JP2020139681A - 冷凍サイクル装置、蒸発圧力調整弁 - Google Patents
冷凍サイクル装置、蒸発圧力調整弁 Download PDFInfo
- Publication number
- JP2020139681A JP2020139681A JP2019035227A JP2019035227A JP2020139681A JP 2020139681 A JP2020139681 A JP 2020139681A JP 2019035227 A JP2019035227 A JP 2019035227A JP 2019035227 A JP2019035227 A JP 2019035227A JP 2020139681 A JP2020139681 A JP 2020139681A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- valve
- pressure
- evaporator
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Temperature-Responsive Valves (AREA)
Abstract
【課題】搭載性の悪化を抑制しつつ、蒸発器の吸熱効果を適切に発揮させることが可能な蒸発圧力調整弁および冷凍サイクル装置を提供する。【解決手段】冷凍サイクル装置10は、圧縮機11、室内凝縮器12、第1膨張弁15a、第2膨張弁15b、室外熱交換器16、室内蒸発器18、蒸発圧力調整弁19を備える。蒸発圧力調整弁19は、絞り開度を調整する調整状態と全開状態とに切り替えるための弁部品としてマイクロバルブを含んでいる。マイクロバルブは、温度変化によって変位する駆動部と、駆動部の温度変化による変位を増幅する増幅部と、増幅部によって増幅された変位が伝達されて動くことで、蒸発圧力調整弁を流れる冷媒の流量を調整する可動部と、を有する。そして、増幅部が、ヒンジを支点とし、増幅部が駆動部に付勢される付勢位置を力点とし、増幅部と可動部との接続位置を作用点とする梃子として機能するように構成されている。【選択図】図1
Description
本開示は、蒸発器の冷媒出口側の圧力を調整する蒸発圧力調整弁および当該圧力調整弁を含む冷凍サイクル装置に関する。
従来、蒸気圧縮式の冷凍サイクル装置では、蒸発器と圧縮機との間に蒸発器の冷媒出口側の圧力を所定圧力以上に維持するための蒸発圧力調整弁が配置されることがある。当該蒸発圧力調整弁は、蒸発器を流通する冷媒流量の増加に伴って弁開度(すなわち、冷媒通路面積)を増加させるように構成されている。
蒸発圧力調整弁は、例えば、特許文献1に開示されている。特許文献1には、いわゆるベローズ式の圧力調整弁が開示されている。特許文献1に記載の圧力調整弁は、ボデー内部の冷媒流路の流路開度を調整する弁体、内部に所定の気体が封入されたベローズ、ベローズの内部に配置されるスプリングを含んで構成されている。
ところで、特許文献1に記載のベローズ式の圧力調整弁は、弁体が、蒸発器の冷媒圧力と、ベローズ内部の気体の圧力、ベローズおよびスプリングの弾性力との釣り合いによって変位する。このような構造の蒸発圧力調整弁では、蒸発器を流通する冷媒流量の増加に伴って弁体の変位量が増加すると、スプリングの弾性力だけでなく、ベローズの弾性力およびベローズ内部の気体の圧力も増大する。このため、例えば、冷房運転の始動時の如く、蒸発器の吸熱能力を高める必要がある場合に、圧力調整弁が閉弁側に動作し、蒸発器の吸熱効果が適切に発揮されなくなることがある。
この対策として、例えば、蒸発圧力調整弁をステッピングモータ等の電動モータによって弁体を駆動する構成とし、冷房運転時等に、蒸発圧力調整弁の弁体を強制的に全開位置に変位させることが考えられる。
しかしながら、電動モータで弁体を駆動する蒸発圧力調整弁は、その体格が非常に大型になってしまう。このことは、搭載性の悪化を招く要因となることから好ましくない。
本開示は、搭載性の悪化を抑制しつつ、蒸発器の吸熱効果を適切に発揮させることが可能な蒸発圧力調整弁および冷凍サイクル装置を提供することを目的とする。
請求項1に記載の発明は、
冷凍サイクル装置であって、
冷媒を圧縮して吐出する圧縮機(11、Z11)と、
圧縮機から吐出された冷媒を放熱させる放熱器(12、Z12)と、
放熱器の冷媒流れ下流側において、互いに並列となるように接続される複数の減圧部(15a、15b、Z14、Z16)と、
複数の減圧部それぞれの冷媒流れ下流側に接続され、減圧部で減圧された冷媒を蒸発させる複数の蒸発器(16、18、Z15、Z17)と、
複数の蒸発器のうち一部の蒸発器の冷媒出口側に接続され、一部の蒸発器の冷媒圧力を所定値以上に維持する蒸発圧力調整弁(19)と、を備え、
蒸発圧力調整弁は、一部の蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と一部の蒸発器の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部(X0)を含んでおり、
機能切替部(X0)は、絞り開度を調整するための弁部品(X1)を含んでおり、
弁部品は、
一部の蒸発器を通過した冷媒の少なくとも一部が流通する流体室(X19)が形成される基部(X11、X12、X13)と、
自らの温度が変化すると変位する駆動部(X123、X124、X125)と、
駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、
増幅部によって増幅された変位が伝達されて動くことで、流体室における冷媒の流量を調整する可動部(X128)と、を有し、
駆動部が温度の変化によって変位したときに、駆動部が付勢位置(XP2)において増幅部を付勢することで、増幅部がヒンジ(XP0)を支点として変位するとともに、増幅部と可動部の接続位置(XP3)で増幅部が可動部を付勢し、
ヒンジから付勢位置までの距離よりも、ヒンジから接続位置までの距離の方が長くなっている。
冷凍サイクル装置であって、
冷媒を圧縮して吐出する圧縮機(11、Z11)と、
圧縮機から吐出された冷媒を放熱させる放熱器(12、Z12)と、
放熱器の冷媒流れ下流側において、互いに並列となるように接続される複数の減圧部(15a、15b、Z14、Z16)と、
複数の減圧部それぞれの冷媒流れ下流側に接続され、減圧部で減圧された冷媒を蒸発させる複数の蒸発器(16、18、Z15、Z17)と、
複数の蒸発器のうち一部の蒸発器の冷媒出口側に接続され、一部の蒸発器の冷媒圧力を所定値以上に維持する蒸発圧力調整弁(19)と、を備え、
蒸発圧力調整弁は、一部の蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と一部の蒸発器の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部(X0)を含んでおり、
機能切替部(X0)は、絞り開度を調整するための弁部品(X1)を含んでおり、
弁部品は、
一部の蒸発器を通過した冷媒の少なくとも一部が流通する流体室(X19)が形成される基部(X11、X12、X13)と、
自らの温度が変化すると変位する駆動部(X123、X124、X125)と、
駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、
増幅部によって増幅された変位が伝達されて動くことで、流体室における冷媒の流量を調整する可動部(X128)と、を有し、
駆動部が温度の変化によって変位したときに、駆動部が付勢位置(XP2)において増幅部を付勢することで、増幅部がヒンジ(XP0)を支点として変位するとともに、増幅部と可動部の接続位置(XP3)で増幅部が可動部を付勢し、
ヒンジから付勢位置までの距離よりも、ヒンジから接続位置までの距離の方が長くなっている。
これによると、機能切替部によって蒸発圧力調整弁を調整状態から全開状態に切り替えることが可能になる。このため、例えば、蒸発圧力調整弁の上流側の蒸発器の吸熱能力を高める必要がある場合に、蒸発圧力調整弁を全開状態に切り替えることで、蒸発器の吸熱効果を適切に発揮させることができる。
加えて、機能切替部の弁部品は、増幅部が梃子として機能するため、駆動部の温度変化に応じた変位量が、梃子によって増幅されて可動部伝わる。このように、梃子を利用して熱的な膨張による変位量が増幅される弁部品は、そのような梃子を利用しない電磁弁や電動弁に比べて小型に構成することが可能となる。
したがって、本開示の冷凍サイクル装置によれば、搭載性の悪化を抑制しつつ、蒸発器の吸熱効果を適切に発揮させることが可能となる。
請求項9に記載の発明は、
冷凍サイクル装置(10)を構成する蒸発器(18)の冷媒圧力を所定値以上に維持するための蒸発圧力調整弁であって、
蒸発器を通過した冷媒が流入する冷媒流入路(41)、冷媒流入路から冷媒が流入する弁室(43)、弁室から圧縮機(11)の冷媒吸入側へ冷媒を流出させる冷媒流出路(42)が形成されるボデー部(40)と、
弁室に配置され、冷媒流入路と冷媒流出路とを連通させる連通路(430)を形成するとともに、連通路の内側にシリンダ室(440)を形成する通路形成部材(44)と、
シリンダ室に対して摺動可能に配置され、冷媒流入路の冷媒圧力を受けて連通路の絞り開度を調整する主弁体(45)と、
主弁体に対して作用する冷媒流入路の冷媒圧力に対抗するように主弁体に対して付勢力を加える弾性部材(46)と、
蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と蒸発器の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部(X0)と、を備え、
シリンダ室は、主弁体によって、冷媒流入路に連通する第1圧力室(440a)と冷媒流出路に連通する第2圧力室(440b)とに分割されており、
第1圧力室および第2圧力室は、均圧通路(451a)を介して連通しており、
主弁体は、第1圧力室および第2圧力室の圧力差に応じて変位するようにシリンダ室に配置され、
機能切替部は、第1圧力室および第2圧力室の圧力差を調整するための弁部品(X1)を含んでおり、
弁部品は、
冷媒が流通する流体室(X19)、第2圧力室と流体室とを連通させる第1流体孔(X16)、流体室と冷媒流出路とを連通させる第2流体孔(X17)が形成される基部(X11、X12、X13)と、
自らの温度が変化すると変位する駆動部(X123、X124、X125)と、
駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、
増幅部によって増幅された変位が伝達されて動くことで、流体室における第2流体孔の開度を調整する可動部(X128)と、を有し、
駆動部が温度の変化によって変位したときに、駆動部が付勢位置(XP2)において増幅部を付勢することで、増幅部がヒンジ(XP0)を支点として変位するとともに、増幅部と可動部の接続位置(XP3)で増幅部が可動部を付勢し、
ヒンジから付勢位置までの距離よりも、ヒンジから接続位置までの距離の方が長くなっている。
冷凍サイクル装置(10)を構成する蒸発器(18)の冷媒圧力を所定値以上に維持するための蒸発圧力調整弁であって、
蒸発器を通過した冷媒が流入する冷媒流入路(41)、冷媒流入路から冷媒が流入する弁室(43)、弁室から圧縮機(11)の冷媒吸入側へ冷媒を流出させる冷媒流出路(42)が形成されるボデー部(40)と、
弁室に配置され、冷媒流入路と冷媒流出路とを連通させる連通路(430)を形成するとともに、連通路の内側にシリンダ室(440)を形成する通路形成部材(44)と、
シリンダ室に対して摺動可能に配置され、冷媒流入路の冷媒圧力を受けて連通路の絞り開度を調整する主弁体(45)と、
主弁体に対して作用する冷媒流入路の冷媒圧力に対抗するように主弁体に対して付勢力を加える弾性部材(46)と、
蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と蒸発器の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部(X0)と、を備え、
シリンダ室は、主弁体によって、冷媒流入路に連通する第1圧力室(440a)と冷媒流出路に連通する第2圧力室(440b)とに分割されており、
第1圧力室および第2圧力室は、均圧通路(451a)を介して連通しており、
主弁体は、第1圧力室および第2圧力室の圧力差に応じて変位するようにシリンダ室に配置され、
機能切替部は、第1圧力室および第2圧力室の圧力差を調整するための弁部品(X1)を含んでおり、
弁部品は、
冷媒が流通する流体室(X19)、第2圧力室と流体室とを連通させる第1流体孔(X16)、流体室と冷媒流出路とを連通させる第2流体孔(X17)が形成される基部(X11、X12、X13)と、
自らの温度が変化すると変位する駆動部(X123、X124、X125)と、
駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、
増幅部によって増幅された変位が伝達されて動くことで、流体室における第2流体孔の開度を調整する可動部(X128)と、を有し、
駆動部が温度の変化によって変位したときに、駆動部が付勢位置(XP2)において増幅部を付勢することで、増幅部がヒンジ(XP0)を支点として変位するとともに、増幅部と可動部の接続位置(XP3)で増幅部が可動部を付勢し、
ヒンジから付勢位置までの距離よりも、ヒンジから接続位置までの距離の方が長くなっている。
これによると、弁部品によって第1圧力室および第2圧力室の圧力差を調整することで、蒸発圧力調整弁を調整状態から全開状態に切り替えることが可能になる。このため、例えば、蒸発器の吸熱能力を高める必要がある場合に、蒸発圧力調整弁を全開状態に切り替えることで、蒸発器の吸熱効果を適切に発揮させることができる。
弁部品は、増幅部が梃子として機能するため、駆動部の温度変化に応じた変位量が、梃子によって増幅されて可動部伝わる。このように、梃子を利用して熱的な膨張による変位量が増幅される弁部品は、そのような梃子を利用しない電磁弁や電動弁に比べて小型に構成することが可能となる。
したがって、本開示の蒸発圧力調整弁によれば、搭載性の悪化を抑制しつつ、蒸発器の吸熱効果を適切に発揮させることが可能となる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
本実施形態について、図1〜図12を参照して説明する。本実施形態では、蒸発圧力調整弁19を、車両用空調装置1の冷凍サイクル装置10に適用した例について説明する。車両用空調装置1は、内燃機関および走行用電動機から車両走行用の駆動力を得るハイブリッド車両に搭載されている。冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を冷却または加熱する機能を果たす。
車両用空調装置1について、図1を参照しつつ説明する。図1に示すように、車両用空調装置1は、冷凍サイクル装置10、室内空調ユニット30、および制御装置100を備えている。
冷凍サイクル装置10は、冷房モードの冷媒回路、暖房モードの冷媒回路、除湿暖房モードの冷媒回路を切り替え可能に構成されている。なお、図1では、暖房モードの冷媒回路における冷媒の流れを矢印FLaで示し、冷房モードの冷媒回路における冷媒の流れを矢印FLbで示している。また、図1では、除湿暖房モードの冷媒回路における冷媒の流れを矢印FLcで示している。
冷凍サイクル装置10は、冷媒としてHFC系冷媒(具体的には、R134a)を採用している。もちろん、冷媒としてHFO系冷媒(例えば、R1234yf)や自然冷媒(例えば、R744)等が採用されていてもよい。
冷凍サイクル装置10は、圧縮機11、室内凝縮器12、第1膨張弁15a、第2膨張弁15b、室外熱交換器16、逆止弁17、室内蒸発器18、蒸発圧力調整弁19、アキュムレータ20、第1開閉弁21、第2開閉弁22等を有している。
圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出するものであり、車両ボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮部を電動モータにて駆動する電動圧縮機として構成されている。なお、圧縮機11を構成する電動モータは、後述の制御装置100から出力される制御信号によって、その作動(例えば、回転数)が制御される。
圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、暖房モード時および除湿暖房モード時に、冷媒を放熱させる放熱器として機能する。具体的には、室内凝縮器12は、暖房モード時および除湿暖房モード時に、圧縮機11から吐出された高温高圧の吐出冷媒と後述する室内蒸発器18を通過した送風空気とを熱交換させて送風空気を加熱する加熱用熱交換器である。室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されている。
室内凝縮器12の冷媒出口には、第1三方継手13aの1つの流入出口側が接続されている。第1三方継手13aは、冷凍サイクル装置10において、分岐部あるいは合流部としての機能を果たす。第1三方継手13aは、複数の配管を接合して形成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて形成してもよい。なお、後述の第2三方継手13b、第3三方継手13c、第4三方継手13dは、第1三方継手13aの構成と同様となるものが採用されている。
第1三方継手13aは、冷媒出口を構成する一対の流入出口の一方に第1冷媒通路14aに接続され、他方に第2冷媒通路14bが接続されている。第1冷媒通路14aは、室内凝縮器12から流出した冷媒を、室外熱交換器16の冷媒入口側へ導く冷媒通路である。また、第2冷媒通路14bは、室内凝縮器12から流出した冷媒を、後述する第3冷媒通路14cに配置された第2膨張弁15bの入口側へ導く冷媒通路である。
第1冷媒通路14aには、第1膨張弁15aが配置されている。第1膨張弁15aは、暖房モード時および除湿暖房モード時に、室内凝縮器12から流出した冷媒を減圧させる冷媒減圧装置である。第1膨張弁15aは、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータ等の電動モータとを有する可変絞りである。
また、第1膨張弁15aは、絞り開度を全開にすることによって、冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能付きの可変絞りとして構成されている。第1膨張弁15aは、制御装置100から出力される制御信号によって、その作動が制御される。
第1膨張弁15aの出口側には、室外熱交換器16の冷媒入口側が接続されており、車両ボンネット内の車両前方側に配置されている。室外熱交換器16は、第1膨張弁15aから流出した冷媒と車室外空気(すなわち、外気)とを熱交換させるものである。
室外熱交換器16は、例えば、暖房モード時および除湿暖房モード時に、第1膨張弁15aで減圧された冷媒を外気と熱交換させて蒸発させる。また、室外熱交換器16は、例えば、冷房モード時に、第1膨張弁15aを通過した冷媒を外気と熱交換させて放熱させる。このように、室外熱交換器16は、暖房モード時および除湿暖房モード時に外気から吸熱して冷媒を蒸発させる蒸発器として機能し、冷房モード時に外気へ放熱する放熱器として機能する。
室外熱交換器16の冷媒出口側には、第2三方継手13bの1つの流入出口が接続されている。第2三方継手13bの別の流入出口には、第3冷媒通路14cが接続されている。第3冷媒通路14cは、室外熱交換器16から流出した冷媒を、室内蒸発器18の冷媒入口側へ導く。
第2三方継手13bのさらに別の流入出口には、第4冷媒通路14dが接続されている。第4冷媒通路14dは、室外熱交換器16から流出した冷媒を、後述するアキュムレータ20の入口側へ導く。
第3冷媒通路14cには、逆止弁17、第3三方継手13c、第2膨張弁15bが、冷媒流れに対してこの順に配置されている。逆止弁17は、冷媒が第2三方継手13b側から室内蒸発器18側へ流れることのみを許容するものである。第3三方継手13cには、前述の第2冷媒通路14bが接続されている。
第2膨張弁15bは、室外熱交換器16から流出して室内蒸発器18へ流入する冷媒を減圧させる。すなわち、第2膨張弁15bは冷媒減圧装置として機能する。第2膨張弁15bの基本的構成は、第1膨張弁15aと同様である。更に、当該第2膨張弁15bは、絞り開度を全閉した際にこの冷媒通路を閉塞する全閉機能付きの可変絞りで構成されている。
冷凍サイクル装置10は、第2膨張弁15bを全閉として第3冷媒通路14cを閉じることによって、冷媒回路を切り替えることができる。換言すると、第2膨張弁15bは、冷媒減圧装置としての機能を果たすとともに、サイクルを循環する冷媒の冷媒回路を切り替える回路切替装置としての機能を兼ね備えている。
室内蒸発器18は、冷房モード時および除湿暖房モード時に、冷媒を蒸発させる蒸発器として機能する。すなわち、室内蒸発器18は、冷房モード時および除湿暖房モード時に、第2膨張弁15bから流出した冷媒を室内凝縮器12通過前の送風空気と熱交換させて蒸発させることで送風空気を冷却する。室内蒸発器18は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の送風空気流れ上流側に配置されている。
室内蒸発器18の冷媒出口側には、蒸発圧力調整弁19の流入口側が接続されている。蒸発圧力調整弁19は、室内蒸発器18の着霜を抑制するために、室内蒸発器18における冷媒蒸発圧力を着霜を抑制可能な基準圧力以上に調整する機能を果たす。
具体的には、蒸発圧力調整弁19は、室内蒸発器18の冷媒の圧力が基準圧力よりも低下すると、絞り開度(すなわち、冷媒通路の通路面積)を減少させ、冷媒の圧力が基準圧力を超えると、絞り開度を増加させる構成になっている。なお、室内蒸発器18を流れる冷媒流量は、蒸発圧力調整弁19の絞り開度に応じて増減する。このため、蒸発圧力調整弁19は、流量調整弁としても機能する。
蒸発圧力調整弁19は、室内蒸発器18の冷媒の圧力によらず、絞り開度を全開にすることが可能な全開機能付きの流量調整弁として構成されている。すなわち、蒸発圧力調整弁19は、室内蒸発器18の冷媒の圧力に応じて絞り開度が調整される調整状態と、室内蒸発器18の冷媒の圧力によらず絞り開度が全開となる全開状態とに切り替え可能に構成されている。蒸発圧力調整弁19における調整状態と全開状態との切り替えは、制御装置100によって制御される。なお、蒸発圧力調整弁19の具体的構成については、後述する。
蒸発圧力調整弁19の冷媒出口側には、第4三方継手13dが接続されている。また、前述したように、第4三方継手13dにおける他の流入出口には、第4冷媒通路14dが接続されている。そして、第4三方継手13dのさらに別の流入出口には、アキュムレータ20の入口側が接続されている。
アキュムレータ20は、内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ20の気相冷媒出口には、圧縮機11の吸入口側が接続されている。したがって、アキュムレータ20は、圧縮機11に液相冷媒が吸入されることを抑制し、圧縮機11における液圧縮を防止する機能を果たす。
また、第2三方継手13bと第4三方継手13dとを接続する第4冷媒通路14dには、第1開閉弁21が配置されている。第1開閉弁21は、電磁弁によって構成されている。そして、第1開閉弁21は、第4冷媒通路14dを開閉することによって冷媒回路を切り替える回路切替装置として機能する。第1開閉弁21は、制御装置100から出力される制御信号によって、その作動が制御される。
同様に、第1三方継手13aと第3三方継手13cとを接続する第2冷媒通路14bには、第2開閉弁22が配置されている。第2開閉弁22は、第1開閉弁21と同様に、電磁弁によって構成されている。第2開閉弁22は、第2冷媒通路14bを開閉することによって冷媒回路を切り替える回路切替装置として機能する。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのものである。この室内空調ユニット30は、車室内最前部のインストルメントパネルの内側に配置されている。
室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器18、室内凝縮器12等を収容することによって構成されている。ケーシング31は、車室内に送風される送風空気の空気通路を形成するものである。
ケーシング31内の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、ケーシング31内へ車室内空気である内気と外気とを切替導入する装置である。
内外気切替装置33の送風空気流れ下流側には、送風機32が配置されている。この送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。送風機32は、遠心ファンを電動モータにて駆動する電動送風機である。送風機32は、制御装置100から出力される制御電圧によって制御される。
送風機32の送風空気流れ下流側には、室内蒸発器18及び室内凝縮器12が、送風空気流れに対して、この順に配置されている。換言すると、室内蒸発器18は、室内凝縮器12よりも送風空気流れ上流側に配置されている。
また、ケーシング31内には、冷風バイパス通路35が形成されている。冷風バイパス通路35は、室内蒸発器18を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す為の通路である。
室内蒸発器18の送風空気流れ下流側であって、且つ、室内凝縮器12の送風空気流れ上流側には、エアミックスドア34が配置されている。エアミックスドア34は、室内蒸発器18通過後の送風空気のうち室内凝縮器12を通過させる風量割合を調整する際に用いられる。したがって、車両用空調装置1は、冷風バイパス通路35を全開開度とし、エアミックスドア34により室内凝縮器12へ向かう送風空気の流路を全閉することで、室内凝縮器12における熱交換量を最小値にすることができる。
また、室内凝縮器12の送風空気流れ下流側には、混合空間が設けられている。混合空間では、室内凝縮器12にて加熱された送風空気と、冷風バイパス通路35を通過して室内凝縮器12にて加熱されていない送風空気とが混合される。更に、ケーシング31の送風空気流れ最下流部には、複数の開口孔が配置されている。混合空間にて混合された送風空気は、これらの開口孔を介して、空調対象空間である車室内へ吹き出される。
これらの開口孔としては、具体的に、フェイス開口孔、フット開口孔、デフロスタ開口孔が設けられている。フェイス開口孔は、車室内の乗員の上半身に向けて空調風を吹き出す為の開口孔である。フット開口孔は、乗員の足元に向けて空調風を吹き出す為の開口孔である。デフロスタ開口孔は、車両前面窓ガラス内側面に向けて空調風を吹き出す為の開口孔である。
図示しないが、フェイス開口孔、フット開口孔及びデフロスタ開口孔の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口及びデフロスタ吹出口に接続されている。また、フェイス開口孔、フット開口孔、およびデフロスタ開口孔の送風空気流れ上流側には、フェイスドア、フットドア、デフロスタドアが配置されている。なお、フェイスドア、フットドア、デフロスタドアは、電動モータに連結されており、制御装置100から出力される制御信号によって、その作動が制御される。
次に、車両用空調装置1の制御装置100について説明する。制御装置100は、制御装置100は、プロセッサ、メモリ等を含むマイクロコンピュータとその周辺回路で構成されている。制御装置100は、メモリに記憶された制御プログラムに基づいて、各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する。なお、制御装置100のメモリは、非遷移的実体的記憶媒体で構成される。
車両用空調装置1は、上述したように、運転モードを暖房モード、冷房モード、除湿暖房モードに切り替えることができる。制御装置100は、例えば、ユーザが操作する操作パネルからの操作信号に応じて、運転モードを暖房モード、冷房モード、除湿暖房モードのいずれかに切り替える。以下、暖房モード、冷房モード、除湿暖房モードについて説明する。
(A)暖房モード
制御装置100は、運転モードが暖房モードに設定されると、第4冷媒通路14dが開放されるように第1開閉弁21を制御するとともに、第2冷媒通路14bが閉鎖されるように第2開閉弁22を制御する。また、制御装置100は、第3冷媒通路14cが閉塞されるように第2膨張弁15bを制御する。これにより、冷凍サイクル装置10では、図1の矢印FLaで示すように冷媒が流れる冷媒回路に切り替えられる。
制御装置100は、運転モードが暖房モードに設定されると、第4冷媒通路14dが開放されるように第1開閉弁21を制御するとともに、第2冷媒通路14bが閉鎖されるように第2開閉弁22を制御する。また、制御装置100は、第3冷媒通路14cが閉塞されるように第2膨張弁15bを制御する。これにより、冷凍サイクル装置10では、図1の矢印FLaで示すように冷媒が流れる冷媒回路に切り替えられる。
この冷媒回路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置100に接続された各種制御機器の作動状態を決定する。
例えば、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を閉塞し、室内蒸発器18を通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。
また、第1膨張弁15aに出力される制御信号については、全開状態ではなく、減圧作用を発揮する絞り開度となるように決定される。また、蒸発圧力調整弁19については、蒸発圧力調整弁19が全開状態となるように決定される。なお、暖房モード時には、第3冷媒通路14cが第2膨張弁15bにて閉鎖されるので、室内蒸発器18および蒸発圧力調整弁19には冷媒が流入しない。このため、蒸発圧力調整弁19については、蒸発圧力調整弁19が調整状態となるように決定されてもよい。
制御装置100は、上記の如く決定された制御信号等を各種制御機器へ出力する。これにより、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。室内凝縮器12に流入した冷媒は、送風機32から送風されて室内蒸発器18を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱される。
室内凝縮器12から流出した冷媒は、第1冷媒通路14aを介して第1膨張弁15aに流入し、第1膨張弁15aにて低圧冷媒となるまで減圧膨張される。そして、第1膨張弁15aにて減圧された低圧冷媒は、室外熱交換器16に流入して、外気から吸熱する。室外熱交換器16から流出した冷媒は、第4冷媒通路14dを介して、アキュムレータ20へ流入して気液分離される。そして、アキュムレータ20にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。
以上の如く、暖房モードでは、室内凝縮器12にて圧縮機11から吐出された高圧冷媒の有する熱を車室内への送風空気に放熱させて、加熱された送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。なお、暖房モードは、室外熱交換器16で吸熱作用を発揮させ、室内蒸発器18で吸熱作用を発揮させない運転モードである。
(B)冷房モード
制御装置100は、運転モードが冷房モードに設定されると、第4冷媒通路14dが閉塞されるように第1開閉弁21を制御するとともに、第2冷媒通路14bが閉塞されるように第2開閉弁22を制御する。また、制御装置100は、第1冷媒通路14aが全開状態となるように第2膨張弁15bを制御する。これにより、冷凍サイクル装置10では、図1の矢印FLbで示すように冷媒が流れる冷媒回路に切り替えられる。
制御装置100は、運転モードが冷房モードに設定されると、第4冷媒通路14dが閉塞されるように第1開閉弁21を制御するとともに、第2冷媒通路14bが閉塞されるように第2開閉弁22を制御する。また、制御装置100は、第1冷媒通路14aが全開状態となるように第2膨張弁15bを制御する。これにより、冷凍サイクル装置10では、図1の矢印FLbで示すように冷媒が流れる冷媒回路に切り替えられる。
この冷媒回路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置100に接続された各種制御機器の作動状態を決定する。
例えば、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内蒸発器18を通過後の送風空気の全流量が冷風バイパス通路35を通過するように決定される。
また、第2膨張弁15bに出力される制御信号については、全閉状態ではなく、減圧作用を発揮する絞り開度となるように決定される。さらに、蒸発圧力調整弁19については蒸発圧力調整弁19が全開状態となるように決定される。
制御装置100は、上記の如く決定された制御信号等を各種制御機器へ出力する。これにより、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12に流入した冷媒は、殆ど送風空気と熱交換することなく、室内凝縮器12から流出する。
室内凝縮器12から流出した冷媒は、第1冷媒通路14aを介して第1膨張弁15aに流入する。この際、第1膨張弁15aが第1冷媒通路14aを全開状態としているので、室内凝縮器12から流出した冷媒は、第1膨張弁15aにて減圧されることなく、室外熱交換器16に流入する。そして、室外熱交換器16に流入した冷媒は、室外熱交換器16にて外気へ放熱する。
室外熱交換器16から流出した冷媒は、第3冷媒通路14cを介して、第2膨張弁15bへ流入して、第2膨張弁15bにて低圧冷媒となるまで減圧膨張される。第2膨張弁15bにて減圧された低圧冷媒は、室内蒸発器18に流入し、送風機32から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。
室内蒸発器18から流出した冷媒は、アキュムレータ20へ流入して気液分離される。そして、アキュムレータ20にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。
以上の如く、冷房モードでは、エアミックスドア34にて室内凝縮器12の空気通路を閉塞しているので、室内蒸発器18にて冷却された送風空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。なお、冷房モードは、室内蒸発器18で吸熱作用を発揮させ、室外熱交換器16で吸熱作用を発揮させない運転モードである。
ここで、冷房モード時に蒸発圧力調整弁19が調整状態となっていると、例えば、冷房開始直後のように室内蒸発器18の吸熱能力を高める必要がある場合に、蒸発圧力調整弁19が閉弁側に動作してしまうことがある。この場合、室内蒸発器18の冷媒出口側の圧力が必要以上に上昇して、室内蒸発器18の吸熱効果が適切に発揮されなくなってしまう。
これに対して、本実施形態の冷房モード時には、蒸発圧力調整弁19が全開状態となっているので、蒸発圧力調整弁19が調整状態となっている場合に比べて、室内蒸発器18の吸熱効果を適切に発揮させることができる。
(C)除湿暖房モード
制御装置100は、運転モードが除湿暖房モードに設定されると、第4冷媒通路14dが開放されるように第1開閉弁21を制御するとともに、第2冷媒通路14bが開放されるように第2開閉弁22を制御する。これにより、冷凍サイクル装置10では、図1の矢印FLcで示すように冷媒が流れる冷媒回路に切り替えられる。なお、除湿暖房モードでは、冷媒流れに対して室外熱交換器16と室内蒸発器18とが並列に接続されることとなる。
制御装置100は、運転モードが除湿暖房モードに設定されると、第4冷媒通路14dが開放されるように第1開閉弁21を制御するとともに、第2冷媒通路14bが開放されるように第2開閉弁22を制御する。これにより、冷凍サイクル装置10では、図1の矢印FLcで示すように冷媒が流れる冷媒回路に切り替えられる。なお、除湿暖房モードでは、冷媒流れに対して室外熱交換器16と室内蒸発器18とが並列に接続されることとなる。
この冷媒回路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置100に接続された各種制御機器の作動状態を決定する。
例えば、エアミックスドア34のサーボモータへ出力される制御信号については、暖房モードと同様に、エアミックスドア34が冷風バイパス通路35を閉塞するように決定される。
また、第1膨張弁15aおよび第2膨張弁15bへ出力される制御信号については、予め定めた除湿暖房モード用の所定の絞り開度となるように決定される。さらに、蒸発圧力調整弁19については、蒸発圧力調整弁19が調整状態となるように決定される。
制御装置100は、上記の如く決定された制御信号等を各種制御機器へ出力する。これにより、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。室内凝縮器12に流入した冷媒は、送風機32から送風されて室内蒸発器18を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱される。
室内凝縮器12から流出した冷媒は、第1冷媒通路14aを介して第1膨張弁15aに流入するとともに、第2冷媒通路14bおよび第3冷媒通路14cを介して第2膨張弁15bに流入する。
第1膨張弁15aに流入した高圧冷媒は、低圧冷媒となるまで減圧される。そして、第1膨張弁15aにて減圧された低圧冷媒は、室外熱交換器16に流入して、外気から吸熱する。一方、第2膨張弁15bに流入した高圧冷媒は、低圧冷媒となるまで減圧される。そして、第2膨張弁15bにて減圧された低圧冷媒は、室内蒸発器18に流入して、送風機32からの送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。
室外熱交換器16から流出した冷媒および室内蒸発器18から流出した冷媒は、アキュムレータ20の上流で合流した後、アキュムレータ20→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
以上の如く、除湿暖房モードでは、室内蒸発器18で除湿された送風空気を室内凝縮器12で加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。なお、除湿暖房モードは、並列に接続される室内蒸発器18および室外熱交換器それぞれで吸熱作用を発揮させる運転モードである。
ここで、除湿暖房モードでは、蒸発圧力調整弁19が調整状態となり、室内蒸発器18の冷媒圧力が基準圧力以上に調整される。このため、室外熱交換器16と室内蒸発器18とが並列に接続される構成であっても、室外熱交換器16における冷媒圧力を室内蒸発器18における冷媒圧力よりも低下させることができる。
次に、蒸発圧力調整弁19の具体的構成について、図2を参照して説明する。蒸発圧力調整弁19は、冷凍サイクル装置10における室内蒸発器18と圧縮機11の間に配置されている。蒸発圧力調整弁19は、室内蒸発器18における冷媒圧力Peが予め定めた基準圧力(すなわち、着霜抑制圧力APe)以上となるように調整する。
蒸発圧力調整弁19は、外殻を形成するボデー部40を備えている。ボデー部40は、アルミ合金等からなる金属部材によって構成されている。ボデー部40は、その内部に、冷媒流入路41と、冷媒流出路42と、冷媒流入路41および冷媒流出路42とを接続する接続空間部43が形成されている。
冷媒流入路41は、ボデー部40の一側面から直線状に伸びるように形成されている。冷媒流入路41は、室内蒸発器18からの冷媒が流入する流路である。冷媒流入路41は、冷媒流れ下流側の端部となる接続空間部43との接続部に、後述する主弁体45が接離する弁座411が形成されている。
冷媒流出路42は、ボデー部40における冷媒流入路41が形成された側面の反対側から冷媒流入路41と同じ方向に伸びるように形成されている。冷媒流出路42は、アキュムレータ20を介して、圧縮機11の冷媒吸入側へ向かって冷媒を流出させる流路である。
接続空間部43は、冷媒流入路41および冷媒流出路42を接続するように形成されている。冷媒流入路41から流入した冷媒は、接続空間部43を介して、冷媒流出路42から圧縮機11へ向かって流出する。
接続空間部43には、接続空間部43を形成する内壁との間に、冷媒流入路41と冷媒流出路42とを連通させる連通路430を形成する筒状の通路形成部44が配置されている。通路形成部44は、アルミ合金等からなる金属部材によって構成されており、接続空間部43を形成する内壁に対して固定されている。
通路形成部44の内側には、後述する主弁体45が摺動可能に配置されるシリンダ室440が形成されている。通路形成部44は、有底筒状の筒部材441と筒部材441の開口を閉塞する蓋部442とで構成されている。筒部材441は、接続空間部43の内側において、底面が冷媒流入路41側に位置し、開口が冷媒流出路42側に位置するように配置されている。筒部材441の底面には、後述する主弁体45の中間径部452が挿通される挿通孔441aが形成されている。
筒部材441の内側には、一軸心CLに沿って伸びる主弁体45が軸心CLの軸方向DRaに変位可能に収容されている。なお、軸方向DRaは、冷媒流入路41および冷媒流出路42の並び方向に一致する方向になっている。
主弁体45は、筒状に構成されている。主弁体45は、筒部材441の内径と同程度の外径を有する大径部451、大径部451よりも小径であって挿通孔441aと同程度の外径を有する中間径部452、中間径部452よりも小径となる小径部453を含んで構成されている。
主弁体45は、大径部451、中間径部452、および小径部453がこの順序で連結された連結体である。主弁体45は、大径部451、中間径部452、および小径部453が一体に成形された一体成形物として構成されている。主弁体45は、筒部材441の内側において、小径部453が冷媒流入路41側に位置し、大径部451が冷媒流出路42側に位置するように配置されている。
中間径部452は、冷媒流入路41側に位置する端部が弁座411に接離する弁体を構成している。また、大径部451および中間径部452は、通路形成部44の内側のシリンダ室440を内側圧力室440aと外側圧力室440bとに分割するための隔壁を構成している。すなわち、シリンダ室440は、主弁体45によって内側圧力室440aと外側圧力室440bとに分割されている。なお、内側圧力室440aが第1圧力室を構成し、外側圧力室440bが第2圧力室を構成する。
内側圧力室440aは、大径部451および中間径部452の内側に形成される空間である。内側圧力室440aは、小径部453の内側に形成された冷媒の導入路450を介して冷媒流入路41に連通している。
外側圧力室440bは、中間径部452と筒部材441との間に形成される空間である。外側圧力室440bは、大径部451と中間径部452との接続部に形成された均圧通路451aを介して内側圧力室440aに連通している。
外側圧力室440bには、主弁体45を冷媒流出路42側(すなわち、軸方向DRaの他方側)に付勢する弾性部材46が配置されている。換言すれば、弾性部材46は、主弁体45に対して作用する冷媒流入路41の冷媒圧力に対抗するように主弁体45に対して付勢力を加える。弾性部材46は、ステンレス鋼等からなる円筒コイルバネで構成されている。
また、通路形成部44には、マイクロバルブX1を含むバルブモジュールX0が設けられている。バルブモジュールX0は、マイクロバルブX1によって外側圧力室440bと連通路430とを連通させる連通状態と外側圧力室440bと連通路430との連通を遮断させる非連通状態に切り替える開閉部材である。具体的には、マイクロバルブX1は、内側圧力室440aおよび外側圧力室440bの圧力差を調整するための弁部品である。
バルブモジュールX0は、ボデー部40および通路形成部44に対して一体的に取り付けられている。ボデー部40および通路形成部44は、マイクロバルブX1の取付対象となる被取付対象物を構成している。
ボデー部40の一側面には、後述するバルブ固定部X8を挿通させる挿通孔47が形成されている。この挿通孔47は、ボデー部40のうち連通路430を形成する一部位の表裏を貫通する貫通孔である。また、通路形成部44の一側面には、後述する突出部X21が嵌め合わされる嵌合孔443が形成されている。嵌合孔443は、通路形成部44のうち外側圧力室440bを形成する一部位の表裏を貫通する貫通孔である。バルブモジュールX0の詳細については後述する。
このように構成される蒸発圧力調整弁19は、バルブモジュールX0によって外側圧力室440bと連通路430とが連通状態になっている場合、主弁体45に作用する力に応じて主弁体45が変位する。この主弁体45の変位によって、蒸発圧力調整弁19の絞り開度が変化することで、室内蒸発器18の冷媒圧力が所望の状態に調整される。なお、蒸発圧力調整弁19の絞り開度は、冷媒流入路41と冷媒流出路42とを繋ぐ連通路430の絞り開度(すなわち、通路面積)である。
具体的には、バルブモジュールX0によって外側圧力室440bと連通路430とが連通状態になっている場合、主弁体45には、冷媒流入路41および内側圧力室440aの冷媒圧力Pe、外側圧力室440bの冷媒圧力Pm、弾性部材46による荷重が作用する。なお、冷媒流入路41および内側圧力室440aは、導入路450を介して連通しているので同等の圧力になる。
主弁体45は、自身に対して軸方向DRaに作用する荷重が釣り合う位置に変位し、蒸発圧力調整弁19の絞り開度が調整される。主弁体45に対して軸方向DRaに作用する荷重の釣り合いは、例えば、以下の数式F1で表現することができる。
Pe×Ab=Pe×Am+Pm×(Ab−Am)+K×L+F0・・・(F1)
上述の数式F1では、冷媒流入路41および内側圧力室440aの冷媒圧力をPeで示し、外側圧力室440bの冷媒圧力をPmで示している。そして、上述の数式F1では、大径部451の受圧面積をAbで示し、中間径部452の受圧面積をAmで示している。また、上述の数式F1では、弾性部材46のバネ定数をKで示すとともに主弁体45の変位量をLで示し、さらに、弾性部材46の初期荷重をF0で示している。
上述の数式F1では、冷媒流入路41および内側圧力室440aの冷媒圧力をPeで示し、外側圧力室440bの冷媒圧力をPmで示している。そして、上述の数式F1では、大径部451の受圧面積をAbで示し、中間径部452の受圧面積をAmで示している。また、上述の数式F1では、弾性部材46のバネ定数をKで示すとともに主弁体45の変位量をLで示し、さらに、弾性部材46の初期荷重をF0で示している。
この数式F1を変形すると、冷媒流入路41の冷媒圧力Peを以下の数式F2で表現することができる。
Pe=Pm+K×L/(Ab−Am)+F0/(Ab−Am)・・・(F2)
数式F2によれば、冷媒流入路41の冷媒圧力Peが、主弁体45の変位量Lの増加に伴って大きくなることがわかる。主弁体45の変位量Lが増加すると、蒸発圧力調整弁19の絞り開度も大きくなるため、室内蒸発器18を通過する冷媒流量も増加する。
数式F2によれば、冷媒流入路41の冷媒圧力Peが、主弁体45の変位量Lの増加に伴って大きくなることがわかる。主弁体45の変位量Lが増加すると、蒸発圧力調整弁19の絞り開度も大きくなるため、室内蒸発器18を通過する冷媒流量も増加する。
したがって、蒸発圧力調整弁19は、冷媒流入路41の冷媒圧力Peの増加に比例して主弁体45の変位量Lが増加するとともに、冷媒流入路41の冷媒圧力Peの上昇に伴って蒸発圧力調整弁19の絞り開度が増加する構成になっている。
一方、蒸発圧力調整弁19は、バルブモジュールX0によって外側圧力室440bと連通路430とが非連通状態になっている場合、外側圧力室440bの冷媒圧力Pmが内側圧力室440aの冷媒圧力Peと同等になる(すなわち、Pe=Pm)。この場合、弾性部材26による荷重によって主弁体45が開弁側に変位する。すなわち、主弁体45は、蒸発圧力調整弁19の絞り開度が最大となる位置に変位する。
このように、蒸発圧力調整弁19は、バルブモジュールX0によって外側圧力室440bと連通路430とが連通状態になっている場合、図3に示す調整状態となり、非連通状態となっている場合に図4に示す全開状態となる。
また、前述したように制御装置100は、冷房モード時および暖房モード時に全開状態となるように蒸発圧力調整弁19を制御し、除湿暖房モード時に調整状態となるように蒸発圧力調整弁19を制御する。
このため、制御装置100は、図5に示すように、冷房モード時および暖房モード時に外側圧力室440bと連通路430とが非連通状態(すなわち、閉鎖状態)となるように、バルブモジュールX0を制御する。また、制御装置100は、除湿暖房モード時に外側圧力室440bと連通路430とが連通状態(すなわち、開放状態)となるようにバルブモジュールX0を制御する。
ここで、蒸発圧力調整弁19は、バルブモジュールX0によって外側圧力室440bと連通路430とが連通状態になると、室内蒸発器18の冷媒圧力に応じて絞り開度が調整される調整状態となる。また、蒸発圧力調整弁19は、バルブモジュールX0によって外側圧力室440bと連通路430とが非連通状態になると、室内蒸発器18の冷媒圧力によらず絞り開度が全開となる全開状態となる。このため、バルブモジュールX0は、室内蒸発器18の冷媒圧力に応じて絞り開度が調整される調整状態と室内蒸発器18の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部を構成する。以下、バルブモジュールX0の構成について説明する。
[バルブモジュールX0の構成]
図2に示すように、バルブモジュールX0は、マイクロバルブX1、バルブケーシングX2、封止部材X3、1つのOリングX4、2本の電気配線X6、X7、バルブ固定部X8を有している。
図2に示すように、バルブモジュールX0は、マイクロバルブX1、バルブケーシングX2、封止部材X3、1つのOリングX4、2本の電気配線X6、X7、バルブ固定部X8を有している。
マイクロバルブX1は、板形状の弁部品であり、主として半導体チップによって構成されている。マイクロバルブX1は、半導体チップ以外の部品を有していてもいなくてもよい。したがって、マイクロバルブX1を小型に構成できる。マイクロバルブX1の厚さ方向の長さは例えば2mmであり、厚さ方向に直交する長手方向の長さは例えば10mmであり、長手方向にも厚さ方向にも直交する短手方向の長さは例えば5mmであるが、これに限定されない。マイクロバルブX1への通電、非通電が切り替わることで、開閉が切り替わる。具体的には、マイクロバルブX1は、通電時に開弁し、非通電時に閉弁する常閉弁である。
電気配線X6、X7は、マイクロバルブX1の表裏にある2つの板面のうち、バルブケーシングX2とは反対側の面から伸びて、封止部材X3、バルブ固定部X8内を通過して、バルブモジュールX0の外部にある電源に接続される。これにより、電気配線X6、X7を通して、電源からマイクロバルブX1に電力が供給される。
バルブケーシングX2は、マイクロバルブX1を収容する樹脂製のケーシングである。バルブケーシングX2は、ポリフェニレンサルファイドを主成分として樹脂成形によって形成されている。バルブケーシングX2は、線膨張係数が、マイクロバルブX1の線膨張係数と通路形成部44の線膨張係数の間の値となるように構成されている。なお、バルブケーシングX2は、マイクロバルブX1を通路形成部44に対して取り付けるための部品取付部を構成している。
バルブケーシングX2は、一方側に底壁を有し、他方側が開放された凹形状の箱体である。バルブケーシングX2の底壁は、マイクロバルブX1と通路形成部44とが直接接しないように、通路形成部44とマイクロバルブX1の間に介在する。そして、この底壁の一方側の面が通路形成部44に接触して固定され、他方側の面がマイクロバルブX1の2つの板面のうち一方に接触して固定される。このようになっていることで、マイクロバルブX1と通路形成部44の線膨張係数の違いをバルブケーシングX2が吸収できる。これは、バルブケーシングX2の線膨張係数が、マイクロバルブX1の線膨張係数と通路形成部44の線膨張係数の間の値となっているからである。
また、バルブケーシングX2の底壁は、マイクロバルブX1に対向する板形状のベース部X20と、マイクロバルブX1から離れる方向に当該ベース部X20から突出する柱形状の突出部X21を有する。
突出部X21は、通路形成部44に形成された嵌合孔443に嵌め込まれている。突出部X21には、マイクロバルブX1側端から嵌合孔443の内側端まで貫通する第1連通孔XV1が形成されている。また、突出部X21に隣接する部位には、マイクロバルブX1側端から通路形成部44の内側端まで貫通する第2連通孔XV2が形成されている。
封止部材X3は、バルブケーシングX2の開放された上記他方側を封止するエポキシ樹脂製の部材である。封止部材X3は、マイクロバルブX1の表裏にある2つの板面のうち、バルブケーシングX2の底壁側とは反対側の板面を、覆う。また、封止部材X3は、電気配線X6、X7を覆うことで、電気配線X6、X7の防水および絶縁を実現する。封止部材X3は樹脂ポッティング等によって形成される。
OリングX4は、突出部X21の外周に取り付けられ、通路形成部44と突出部X21の間を封止することで、蒸発圧力調整弁19の外部への冷媒の漏出を抑制する。
バルブ固定部X8は、バルブモジュールX0全体をボデー部40に対して固定するための部位である。バルブ固定部X8は、一方側に底壁を有し、他方側が開放された凹形状の箱体である。バルブ固定部X8は、バルブ固定部X8の底壁とバルブケーシングX2の底壁とが対向する状態でバルブケーシングX2に対して固定されている。バルブ固定部X8の底壁とバルブケーシングX2の底壁との間には、マイクロバルブX1を収容する空間が形成される。
バルブ固定部X8は、バルブケーシングX2と同種の樹脂によって形成されている。バルブ固定部X8は、線膨張係数が、マイクロバルブX1の線膨張係数とボデー部40の線膨張係数の間の値となるように構成されている。なお、バルブ固定部X8は、マイクロバルブX1をボデー部40に対して取り付けるための部品取付部を構成している。
バルブ固定部X8は、その側壁がボデー部40に形成された挿通孔47に挿通された状態でボデー部40に対して固定される。バルブ固定部X8は、マイクロバルブX1とボデー部40とが直接接しないように、ボデー部40とマイクロバルブX1の間に介在する。このようになっていることで、マイクロバルブX1とボデー部40の線膨張係数の違いをバルブ固定部X8が吸収できる。これは、バルブ固定部X8の線膨張係数が、マイクロバルブX1の線膨張係数とボデー部40の線膨張係数の間の値となっているからである。
[マイクロバルブX1の構成]
ここで、マイクロバルブX1の構成について更に説明する。マイクロバルブX1は、図6、図7に示すように、いずれも半導体である第1外層X11、中間層X12、第2外層X13を備えたMEMSである。MEMSは、Micro Electro Mechanical Systemsの略称である。第1外層X11、中間層X12、第2外層X13は、それぞれが同じ外形を有する長方形の板形状の部材であり、第1外層X11、中間層X12、第2外層X13の順に積層されている。第1外層X11、中間層X12、第2外層X13のうち、第2外層X13が、バルブケーシングX2の底壁に最も近い側に配置される。後述する第1外層X11、中間層X12、第2外層X13の構造は、化学的エッチング等の半導体製造プロセスによって形成される。
ここで、マイクロバルブX1の構成について更に説明する。マイクロバルブX1は、図6、図7に示すように、いずれも半導体である第1外層X11、中間層X12、第2外層X13を備えたMEMSである。MEMSは、Micro Electro Mechanical Systemsの略称である。第1外層X11、中間層X12、第2外層X13は、それぞれが同じ外形を有する長方形の板形状の部材であり、第1外層X11、中間層X12、第2外層X13の順に積層されている。第1外層X11、中間層X12、第2外層X13のうち、第2外層X13が、バルブケーシングX2の底壁に最も近い側に配置される。後述する第1外層X11、中間層X12、第2外層X13の構造は、化学的エッチング等の半導体製造プロセスによって形成される。
第1外層X11は、表面に非導電性の酸化膜のある導電性の半導体部材である。第1外層X11には、図6に示すように、表裏に貫通する2つの貫通孔X14、X15が形成されている。この貫通孔X14、X15に、それぞれ、電気配線X6、X7のマイクロバルブX1側端が挿入される。
第2外層X13は、表面に非導電性の酸化膜のある導電性の半導体部材である。第2外層X13には、図6、図8、図9に示すように、表裏に貫通する第1冷媒孔X16、第2冷媒孔X17が形成されている。図9に示すように、第1冷媒孔X16はバルブケーシングX2の第1連通孔XV1に連通し、第2冷媒孔X17はバルブケーシングX2の第2連通孔XV2に連通する。第1冷媒孔X16、第2冷媒孔X17の各々の水力直径は、例えば0.1mm以上かつ3mm以下であるが、これに限定されない。第1冷媒孔X16、第2冷媒孔X17は、それぞれ、第1流体孔、第2流体孔に対応する。
中間層X12は、導電性の半導体部材であり、第1外層X11と第2外層X13に挟まれている。中間層X12は、第1外層X11の酸化膜と第2外層X13の酸化膜に接触するので、第1外層X11と第2外層X13とも電気的に非導通である。中間層X12は、図8に示すように、第1固定部X121、第2固定部X122、複数本の第1リブX123、複数本の第2リブX124、スパインX125、アームX126、梁X127、可動部X128を有している。
第1固定部X121は、第1外層X11、第2外層X13に対して固定された部材である。第1固定部X121は、第2固定部X122、第1リブX123、第2リブX124、スパインX125、アームX126、梁X127、可動部X128を同じ1つの流体室X19内に囲むように形成されている。流体室X19は、第1固定部X121、第1外層X11、第2外層X13によって囲まれた室である。流体室X19は、室内蒸発器18を通過した冷媒の一部が流通する。第1固定部X121、第1外層X11、第2外層X13は、全体として基部に対応する。なお、電気配線X6、X7は複数の第1リブX123および複数の第2リブX124の温度を変化させて変位させるための電気配線である。
第1固定部X121の第1外層X11および第2外層X13に対する固定は、冷媒がこの流体室X19から第1冷媒孔X16、第2冷媒孔X17以外を通ってマイクロバルブX1から漏出することを抑制するような形態で、行われている。
第2固定部X122は、第1外層X11、第2外層X13に対して固定される。第2固定部X122は、第1固定部X121に取り囲まれると共に、第1固定部X121から離れて配置される。
複数本の第1リブX123、複数本の第2リブX124、スパインX125、アームX126、梁X127、可動部X128は、第1外層X11、第2外層X13に対して固定されておらず、第1外層X11、第2外層X13に対して変位可能である。
スパインX125は、中間層X12の矩形形状の短手方向に伸びる細長い棒形状を有している。スパインX125の長手方向の一端は、梁X127に接続されている。
複数本の第1リブX123は、スパインX125の長手方向に直交する方向におけるスパインX125の一方側に配置される。そして、複数本の第1リブX123は、スパインX125の長手方向に並んでいる。各第1リブX123は、細長い棒形状を有しており、温度に応じて伸縮可能となっている。
各第1リブX123は、その長手方向の一端で第1固定部X121に接続され、他端でスパインX125に接続される。そして、各第1リブX123は、第1固定部X121側からスパインX125側に近付くほど、スパインX125の長手方向の梁X127側に向けてオフセットされるよう、スパインX125に対して斜行している。そして、複数の第1リブX123は、互いに対して平行に伸びている。
複数本の第2リブX124は、スパインX125の長手方向に直交する方向におけるスパインX125の他方側に配置される。そして、複数本の第2リブX124は、スパインX125の長手方向に並んでいる。各第2リブX124は、細長い棒形状を有しており、温度に応じて伸縮可能となっている。
各第2リブX124は、その長手方向の一端で第2固定部X122に接続され、他端でスパインX125に接続される。そして、各第2リブX124は、第2固定部X122側からスパインX125側に近付くほど、スパインX125の長手方向の梁X127側に向けてオフセットされるよう、スパインX125に対して斜行している。そして、複数の第2リブX124は、互いに対して平行に伸びている。複数本の第1リブX123、複数本の第2リブX124、スパインX125は、全体として、駆動部に対応する。
アームX126は、スパインX125と非直交かつ平行に伸びる細長い棒形状を有している。アームX126の長手方向の一端は梁X127に接続されており、他端は第1固定部X121に接続されている。
梁X127は、スパインX125およびアームX126に対して約90°で交差する方向に伸びる細長い棒形状を有している。梁X127の一端は、可動部X128に接続されている。アームX126と梁X127は、全体として、増幅部に対応する。
アームX126と梁X127の接続位置XP1、スパインX125と梁X127の接続位置XP2、梁X127と可動部X128の接続位置XP3は、梁X127の長手方向に沿って、この順に並んでいる。そして、第1固定部X121とアームX126との接続点をヒンジXP0とすると、中間層X12の板面に平行な面内におけるヒンジXP0から接続位置XP2までの直線距離よりも、ヒンジXP0から接続位置XP3までの直線距離の方が、長い。
可動部X128は、流体室X19における冷媒の圧力を調整するものである。可動部X128は、その外形が、梁X127の長手方向に対して概ね90°の方向に伸びる矩形形状を有している。この可動部X128は、流体室X19内において梁X127と一体に動くことができる。そして、可動部X128は、そのように動くことで、ある位置にいるときには第1冷媒孔X16と第2冷媒孔X17とを流体室X19を介して連通させ、また別の位置にいるときには第1冷媒孔X16と第2冷媒孔X17とを流体室X19内において遮断する。可動部X128は、中間層X12の表裏に貫通する貫通孔X120を囲む枠形状となっている。したがって、貫通孔X120も、可動部X128と一体的に移動する。貫通孔X120は、流体室X19の一部である。
また、第1固定部X121のうち、複数の第1リブX123と接続する部分の近傍の第1印加点X129には、図6に示した第1外層X11の貫通孔X14を通った電気配線X6のマイクロバルブX1側端が接続される。また、第2固定部X122の第2印加点X130には、図6に示した第1外層X11の貫通孔X15を通った電気配線X7のマイクロバルブX1側端が接続される。
[バルブモジュールX0の作動]
ここで、バルブモジュールX0の作動について説明する。マイクロバルブX1への通電時は、電気配線X6、X7から第1印加点X129、第2印加点X130の間に電圧が印加される。すると、複数の第1リブX123、複数の第2リブX124を電流が流れる。この電流によって、複数の第1リブX123、複数の第2リブX124が発熱してそれらの温度が上昇する。その結果、複数の第1リブX123、複数の第2リブX124の各々が、その長手方向に膨張する。
ここで、バルブモジュールX0の作動について説明する。マイクロバルブX1への通電時は、電気配線X6、X7から第1印加点X129、第2印加点X130の間に電圧が印加される。すると、複数の第1リブX123、複数の第2リブX124を電流が流れる。この電流によって、複数の第1リブX123、複数の第2リブX124が発熱してそれらの温度が上昇する。その結果、複数の第1リブX123、複数の第2リブX124の各々が、その長手方向に膨張する。
このような、温度上昇を伴う熱的な膨張の結果、複数の第1リブX123、複数の第2リブX124は、スパインX125を接続位置XP2側に付勢する。付勢されたスパインX125は、接続位置XP2において、梁X127を押す。このように、接続位置XP2は付勢位置に対応する。
そして、梁X127とアームX126から成る部材は、ヒンジXP0を支点として、接続位置XP2を力点として、一体に姿勢を変える。その結果、梁X127のアームX126とは反対側の端部に接続された可動部X128も、その長手方向の、スパインX125が梁X127を押す側に、移動する。その移動の結果、可動部X128は、図13、図14に示すように、移動方向の先端が第1固定部X121に当接する位置に到達する。以下、可動部X128のこの位置を通電時位置という。
このように、梁X127およびアームX126は、ヒンジXP0を支点とし、接続位置XP2を力点とし、接続位置XP3を作用点とする梃子として機能する。上述の通り、中間層X12の板面に平行な面内におけるヒンジXP0から接続位置XP2までの直線距離よりも、ヒンジXP0から接続位置XP3までの直線距離の方が、長い。したがって、力点である接続位置XP2の移動量よりも、作用点である接続位置XP3の移動量の方が大きくなる。したがって、熱的な膨張による変位量が、梃子によって増幅されて可動部X128に伝わる。
図10、図11に示すように、可動部X128が通電時位置にある場合、貫通孔X120が中間層X12の板面に直交する方向に第1冷媒孔X16、第2冷媒孔X17と重なる。その場合、第1冷媒孔X16と第2冷媒孔X17とが流体室X19の一部である貫通孔X120を介して連通する。この結果、第1連通孔XV1と第2連通孔XV2との間で、第1冷媒孔X16、貫通孔X120、第2冷媒孔X17を介した、冷媒の流通が可能となる。つまり、マイクロバルブX1が開弁する。このように、第1冷媒孔X16、貫通孔X120、第2冷媒孔X17は、マイクロバルブX1の開弁時にマイクロバルブX1内において冷媒が流通する冷媒流路である。
このときの、マイクロバルブX1における冷媒の流路は、Uターン構造を有している。具体的には、冷媒は、マイクロバルブX1の一方側の面からマイクロバルブX1内に流入し、マイクロバルブX1内を通って、マイクロバルブX1の同じ側の面からマイクロバルブX1外に流出する。そして同様にバルブモジュールX0における冷媒の流路も、Uターン構造を有している。具体的には、冷媒は、バルブモジュールX0の一方側の面からバルブモジュールX0内に流入し、バルブモジュールX0内を通って、バルブモジュールX0の同じ側の面からバルブモジュールX0外に流出する。なお、中間層X12の板面に直交する方向は、第1外層X11、中間層X12、第2外層X13の積層方向である。
また、マイクロバルブX1への非通電時は、電気配線X6、X7から第1印加点X129、第2印加点X130への電圧印加が停止される。すると、複数の第1リブX123、複数の第2リブX124を電流が流れなくなり、複数の第1リブX123、複数の第2リブX124の温度が低下する。その結果、複数の第1リブX123、複数の第2リブX124の各々が、その長手方向に収縮する。
このような、温度低下を伴う熱的な収縮の結果、複数の第1リブX123、複数の第2リブX124は、スパインX125を接続位置XP2とは反対側に付勢する。付勢されたスパインX125は、接続位置XP2において、梁X127を引っ張る。その結果、梁X127とアームX126から成る部材は、ヒンジXP0を支点として、接続位置XP2を力点として、一体に姿勢を変える。その結果、梁X127のアームX126とは反対側の端部に接続された可動部X128も、その長手方向の、スパインX125が梁X127を引っ張る側に、移動する。その移動の結果、可動部X128は、図8、図9に示すように、第1固定部X121に当接しない位置に到達する。以下、可動部X128のこの位置を非通電時位置という。
図8、図9に示すように、可動部X128が非通電時位置にある場合、貫通孔X120は、中間層X12の板面に直交する方向に第1冷媒孔X16と重なるが、当該方向に第2冷媒孔X17とは重ならない。第2冷媒孔X17は、中間層X12の板面に直交する方向に可動部X128と重なる。つまり、第2冷媒孔X17は、可動部X128によって塞がれる。したがってこの場合、第1冷媒孔X16と第2冷媒孔X17とが流体室X19内において遮断される。この結果、第1連通孔XV1と第2連通孔XV2との間で、第1冷媒孔X16、第2冷媒孔X17を介した冷媒の流通は阻害される。つまり、マイクロバルブX1が閉弁する。
このように構成される蒸発圧力調整弁19は、蒸発圧力調整弁19は、図12に示すように、マイクロバルブX1への通電時に、開弁状態となり、外側圧力室440bと連通路430とが連通状態となる。これにより、主弁体45は、自身に対して軸方向DRaに作用する荷重が釣り合う位置に変位する。すなわち、蒸発圧力調整弁19は、図3に示す調整状態となる。
また、蒸発圧力調整弁19は、図12に示すように、マイクロバルブX1への非通電時に、閉弁状態となり、外側圧力室440bと連通路430とが非連通状態となる。これにより、主弁体45が蒸発圧力調整弁19の絞り開度が最大となる位置に変位する。すなわち、蒸発圧力調整弁19は、図4に示す全開状態となる。このように、マイクロバルブX1は、蒸発圧力調整弁19の絞り開度を調整するための弁部品を構成する。
制御装置100は、冷房モード時および暖房モード時に蒸発圧力調整弁19が全開状態になるように、マイクロバルブX1への通電を停止する。また、制御装置100は、除湿暖房モード時に蒸発圧力調整弁19が調整状態になるように、マイクロバルブX1へ通電する。
以上説明した冷凍サイクル装置10は、機能切替部であるバルブモジュールX0によって蒸発圧力調整弁19を調整状態から全開状態に切り替えることが可能になる。このため、例えば、蒸発圧力調整弁19の上流側の室内蒸発器18の吸熱能力を高める必要がある場合に、蒸発圧力調整弁19を全開状態に切り替えることで、室内蒸発器18の吸熱効果を適切に発揮させることができる。具体的には、冷凍サイクル装置10は、冷房モード時に蒸発圧力調整弁19を全開状態に切り替えるので、室内蒸発器18の吸熱効果を適切に発揮させることができる。
加えて、蒸発圧力調整弁19は、マイクロバルブX1を用いて絞り開度を調整する構成になっているので、電磁弁や電動弁をと用いる場合に比べて容易に小型化できる。その理由の1つは、マイクロバルブX1が上述の通り半導体チップにより形成されているということである。また、上述の通り、梃子を利用して熱的な膨張による変位量が増幅されることも、そのような梃子を利用しない電磁弁や電動弁と比べた小型化に寄与する。
また、梃子を利用しているので、熱的な膨張による変位量を可動部X128の移動量より抑えることができる。したがって、可動部X128を駆動するための消費電力も低減することができる。また、電磁弁の駆動時における衝撃音を無くすことができるので、騒音を低減することができる。また、複数本の第1リブX123、複数本の第2リブX124の変位は熱に起因して発生するので、騒音低減効果が高い。
上述のように、バルブケーシングX2は、線膨張係数が、マイクロバルブX1の線膨張係数と通路形成部44の線膨張係数の間の値となる樹脂材料で構成されている。これにより、マイクロバルブX1と通路形成部44の線膨張係数の違いをバルブケーシングX2が吸収できる。すなわち、通路形成部44の温度変化による熱歪の応力がバルブケーシングX2で吸収されるので、マイクロバルブX1を保護することができる。
また、バルブ固定部X8は、線膨張係数が、マイクロバルブX1の線膨張係数とボデー部40の線膨張係数の間の値となる樹脂材料で構成されている。これにより、マイクロバルブX1とボデー部40の線膨張係数の違いをバルブ固定部X8が吸収できる。すなわち、ボデー部40の温度変化による熱歪の応力がバルブ固定部X8で吸収されるので、マイクロバルブX1を保護することができる。
さらに、マイクロバルブX1もバルブモジュールX0もUターンの構造の冷媒流路を有しているので、通路形成部44の掘り込みを少なくすることができる。つまり、バルブモジュールX0を配置するために通路形成部44に形成された凹みの深さを抑えることができる。その理由は以下の通りである。
例えば、バルブモジュールX0がUターンの構造の冷媒流路を有しておらず、バルブモジュールX0の通路形成部44側の面に冷媒入口があり、バルブモジュールX0の反対側の面に冷媒出口があったとする。その場合、バルブモジュールX0の両面に、冷媒流路を形成する必要がある。したがって、バルブモジュールX0の両面の冷媒流路まで通路形成部44に収容しようとすると、バルブモジュールX0を配置するために通路形成部44に形成しなければならない凹みが深くなってしまう。また、マイクロバルブX1自体が小型であるので、通路形成部44の掘り込みを更に低減することができる。
また、マイクロバルブX1の両面のうち、第1冷媒孔X16、第2冷媒孔X17が形成される面とは反対側の面に電気配線X6、X7を配置した場合、電気配線X6、X7を大気雰囲気により近い側に置くことができる。したがって、電気配線X6、X7への冷媒雰囲気の影響を低減するためのハーメチック等のシール構造が不要となる。その結果、蒸発圧力調整弁19の小型化が実現できる。
また、マイクロバルブX1が軽量であることから、蒸発圧力調整弁19が軽量化される。マイクロバルブX1の消費電力が小さいので、蒸発圧力調整弁19が省電力化される。
(第1実施形態の変形例)
上述の第1実施形態では、除湿暖房モード時の冷媒回路として、室外熱交換器16と室内蒸発器18とが並列に接続されるものについて説明したが、これに限定されない。例えば、冷房モード時の冷媒回路において、エアミックスドア34によって冷風バイパス通路35を閉塞すれば、室内蒸発器18で除湿された送風空気を室内凝縮器12で加熱して車室内へ吹き出すことができる。すなわち、冷房モード時の冷媒回路においても、車室内の除湿暖房を実現することができる。このため、冷凍サイクル装置10は、室外熱交換器16と室内蒸発器18とが直列に接続される冷媒回路で実現される直列除湿暖房モードに切替可能に構成されていてもよい。
上述の第1実施形態では、除湿暖房モード時の冷媒回路として、室外熱交換器16と室内蒸発器18とが並列に接続されるものについて説明したが、これに限定されない。例えば、冷房モード時の冷媒回路において、エアミックスドア34によって冷風バイパス通路35を閉塞すれば、室内蒸発器18で除湿された送風空気を室内凝縮器12で加熱して車室内へ吹き出すことができる。すなわち、冷房モード時の冷媒回路においても、車室内の除湿暖房を実現することができる。このため、冷凍サイクル装置10は、室外熱交換器16と室内蒸発器18とが直列に接続される冷媒回路で実現される直列除湿暖房モードに切替可能に構成されていてもよい。
なお、直列除湿暖房モードでは、蒸発圧力調整弁19が意図せずに閉弁側に動作してしまうことを防止するために、蒸発圧力調整弁19が全開状態とする。すなわち、制御装置100は、図13に示すように、直列除湿暖房モード時に外側圧力室440bと連通路430とが非連通状態(すなわち、閉鎖状態)となるように、バルブモジュールX0を制御する。
(第2実施形態)
次に、第2実施形態について、図14、図15を参照して説明する。本実施形態では、第1実施形態で説明した蒸発圧力調整弁19を車載機器の冷却装置Z1を構成する冷凍サイクル装置Z10に適用した例について説明する。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
次に、第2実施形態について、図14、図15を参照して説明する。本実施形態では、第1実施形態で説明した蒸発圧力調整弁19を車載機器の冷却装置Z1を構成する冷凍サイクル装置Z10に適用した例について説明する。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
図14に示す冷却装置Z1は、車室内に供給する空気およびバッテリBTを冷凍サイクル装置Z10の冷却対象とし、車室内に供給する空気およびバッテリBTそれぞれを所望の温度に調整する装置である。
図14に示すように、冷凍サイクル装置Z10は、圧縮機Z11、放熱器Z12、冷房用減圧部Z14、冷房用蒸発器Z15、電池用減圧部Z16、電池用蒸発器Z17、および蒸発圧力調整弁19を備えている。これらの各構成機器同士は、冷媒配管によって接続されている。また、冷凍サイクル装置Z10は、各構成機器の動作を制御する制御装置Z100を備えている。
圧縮機Z11は、冷凍サイクル装置Z10において、冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、電動圧縮機で構成されており、制御装置100から出力される制御信号によって、その作動が制御される。
圧縮機Z11の冷媒吐出側には、放熱器Z12の冷媒入口側が接続されている。放熱器Z12は、圧縮機Z11から吐出された冷媒を放熱させる熱交換器である。具体的には、放熱器Z12は、冷媒が流通する冷媒流路部Z121とヒータ回路HCの熱媒体が流通する熱媒体流路部Z122を備え、冷媒とヒータ回路HCを流れる熱媒体とを熱交換させて、熱媒体を加熱する加熱用熱交換器を構成している。なお、ヒータ回路HCは、圧縮機11から吐出された冷媒を車室内へ送風する送風空気の加熱、バッテリBTの暖機等を行うための熱源として利用するための回路である。図示しないが、ヒータ回路HCには、熱媒体を車室内への送風空気に放熱させるためのヒータコア、熱媒体をバッテリBTに放熱させるための放熱器等が設けられている。
放熱器Z12の冷媒出口側には、冷房用減圧部Z14が接続されている。冷房用減圧部Z14は、車室内の空調時に、放熱器Z12を通過した冷媒を減圧する減圧部である。冷房用減圧部Z14は、全閉機能付きの可変絞りで構成されている。
冷房用減圧部Z14の冷媒出口側には、冷房用蒸発器Z15の冷媒入口側が接続されている。冷房用蒸発器Z15は、冷房用減圧部Z14で減圧された冷媒を室内送風機Z151から送風される空気と熱交換させて冷媒を蒸発させる。すなわち、冷房用蒸発器Z15は、室内送風機Z151からの送風空気を冷媒と熱交換させて冷却する冷却器である。なお、室内送風機151は、冷房用蒸発器Z15で冷却された空気を車室内へ送風する送風機である。
冷房用蒸発器Z15の冷媒出口側には蒸発圧力調整弁19が接続されている。この蒸発圧力調整弁19は、冷房用蒸発器Z15の着霜を抑制するために、冷房用蒸発器Z15における冷媒蒸発圧力を着霜を抑制可能な基準圧力以上に調整する機能を果たす。なお、蒸発圧力調整弁19は、第1実施形態で説明したものと同様に構成されている。
ここで、冷凍サイクル装置Z10には、放熱器Z12の冷媒出口側において、冷房用減圧部Z14と並列となるように電池用減圧部Z16が接続されている。具体的には、放熱器Z12と冷房用減圧部Z14との間に分岐部Z21が設けられている。分岐部Z21は、放熱器Z12から冷房用減圧部Z14に向かって流れる冷媒の一部を電池用減圧部Z16に向けて流すためのものである。
さらに、分岐部Z21の冷媒流れ下流側には、電池用減圧部Z16が接続されている。電池用減圧部Z16は、バッテリBTの冷却時に、分岐部Z21を介して流入する冷媒を減圧する減圧部である。電池用減圧部Z16は、全閉機能付きの可変絞りで構成されている。
電池用減圧部Z16の冷媒出口側には、電池用蒸発器Z17の冷媒入口側が接続されている。電池用蒸発器Z17は、電池用減圧部Z16で減圧された冷媒を蒸発させる蒸発器である。電池用蒸発器Z17は、バッテリBTから吸熱して冷媒を蒸発させる吸熱器である。換言すると、電池用蒸発器Z17は、バッテリBTを冷媒と熱交換させて冷却する電池冷却器である。
蒸発圧力調整弁19および電池用蒸発器Z17それぞれの冷媒流れ下流側には、蒸発圧力調整弁19を通過した冷媒と電池用蒸発器Z17を通過した冷媒とを合流させる合流部Z23が設けられている。この合流部Z23の冷媒流れ下流側には、圧縮機Z11の冷媒吸入側に接続される。
冷却装置Z1の制御装置Z100は、第1実施形態の制御装置100と同様に、プロセッサ、ROMおよびRAM等のメモリを含むマイクロコンピュータとその周辺回路で構成されている。なお、制御装置Z100のメモリは、非遷移的実体的記憶媒体で構成される。
制御装置Z100の入力側には、空調用センサZ101およびバッテリ用センサZ102が接続されている。空調用センサZ101は、冷房処理の制御に用いられる複数種類のセンサによって構成されている。また、バッテリ用センサZ102は、バッテリBTの冷却処理の制御に用いられる複数種類のセンサによって構成されている。バッテリ用センサZ102は、例えば、バッテリBTの電池温度を検出する温度センサを含んでいる。
制御装置Z100は、運転モードを車室内の冷房を行う冷房モード、バッテリBTの冷却を行う電池冷却モード、車室内の冷房およびバッテリBTの冷却を行う冷房冷却モードに切り替えることができる。
制御装置Z100は、例えば、空調用センサZ101およびバッテリ用センサZ102で取得された情報に応じて、運転モードを冷房モード、電池冷却モード、冷房冷却モードのいずれかに切り替える。以下、冷房モード、電池冷却モード、冷房冷却モードについて説明する。
(A)冷房モード
制御装置Z100は、運転モードが冷房モードに設定されると、放熱器Z12を通過した冷媒の全量が冷房用蒸発器Z15に流れる冷媒回路に切り替える。すなわち、制御装置100は、全閉状態となるように電池用減圧部Z16を制御するとともに、全閉状態ではなく減圧作用を発揮する絞り開度となるように冷房用減圧部Z14を制御する。また、制御装置Z100は、図15に示すように、蒸発圧力調整弁19を全開状態に制御する。
制御装置Z100は、運転モードが冷房モードに設定されると、放熱器Z12を通過した冷媒の全量が冷房用蒸発器Z15に流れる冷媒回路に切り替える。すなわち、制御装置100は、全閉状態となるように電池用減圧部Z16を制御するとともに、全閉状態ではなく減圧作用を発揮する絞り開度となるように冷房用減圧部Z14を制御する。また、制御装置Z100は、図15に示すように、蒸発圧力調整弁19を全開状態に制御する。
この冷媒回路の構成では、圧縮機Z11から吐出された高圧冷媒が放熱器Z12にて熱媒体に放熱された後、冷房用減圧部Z14に流入し、低圧冷媒となるまで減圧膨張される。そして、冷房用減圧部Z14にて減圧された低圧冷媒は、冷房用蒸発器Z15に流入し、室内送風機Z151から送風される送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。冷房用蒸発器Z15から流出した冷媒は、蒸発圧力調整弁19を通過した後、圧縮機Z11の吸入側から吸入されて再び圧縮機Z11にて圧縮される。
以上の如く、冷房モードでは、室内蒸発器18の吸熱作用によって送風空気を冷却することで、車室内の冷房を実現することができる。特に、本実施形態の冷房モード時には、蒸発圧力調整弁19が全開状態となっているので、蒸発圧力調整弁19が調整状態となっている場合に比べて、室内蒸発器18の吸熱効果を適切に発揮させることができる。
(B)電池冷却モード
制御装置Z100は、運転モードが電池冷却モードに設定されると、放熱器Z12を通過した冷媒の全量が電池用蒸発器Z17に流れる冷媒回路に切り替える。すなわち、制御装置100は、全閉状態となるように冷房用減圧部Z14を制御するとともに、全閉状態ではなく減圧作用を発揮する絞り開度となるように電池用減圧部Z16を制御する。また、制御装置Z100は、図15に示すように、蒸発圧力調整弁19を全開状態に制御する。なお、電池冷却モードでは、冷房用蒸発器Z15に冷媒が流れないので、制御装置100によって調整状態に蒸発圧力調整弁19が制御されていてもよい。
制御装置Z100は、運転モードが電池冷却モードに設定されると、放熱器Z12を通過した冷媒の全量が電池用蒸発器Z17に流れる冷媒回路に切り替える。すなわち、制御装置100は、全閉状態となるように冷房用減圧部Z14を制御するとともに、全閉状態ではなく減圧作用を発揮する絞り開度となるように電池用減圧部Z16を制御する。また、制御装置Z100は、図15に示すように、蒸発圧力調整弁19を全開状態に制御する。なお、電池冷却モードでは、冷房用蒸発器Z15に冷媒が流れないので、制御装置100によって調整状態に蒸発圧力調整弁19が制御されていてもよい。
この冷媒回路の構成では、圧縮機Z11から吐出された高圧冷媒が放熱器Z12にて熱媒体に放熱された後、電池用減圧部Z16に流入し、低圧冷媒となるまで減圧膨張される。そして、電池用減圧部Z16にて減圧された低圧冷媒は、電池用蒸発器Z17に流入し、バッテリBTから吸熱して蒸発する。これにより、バッテリBTが冷却される。電池用蒸発器Z17から流出した冷媒は、圧縮機Z11の吸入側から吸入されて再び圧縮機Z11にて圧縮される。
以上の如く、電池冷却モードでは、電池用蒸発器Z17の吸熱作用によってバッテリBTを冷却することができる。
(C)冷房冷却モード
制御装置Z100は、運転モードが冷房冷却モードに設定されると、放熱器Z12を通過した冷媒が冷房用蒸発器Z15および電池用蒸発器Z17に流れる冷媒回路に切り替える。すなわち、制御装置Z100は、減圧作用を発揮する絞り開度となるように冷房用減圧部Z14および電池用減圧部Z16を制御する。また、制御装置Z100は、図15に示すように、蒸発圧力調整弁19を調整状態に制御する。
制御装置Z100は、運転モードが冷房冷却モードに設定されると、放熱器Z12を通過した冷媒が冷房用蒸発器Z15および電池用蒸発器Z17に流れる冷媒回路に切り替える。すなわち、制御装置Z100は、減圧作用を発揮する絞り開度となるように冷房用減圧部Z14および電池用減圧部Z16を制御する。また、制御装置Z100は、図15に示すように、蒸発圧力調整弁19を調整状態に制御する。
この冷媒回路の構成では、圧縮機Z11から吐出された高圧冷媒が放熱器Z12にて熱媒体に放熱された後、冷房用減圧部Z14および電池用減圧部Z16それぞれに流入し、低圧冷媒となるまで減圧膨張される。
そして、冷房用減圧部Z14にて減圧された低圧冷媒は、冷房用蒸発器Z15に流入し、室内送風機Z151から送風される送風空気から吸熱して蒸発する。また、電池用減圧部Z16にて減圧された低圧冷媒は、電池用蒸発器Z17に流入し、バッテリBTから吸熱して蒸発する。これにより、送風空気が冷却されるとともにバッテリBTが冷却される。
そして、冷房用減圧部Z14にて減圧された低圧冷媒は、冷房用蒸発器Z15に流入し、室内送風機Z151から送風される送風空気から吸熱して蒸発する。また、電池用減圧部Z16にて減圧された低圧冷媒は、電池用蒸発器Z17に流入し、バッテリBTから吸熱して蒸発する。これにより、送風空気が冷却されるとともにバッテリBTが冷却される。
冷房用蒸発器Z15を通過した冷媒は、蒸発圧力調整弁19を通過した後、電池用蒸発器Z17から流出した冷媒と合流し、圧縮機Z11の吸入側に吸入される。
以上の如く、冷房冷却モードでは、室内蒸発器18の吸熱作用によって送風空気を冷却しつつ、電池用蒸発器Z17の吸熱作用によってバッテリBTを冷却することができる。
ここで、冷房冷却モードでは、蒸発圧力調整弁19が調整状態となり、冷房用蒸発器Z15の冷媒圧力が基準圧力以上に調整される。このため、冷房用蒸発器Z15と電池用蒸発器Z17とが並列に接続される構成であっても、電池用蒸発器Z17における冷媒圧力を冷房用蒸発器Z15における冷媒圧力よりも低下させることができる。
以上説明した冷却装置Z1は、冷凍サイクル装置Z10が調整状態および全開状態に切替可能な蒸発圧力調整弁19を含んでいる。このため、冷凍サイクル装置10の運転モードに応じて蒸発圧力調整弁19を調整状態および全開状態に切り替えることで、冷房用蒸発器Z15および電池用蒸発器Z17のうち利用する蒸発器の吸熱作用を適切に発揮させることができる。なお、蒸発圧力調整弁19がマイクロバルブX1を含んで構成されることで得られる作用効果に関しては、第1実施形態と同様に得ることができる。
(第2実施形態の変形例)
上述の第2実施形態では、冷房用蒸発器Z15の冷媒出口側に蒸発圧力調整弁19が接続されるものを例示したが、これに限定されない。蒸発圧力調整弁19は、例えば、電池用蒸発器Z17の冷媒出口側に接続されていてもよい。この場合、冷房冷却モード時に、冷房用蒸発器Z15における冷媒圧力を電池用蒸発器Z17における冷媒圧力よりも低下させることができる。
上述の第2実施形態では、冷房用蒸発器Z15の冷媒出口側に蒸発圧力調整弁19が接続されるものを例示したが、これに限定されない。蒸発圧力調整弁19は、例えば、電池用蒸発器Z17の冷媒出口側に接続されていてもよい。この場合、冷房冷却モード時に、冷房用蒸発器Z15における冷媒圧力を電池用蒸発器Z17における冷媒圧力よりも低下させることができる。
(第3実施形態)
次に第3実施形態について説明する。本実施形態は、第1実施形態のマイクロバルブX1が、故障検知機能を有するよう変更されている。具体的には、マイクロバルブX1は、第1、第2実施形態と同じ構成に加え、図16、図17に示すように、マイクロバルブX1の故障を検知する故障検知部X50を備えている。
次に第3実施形態について説明する。本実施形態は、第1実施形態のマイクロバルブX1が、故障検知機能を有するよう変更されている。具体的には、マイクロバルブX1は、第1、第2実施形態と同じ構成に加え、図16、図17に示すように、マイクロバルブX1の故障を検知する故障検知部X50を備えている。
故障検知部X50は、中間層X12のアームX126に形成されたブリッジ回路を含む。ブリッジ回路は、図17のように接続された4つのゲージ抵抗を含んでいる。つまり、故障検知部X50は、ダイヤフラムに相当するアームX126の歪みに応じて抵抗が変化するブリッジ回路である。つまり、故障検知部X50は半導体ピエゾ抵抗式の歪みセンサである。故障検知部X50は、電気的絶縁膜を介して、アームX126と導通しないように、アームX126に接続されていてもよい。
このブリッジ回路の対角にある2つの入力端子に配線X51、X52が接続される。そして、配線X51、X52から当該入力端子に、定電流発生用の電圧が印加される。この配線X51、X52は、電気配線X6、X7を介してマイクロバルブX1に印加される電圧(すなわち、マイクロバルブ駆動電圧)から分岐して上記2つの入力端子まで伸びている。
また、このブリッジ回路の別の対角にある2つの出力端子に、配線X53、X54が接続される。そして、アームX126の歪み量に応じたレベルの電圧信号が配線X53、X54から出力される。この電圧信号は、後述する通り、マイクロバルブX1が正常に作動しているか否かを判別するための情報として使用される。配線X53、X54から出力される電圧信号は、マイクロバルブX1の外部にある外部制御装置X55に入力される。
この外部制御装置X55は、例えば、車両用空調装置1の制御装置100であってもよい。あるいは、この外部制御装置X55は、車両において、車速、燃料残量、電池残量等を表示するメータECUであってもよい。
アームX126の歪み量に応じた電圧信号を外部制御装置X55が配線X53、X54を介して取得すると、外部制御装置X55は、当該電圧信号に応じて、マイクロバルブX1の故障の有無を検知する。検知対象の故障としては、例えば、アームX126が折れる故障、可動部X128と第1外層X11または第2外層X13との間に微小な異物が挟まって可動部X128が動かなくなる故障、等がある。
複数本の第1リブX123および複数本の第2リブX124の伸縮に応じて、梁X127および可動部X128が変位する際、アームX126の歪み量が変化する。したがって、アームX126の歪み量に応じた電圧信号から、可動部X128の位置を推定できる。一方、マイクロバルブX1が正常であれば、電気配線X6、X7からマイクロバルブX1への通電量と可動部X128の位置との間にも相関関係がある。この通電量は、マイクロバルブX1を制御するための制御量である。
外部制御装置X55は、このことを利用して、マイクロバルブX1の故障の有無を検知する。つまり、外部制御装置X55は、配線X53、X54からの電圧信号から、あらかじめ定められた第1マップに基づいて、可動部X128の位置を算出する。そして、あらかじめ定められた第2マップに基づいて、可動部X128の位置から、正常時において当該位置を実現するために必要な電気配線X6、X7からマイクロバルブX1への供給電力を算出する。これら第1マップ、第2マップは、外部制御装置X55の不揮発性メモリに記録されている。不揮発性メモリは、非遷移的実体的記憶媒体である。第1マップにおける電圧信号のレベルと位置との対応関係は、あらかじめ実験等によって定められてもよい。また、第2マップにおける位置と供給電力との対応関係も、あらかじめ実験等によって定められてもよい。
そして外部制御装置X55は、算出された電力と、実際に電気配線X6、X7からマイクロバルブX1へ供給されている電力とを比較する。そして、外部制御装置X55は、前者の電力と後者の電力の差の絶対値が許容値を超えていれば、マイクロバルブX1が故障していると判定し、許容値を超えていなければ、マイクロバルブX1が正常であると判定する。そして、外部制御装置X55は、マイクロバルブX1が故障していると判定した場合に、所定の故障報知制御を行う。
外部制御装置X55は、この故障報知制御においては、車内の人に報知を行う報知装置X56を作動させる。例えば、外部制御装置X55は、警告ランプを点灯させてもよい。また、外部制御装置X55は、画像表示装置に、マイクロバルブX1に故障が発生したことを示す画像を表示させてもよい。これによって、車両の乗員は、マイクロバルブX1の故障に気付くことができる。
また、外部制御装置X55は、この故障報知制御においては、車両内の記憶装置に、マイクロバルブX1に故障が発生したことを示す情報を記録してもよい。この記憶装置は、非遷移的実体的記憶媒体である。これにより、マイクロバルブX1の故障を記録に残すことができる。
また、外部制御装置X55は、マイクロバルブX1が故障していると判定した場合は、通電停止制御を行う。通電停止制御では、外部制御装置X55は、電気配線X6、X7からマイクロバルブX1への通電を停止させる。このように、マイクロバルブX1の故障時にマイクロバルブX1への通電を停止することで、マイクロバルブX1の故障時の安全性を高めることができる。
以上のように、故障検知部X50が、マイクロバルブX1が正常に作動しているか否かを判別するための電圧信号を出力することで、外部制御装置X55は、マイクロバルブX1の故障の有無を容易に判別することができる。
また、この電圧信号は、アームX126の歪み量に応じた信号である。したがって、電気配線X6、X7からマイクロバルブX1への通電量とこの電圧信号との関係に基づいて、マイクロバルブX1の故障の有無を容易に判別することができる。
なお、本実施形態では、ブリッジ回路を構成する抵抗の変化に基づいてマイクロバルブX1が故障しているか否かが判定されている。しかし、他の方法として、静電容量の変化に基づいてマイクロバルブX1が故障しているか否かが判定されてもよい。この場合、ブリッジ回路の代わりに容量成分を形成する複数の電極がアームX126に形成される。アームX126の歪み量と複数の電極間の静電容量の間は相関関係がある。したがって、外部制御装置X55は、この複数の電極間の静電容量の変化に基づいて、マイクロバルブX1が故障しているか否かを判定できる。
(他の実施形態)
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
上述の実施形態では、バルブモジュールX0のマイクロバルブX1が常閉弁で構成されるものを例示したが、これに限定されない。マイクロバルブX1は、常開弁として構成されていてもよい。
上述の実施形態の如く、蒸発圧力調整弁19は、マイクロバルブX1と通路形成部44との間にバルブケーシングX2等を介在させることが望ましいが、これに限らない。蒸発圧力調整弁19は、例えば、マイクロバルブX1と通路形成部44等がバルブケーシングX2等を介さずに互いに接するように構成されていてもよい。また、バルブケーシングX2は樹脂に限らない。さらに、バルブケーシングX2と通路形成部44との間に線膨張係数の違いを吸収できる追加部材が介在されていてもよい。
上述の実施形態では、複数本の第1リブX123、複数本の第2リブX124が通電されることで発熱し、その発熱によって自らの温度が上昇することで膨張する。しかし、これら部材は、温度が変化すると長さが変化する形状記憶材料から構成されていてもよい。
上述の実施形態では、本開示の冷凍サイクル装置10を車両用空調装置1や冷却装置Z1に適用した例を説明したが、これに限定されない。冷凍サイクル装置10は、車両用空調装置1や冷却装置Z1以外の機器にも広く適用可能である。
上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。例えば、マイクロバルブX1の形状やサイズは、上記の実施形態で示したものに限られない。マイクロバルブX1は、極微小流量制御可能で、かつ、流路内に存在する微少ゴミを詰まらせないような水力直径の第1冷媒孔X16、第2冷媒孔X17を有していればよい。
上述の実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、冷凍サイクル装置は、圧縮機と、放熱器と、複数の減圧部と、複数の蒸発器と、蒸発圧力調整弁と、を備える。蒸発圧力調整弁は、一部の蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と一部の蒸発器の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部を含んでいる。機能切替部は、絞り開度を調整するための弁部品を含んでいる。弁部品は、冷媒が流通する流体室が形成される基部と、温度変化により変位する駆動部と、駆動部の温度変化による変位を増幅する増幅部と、増幅部によって増幅された変位が伝達されて動くことで流体室の冷媒圧力を調整する可動部と、を有する。そして、増幅部が、ヒンジを支点とし、増幅部が駆動部に付勢される付勢位置を力点とし、増幅部と可動部との接続位置を作用点とする梃子として機能するように構成されている。
上述の実施形態の一部または全部で示された第1の観点によれば、冷凍サイクル装置は、圧縮機と、放熱器と、複数の減圧部と、複数の蒸発器と、蒸発圧力調整弁と、を備える。蒸発圧力調整弁は、一部の蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と一部の蒸発器の冷媒圧力によらず絞り開度が全開となる全開状態とに切り替える機能切替部を含んでいる。機能切替部は、絞り開度を調整するための弁部品を含んでいる。弁部品は、冷媒が流通する流体室が形成される基部と、温度変化により変位する駆動部と、駆動部の温度変化による変位を増幅する増幅部と、増幅部によって増幅された変位が伝達されて動くことで流体室の冷媒圧力を調整する可動部と、を有する。そして、増幅部が、ヒンジを支点とし、増幅部が駆動部に付勢される付勢位置を力点とし、増幅部と可動部との接続位置を作用点とする梃子として機能するように構成されている。
第2の観点によれば、機能切替部は、弁部品の取付対象となる被取付対象物に対して弁部品を取り付けるための部品取付部を含んでいる。部品取付部は、弁部品と被取付対象物とが直接接しないように部品取付部と弁部品との間に介在されている。
これによれば、被取付対象物と弁部品との間に部品取付部が介在させる構成とすれば、部品取付部が緩衝材として機能することで、弁部品を保護することができる。
第3の観点によれば、部品取付部は、部品取付部の線膨張係数が、弁部品の線膨張係数と被取付対象物の線膨張係数との間に値となるように構成されている。
これによると、被取付対象物の温度変化による熱歪が生じたとしても、被取付対象物の温度変化による熱歪の応力が部品取付部で吸収されるので、弁部品を保護することができる。
第4の観点によれば、冷凍サイクル装置は、機能切替部の動作を制御する制御装置を備える。制御装置は、一部の蒸発器および一部の蒸発器以外の他の蒸発器それぞれで吸熱作用を発揮させる運転モードにおいて、蒸発圧力調整弁が調整状態となるように機能切替部を制御する。また、制御装置は、一部の蒸発器で吸熱作用を発揮させ、他の蒸発器で吸熱作用を発揮させない運転モードにおいて、蒸発圧力調整弁が全開状態となるように機能切替部を制御する。このように、一部の蒸発器で吸熱作用を発揮させる場合に、蒸発圧力調整弁を全開状態に切り替えることで、蒸発器の吸熱効果を適切に発揮させることができる。
第5の観点によれば、弁部品は、当該弁部品が正常に作動しているか故障しているかを判別するための信号を出力する故障検知部を備えている。弁部品がこのような信号を出力することで、弁部品の故障の有無を容易に判別することができる。
第6の観点によれば、信号は、増幅部の歪み量に応じた信号である。このようになっていることで、この信号と弁部品を制御するための制御量との関係に基づいて、弁装置の故障の有無を判別することができる。
第7の観点によれば、駆動部は、通電されることで発熱し、故障検知部は、弁部品が故障している場合に弁部品に対する通電を停止する装置に、信号を出力する。このように、弁部品の故障時に通電を停止することで、故障時の安全性を高めることができる。
第8の観点によれば、故障検知部は、弁部品が故障している場合に、人に報知を行う報知装置を作動させる装置に、信号を出力する。これにより、人は、弁部品の故障を知ることができる。
第9の観点によれば、弁部品は、半導体チップによって構成されている。これによれば、弁部品を小型に構成できる。
第10の観点によれば、蒸発圧力調整弁は、ボデー部と、通路形成部材と、主弁体と、弾性部材と、機能切替部と、を備える。機能切替部は、第1圧力室および第2圧力室の圧力差を調整するための弁部品を含んでいる。弁部品は、第1の観点で説明したものと同様に構成されている。
11 圧縮機
12 室内凝縮器(放熱器)
15a 第1膨張弁
15b 第2膨張弁
16 室外熱交換器
18 室内蒸発器
19 蒸発圧力調整弁
X0 バルブモジュール(機能切替部)
X1 マイクロバルブ(弁部品)
12 室内凝縮器(放熱器)
15a 第1膨張弁
15b 第2膨張弁
16 室外熱交換器
18 室内蒸発器
19 蒸発圧力調整弁
X0 バルブモジュール(機能切替部)
X1 マイクロバルブ(弁部品)
Claims (10)
- 冷凍サイクル装置であって、
冷媒を圧縮して吐出する圧縮機(11、Z11)と、
前記圧縮機から吐出された冷媒を放熱させる放熱器(12、Z12)と、
前記放熱器の冷媒流れ下流側において、互いに並列となるように接続される複数の減圧部(15a、15b、Z14、Z16)と、
複数の前記減圧部それぞれの冷媒流れ下流側に接続され、前記減圧部で減圧された冷媒を蒸発させる複数の蒸発器(16、18、Z15、Z17)と、
複数の前記蒸発器のうち一部の蒸発器の冷媒出口側に接続され、前記一部の蒸発器の冷媒圧力を所定値以上に維持する蒸発圧力調整弁(19)と、を備え、
前記蒸発圧力調整弁は、前記一部の蒸発器の冷媒圧力に応じて絞り開度が調整される調整状態と前記一部の蒸発器の冷媒圧力によらず前記絞り開度が全開となる全開状態とに切り替える機能切替部(X0)を含んでおり、
前記機能切替部(X0)は、前記絞り開度を調整するための弁部品(X1)を含んでおり、
前記弁部品は、
前記一部の蒸発器を通過した冷媒の少なくとも一部が流通する流体室(X19)が形成される基部(X11、X12、X13)と、
自らの温度が変化すると変位する駆動部(X123、X124、X125)と、
前記駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、
前記増幅部によって増幅された変位が伝達されて動くことで、前記流体室における冷媒の流量を調整する可動部(X128)と、を有し、
前記駆動部が温度の変化によって変位したときに、前記駆動部が付勢位置(XP2)において前記増幅部を付勢することで、前記増幅部がヒンジ(XP0)を支点として変位するとともに、前記増幅部と前記可動部の接続位置(XP3)で前記増幅部が前記可動部を付勢し、
前記ヒンジから前記付勢位置までの距離よりも、前記ヒンジから前記接続位置までの距離の方が長くなっている、冷凍サイクル装置。 - 前記機能切替部は、前記弁部品の取付対象となる被取付対象物(40、44)に対して前記弁部品を取り付けるための部品取付部(X3、X8)を含んでおり、
前記部品取付部は、前記弁部品と前記被取付対象物とが直接接しないように前記部品取付部と前記弁部品との間に介在されている、請求項1に記載の冷凍サイクル装置。 - 前記部品取付部は、前記部品取付部の線膨張係数が、前記弁部品の線膨張係数と前記被取付対象物の線膨張係数との間に値となるように構成されている、請求項2に記載の冷凍サイクル装置。
- 前記機能切替部の動作を制御する制御装置(100)を備え、
前記制御装置は、
前記一部の蒸発器および前記一部の蒸発器以外の他の蒸発器それぞれで吸熱作用を発揮させる運転モードにおいて、前記蒸発圧力調整弁が前記調整状態となるように前記機能切替部を制御し、
前記一部の蒸発器で吸熱作用を発揮させ、前記他の蒸発器で吸熱作用を発揮させない運転モードにおいて、前記蒸発圧力調整弁が前記全開状態となるように前記機能切替部を制御する、請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 - 前記弁部品は、当該弁部品が正常に作動しているか故障しているかを判別するための信号を出力する故障検知部(X50)を備えている、請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
- 前記信号は、前記増幅部の歪み量に応じた信号である、請求項5に記載の冷凍サイクル装置。
- 前記駆動部は、通電されることで発熱し、
前記故障検知部は、前記弁部品が故障している場合に前記弁部品に対する通電を停止する装置(X55)に、前記信号を出力する、請求項5または6に記載の冷凍サイクル装置。 - 前記故障検知部は、前記弁部品が故障している場合に、人に報知を行う報知装置(X56)を作動させる装置(X55)に、前記信号を出力する、請求項6または7に記載の冷凍サイクル装置。
- 前記弁部品は、半導体チップによって構成されている、請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。
- 冷凍サイクル装置(10)を構成する蒸発器(18)の冷媒圧力を所定値以上に維持するための蒸発圧力調整弁であって、
前記蒸発器を通過した冷媒が流入する冷媒流入路(41)、前記冷媒流入路から冷媒が流入する弁室(43)、前記弁室から圧縮機(11)の冷媒吸入側へ冷媒を流出させる冷媒流出路(42)が形成されるボデー部(40)と、
前記弁室に配置され、前記冷媒流入路と前記冷媒流出路とを連通させる連通路(430)を形成するとともに、前記連通路の内側にシリンダ室(440)を形成する通路形成部材(44)と、
前記シリンダ室に対して摺動可能に配置され、前記冷媒流入路の冷媒圧力を受けて前記連通路の絞り開度を調整する主弁体(45)と、
前記主弁体に対して作用する前記冷媒流入路の冷媒圧力に対抗するように前記主弁体に対して付勢力を加える弾性部材(46)と、
前記蒸発器の冷媒圧力に応じて前記絞り開度が調整される調整状態と前記蒸発器の冷媒圧力によらず前記絞り開度が全開となる全開状態とに切り替える機能切替部(X0)と、を備え、
前記シリンダ室は、前記主弁体によって、前記冷媒流入路に連通する第1圧力室(440a)と前記冷媒流出路に連通する第2圧力室(440b)とに分割されており、
前記第1圧力室および前記第2圧力室は、均圧通路(451a)を介して連通しており、
前記主弁体は、前記第1圧力室および前記第2圧力室の圧力差に応じて変位するように前記シリンダ室に配置され、
前記機能切替部は、前記第1圧力室および前記第2圧力室の圧力差を調整するための弁部品(X1)を含んでおり、
前記弁部品は、
冷媒が流通する流体室(X19)、前記第2圧力室と前記流体室とを連通させる第1流体孔(X16)、前記流体室と前記冷媒流出路とを連通させる第2流体孔(X17)が形成される基部(X11、X12、X13)と、
自らの温度が変化すると変位する駆動部(X123、X124、X125)と、
前記駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、
前記増幅部によって増幅された変位が伝達されて動くことで、前記流体室における前記第2流体孔の開度を調整する可動部(X128)と、を有し、
前記駆動部が温度の変化によって変位したときに、前記駆動部が付勢位置(XP2)において前記増幅部を付勢することで、前記増幅部がヒンジ(XP0)を支点として変位するとともに、前記増幅部と前記可動部の接続位置(XP3)で前記増幅部が前記可動部を付勢し、
前記ヒンジから前記付勢位置までの距離よりも、前記ヒンジから前記接続位置までの距離の方が長くなっている、蒸発圧力調整弁。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019035227A JP6992777B2 (ja) | 2019-02-28 | 2019-02-28 | 冷凍サイクル装置、蒸発圧力調整弁 |
PCT/JP2020/007722 WO2020175546A1 (ja) | 2019-02-28 | 2020-02-26 | 冷凍サイクル装置、蒸発圧力調整弁 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019035227A JP6992777B2 (ja) | 2019-02-28 | 2019-02-28 | 冷凍サイクル装置、蒸発圧力調整弁 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020139681A true JP2020139681A (ja) | 2020-09-03 |
JP6992777B2 JP6992777B2 (ja) | 2022-01-13 |
Family
ID=72239980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019035227A Active JP6992777B2 (ja) | 2019-02-28 | 2019-02-28 | 冷凍サイクル装置、蒸発圧力調整弁 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6992777B2 (ja) |
WO (1) | WO2020175546A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022070536A (ja) * | 2020-10-27 | 2022-05-13 | 株式会社デンソー | 冷凍サイクル装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5668872U (ja) * | 1979-10-30 | 1981-06-08 | ||
JPS63198972U (ja) * | 1987-06-11 | 1988-12-21 | ||
JPH0584194U (ja) * | 1991-02-06 | 1993-11-12 | アルプス電気株式会社 | 圧電素子 |
JP2008286302A (ja) * | 2007-05-17 | 2008-11-27 | Panasonic Corp | ロータリージョイントおよび回転弁体の異常検出機構 |
JP2014169011A (ja) * | 2013-03-04 | 2014-09-18 | Honda Motor Co Ltd | 締結樹脂構造体及びその製造方法 |
US20150354875A1 (en) * | 2013-06-25 | 2015-12-10 | Zhejiang Dunan Hetian Metal Co., Ltd. | On-Demand Micro Expansion Valve for a Refrigeration System |
WO2016088738A1 (ja) * | 2014-12-04 | 2016-06-09 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5541633Y2 (ja) * | 1978-04-13 | 1980-09-29 | ||
JPS5668872A (en) * | 1979-11-08 | 1981-06-09 | Fujitsu Ltd | Picture correcting device |
US9238462B2 (en) | 2011-12-28 | 2016-01-19 | Nissan Motor Co., Ltd. | Control apparatus for vehicle |
-
2019
- 2019-02-28 JP JP2019035227A patent/JP6992777B2/ja active Active
-
2020
- 2020-02-26 WO PCT/JP2020/007722 patent/WO2020175546A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5668872U (ja) * | 1979-10-30 | 1981-06-08 | ||
JPS63198972U (ja) * | 1987-06-11 | 1988-12-21 | ||
JPH0584194U (ja) * | 1991-02-06 | 1993-11-12 | アルプス電気株式会社 | 圧電素子 |
JP2008286302A (ja) * | 2007-05-17 | 2008-11-27 | Panasonic Corp | ロータリージョイントおよび回転弁体の異常検出機構 |
JP2014169011A (ja) * | 2013-03-04 | 2014-09-18 | Honda Motor Co Ltd | 締結樹脂構造体及びその製造方法 |
US20150354875A1 (en) * | 2013-06-25 | 2015-12-10 | Zhejiang Dunan Hetian Metal Co., Ltd. | On-Demand Micro Expansion Valve for a Refrigeration System |
WO2016088738A1 (ja) * | 2014-12-04 | 2016-06-09 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2020175546A1 (ja) | 2020-09-03 |
JP6992777B2 (ja) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858297B2 (ja) | 圧力制御弁と蒸気圧縮式冷凍サイクル | |
US8171747B2 (en) | Refrigeration device | |
WO2016075897A1 (ja) | 冷凍サイクル装置 | |
JP2014095487A (ja) | 冷凍サイクル装置 | |
JP6992777B2 (ja) | 冷凍サイクル装置、蒸発圧力調整弁 | |
WO2020175544A1 (ja) | 冷凍サイクル装置 | |
JP6572695B2 (ja) | 統合弁 | |
JP4338539B2 (ja) | 車両用空調装置 | |
JP6958582B2 (ja) | エジェクタ式冷凍サイクル装置 | |
JP7014239B2 (ja) | 弁装置 | |
WO2020175545A1 (ja) | 弁装置 | |
JP2008164239A (ja) | 圧力制御弁 | |
JP6973431B2 (ja) | 統合弁 | |
JP7074097B2 (ja) | 弁装置 | |
WO2020175542A1 (ja) | 冷凍サイクル装置 | |
JP4015171B2 (ja) | 冷媒凝縮器 | |
JP6988846B2 (ja) | オイル戻し装置 | |
WO2018155001A1 (ja) | 圧縮機及び冷凍サイクル装置 | |
WO2021131498A1 (ja) | 弁装置 | |
WO2020175550A1 (ja) | 弁装置 | |
JP2008057821A (ja) | 冷凍装置 | |
JP2005075102A (ja) | 車両用空気調和装置 | |
JP2021195955A (ja) | 弁装置 | |
JP2007032345A (ja) | 車両用空調機の弁装置 | |
JP2004205067A (ja) | 過熱度検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211122 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6992777 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |