とセパレータ5との間は、アノード21に燃料ガスFを供給するための燃料ガス流路71とすることができる。一方、カソード23とセパレータ5との間は、カソード23に酸化剤ガスAを供給するための酸化剤ガス流路72とすることができる。
(実施形態2)
実施形態2の固体酸化物形燃料電池セルスタックについて、図4を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
本実施形態のセルスタック1は、図4に例示されるように、単セル2が、カソード23側が凹反りとなるように変形された状態で保持されている。但し、本実施形態では、セルスタック1は、結合層4を有しておらず、単セル2は、金属部材3にアノード21側が押し付けられた状態で、金属部材3に固定されている。本実施形態によっても、実施形態1で説明した原理により、アノード21の還元時に単セル2に生じる熱応力に起因するクラック等の微構造破壊を抑制することができる。なお、結合層4を用いずに金属部材3に単セル2を押し付けた状態で固定する方法としては、例えば、集電体50による押圧力を利用する方法、上述したリテーナ部材61による方法、スタック形成時の締結部材(不図示)による締結力を利用する方法などを例示することができる。
本実施形態では、具体的には、図4に例示されるように、金属部材3のセル支持面部30が、凹面状に形成された凹表面301を有する構成とされている。図4では、セル支持面部30を単セル2側とは反対側に膨出(湾曲)させることにより、凹表面301が形成されている例が示されている。単セル2は、このセル支持面部30の凹表面301に押し付けられた状態で固定されることにより、カソード23側が凹反りとなるように変形された状態で保持されている。その他の構成および作用効果は、実施形態1と同様である。
(実施形態3)
実施形態3の固体酸化物形燃料電池セルスタックの製造方法(以下、本製造方法という。)について説明する。なお、本実施形態において、実施形態1および実施形態2の記載は適宜参照することができる。
本製造方法は、凹面状に形成された凹表面を有する凹面部材の凹表面に、アノード、固体電解質、および、カソードがこの順に積層された平板形の単セルのアノードを向けた状態とし、単セルをカソード側から押さえ付け、カソード側が凹反りとなるように単セルを変形させて保持する工程(以下、保持工程という。)を有している。以下、図5を用い、実施形態1のセルスタック1を製造する場合を例にして本製造方法を詳説する。
保持工程では、実施形態1にて上述した構成の単セル2が準備される。但し、単セル2は、アノード21が還元される前のものである。具体的には、保持工程にて変形させる前の単セル2は、図5(a)に例示されるように、カソード23側に凸となるように反っているものを好適に用いることができる。このような単セル2は、実施形態1で上述したように、単セル2の各部位を構成する材料のうち、カソード23を構成するカソード材料の線熱膨張係数を最も大きい構成とし、酸化雰囲気中で単セル2を焼成することにより準備することができる。この際、単セル2の各部位の厚みは適宜調節することができる。上記構成によれば、単セル2の各部位を構成する材料に比べてカソード材料の線熱膨張係数が最も大きい場合であっても、アノード21の還元時にカソード23の界面等での破壊現象が生じ難いセルスタック1を得ることができる。
保持工程では、図5(a)に例示されるように、凹面状に形成された凹表面420を有する凹面部材42が準備される。本実施形態では、具体的には、凹面部材42は、熱処理されることによって結合層4となる結合層形成材料より構成されている。つまり、この凹面部材42は、熱処理されることにより、金属部材3と単セル2とに化学的に結合した電気伝導性の結合層4となるものである。なお、実施形態2に示したセルスタック1を製造する場合には、セル支持面部30に凹表面301を有する金属部材3そのものを凹面部材42として使用すればよい。
次いで、保持工程では、図5(b)に例示されるように、凹面部材42の凹表面420に単セル2のアノード21を向けた状態とし、単セル2がカソード23側から荷重Fにて押さえ付けられる。これにより、単セル2は、凹面部材42の凹表面420に沿ってカソード23側が凹反りとなるように変形する。この際、単セル2は、アノード21の還元による収縮によってカソード23側が凸反りとなるように変形する以上に、カソード23側が凹反りとなるように変形させることができる。この構成によれば、カソード23への内部圧縮応力の付加が確実なものとなるので、アノード21の還元による収縮によってカソード23に生じる引張応力をより緩和しやすくなる。
次いで、保持工程では、単セル2を上記のように変形させた後、その変形状態が維持されるように単セル2を保持させる。本実施形態では、具体的には、上記荷重Fにて単セル2を凹面部材42に押さえ付けたまま熱処理が施される(焼成される)。なお、荷重Fは、例えば、集電体50等を介して負荷することができる。また、熱処理(焼成)は、大気中等、酸化雰囲気中にて実施することができる。これにより、図5(c)に例示されるように、結合層形成材料よりなる凹面部材42が結合層4となる。そして、単セル2は、結合層4を介して金属部材3に固定され、カソード23側が凹反りとなるように変形された状態で保持される。なお、実施形態2に示したセルスタック1を製造する場合には、単セル2の変形状態を保持したまま、他のスタック構成とともに締結部材等にて締結し、単セル2の形状を固定すればよい。
上記保持工程後、単セル2のアノード21を還元処理することができる。具体的には、例えば、カソード23側が凹反りとなるように単セル2が保持された金属部材3と、セパレータ等の他のスタック構成部材とをスタック化した後、アノード21に還元性ガスを流すことによりアノード21を還元することができる。なお、還元に用いる還元性ガスとしては、例えば、水素ガスなどを用いることができる。また、アノード21の還元処理は、セルスタック1の初回作動時より前に別途実施されてもよいし、セルスタック1の初回作動時における昇温過程で実施されてもよい。
本製造方法は、カソード23側が凹反りとなるように変形された状態で保持された単セル2を有するセルスタック1の製造に好適である。
(実験例)
<単セルの準備>
アノード形成用シート、固体電解質形成用シート、および、中間層形成用シートをこの順に積層し、静水圧プレス(WIP)成形法を用いて圧着することにより、成形体を得た。成形体は、圧着後に脱脂した。なお、WIP成形条件は、温度85℃、加圧力50MPa、加圧時間10分という条件とした。
次いで、上記成形体を、大気雰囲気中にて1350℃で2時間焼成した。これにより、アノード(厚み400μm)、固体電解質(厚み3.5μm)、中間層(厚み3μm)がこの順に積層された焼成体を得た。
次いで、上記焼成体における中間層の表面に、カソード形成用ペーストをスクリーン印刷法により塗布し、大気雰囲気中にて950℃で2時間焼成(焼付)することにより、カソード(厚み50μm)を形成した。この際、カソードの外形は、アノードの外形よりも小さく形成した。これにより平板形の単セルを得た。なお、アノードは、NiOと8mol%のYを含むイットリア安定化ジルコニア(8YSZ)からなり、未だ還元されていない。固体電解質は、8YSZからなる。中間層は、10mol%のGdがドープされたCeO(10GDC)からなる。カソードは、La0.6Sr0.4CoO(LSC)からなる。また、単セルは、四角形状であり、図5(a)に示されるように、焼成後の状態ではカソード側に凸となるように反っている。したがって、単セルは、セル厚み方向に沿う断面視で、カソード中心部が外方に突き出た状態にある。
<スタック用部材の準備>
スタック用部材として、金属部材と、結合層形成用シートと、集電体(本例ではSUS430製のメッシュ部材)と、封止用ガラスとを準備した。金属部材は、Fe−Cr合金(本例ではSUS430)よりなり、複数の貫通孔が形成された平坦な板状の形状を呈するセル支持面部を有している。結合層形成用シートは、Niを主成分としており、次のようにして準備した。
Ni粉末(平均粒子径:0.4μm)と、ポリビニルブチラールと、酢酸イソアミルと、1−ブタノールとをボールミルにて混合することによりスラリーを調製した。上記スラリーを、ドクターブレード法を用いて、樹脂シート上に層状に塗工し、乾燥させた後、樹脂シートを剥離することにより、四角形状の金属含有シート(厚み50μm)を形成した。なお、上記平均粒子径は、レーザー回折・散乱法により測定した体積基準の累積度数分布が50%を示すときの粒子径(直径)d50である。
上記のようにして金属含有シートを7枚形成した後、その内の6枚については、シート中心に所定の開口径を有する穴を形成した。具体的には、直径40.6mmの穴を形成した金属含有シート1、直径49.8mmの穴を形成した金属含有シート2、直径57.5mmの穴を形成した金属含有シート3、直径62.3mmの穴を形成した金属含有シート4、直径70.4mmの穴を形成した金属含有シート5、直径76.0mmの穴を形成した金属含有シート6を準備した。そして、穴加工されていない金属含有シートの上に、金属含有シート1、金属含有シート2、金属含有シート3、金属含有シート4、金属含有シート5、金属含有シート6を穴の中心を合わせて順に積層した後、WIP成形法にて一体化することにより、複数の金属含有シートの穴が重なって形成された凹表面を有する結合層形成用シートを準備した。準備した結合層形成用シートは、60℃にて30分アニールし、乾燥による形状変化の抑制処理を施した後、レーザー加工により、セル支持面部の貫通孔と対応させて、厚み方向に貫通する貫通孔を複数形成した。
<セルスタックユニットの作製>
金属部材のセル支持面部の表面に、結合層形成用シート、単セルをこの順に積層した。この際、結合層形成用シートは、穴加工されていない金属含有シートのシート面をセル支持面部側に向けた状態で積層した。また、単セルは、結合層形成用シートの凹表面にアノードを向けた状態で積層した。また、単セルの端面には封止用ガラスを塗布した。
次いで、集電体を単セルのカソード表面から荷重3000Nにて押し付けることにより、結合層形成用シートの凹表面に単セルをカソード側から押さえ付け、カソード側が凹反りとなるように単セルを変形させた。つまり、カソード側が凸(アノード側が凹)とされていた単セルを、カソード側が凹(アノード側が凸)となるように変形させた。そして、上記変形状態を維持したまま、上下に配置したセパレータ同士をねじ固定し、セルスタックユニットとした。
次いで、上記により得られたセルスタックユニットを、大気雰囲気中にて850℃まで昇温し、結合層形成用シートを金属(合金含む)焼結体からなる結合層とするとともに、この結合層によって金属部材と単セルとを結合させることにより、上記変形状態のまま単セルを固定した。また、上記加熱によって、単セルの端面を封止用ガラスにて封止した。
次いで、800℃まで降温後、還元性ガス(水素を含むガス、具体的には、水素ガス)をアノードに導入し、アノードの還元を完了させた。その後、アノードに還元ガスを流したまま室温まで降温した。これにより、セルスタックに用いる試料1のセルスタックユニットを作製した。
試料1のセルスタックユニットの作製において、結合層形成用シートを用いなかった点以外は同様にして、試料1Cのセルスタックユニットを作製した。なお、試料1Cのセルスタックユニットでは、平坦なセル支持面部に単セルが押し付けられている。そのため、単セルは、平坦なセル支持面部の表面に沿っており、カソード側が凹反りとなるように反ってはいない。また、試料1Cのセルスタックユニットは、結合層を有していないので、単セルが熱応力による変形によって自由に動く状態にある。
<評価>
得られたセルスタックユニット全体を熱硬化性樹脂にて固め、空隙部分がない状態とした後、このセルスタックユニットから単セルを切り出した。次いで、単セルのセル厚み方向に沿う断面から、セル形状を三次元計測機(キーエンス社製、「VL3000」)にて計測した。その結果、試料1Cについては、単セルのカソード側が凸反りとなっていることが確認された。そのため、試料1Cでは、セル支持面部からアノードが浮き上がった状態となっている箇所が見られた。これに対し、試料1については、カソード側が凹反りとなるように変形された状態で単セルが結合層によって保持されていることが確認された。また、単セルは、上述した(D−d)<(H−d)の関係を満たしていた。なお、セル厚み方向に沿う断面視で、カソード中心部は、カソード端部よりも内方(固体電解質側)に突き出た状態にあった。
次いで、上記切り出した単セルの断面を研磨し、イオンミリングを行うことにより、中間層とカソードとの接合部周辺を精密観察できるようにし、断面SEM観察を行った。その結果、試料1Cについては、中間層とカソードとの接合部にクラックが確認された。これに対し、試料1では、中間層とカソードとの接合部にクラックは見当たらず、クラックの発生が抑えられていることが確認された。これは、試料1では、カソード側が凹反りとなるように変形された状態で保持されているので、カソードに内部圧縮応力が生じ、アノードの還元による収縮によって単セルに熱応力が生じ、カソードに引張応力が加わった場合でも、上記内部圧縮応力によって引張応力が緩和されたためである。
本発明は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。
1 固体酸化物形燃料電池セルスタック
2 単セル
21 アノード
22 固体電解質
23 カソード

Claims (10)

  1. アノード(21)、固体電解質(22)、および、カソード(23)がこの順に積層された平板形の単セル(2)を有し、
    上記単セルは、上記カソード側が凹反りとなるように変形された状態で保持されている、
    固体酸化物形燃料電池セルスタック(1)。
  2. 上記単セルの上記アノード側に配置された金属部材(3)をさらに有し、
    上記単セルは、上記金属部材に固定されている、請求項1に記載の固体酸化物形燃料電池セルスタック。
  3. 上記単セルと上記金属部材との間に、上記単セルと上記金属部材とを結合する電気伝導性の結合層(4)を有する、請求項2に記載の固体酸化物形燃料電池セルスタック。
  4. 上記単セルは、(D−d)<(H−d)の関係を満たす、請求項1〜3のいずれか1項に記載の固体酸化物形燃料電池セルスタック。
    但し、
    :平面視での単セル中心部(O)における上記カソードの厚み
    :上記単セル中心部における上記単セルの厚み
    :平面視でのカソード端部における上記カソードの厚み
    :上記単セル中心部における上記単セルの厚み方向と垂直かつ上記アノード表面に接する面を基準面(BP)としたとき、当該基準面からの上記カソード端部の高さ
  5. 上記単セルの各部位を構成する材料のうち、上記カソードを構成するカソード材料の曲げ強度が最も低い、請求項1〜4のいずれか1項に記載の固体酸化物形燃料電池セルスタック。
  6. 上記単セルの各部位を構成する材料のうち、上記カソードを構成するカソード材料の線熱膨張係数が最も大きい、請求項1〜5のいずれか1項に記載の固体酸化物形燃料電池セルスタック。
  7. 上記結合層は、Ni、Co、Fe、Mn、Cr、Ti、V、Sc、Ag、Au、および、Pt族からなる群より選択される少なくとも1種の成分を含む金属より構成されている、請求項3に記載の固体酸化物形燃料電池セルスタック。
  8. 上記金属部材は、Cr、Fe、Ni、Co、Mn、Cu、Zn、および、Tiからなる群より選択される少なくとも1種の成分を含む金属より構成されている、請求項2または3に記載の固体酸化物形燃料電池セルスタック。
  9. 凹面状に形成された凹表面(420)を有する凹面部材(42)の上記凹表面に、アノード(21)、固体電解質(22)、および、カソード(23)がこの順に積層された平板形の単セル(2)の上記アノードを向けた状態とし、上記単セルを上記カソード側から押さえ付け、上記カソード側が凹反りとなるように上記単セルを変形させて保持する工程を有する、固体酸化物形燃料電池セルスタックの製造方法。
  10. 上記変形させる前の上記単セルは、上記カソード側に凸となるように反っている、請求項9に記載の固体酸化物形燃料電池セルスタックの製造方法。
JP2019037332A 2019-03-01 2019-03-01 固体酸化物形燃料電池セルスタックおよびその製造方法 Active JP7147631B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019037332A JP7147631B2 (ja) 2019-03-01 2019-03-01 固体酸化物形燃料電池セルスタックおよびその製造方法
PCT/JP2020/000778 WO2020179222A1 (ja) 2019-03-01 2020-01-13 固体酸化物形燃料電池セルスタックおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037332A JP7147631B2 (ja) 2019-03-01 2019-03-01 固体酸化物形燃料電池セルスタックおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2020140923A true JP2020140923A (ja) 2020-09-03
JP7147631B2 JP7147631B2 (ja) 2022-10-05

Family

ID=72280626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037332A Active JP7147631B2 (ja) 2019-03-01 2019-03-01 固体酸化物形燃料電池セルスタックおよびその製造方法

Country Status (2)

Country Link
JP (1) JP7147631B2 (ja)
WO (1) WO2020179222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11936075B2 (en) 2021-12-01 2024-03-19 Korea Institute Of Science And Technology Separator for solid oxide fuel cell (SOFC) stack capable of minimizing system volume and usage of sealant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158692A (ja) * 2003-10-31 2005-06-16 Kyocera Corp 燃料電池セル及びその製法並びに燃料電池
JP2009231209A (ja) * 2008-03-25 2009-10-08 Toyota Motor Corp 燃料電池の製造方法
JP2013089496A (ja) * 2011-10-19 2013-05-13 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池、固体酸化物形燃料電池セル本体、及び固体酸化物形燃料電池の製造方法
JP2014007166A (ja) * 2013-09-12 2014-01-16 Dainippon Printing Co Ltd 固体酸化物形燃料電池、及び、固体酸化物形燃料電池の製造方法
JP2016081821A (ja) * 2014-10-21 2016-05-16 日産自動車株式会社 燃料電池セルの製造方法
JP2017147168A (ja) * 2016-02-19 2017-08-24 日本特殊陶業株式会社 セパレータ付電気化学反応単セルの製造方法
JP2018041867A (ja) * 2016-09-08 2018-03-15 新日鉄住金マテリアルズ株式会社 放熱基板、及び放熱基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158692A (ja) * 2003-10-31 2005-06-16 Kyocera Corp 燃料電池セル及びその製法並びに燃料電池
JP2009231209A (ja) * 2008-03-25 2009-10-08 Toyota Motor Corp 燃料電池の製造方法
JP2013089496A (ja) * 2011-10-19 2013-05-13 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池、固体酸化物形燃料電池セル本体、及び固体酸化物形燃料電池の製造方法
JP2014007166A (ja) * 2013-09-12 2014-01-16 Dainippon Printing Co Ltd 固体酸化物形燃料電池、及び、固体酸化物形燃料電池の製造方法
JP2016081821A (ja) * 2014-10-21 2016-05-16 日産自動車株式会社 燃料電池セルの製造方法
JP2017147168A (ja) * 2016-02-19 2017-08-24 日本特殊陶業株式会社 セパレータ付電気化学反応単セルの製造方法
JP2018041867A (ja) * 2016-09-08 2018-03-15 新日鉄住金マテリアルズ株式会社 放熱基板、及び放熱基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11936075B2 (en) 2021-12-01 2024-03-19 Korea Institute Of Science And Technology Separator for solid oxide fuel cell (SOFC) stack capable of minimizing system volume and usage of sealant

Also Published As

Publication number Publication date
JP7147631B2 (ja) 2022-10-05
WO2020179222A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5483539B2 (ja) 接合方法
JP5075183B2 (ja) 電気化学装置
CN106575784B (zh) 膜电极组件及其制造方法、燃料电池及其制造方法
JP6204822B2 (ja) 固体酸化物形燃料電池
CN111193034B (zh) 结构体和固体氧化物型燃料电池堆
JP2010212036A (ja) 固体酸化物形燃料電池および該電池用インターコネクタ
WO2020179222A1 (ja) 固体酸化物形燃料電池セルスタックおよびその製造方法
JPWO2009001739A1 (ja) 高温構造材料と固体電解質形燃料電池用セパレータ
JP2023003622A (ja) 電気化学セル
JP5489673B2 (ja) 燃料電池セルならびにそれを備えるセルスタック装置、燃料電池モジュールおよび燃料電池装置
WO2011138915A1 (ja) 高温構造材料、固体電解質形燃料電池用構造体および固体電解質形燃料電池
JP5294649B2 (ja) セルスタックおよび燃料電池モジュール
JP7115363B2 (ja) 固体酸化物形燃料電池セルスタック
JP7226130B2 (ja) 燃料電池単セルおよび燃料電池セルスタック
JP6850187B2 (ja) 電気化学反応単セル、および、電気化学反応セルスタック
JP7087670B2 (ja) 燃料電池単セルおよびその製造方法
JP6060224B1 (ja) 集電部材及び燃料電池
JP7006038B2 (ja) 燃料電池セルスタック
JP7342360B2 (ja) 固体酸化物形燃料電池セルスタック
JP7447715B2 (ja) 固体酸化物形燃料電池
JP7082636B2 (ja) 電気化学反応セルスタック
JP7082637B2 (ja) 電気化学反応セルスタック
JP5727429B2 (ja) セパレータ付燃料電池セル,および燃料電池
JP6939177B2 (ja) 固体酸化物形燃料電池用アノードおよびその製造方法ならびに固体酸化物形燃料電池
JP6774230B2 (ja) 集電部材−電気化学反応単セル複合体および電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151