WO2020175550A1 - 弁装置 - Google Patents
弁装置 Download PDFInfo
- Publication number
- WO2020175550A1 WO2020175550A1 PCT/JP2020/007726 JP2020007726W WO2020175550A1 WO 2020175550 A1 WO2020175550 A1 WO 2020175550A1 JP 2020007726 W JP2020007726 W JP 2020007726W WO 2020175550 A1 WO2020175550 A1 WO 2020175550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- pressure
- passage
- valve
- hole
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
Definitions
- the present disclosure relates to a valve device used in a refrigeration cycle.
- Patent Document 1 describes a technique in which, in an expansion valve used in a refrigeration cycle, a valve that adjusts the flow rate of a refrigerant is driven by a stepping motor.
- Patent Document 1 Japanese Unexamined Patent Publication No. 20 15 _ 1 4 3 0 6
- the expansion valve described in Patent Document 1 has a stepping motor, and therefore the physical size of the expansion valve becomes large.
- An object of the present disclosure is to make it easier to reduce the size of a valve device such as an expansion valve used in a refrigeration cycle than in the past.
- a valve device used in a refrigeration cycle has an inlet, an outlet, and a valve chamber in which a refrigerant flowing from the inlet to the outlet is circulated. And the body
- a valve element that adjusts the flow rate of the refrigerant flowing from the inflow port to the outflow port through the valve chamber by being displaced in the valve chamber;
- a control valve component for changing a pressure acting on a pressure chamber that generates a control pressure for moving the valve body ⁇ 2020/175550 2 (:171? 2020/007726
- the control valve component is
- a drive unit that displaces when its own temperature changes
- An amplifying section for amplifying a displacement of the driving section due to a change in temperature
- a movable part that adjusts the opening degree of the second refrigerant hole with respect to the refrigerant chamber by transmitting the displacement amplified by the amplifier part and moving in the refrigerant chamber.
- the drive unit When the drive unit is displaced due to a change in temperature, the drive unit biases the amplification unit at the biased position so that the amplification unit shifts with a hinge as a fulcrum, and the amplification unit and the movable unit move.
- the amplifying section biases the movable section at the connecting position of the section,
- the distance from the hinge to the connecting position is longer than the distance from the hinge to the biasing position.
- the amplification unit of the control valve component configured as described above functions as a lever, the displacement amount according to the temperature change of the drive unit is amplified by the lever and transmitted to the movable unit. In this way, the displacement amount due to the thermal expansion is amplified by using the lever, which contributes to the downsizing as compared with the valve device that does not use the lever.
- FIG. 1 is a diagram showing a configuration of a refrigeration cycle in a first embodiment.
- FIG. 2 is a view showing a mounting form of an expansion valve.
- FIG. 3 A sectional view of the expansion valve.
- FIG. 4 is an enlarged cross-sectional view of the valve module in FIG. 3 and its surroundings.
- FIG. 5 An exploded view of the microvalve. 20/175550 3 ⁇ (: 171? 2020 /007726
- FIG. 6 A front view of a microvalve.
- Fig. 7 is a cross-sectional view taken along the line V I I -V I I of Fig. 6, showing the state when the power is not supplied.
- Fig. 8 is a cross-sectional view of V I I I -V I I in Fig. 6, showing the state when no current is applied.
- Fig. 9 Fig. 6 is a cross-sectional view taken along line V I I -V I I of Fig. 6, showing the state when the maximum power is supplied.
- Fig. 10 is a cross-sectional view of V I I I-V I I in Fig. 6, showing the state when the maximum power is supplied.
- FIG. 11 A graph showing the relationship between the duty ratio and the output refrigerant pressure.
- FIG. 12 is a cross-sectional view showing a state of the valve when the refrigerant circuit is not in operation.
- FIG. 13 is a cross-sectional view showing a state of the valve when the refrigerant circuit is in operation and the duty ratio is zero.
- FIG. 14 is a sectional view showing a state of the valve when the refrigerant circuit is in operation and the duty ratio is 100%.
- FIG. 15 A sectional view of a microvalve in a second embodiment.
- Fig. 16 is an enlarged view of the X V section of Fig. 15.
- FIG. 17 A sectional view of an expansion valve according to a third embodiment.
- FIG. 18 A sectional view of an expansion valve according to a fourth embodiment.
- Fig. 19 is an X-X-X-X-X sectional view of Fig. 18.
- FIG. 20 is a side-by-side cross-sectional view of FIG.
- FIG. 21 A view taken along the arrow X X in Fig. 18.
- FIG. 22 An exploded view of the microvalve.
- FIG. 23 A cross-sectional view of the microvalve, showing a state when the power is not supplied.
- FIG. 24 A cross-sectional view of a microvalve, showing a state when energized.
- FIG. 25 is a cross-sectional view showing a state when the expansion valve is opened.
- FIG. 26 is a cross-sectional view showing a state when the expansion valve is closed.
- FIG. 27 A partial cross-sectional view of an expansion valve according to a fifth embodiment.
- Fig. 28 is a cross-sectional view taken along line X X V ⁇ I-XX V I I of Fig. 27.
- FIG. 29 A sectional view of an expansion valve according to a sixth embodiment.
- FIG. 30 A sectional view of an expansion valve according to a seventh embodiment. ⁇ 2020/175 550 4 (:171? 2020/007726
- FIG. 31 A sectional view of an expansion valve in an eighth embodiment.
- FIG. 32 A sectional view taken along the line X X X I I -X X X I I in FIG.
- FIG. 33 A sectional view of an expansion valve according to a ninth embodiment.
- Fig. 34 is a cross-sectional view taken along the line X X X ⁇ ⁇ ⁇ V of Fig. 33.
- FIG. 35 is a sectional view taken along the line X X X V -X X X V in FIG.
- FIG. 36 A sectional view of the expansion valve in the tenth embodiment.
- the expansion valve 5 is an electric expansion valve and is applied to the vapor compression refrigeration cycle 1 of a vehicle air conditioner.
- the refrigeration cycle 1 uses a CFC-based refrigerant ([3 ⁇ 4 1 3 4 3) as a refrigerant, and constitutes a subcritical cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant.
- the compressor 2 of the refrigeration cycle 1 obtains a driving force from a vehicle running engine (not shown) via an electromagnetic clutch or the like, and sucks and compresses the refrigerant.
- the compressor 2 may be composed of an electric compressor that is driven by driving force output from an electric motor (not shown).
- the condenser 3 exchanges heat between the high-pressure refrigerant discharged from the compressor 2 and the outside air blown by a cooling fan (not shown) (that is, the air outside the vehicle compartment) to radiate the high-pressure refrigerant. It is a heat exchanger for heat dissipation that condenses the heat.
- a receiver 4 On the outlet side of the condenser 3, a receiver 4 is connected, which separates the high-pressure refrigerant flowing out of the condenser 3 into a vapor-phase refrigerant and a liquid-phase refrigerant, and collects excess liquid-phase refrigerant in the cycle. There is. Further, the expansion valve 5 is connected to the liquid-phase refrigerant outlet of the receiver 4. The expansion valve 5 is arranged on the vehicle compartment side of the firewall that separates the vehicle interior from the vehicle exterior.
- the expansion valve 5 is a valve device for decompressing and expanding the high-pressure refrigerant flowing out from the receiver 4.
- the expansion valve 5 is based on the temperature and pressure of the low-pressure refrigerant flowing out of the evaporator 6, so that the superheat degree of the low-pressure refrigerant flowing out of the evaporator 6 approaches a predetermined value. (Opening) to change the refrigerant flow into the evaporator 6. ⁇ 2020/175 550 5 (:171? 2020/007726
- the evaporator 6 is arranged in an air conditioning casing 7 arranged in a vehicle dashboard or the like.
- the evaporator exchanges heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 5 and the air that is urged by the blower 8 and flows through the air conditioning casing 7. By this heat exchange, the air is cooled and the low-pressure refrigerant is evaporated. The cooled air is sent to the passenger compartment by the blower 8.
- the expansion valve 5 is fixed to the air conditioning casing from the outside of the air conditioning casing 7.
- the outlet side of the evaporator 6 is connected to the suction side of the compressor 2 via a post-evaporation refrigerant passage 51 formed inside the expansion valve 5.
- the expansion valve 5 has a body 51, a valve body 52, a coil vane 53, an autonomous section 54, a valve module 0, and the like.
- the body 51 constitutes the outer shell of the expansion valve 5, the refrigerant passage in the expansion valve 5, and the like, and is formed by punching a cylindrical or rectangular metal block.
- the body 5 1 has a first inlet 5 1 3, a first outlet 5 1 a second inlet 5 1, a second inlet 5 1, a second outlet 5 1 6, a valve chamber 5 1 9 and a throttle passage. 5 1 1 * 1 etc. are formed.
- the refrigerant inlet/outlet As the refrigerant inlet/outlet, the refrigerant introduced from the first inlet 5 1 3 and the first inlet 5 1 3 which is connected to the outlet of the condenser 3 and into which the high-pressure liquid-phase refrigerant flows is evaporated. 6
- the first outlet 5 1 13 that flows out to the inlet side is formed. Therefore, in the present embodiment, the high pressure refrigerant passage 5 10 is formed by the refrigerant passage extending from the first inflow port 5 13 to the first outflow port 51.
- the high-pressure refrigerant passage 5100 corresponds to the first passage.
- the refrigerant introduced from the second inlet 5 1 and the second inlet 5 1 into which the low-pressure refrigerant flowing out from the evaporator 6 is introduced flows out to the suction side of the compressor 2.
- a second outflow port 5 16 is formed to allow it. Therefore, in the present embodiment, the refrigerant passage from the second inflow port 5 1 to the second outflow port 5 16 is used. ⁇ 2020/175 550 6 boxes (:171? 2020 /007726
- the valve chamber 519 is a space that is provided in the high-pressure refrigerant passage 510 and that accommodates a valve body 52 described later therein.
- the valve chamber 5 1 9 corresponds to the pressure chamber. More specifically, the valve chamber 5 19 directly communicates with the first inlet 5 13 and communicates with the first outlet 5 11 13 via the throttle passage 5 11 ⁇ .
- the throttle passage 5 1 II is provided in the high-pressure refrigerant passage 5 1 0, and the refrigerant flowing from the first inlet 5 13 to the valve chamber 5 19 is decompressed and expanded, and then the first passage from the valve chamber 5 1 9 side. Outlet 5 1 This is a passage leading to the side of the bank.
- the throttle passage 5 1 II is formed between the valve body 5 2 and the valve seat 5 1 ′′.
- the valve seat 51" is formed in the body 51 so as to narrow the refrigerant flow path at the downstream end of the valve chamber 519.
- the valve body 52 is a valve body that adjusts the refrigerant passage area of the throttle passage 5 1 continuously or in multiple stages of three stages or more by being displaced with respect to the valve seat 5 1.
- the low-pressure refrigerant passage 5 1 is the cooling medium passage leading to the first outlet 51 1 outlet of the throttle passage 5 1 II. Low pressure refrigerant passage 5 1 Corresponds to the second passage.
- Low-pressure refrigerant passage 5 1 A low-voltage introduction path 5 19 is connected to the.
- This low-pressure introduction passage 5 19 is formed in the body 51 and has one end with the low-pressure refrigerant passage 5 1. The other end communicates with the third communication hole V 3 of the valve module 0.
- the high pressure refrigerant passage 5 1 0 is connected to the high pressure introduction passage 5 1.
- the high-pressure introducing passage 51 is formed in the body 51, one end of which communicates with the high-pressure refrigerant passage 510, and the other end of which communicates with the second communicating hole V 2 of the valve module 0.
- the coil spring 5 3 is housed in the valve chamber 5 19 and restricts the throttle passage 5 from the valve body 5 2.
- the coil panel 5 3 is the back pressure chamber of the valve chamber 5 19. Is located in. Back pressure chamber It is formed on the opposite side of the throttle passage 5 1 II with respect to the valve body 52.
- the back pressure chamber 51 communicates with the first communication hole 1 of the valve module ⁇ .
- the valve chambers 511 the space on the opposite side of the back pressure chamber 5 1 with respect to the valve body 52 is referred to as the front chamber 5 13.
- the valve chamber 5 19 is divided into a back pressure chamber 5 1 and a front chamber 5 13 by the valve body 52. ⁇ 2020/175 550 7 (:171? 2020/007726
- the autonomous unit 54 includes a casing 54, a circuit board 54, a composite sensor 54, and a driver circuit 54.
- the casing 543 is a resin member that is fixed to the body 51 and surrounds a housing space in which the circuit board 54, the composite sensor 5400, and the driver circuit 54 are housed.
- An opening 5 1 "opening to the accommodation space is formed on the wall of the body 51 that surrounds the refrigerant passage 51 after evaporation.
- the circuit board 5 4 is mounted on the casing 5 4 3 . It is fixed and the composite sensor 540, driver circuit 5 4 etc. are mounted.
- the composite sensor 5440 has a casing 541, a sensitive portion 542, a lead socket 543, and a ring 5444.
- the resin casing 5 41 is integrally fixed to the body 5 1 in the accommodation space surrounded by the casing 5 43. More specifically, the casing 5 4 1 is in a state of being passed through the opening 5 1 ′′ formed in the body 5 1. Therefore, the casing 5 4 1 is located inside the refrigerant passage 5 1 after evaporation. And a portion inside the accommodation space.
- ⁇ ring 5 4 4 is interposed between the casing 5 4 1 and the body 5 1, it suppresses leakage of the refrigerant from the evaporator after the refrigerant passage 5 1 inch into the casing 5 4 3 Internal.
- the conductive leads 5 4 3 are connected to the printed wiring on the circuit board 5 4. Since the composite sensor 54 0 faces the circuit board 54 through the gap, it is easy to arrange the lead portion 54 3.
- the sensitive portion 5 42 is fixed to a portion of the casing 5 4 1 that is inside the refrigerant passage 5 1 after evaporation.
- the sensitive section 5 42 outputs a pressure signal according to the pressure of the refrigerant in the post-evaporation refrigerant passage 51 1 and a temperature signal according to the temperature of the refrigerant in the post-evaporation refrigerant passage 51 2.
- the sensitive unit 5 42 may include, for example, a pressure sensor and a temperature sensor that is separate from the pressure sensor.
- the sensitive section 5 42 may have four gauge resistors and a thin-walled diaphragm to which the bridge circuit is attached.
- Each gauge resistor may be configured as a thin film resistor formed on the diaphragm. ⁇ 2020/175 550 8 (:171? 2020/007726
- Each gauge resistance is a resistance element whose resistance value changes according to the strain of the diaphragm. Further, each gauge resistance is an element whose resistance value changes according to temperature. These gauge resistors are electrically connected to each other to form a Wheatstone bridge circuit. A constant current is supplied to the Wheatstone bridge circuit from the driver circuit 5 4 through the circuit board 54, the lead portion 5 43, and wiring not shown. As a result, due to the piezoresistive effect of each gauge resistance, a pressure signal according to the strain of the diaphragm and a temperature signal according to the temperature of the diaphragm are output from the sensing unit 5 42.
- the sensing unit 5 42 detects a resistance change of a plurality of gauge resistors according to the strain of the diaphragm as a change in the midpoint voltage of the Wheatstone bridge circuit, and uses the midpoint voltage as a pressure signal. Output.
- the sensitive section 5 42 detects the resistance change of the plurality of gauge resistors according to the temperature of the sensitive section 5 42 as the bridge voltage of the Wheatstone plug circuit and outputs the bridge voltage as a temperature signal.
- the pressure signal and the temperature signal output from the sensitive section 5 4 2 are transmitted from the sensitive section 5 4 2 to the circuit board 5 4 through the unillustrated wiring and the lead section 5 4 3 conducting to it. ..
- the pressure signal and temperature signal transmitted to the circuit board 5 4 are input to the driver circuit 5 4 via the pattern printed on the circuit board 5 4
- the driver circuit 54 controls the operation of the valve module 0 based on the pressure signal and the temperature signal input from the composite sensor 5400 through the circuit board 54.
- the driver circuit 54 can be realized by, for example, a micro-computer, or can be realized by hardware having a dedicated circuit configuration.
- valve module ⁇ consists of a micro valve 1, a valve casing 2, a sealing member 3, 3 ⁇ 2020/175 550 9 (:171? 2020/007726
- the microvalve 1 is a plate-shaped control valve component, and is mainly composed of a semiconductor chip.
- the micro valve 1 may or may not have components other than the semiconductor chip. Therefore, the microvalve 1 can be made compact.
- the length in the longitudinal direction orthogonal to the thickness direction is, for example, 10
- the length in the lateral direction orthogonal to both the longitudinal direction and the thickness direction is, for example, 5
- the flow configuration of the micro valve 1 changes as the power supplied to the micro valve 1 changes.
- the microvalve 1 functions as a pilot valve.
- the electrical wirings 6 and 7 extend from the two plate surfaces on the front and back of the microvalve 1 that are opposite to the valve casing 2 and the sealing member 3 and the valve. It passes through the inside of the casing 2 and is connected to the power supply (that is, the driver circuit 54) outside the valve module. The ends of the electrical wiring 6 and 7 opposite to the microvalve 1 side are connected to the driver circuit 5 4. As a result, the electric power can be supplied from the driver circuit 54 to the micro valve 1 through the electric wiring 6 and 7.
- the conversion plate 8 is a plate-shaped member arranged between the micro valve 1 and the valve casing 2.
- the conversion plate 8 is a glass substrate.
- One side of the two plate surfaces on the front and back of the conversion plate 8 is fixed to the microvalve 1 with an adhesive, and the other side is fixed to the valve casing 2 with an adhesive.
- the conversion plate (8) has three refrigerant holes (16), (1), (17) and (18) of the micro valve (1) and three communication holes (1), (VV2) and (V3) of the valve casing (2) described below.
- a flow channel 81, a channel 8 2, and a channel 8 3 for forming a confluence are formed.
- These flow paths 8 1, 8 2 and 8 3 are the pitch between the above three refrigerant holes 16 in a row, the pitch between the holes 17 and 18 and the above 3 communication holes in a row.
- the pitch between the communication holes 1, V V 2, and V 3 is larger than the pitch between the refrigerant holes 16, 16, 17 and 18.
- the passages 8 1, 8 2 and 8 3 penetrate from one of the two plate surfaces on the front and back of the conversion plate 8 to the other. Therefore, the pitch between the end of the flow passage 8 1, the water 8 2 and the communication hole 8 3 on the side of the communication hole 1, VV 2 and the side 3 is the flow passage 8 1, 8 It is larger than the pitch between the end portions on the side of the refrigerant holes 16, 16, 17 and 18 above.
- the valve casing 2 is a resin casing that houses the microvalve 1 and the conversion plate 8.
- the valve casing 2 is formed by resin molding with polyphenylene sulfide as a main component.
- the valve casing 2 is a box body having a bottom wall on one side and an open side on the other side.
- the bottom wall of the valve casing 2 is interposed between the body 5 1 and the microvalve 1 so that the microvalve 1 and the conversion plate 8 do not directly contact the body 5 1. Then, one surface of this bottom wall is in contact with and fixed to the body 51, and the other surface is in contact with and fixed to the conversion plate 8.
- the valve casing 2 can absorb the difference in the linear expansion coefficient between the micro valve 1 and the body 51. This is because the coefficient of linear expansion of the valve casing 2 is between the coefficient of linear expansion of the microvalve 1 and the coefficient of linear expansion of the body 5 1.
- the linear expansion coefficient of the conversion plate 8 is a value between the linear expansion coefficient of the microvalve 1 and the linear expansion coefficient of the valve casing 2.
- the bottom wall of the valve casing 2 projects from the plate-shaped base 20 facing the microvalve 1 and the base 20 in a direction away from the microvalve 1. It has a pillar-shaped first projecting portion 21 1, a second projecting portion 22 2, and a third projecting portion 23.
- the first protrusion portion 21, the second protrusion portion 22 and the third protrusion portion 23 are fitted in the recess formed in the body 51.
- the first protruding portion 21 is formed with a first communication hole V 1 that penetrates from the end on the side of the microvalve 1 to the end on the opposite side.
- the second protruding part 22 should be installed from the end on the side of the microvalve 1 to the end on the opposite side. ⁇ 2020/175 550 1 1 ⁇ (:171? 2020 /007726
- a second communicating hole 2 is formed to penetrate through.
- the third projecting portion 23 is formed with a third communicating hole V 3 that penetrates from the end on the side of the micro valve 1 to the end on the opposite side.
- the first communication hole 1, the second communication hole 2, and the third communication hole 3 are arranged in a line, and the first communication hole V 1 and the third communication hole V 1 are arranged between the second communication hole 2 and the third communication hole V 3. Is located.
- the end of the first communication hole V 1 on the side of the microvalve 1 communicates with the end of the flow channel 8 1 formed on the conversion plate 8 on the side of the valve casing 2 1.
- the end of the second communication hole (2) on the side of the micro valve (1) communicates with the end of the flow channel (82) formed on the conversion plate (8) on the side of the valve casing (2).
- the end of the third communication hole V 3 on the side of the micro valve 1 is communicated with the end of the flow passage 8 3 formed on the conversion plate 8 on the side of the valve casing 2.
- the sealing member 3 is a member made of epoxy resin that seals the other open side of the valve casing 2.
- the sealing member 3 covers the entire surface of the two surfaces of the microvalve 1 that are opposite to the conversion plate 8 side. Further, the sealing member 3 covers a part of the plate surface on the opposite side of the bottom wall side of the valve casing 2 out of the two plate surfaces on the front and back of the conversion plate 8. Further, the sealing member (3) covers the electric wirings (6) and (7) to realize waterproofing and insulation of the electric wirings (6) and (7).
- the sealing member 3 is formed by resin potting or the like.
- the ring 4 is attached to the outer periphery of the first protruding portion 21 and seals between the body 5 1 and the first protruding portion 21 so that the expansion valve 5 is external to the refrigeration cycle. The leakage of the refrigerant to the outside of the machine is suppressed.
- the ring 5 3 is attached to the outer circumference of the second protruding portion 22 2 and seals between the body 5 1 and the second protruding portion 2 2 so that the expansion valve 5 and the outside of the refrigeration cycle are The leakage of the refrigerant to the ⁇
- the ring 5 is attached to the outer circumference of the third protruding part 23, and seals between the body 5 1 and the third protruding part 23, so that the expansion valve 5 is protected from the outside and the refrigeration cycle. Controls the leakage of refrigerant to the outside.
- the buoy Y 1 is a MEMS including a first outer layer Y 1 1, a middle layer Y 1 2, and a second outer layer Y 1 3, both of which are semiconductors.
- MEMS Micro Electro Mechanical Systems.
- the first outer layer Y11, the middle layer Y12, and the second outer layer Y13 are rectangular plate-shaped members having the same outer shape, and are the first outer layer Y11, the middle layer Y12, and the first outer layer Y12. 2
- the outer layers Y 1 3 are laminated in this order.
- the middle layer Y 1 2 is sandwiched from both sides by the first outer layer Y 1 1 and the second outer layer Y 1 3.
- the second outer layer Y13 is arranged on the side closest to the bottom wall of the valve casing Y2.
- the structures of the first outer layer Y 11 and the intermediate layer Y 12 and the second outer layer Y 13 which will be described later are formed by a semiconductor manufacturing process such as chemical etching.
- the first outer layer Y11 is a conductive semiconductor member having a non-conductive oxide film on its surface. As shown in FIG. 5, the first outer layer Y 1 1 is formed with two through holes Y 1 4 and Y 1 5 penetrating the front and back. The ends of the electrical wirings Y 6 and Y 7 on the microvalve Y 1 side are inserted into the through holes Y 14 and Y 15 respectively.
- the second outer layer Y 13 is a conductive semiconductor member having a non-conductive oxide film on its surface. As shown in FIG. 5, FIG. 7, and FIG. 8, the second outer layer Y 1 3 has a first refrigerant hole Y 16 that penetrates the front and back, a second refrigerant hole Y 17 and a third refrigerant hole Y 18 Has been formed.
- the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 are arranged in a line.
- the first refrigerant hole Y 16 is arranged between the second refrigerant hole Y 17 and the third refrigerant hole Y 18.
- the hydraulic diameter of each of the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 is, for example, not less than 0.1 mm and not more than 3 mm.
- the intermediate layer Y 12 is a conductive semiconductor member, and is sandwiched between the first outer layer Y 1 1 and the second outer layer Y 13. Since the middle layer Y 1 2 contacts the oxide film of the first outer layer Y 11 and the oxide film of the second outer layer Y 1 3, both the first outer layer Y 1 1 and the second outer layer Y 1 3 are electrically conductive. ⁇ 2020/175 550 13 boxes (:171? 2020 /007726
- the intermediate layer 12 includes a first fixing part 1 2 1, a second fixing part 1 2 2 and a plurality of first ribs 1 2 3 and a plurality of second ribs 1 2 3. It has 1 2 4, spine 1 2 5, arm 1 2 6, beam 1 2 7 and movable part 1 2 8.
- the first fixing part 1 21 is a member fixed to the first outer layer 1 1 and the second outer layer 1 3.
- the 1st fixed part 1 2 1 is the 2nd fixed part 1 2 2, the 1st rib 1 2 3, the 2nd rib 1 2 4, the spine 1 2 5, the arm 1 2 6 and the beam 1 2 7 and the movable part 1 28 are formed so as to surround the same one refrigerant chamber 19.
- the refrigerant chamber (19) is a chamber surrounded by the first fixed part (1) 21, the first outer layer (1 1) and the second outer layer (1 3 ).
- the first fixed part 1 2 1, the first outer layer 1 1 and the second outer layer 1 3 correspond to the base as a whole.
- the electric wirings 6 and 7 are electric wirings for changing and changing the temperatures of the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4.
- the first fixing portion 1 2 1 is fixed to the first outer layer 1 1 and the second outer layer 1 3 by fixing the refrigerant from the refrigerant chamber 1 9 to the first refrigerant hole 16 and the second refrigerant hole. It is carried out in such a form as to prevent leakage from the microvalve 1 through a portion other than the upper 17 and the third refrigerant hole 18.
- the second fixing portion 1 22 2 is fixed to the first outer layer 1 1 and the second outer layer 1 3.
- the second fixed part 1 1 2 2 is surrounded by the first fixed part 1 1 2 1 and is arranged apart from the first fixed part 1 1 2.
- first ribs 1 2 3 Multiple first ribs 1 2 3, multiple second ribs 1 2 4, spine 1 2
- arm 1 2 6, beam 1 2 7 and movable part 1 2 8 are not fixed to the 1st outer layer 1 1 and the 2nd outer layer 1 3, but the 1st outer layer 1 1 ,
- the second outer layer 13 can be displaced.
- the spine needle 125 has an elongated rod shape extending in the lateral direction of the rectangular shape of the intermediate layer 12. One end of the spine 1 125 in the longitudinal direction is connected to the beam 1 27.
- the plurality of first ribs 1 2 3 are ones orthogonal to the longitudinal direction of the spine 1 2 5 ⁇ 02020/175 550 14 (: 17 2020 /007726
- the plurality of first ribs 125 are arranged in the longitudinal direction of the spine 125.
- Each of the first ribs 1 23 has an elongated rod shape and can expand and contract depending on the temperature.
- Each of the first ribs 123 is connected to the first fixed portion 1 21 at one end in the longitudinal direction and is connected to the spine 125 at the other end.
- the first ribs 1 23 are offset toward the beam 1 27 side in the longitudinal direction of the spine 1 25 as the 1st fixed part 1 2 1 side approaches the spine 1 25 side. As you can see, it is skewed to the spine 1 25.
- the plurality of first ribs 123 extend parallel to each other.
- the plurality of second ribs 124 are arranged on the other side of the spine 125 in the direction orthogonal to the longitudinal direction of the spine 125.
- the plurality of second ribs 124 are arranged in the longitudinal direction of the spine 125.
- Each of the second ribs 1 24 has an elongated rod shape and can expand and contract depending on the temperature.
- Each of the second ribs 124 is connected to the second fixing portion 122 at one end in the longitudinal direction and is connected to the spine 125 at the other end.
- the second ribs 1 24 are offset toward the beam 1 27 side in the longitudinal direction of the spine 1 25 as the second fixing part 1 22 side approaches the spine 1 25 side. , Is skewed to the spine 1 25. Then, the plurality of second ribs 124 extend parallel to each other.
- the arm arm 126 has an elongated rod shape that extends non-orthogonally and parallel to the spine arm 125. One end of the arm 1 26 in the longitudinal direction is connected to the beam 1 27, and the other end is connected to the first fixed portion 1 2 1.
- the beam arm 127 has an elongated rod shape extending in a direction intersecting with the spine arm 125 and the arm arm 126 at about 90°.
- the arm 1 2 6 and the beam 1 2 7 as a whole correspond to the amplification section.
- connection position 2 of the 1 2 7 and the connection position 3 of the beam 1 2 7 and the movable part 1 2 8 are arranged in this order along the longitudinal direction of the beam 1 2 7.
- connection point between the first fixed part 1 2 1 and the arm 1 2 6 is defined as the hinge 0, from the hinge 0 to the connection position 2 in the plane parallel to the plate surface of the intermediate layer 1 2
- the straight line distance from the hinge 0 to the connection position 3 is longer than the straight line distance of.
- the value obtained by dividing the former linear distance by the latter linear distance may be 1/5 or less, or 1/10 or less.
- the outer shape of the movable portion 1 28 has a rectangular shape that extends in the direction of approximately 90° with respect to the longitudinal direction of the beam 1 27 7.
- This movable portion 1 28 can move integrally with the beam 1 2 7 in the refrigerant chamber 1 9.
- the movable part 1 28 is in the shape of a frame that surrounds the through hole 1 20 that penetrates the front and back of the intermediate layer 1 2. Therefore, the through hole 1208 also moves integrally with the movable portion 1208.
- the through hole 112 is a part of the refrigerant chamber 19.
- the movable part 1 28 is moved as described above, so that the opening degree of the second refrigerant hole 17 with respect to the through hole 1 20 and the through hole 1 8 of the third refrigerant hole 1 8 Change the opening for 20.
- the first refrigerant hole 16 is always fully open to the through hole 1 20.
- the first application point 1 2 9 near the portion that is connected to the plurality of 1st ribs 1 2 3 is shown in FIG. 1 Outer layer 1 1 Through hole 1 1 Electric wiring 4 6 Micro valve 1 side end is connected.
- the microvalve 1 of the electrical wiring 7 through the through hole 1 5 of the 1st outer layer 11 shown in FIG. One end is connected.
- the connection position 2 corresponds to the bias position.
- the members consisting of the beams 1 27 and the arms 1 26 change their postures integrally with the hinge 0 as the fulcrum and the connection position 2 as the power point.
- the movable part 1 2 8 connected to the end of the beam 1 2 7 opposite to the arm 1 2 6 also has its spine 1 2 5 in the longitudinal direction. Move to the side where you press.
- the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4 attach the spine 1 2 5 to the side opposite to the connection position 2 Energize.
- the biased spine 1 2 5 pulls the beam 1 2 7 at the connecting position 2.
- the member consisting of the beam 1 2 7 and the arm 1 2 6 integrally changes its posture with the hinge 0 as a fulcrum and the connection position 2 as a force point.
- the movable part 1 2 8 connected to the end of the beam 1 2 7 opposite to the arm 1 2 6 also has its spine 1 2 5 in the longitudinal direction. Move to the pulling side.
- the movable part 1 28 is stopped at the predetermined non-energized position. ⁇ 2020/175 550 17 ⁇ (:171? 2020 /007726
- the non-energized position corresponds to the first position.
- the electric wiring 6 and 7 are supplied to the microvalve 1 via the first application point 1 2 9 and the second application point 1 30.
- the greater the electric power supplied the greater the amount of movement of the movable part 1 28 with respect to the non-energized position. This is because the higher the power supplied to the microvalve 1, the higher the temperature of the first rib 1 2 3 and the second rib 1 2 4 and the greater the degree of expansion.
- the voltage applied from the electrical wirings 6 and 7 to the first application point 1 2 9 and the second application point 1 3 0 is When controlled, the greater the voltage duty ratio, the greater the amount of movement of the movable part 1 28 when it is not energized.
- the voltage duty ratio under the control of ⁇ /1 ⁇ /1 is simply called the duty ratio.
- the through hole 1 20 is placed in a direction orthogonal to the plate surface of the intermediate layer 1 2. It overlaps the first refrigerant hole 16 and the third refrigerant hole 18 but does not overlap the second refrigerant hole 17 in that direction.
- the second refrigerant hole 17 overlaps with the movable portion 1 28 in a direction orthogonal to the plate surface of the intermediate layer 1 2. That is, at this time, the first refrigerant hole 16 and the third refrigerant hole 18 are fully opened and the second refrigerant hole 17 is fully closed with respect to the through hole 120.
- the first refrigerant hole 16 is communicated with the third refrigerant hole 18 through the movable part 1 28, and the second refrigerant hole 1 7 is connected to the first refrigerant hole 1 6 together.
- the refrigerant holes 18 are also shut off.
- the ratio becomes the maximum value within the control range (for example, 100%).
- the through holes 120 are the first refrigerant holes 16 and the second refrigerant holes in the direction orthogonal to the plate surface of the intermediate layer 12. Although it overlaps with 17, it does not overlap with the third refrigerant hole 18 in that direction.
- the third refrigerant hole (18) overlaps the movable portion (128) in a direction orthogonal to the plate surface of the intermediate layer (12). That is, at this time, the first refrigerant hole 16 and the second refrigerant hole 17 are fully opened and the third refrigerant hole 18 is fully closed with respect to the through hole 120.
- the first refrigerant hole 16 communicates with the second refrigerant hole 17 through the movable part 128, and the third refrigerant hole 18 is the first refrigerant hole 16 and the second refrigerant hole 16 is the second refrigerant hole.
- the hole 17 is also blocked.
- the flow path 81, the first refrigerant hole 16, the through hole 1 20, the second refrigerant hole 17 and the flow path Refrigerant can flow through the air 83.
- the electric power supplied to the microvalve 1 (for example, under the control of ⁇ /1 ⁇ /1) is adjusted within a range less than the maximum electric power and greater than zero in multiple stages or continuously. It As a result, the movable portion 128 can be stopped at any intermediate position between the non-energized position and the maximum energized position. For example, in order to stop the movable part 128 at a position equidistant from the maximum energized position and the non-energized position (that is, the center position), the electric power supplied to the microvalve 1 is controlled within the control range. It should be half the maximum value. For example, the duty ratio in ⁇ /1 ⁇ /1 control should be 50%.
- the first refrigerant hole 16 and the second refrigerant hole 17 and the third refrigerant hole 18 are all through holes 120. Is in communication with. However, the second refrigerant hole 17 and the third refrigerant hole 18 are not in the fully opened state with respect to the through hole 120, and have intermediate openings less than 100% and more than 0%. As the movable part 128 moves closer to the maximum potential at the intermediate position, the intermediate opening of the third refrigerant hole 18 with respect to the through hole 120 decreases, and the intermediate opening of the second refrigerant hole 17 increases. Will increase.
- a low pressure higher than the high pressure acts on the third refrigerant hole 18.
- an intermediate pressure higher than the low pressure and lower than the high pressure acts on the outside of the microvalve 1 from the first refrigerant hole 16.
- the value of the intermediate pressure fluctuates depending on the opening degree of the second refrigerant hole 17 and the third cooling hole hole 18 with respect to the movable portion 1 28.
- Fig. 11 shows that electrical wiring 6 and 7 to the first applied point 1 2 9 and the second applied point 1
- the duty ratio and the pressure applied from the first refrigerant hole 16 to the outside of the micro valve 1 that is, the control Pressure or outlet pressure.
- the control Pressure or outlet pressure As shown in this figure, the larger the duty ratio, the higher the control pressure in proportion to the increase in duty ratio. Then, when the duty ratio is 100%, the control pressure matches the high pressure.
- the duty ratio is 0%, that is, when the power is not supplied, the control pressure matches the above low pressure.
- the beam 1 2 7 and the arm 1 2 6 function as a lever with the hinge 0 as a fulcrum, the connection position 2 as a force point, and the connection position 3 as an action point. ..
- the linear distance from the hinge 0 to the connecting position 3 is more than the linear distance from the hinge 0 to the connecting position 2 in the plane parallel to the plate surface of the intermediate layer 1 2. long. Therefore, the moving amount of the connecting position 3 which is the action point is larger than the moving amount of the connecting position 2 which is the power point. Therefore, the amount of displacement due to thermal expansion is amplified by the lever and transmitted to the movable portion 1 28.
- the flow path of the refrigerant in the microvalve 1 has a II vane structure. Specifically, the refrigerant flows into the micro valve 1 from one surface of the micro valve 1, passes through the micro valve 1, and then flows from the same surface of the micro valve 1 to the micro valve 1. It leaks out.
- the refrigerant passage in the valve module 0 also has a II-turn structure. Specifically, the refrigerant flows into the valve module 0 from one surface of the valve module 0, passes through the valve module 0, and then flows into the valve module 0. ⁇ 2020/175 550 20 (:171? 2020/007726
- the direction orthogonal to the plate surface of the intermediate layer 12 is the laminating direction of the first outer layer 11, the intermediate layer 12 and the second outer layer 13.
- the microvalve 1 configured as described above can be easily miniaturized as compared with the electromagnetic valve and the stepping motor.
- the microvalve 1 is formed of a semiconductor chip as described above.
- the displacement amount due to thermal expansion is amplified by using the lever, which is smaller than the valve device using the solenoid valve or the stepping motor without using the lever. Contribute to. Further, the displacement of the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4 occurs due to heat, so that the noise reduction effect is high.
- the power consumption for driving the movable portion 1 28 can be reduced. Further, since it is possible to eliminate impact noise when the solenoid valve is driven, noise can be reduced.
- both the micro valve 1 and the valve module 0 have the refrigerant flow path of the II turn structure, it is possible to reduce the digging of the body 5 1. That is, the depth of the recess formed in the body 5 1 for disposing the valve module 0 can be suppressed. The reason is as follows.
- the valve module 0 does not have a 1)-turn structure of the refrigerant flow path, the surface of the valve module 0 on the body 51 side has the refrigerant inlet port, and the opposite of the valve module 0 It is assumed that there is a refrigerant outlet on the side surface. In that case, it is necessary to form a refrigerant flow path on both sides of the valve module. Therefore, when the refrigerant flow paths on both sides of the valve module 0 are to be accommodated in the body 51, the recess that must be formed in the body 5 1 in order to arrange the valve module 0 becomes deep. Moreover, since the microvalve 1 itself is small, it is possible to further reduce the digging of the body 51.
- the electrical wirings 6 and 7 are arranged on the surface opposite to the surface on which the electrical wirings 17 are formed, the electrical wirings 6 and 7 can be placed closer to the atmosphere. Therefore, a hermetic sealing structure for reducing the influence of the refrigerant atmosphere on the electric wiring 6 and 7 is not required. As a result, the expansion valve 5 can be downsized.
- the expansion valve 5 is lightweight. Further, since the power consumption of the micro valve 1 is small, the expansion valve 5 can save power.
- the non-operation of the refrigeration cycle will be described.
- the compressor 2 and the blower 8 are not operating, and the refrigerant in the refrigeration cycle does not circulate.
- Neither the composite sensor 540 nor the driver circuit 5 4 is operating.
- the micro valve 1 is not energized.
- the third communication hole 3 and the first communication hole 1 communicate with each other through the microvalve 1, and the second communication hole V 2 and the through hole 1 of the microvalve 1.
- Between 1 2 0 is cut off. Therefore, as shown in Fig. 12, the back pressure chamber And low pressure refrigerant passage 5 1 And are communicated with each other through the low pressure introduction path 5 19 and the micro valve 1.
- the pressure of the refrigerant between the receiver 4 and the expansion valve 5 and the pressure of the refrigerant between the expansion valve 5 and the evaporator 6 are equal to each other. Therefore, the pressure of the refrigerant in the high pressure refrigerant passage 5 10 and the low pressure refrigerant passage 5 1 The refrigerant pressures at are also equal to each other. Therefore, the low pressure refrigerant passage 5 1 The pressure of the refrigerant in the back pressure chamber 51 communicating with the high pressure refrigerant passage 51 is also equal to the pressure of the front chamber 5113 communicating with the high pressure refrigerant passage 5100.
- the composite sensor 540 and the driver circuit 5 4 also operate. Therefore, electricity is supplied from the driver circuit 54 to the microvalve 1 via the electrical wiring 6 and 7 as needed.
- the composite sensor 540 detects the pressure and temperature of the refrigerant passing through the evaporated refrigerant passage 51. That is, the temperature-sensing portion of the composite sensor 540 outputs a pressure signal and a temperature signal corresponding to the pressure and temperature of the refrigerant passing through the refrigerant passage 51 after evaporation.
- the driver circuit 54 acquires the pressure signal and the temperature signal, and determines the electric power supplied to the electric wirings 6 and 7 according to the acquired pressure signal and temperature signal. In the following description, the driver circuit 54 is described as performing the electric power supplied to the electric wirings 6 and 7 under the control of ⁇ /1 ⁇ /1 with a constant maximum voltage. Therefore, the driver circuit 54 applies to the electric wiring 6 and 7 so that the superheat degree of the low-pressure refrigerant flowing out from the evaporator 6 becomes a predetermined constant value according to the obtained pressure signal and temperature signal. Determine the voltage duty ratio.
- the driver circuit 54 reduces the duty ratio as the pressure indicated by the pressure signal is constant and the temperature indicated by the temperature signal increases, that is, as the degree of superheat increases. As a result, the lift amount of the valve body 52 increases and the heating degree decreases.
- the duty ratio is increased as the temperature indicated by the temperature signal is constant and the pressure indicated by the pressure signal is higher, that is, as the degree of superheat is lower. As a result, the lift amount of the valve body 52 is reduced and the degree of superheat is increased.
- the driver circuit 54 applies a voltage to the microvalve 1 through the electrical wirings 6 and 7 at the determined duty ratio. As a result, the superheat degree of the low-pressure refrigerant flowing out of the evaporator 6 is kept constant.
- the back pressure chamber 5 1 A low-pressure refrigerant exists in the front chamber 513, and a high-pressure refrigerant exists in the front chamber 513 from the high-pressure refrigerant passage 510. That is, the pressure of the refrigerant in the front chamber 5 13 is higher than the pressure of the refrigerant in the back pressure chamber 5 1.
- the valve body 52 is offset to the back pressure chamber 5 1 side by being piled up by the force of the coil panel 5 3 to expand. As a result, the opening degree of the throttle passage 5 1 II becomes maximum. Therefore, the pressure difference between the high-pressure refrigerant passage 510 and the low-pressure refrigerant passage 51 is small.
- the second communication hole V 2 and the first communication hole V 1 communicate with each other via the microvalve 1, and 3
- the communication between the communication hole 3 and the through hole 1 20 of the microvalve 1 is blocked. Therefore, as shown in Fig. 14, the high pressure refrigerant passage 510 and the back pressure chamber , High-pressure introduction path 5 1 and microvalve 1 communicate with each other.
- the back pressure chamber 5 1 In addition, the same high-pressure refrigerant exists in the front chamber 5 13 as well. As a result, the valve body 52 is offset to the valve seat 5 1 ′′ side by the force of the coil panel 5 3 to expand. As a result, the opening degree of the throttle passage 5 11 * 1 becomes the minimum state. However, the opening is greater than zero. Therefore, the high pressure refrigerant passage 5 1 0 and the low pressure refrigerant passage 5 1 The pressure difference between the two becomes large.
- the second communication hole V 2 and the first communication hole V 1 are connected via the micro valve V 1. While communicating, the third communicating hole 3 and the first communicating hole 1 communicate with each other via the micro valve 1.
- the refrigerant pressure applied to the back pressure chamber 5 1 from the first cooling medium hole 16 of the micro valve 1 through the first communication hole 1 is larger than the low pressure as shown in Fig. 11. It becomes larger as the duty ratio becomes larger within a range lower than the high pressure. Therefore, the opening of the throttle passage 5 1 ⁇ 2020/175 550 24 (:171? 2020 /007726
- the low pressure means the low pressure refrigerant passage 5 1 Is the pressure of the refrigerant at.
- the high pressure is the pressure of the refrigerant in the high pressure refrigerant passage 510 and is higher than the low pressure.
- the second outer layer 1 3 is arranged closer to the valve body 52 than the first outer layer 1 1.
- the high-pressure refrigerant passage 510 and the low-pressure refrigerant passage 51 are formed in the body 51. Therefore, compared with the case where the first outer layer 1 1 3 is located closer to the valve body 5 2 than the second outer layer 1 3 is, the flow path for the refrigerant to flow from the micro valve 1 to the body 5 1 is Can be short. As a result, the expansion valve 5 can be downsized.
- the autonomous unit 5 4 detects the temperature and pressure of the refrigerant flowing from the evaporator 6 and the rib sensor 1 according to the temperature and pressure detected by the compound sensor 5 40. 2 3, a driver circuit 5 4 for controlling the temperature of the ribs 1 2 4, and.
- the expansion valve 5 can autonomously adjust the flow rate of the high-pressure refrigerant passage 5 10 to the low-pressure refrigerant passage 5 1.
- the micro valve 1 of the first embodiment is modified to have a failure detection function.
- the microvalve 1 includes a failure detection unit 50 as shown in FIGS. 15 and 16.
- the failure detection unit 50 includes a pledge circuit formed on the arm 1 2 6 of the intermediate layer 1 2.
- the bridge circuit contains four gauge resistors connected as shown in Figure 16.
- the failure detection unit 50 is a bridge circuit whose resistance changes according to the strain of the arm 1 26, which corresponds to the diaphragm. That is, the failure detection unit 50 is a semiconductor piezoresistive strain sensor.
- the failure detection unit 50 may be connected to the arm 1 26 through an electrically insulating film so as not to be electrically connected to the arm 1 26.
- a voltage for generating a constant current is applied from the wirings 51 and 52 to the input terminal.
- the wirings 5 1 and 5 2 are branched from the voltage (that is, the microvalve driving voltage) applied to the microvalve 1 via the electrical wiring 6 and 7 and extend to the above two input terminals. ing.
- the wiring 5 3 and the wiring 5 4 are connected to the two diagonally opposite output terminals of the bridge circuit. Then, a voltage signal corresponding to the amount of distortion of the arm 1 2 6 is output from the wiring 5 3 and 5 4. As will be described later, this voltage signal is used as information for determining whether or not the micro valve 1 is operating normally.
- the voltage signals output from the wirings 5 3 and 5 4 are input to the driver circuit 5 4 ⁇ 1.
- the driver circuit 5 4 wires the voltage signal according to the distortion amount of the arm 1 2 6
- the failure detection process for detecting the presence or absence of failure of the microvalve 1 is performed according to the voltage signal of the driver circuit 5 4. Failures to be detected include, for example, a failure of the arm 1 2 6 that breaks, a movable part 1 2 8 and 1st outer layer 1 1 or 2nd outer layer 1 3 There is a malfunction such as the part 1 2 8 getting stuck.
- the driver circuit 54 uses this fact to detect the presence/absence of a failure in the microvalve 1. In other words, the driver circuit 54 calculates the position of the movable portion 1 28 from the voltage signals from the wiring 5 3 and the wiring 5 4 based on the first map determined in advance. Then, based on the predetermined second map, in order to realize that position in normal time from the position of the movable part 1 28 ⁇ 2020/175 550 26 ⁇ (:171? 2020 /007726
- Non-volatile memory is a non-transitional tangible storage medium.
- the correspondence between the level of the voltage signal and the position in the first map may be determined in advance by an experiment or the like. Also, the correspondence relationship between the position on the second map and the supplied power may be determined in advance by experiments or the like.
- the driver circuit 54 compares the calculated electric power with the electric power actually supplied from the electric wirings 6 and 7 to the micro valve 1. Then, if the absolute value of the difference between the former electric power and the latter electric power exceeds the allowable value, the driver circuit 54 determines that the microvalve 1 has failed, and if it does not exceed the allowable value. , It is judged that the micro valve 1 is normal. When the driver circuit 54 determines that the microvalve 1 has failed, the driver circuit 54 informs the failure of the microvalve 1 through the signal line (not shown) to the outside of the expansion valve 5. Notify the control device 5 5 of.
- This control device 55 is, for example, a compressor, a blower in a vehicle air conditioner.
- the air conditioner that controls the operation of the air mix door, the inside/outside air switching door, etc. (3 II may be used.
- this control device 5 5 can be used in vehicles to control vehicle speed, remaining fuel level, battery level, etc. It may be a meter (3 11) that displays.
- the controller 5 5 performs predetermined failure notification control when the driver circuit 5 4 is notified that the microvalve 1 is out of order.
- the control device 5 5 activates the notification device 5 6 that notifies the person in the vehicle.
- the control device 55 may turn on a warning lamp.
- the control device 55 may cause the image display device to display an image indicating that a failure has occurred in the micro valve 1. This allows the vehicle occupant to notice the failure of the microvalve 1.
- control device 55 may record information indicating that a failure has occurred in the microvalve 1 in a storage device in the vehicle.
- This storage device is a non-transitional tangible storage medium. This allows the microphone ⁇ 2020/175 550 27 ⁇ (:171? 2020 /007726
- the failure of the Rovalve 1 can be recorded outside the expansion valve 5.
- the driver circuit 54 determines that the microvalve 1 is out of order, the driver circuit 54 controls energization stop.
- the driver circuit 5 4 Stops the electrical connection from the electrical wiring 6 and 7 to the microvalve 1. In this way, by stopping the power supply to the microvalve 1 when the microvalve 1 fails, it is possible to enhance the safety when the microvalve 1 fails.
- the failure detection unit 50 outputs the voltage signal for determining whether the microvalve 1 is operating normally, so that the driver circuit 5
- this voltage signal is a signal corresponding to the amount of distortion of the arm 1 126. Therefore, it is possible to easily determine whether or not there is a failure in the microvalve 1 based on the relationship between the voltage applied to the microvalve 1 from the electric wiring 6 and 7 and the voltage signal.
- the micro valve 1 it is determined whether or not the micro valve 1 is out of order on the basis of the change in the resistance forming the bridge circuit.
- a plurality of electrodes forming a capacitive component are formed on the arm 1 26. There is a correlation between the amount of strain on the arm 1 2 6 and the capacitance between multiple electrodes. Therefore, the control device
- the microvalve 1 can determine whether or not the microvalve 1 is out of order, based on the change in the electrostatic capacitance between the plurality of electrodes.
- the modifications of the present embodiment to the first embodiment can also be applied to the fourth to tenth embodiments described later.
- a Hall element 55 and a magnet 56 are added to the first embodiment.
- the Hall element 5 5 and the magnet 5 6 are configured to detect the distance between the valve body 5 2 and the valve seat 5 1 ′′, that is, the lift amount of the valve body 5 2. ⁇ 2020/175 550 28 ⁇ (:171? 2020 /007726
- the hall element 55 is fixed near the valve seat 5 1 "in the body 5 1.
- the hall element 5 5 is connected to the valve chamber 5 1 9 and the low pressure refrigerant passage 5 1 It is arranged so as to surround the flow path connecting the and.
- the Hall element 55 is electrically connected to the driver circuit 5 4.
- the magnet 5 6 is fixed to the tip of the valve body 5 2 on the side of the valve seat 5 1 ′′.
- the magnet 5 6 may be a permanent magnet or an electromagnet that is energized when the driver circuit 5 4 is operating.
- the driver circuit 54 uses the calculated lift amount based on a predetermined correspondence map to determine the electrical wiring required to realize the lift amount in a normal state. Calculate the power supplied from 6 and 7 to the microvalve 1. The calculated supply power is called required supply power.
- the correspondence map is recorded in the non-volatile memory of the driver circuit 54.
- Non-volatile memory is a non-transitional tangible storage medium. The correspondence relationship between the lift amount and the supplied power on the correspondence map may be determined in advance by experiments or the like.
- the driver circuit 54 compares the calculated required power supply with the power actually supplied from the electrical wiring lines 6 and 7 to the microvalve 1. Then, if the absolute value of the difference between the former power and the latter power exceeds the allowable value, the driver circuit 54 determines that the expansion valve 5 has failed, and if it does not exceed the allowable value, Determine that expansion valve 5 is normal. And the driver circuit 5 4 ⁇ 2020/175 550 29 (:171? 2020/007726
- signal lines are connected from the driver circuit 5 4 to the control device 55 so that the driver circuit 5 4 can notify the control device 55.
- This control device 55 may be, for example, an air conditioner (3 II that controls the operation of the compressor, the blower, the air mix door, the inside/outside air switching door, etc. in the vehicle air conditioner.
- This control device 5 5 may be a meter (3 11) that displays vehicle speed, remaining fuel amount, remaining battery amount, etc. in the vehicle.
- the control device 5 5 operates the notification device 5 6 that notifies the person in the vehicle.
- the control device 55 may turn on a warning lamp.
- the control device 55 may cause the image display device to display an image indicating that the expansion valve 5 has failed. This allows the vehicle occupant to notice the failure of the expansion valve 5.
- control device 55 may record information indicating that a failure has occurred in the expansion valve 5 in a storage device inside the vehicle.
- the storage device is a non-transitional tangible storage medium. As a result, the failure of the expansion valve 5 can be recorded outside the expansion valve 5.
- the driver circuit 54 determines that the expansion valve 5 is out of order, the driver circuit 54 controls energization stop.
- the driver circuit 5 4 ⁇ 1 stops energization of the expansion valve 5 from the electric wiring lines 6 and 7. In this way, by stopping the power supply to the microvalve 1 when the microvalve 1 fails, it is possible to enhance the safety when the microvalve 1 fails.
- the Hall element 55 which is the gap sensor, outputs the sensor signal for determining whether or not the microvalve 1 is operating normally. It is possible to easily determine whether or not the microvalve 1 is out of order.
- the modification of the present embodiment to the first embodiment will be described later. ⁇ 2020/175 550 30 units (: 171-1? 2020 /007726
- the refrigeration cycle 1 of the present embodiment differs from the refrigeration cycle 1 of the first embodiment only in the configuration of the expansion valve 5.
- the configurations of the compressor 2, the condenser 3, and the receiver 4 are the same as in the first embodiment.
- the expansion valve 5 of the present embodiment differs from the expansion valve 5 of the first embodiment in the position and configuration of the valve module ⁇ , the configuration of the valve chamber 519, and the like.
- the different parts of the expansion valve 5 from the first embodiment will be mainly described.
- the expansion valve 5 includes a body 51, a valve body 52, and a coil spring 5 as shown in FIG.
- the use and material of the body 51 are the same as in the first embodiment.
- the configurations, applications and connection forms with the outside of the valve chamber 519 and the throttle passage 51 are the same as those in the first embodiment.
- a back pressure chamber having a pressure different from that on the throttle passage 5 1 II side of the valve chamber 5 19 is not provided.
- the direction in which the post-evaporation refrigerant passage 51 and the valve body 52 are arranged is referred to as the vertical direction
- the direction in which the post-evaporation refrigerant passage 51 is extended is referred to as the width direction.
- the direction orthogonal to the width direction is called the thickness direction.
- the up-down direction corresponds to the vertical direction
- the left-right direction corresponds to the width direction
- the direction perpendicular to the paper surface corresponds to the thickness direction.
- the external shape of the expansion valve 5 is long in the order of length in the vertical direction, length in the width direction, and length in the thickness direction. The same applies to the first to third embodiments.
- the autonomous unit 54 is a casing similar to that of the first embodiment. It has a circuit board 54, a composite sensor 54, and a driver circuit 54.
- the coil panel 5 3 is similar to the first embodiment in that the throttle passage 5 1 is provided with respect to the valve body 52.
- valve body 52 is located on the opposite side of the post-evaporation refrigerant passage 51 from the valve body 52.
- the end of the coil panel 5 3 on the side of the valve body 52 contacts the valve body 52 and presses the valve body 52, and the end on the side opposite to the valve body 52 contacts the load adjusting section 67.
- the load adjusting part 67 is pressed.
- the load adjusting unit 67 is a lid member that closes the valve chamber 5 19 and partitions the valve chamber 5 19 from the space outside the body 5 1. Further, a seal ring 68 is arranged between the load adjusting portion 67 and the body 51. This seal ring 68 seals the space between the valve chamber 5 19 and the outer space of the body 5 1 in a liquid-tight manner.
- Threads and threads are formed on the outer periphery surrounding the central axis of the load adjusting section 67, and threads and grooves are also formed in the portion of the body 5 1 where the load adjusting section 67 is fitted. ing. As a result, the load adjusting portion 67 becomes a male screw, the body 51 becomes a female screw, and the load adjusting portion 67 is screwed into the body 51.
- the central axis of the load adjusting section 67 extends in the vertical direction (that is, the moving direction of the valve body 52) in FIG.
- Operation receiving section 6 7 3 On the surface of the load adjusting portion 6 7 on the side opposite to the valve chamber 5 19 is formed an operation receiving portion 6 7 3 exposed to the air outside the body 5 1.
- Operation receiving section 6 7 3, as shown in FIG. 2 1, has a shape which surrounds the hole of Hashira Rokkaku shape.
- the operation receiving unit 67 3 can receive an operation of an operator or the like for adjusting the elastic force of the coil spring 5 3 from the outside of the body 51.
- the operation is an operation of inserting a jig such as a hexagon wrench into the hexagonal hole and rotating it about the central axis of the load adjusting unit 67.
- a jig such as a hexagon wrench
- the load adjusting unit 67 moves in the direction along the central axis while rotating about the central axis.
- the elastic force of the coil spring 53 is adjusted.
- the expansion valve 5 has a communication hole 57 and a housing hole 58, which are not provided in the first embodiment.
- One end of the communication hole 57 communicates with the refrigerant passage 51 after evaporation, extends in the vertical direction, and the other end communicates with the high-pressure refrigerant passage 510.
- the portion on the high-pressure refrigerant passage 510 side is the flow passage cross section with respect to the portion on the refrigerant passage 51 side after evaporation. ⁇ 2020/175 550 32 units (:171? 2020 /007726
- the product is small.
- the _ end communicates with the refrigerant passage 5 1 after evaporation, extends in the vertical direction, and the other end communicates with the low-pressure refrigerant passage 5 11 ⁇ .
- the expansion valve 5 has a coil panel 64 and a pressure transmitting portion 65.
- the coil spring 64 is an elastic member entirely accommodated in the accommodation hole 58, and is movable in the accommodation hole 58 in the vertical direction.
- the coil panel 64 urges the pressure transmission portion 65 toward the valve body 52.
- a portion of the accommodation hole 58 where the coil spring 64 is arranged is a pressure chamber 583 which generates a control pressure for moving the valve body 52.
- a part of the pressure transmitting portion 65 on the side of the coil panel 64 is housed in the housing hole 58 and contacts the coil panel 64.
- the pressure transmitting portion 65 extends from the portion in contact with the coil panel 64 into the low pressure refrigerant passage 5 1 through the communication portion of the accommodation hole 58 and the low pressure refrigerant passage 5 1 ! ⁇ . Further, the pressure transmitting portion 65 extends through the low pressure refrigerant passage 5 1 to the inside of the valve chamber 5 19 from the communicating portion between the low pressure refrigerant passage 5 1 and the valve chamber 5 19. Further, the pressure transmission portion 65 abuts on the valve chamber 5 19 on the side opposite to the coil body 5 3 of the valve body 5 2.
- the pressure transmitting portion 65 is vertically movable within the accommodation hole 58.
- the pressure transmitting portion 65 receives the control pressure generated in the pressure chamber 583 and the elastic force of the coil panel 64, and receives the force (that is, the force corresponding to the control pressure and the elastic force). The resultant force) is transmitted to the valve body 52. Therefore, the valve body 5 2 adjusts the control pressure of the pressure chamber 5 8 3 and the elastic force of the coil spring 6 4 and the elastic force of the coil spring 5 3 to balance the control pressure of the pressure chamber 5 8 3 according to the control pressure of the valve chamber 5 8 3. 1 Change the position within 9. Then, the opening degree of the throttle passage 5 11 1 ⁇ changes according to the change of the position of the valve body 52.
- a seal ring 66 that contacts the outer periphery of the pressure transmitting portion 65 and the inner wall of the accommodation hole 58 is fixed to the outer periphery of the pressure transmitting portion 65.
- the seal ring 6 6 seals the space between the pressure chamber 5 8 3 and the low pressure refrigerant passage 5 1 ! ⁇ on the outer periphery of the pressure transmitting portion 65. ⁇ 2020/175 550 33 ⁇ (:171? 2020 /007726
- the refrigerant in the pressure chamber 583 is supplied to the low-pressure refrigerant passage 5
- a low pressure communication channel 58 which leads to 1 1 ⁇ is formed.
- This low-pressure communication channel 58 is opened at one end to the pressure chamber 583 and the other end is opened to the low-pressure refrigerant channel 511 ⁇ , so that the low-pressure communication channel 58 can be discharged from the low-pressure communication channel 58. Communicate up to 1 ⁇ .
- a narrowed portion 5800 is formed between the pressure chamber 583 and the low-pressure refrigerant passage 511 ⁇ in the low-pressure communication channel 5813.
- the narrowed portion 580 has a shape in which the flow passage cross-sectional area decreases along the low pressure communication flow passage 58. That is, the narrowed portion 580 has a smaller flow passage cross-sectional area than the flow passages at both ends thereof.
- the valve module ⁇ of this embodiment is arranged between the circuit board 54 and the valve body 52, and has a micro valve 1, a valve casing 2, and three ⁇ rings 6 2 3, 6 2 6 2 ⁇ . It has two electrical distribution lines 6, 7, and a conversion plate 8.
- the microvalve 1 of the present embodiment includes a first refrigerant hole 16 and a second refrigerant hole 1
- the third refrigerant hole 18 differs from the first embodiment in that the shape of the third refrigerant hole 18 is not a circle but a rectangle.
- the microvalve 1 according to the present embodiment differs from the first embodiment in the position where the first refrigerant hole 16 is formed in the second outer layer 13. Further, the microvalve 1 of the present embodiment is different from the first embodiment in the shapes of the beam 1 27 and the movable portion 1 28. The other structure of the microvalve 1 is the same as that of the first embodiment.
- the beam 1 2 7 and the movable portion 1 2 8 are different from those of the first embodiment in FIGS.
- FIG. 24 it has a frame shape that surrounds the through hole 1120 that penetrates the front and back of the intermediate layer 12 together with the movable part 128.
- the first refrigerant hole 16 includes a portion of the through hole 1 20 surrounded by the beam 1 27, the first outer layer 1 1, the middle layer 1 2 and the second layer 2.
- the outer layers 1 and 3 overlap in the stacking direction.
- the first refrigerant hole 16 is the movable part 1 28 and the arm 1 2 6 ⁇ 2020/175 550 34 ⁇ (:171? 2020 /007726
- the mode of operation of the microvalve 1 is the same as that of the first embodiment. Whether the moving part 1 28 is in the non-energized position, the maximum energized position, or in any intermediate position, the first refrigerant hole 1 6 and the through hole 1 20 This is because the outer layer 1 1, the middle layer 1 2 and the second outer layer 1 3 overlap in the stacking direction.
- the first refrigerant hole 16 communicates with the through hole 1 20 of the refrigerant chamber 19 regardless of the position of the movable portion 1 28.
- the manner of communication and interruption of the second refrigerant hole 17 and the third refrigerant hole 18 is the same as that of the first embodiment.
- the electrical wirings 6 and 7 are connected to the first application point 1 2 9 and the second application point 1 3 0 of the micro valve 1 at one end, respectively, and the through holes 1 4 and 1 5 At the other end, it is connected to the pattern printed on the circuit board 54.
- the driver circuit 5 4 mounted on the circuit board 54 is connected to the pattern. As a result, electric power can be supplied from the driver circuit 54 to the microvalve 1 through the electric wiring 6 and 7. Since there is a gap between the microvalve 1 and the circuit board 54 facing each other, it is easy to arrange the electrical wiring 6 and 7.
- the conversion plate 8 is arranged between the microvalve 1 and the valve casing 2 as in the first embodiment, and the flow passages 8 1, 8 2 and 8 penetrating the front and back of the microvalve 1 and the valve casing 2 are provided. 3 is formed. These flow paths 8 1 and 8 2 absorb the difference between the positional relationship between the refrigerant holes 16 and 17 and the positional relationship between the communication holes 1 and 2.
- One end of the flow path 8 1 communicates with the first refrigerant hole 16 and the other end communicates with a first communication hole 1 described later. Therefore, the first refrigerant hole 16 communicates with the first communication hole 1 through the flow path 8 1.
- One end of the flow path 8 2 communicates with the second refrigerant hole 17 and the other end communicates with a second communication hole 2 described later. Therefore, the second refrigerant hole 17 communicates with the second communication hole 2 via the flow path 82.
- One end of the flow path 8 3 communicates with the third refrigerant hole 18 but, as shown in FIG. ⁇ 2020/175 550 35 ⁇ (: 171-1? 2020/007726
- the valve casing 2 is a resin that accommodates the microvalve 1 and the conversion plate 8 and absorbs the difference in the linear expansion coefficient between the microvalve 1 and the body 5 1 as in the first embodiment. Made of casing. Further, the valve casing 2 has a base portion 20 that surrounds the microvalve 1, a pillar-shaped first protrusion 2 1 and a second protrusion 2 2 that protrude from the microvalve 1.
- the first protruding portion 21 corresponds to the control pressure pipe, and the second protruding portion 22 corresponds to the low pressure pipe.
- the base portion 20, the first protruding portion 21 and the second protruding portion 22 may or may not be integrally formed.
- the base portion 20 is arranged between the casing 543 and the body 51 and is fixed by the fixing portion 63 so as to surround the opening 51 formed in the body 51.
- the opening 5 11 is formed in the body 5 1 and penetrates from the space surrounded by the casing 5 43 to the refrigerant passage 5 1 after evaporation.
- the first protruding portion 21 is connected to the base portion 20 at one end, contacts the conversion plate 8 and penetrates through the opening 5 1 I and the post-evaporation refrigerant passage 51. It extends and fits into the receiving hole 58 at the other end. In this way, the first protruding portion 21 penetrates the evaporated refrigerant passage 51 from the side of the micro valve 1 to the side of the pressure chamber 58 3.
- the second protruding portion 22 is connected to the base portion 20 at one end and is in contact with the conversion plate 8 and penetrates the opening 5 1 I and the post-evaporation refrigerant passage 51. It extends and fits into the communication hole 57 at the other end. In this way, the second protruding portion 22 penetrates the evaporated refrigerant passage 51 from the side of the micro valve 1 to the side of the pressure chamber 58 3.
- the extending direction of the first protruding portion 21 and the second protruding portion 22 intersects both the width direction and the thickness direction. More specifically, the extending direction of the first protruding portion 21 and the second protruding portion 22 is the vertical direction.
- the first protruding portion 21 and the second protruding portion 22 are aligned in the width direction (that is, the direction in which the refrigerant flows inside the evaporated refrigerant passage 5 1) in the evaporated refrigerant passage 5 1 dry. ⁇ 2020/175 550 36 ⁇ (:171? 2020 /007726
- the first protrusion 2 1 and the second protrusion 2 2 are integrally connected to each other inside the opening 5 1 1.
- a ring 620 is arranged on the outer circumference of the first protrusion 21 and the second protrusion 22 inside the opening 511. ⁇ The ring 6 2 ⁇ comes into contact with both the outer periphery of the first protrusion 2 1 and the second protrusion 2 2 and the inner wall of the opening 5 1 1; After evaporation, seal between the refrigerant passage 51 and the refrigerant passage 51.
- the O-ring 6 2 3 is arranged on the outer periphery of the first protruding portion 21 in the accommodation hole 58. ⁇ The ring 6 2 3 comes into contact with both the outer periphery of the first protruding portion 21 1 and the inner wall of the accommodation hole 58, so that the space between the refrigerant passage 5 1 after evaporation and the pressure chamber 5 8 3 is closed.
- a ring 62 is arranged around the outer periphery of the second protrusion 22 in the communication hole 57.
- the ring 62 contacts the outer circumference of the second protruding part 22 and the inner wall of the communication hole 57, so that the space between the post-evaporation refrigerant passage 51 and the high-pressure refrigerant passage 51 is sealed.
- a first communication hole V1 is formed inside the first protrusion 21.
- the first communication hole V 1 corresponds to the control pressure introduction hole.
- the first communication hole V 1 communicates with the first refrigerant hole 16 on the microvalve 1 side of the post-evaporation refrigerant passage 51, and the pressure chamber 5 8 3 On the side, it communicates with the pressure chamber 58 3.
- the first communicating hole V 1 is formed in the first protruding portion 21 that penetrates the post-evaporation refrigerant passage 51, thereby suppressing the body 5 1 in the thickness direction, It can prevent interference of the refrigerant flowing through the pressure chamber 5 8 3 with the refrigerant to be introduced into the evaporation after the refrigerant passage 5 1 NOTE.
- a second communicating hole 2 is formed inside the second projecting portion 22.
- the second communication hole 2 corresponds to the high pressure introduction hole.
- the second communication hole 2 communicates with the second refrigerant hole 17 on the microvalve 1 side of the post-evaporation refrigerant passage 5 1 side, and the high-pressure refrigerant passage 5 1 0 side of the post-evaporation refrigerant passage 5 1 In the high pressure refrigerant passage 5 10 through the communication hole 5 7.
- the second communication hole 2 is formed in the second protruding portion 22 which penetrates the refrigerant passage 51 after evaporation.
- the coil panel 5 3, and the load adjusting part 67 are arranged in this order in a line in the vertical direction.
- the microvalve 1, the post-evaporation refrigerant passage 51, the pressure chamber 583, the low-pressure cooling medium passage 5 11 ⁇ , and the valve chamber 5 19 are also arranged in this order in the vertical direction.
- the operation of the refrigeration cycle 1 having such a configuration will be described focusing on the points different from the first embodiment.
- the third refrigerant hole 18 does not make the through hole 120 communicate with another refrigerant flow path, even if the third refrigerant hole 18 is opened or not opened.
- the first refrigerant hole 16 is always open regardless of the position of the movable part 1 28, the through hole 1 2 0 of the micro valve 1 is accommodated via the first communication hole V 1. Always in communication with hole 58.
- the pressure of the refrigerant between the receiver 4 and the expansion valve 5 and the pressure of the refrigerant between the expansion valve 5 and the evaporator 6 are equal to each other. Therefore, the pressure of the refrigerant in the high-pressure refrigerant passage 510 and the pressure of the cooling medium in the low-pressure refrigerant passage 51 are equal to each other.
- the low pressure refrigerant passage 5 1 is connected via the low pressure communication passage 5 8 Since the storage hole 58 and the storage hole 58 communicate with each other for a long time, the pressure in the storage hole 58 becomes the same as the pressure in the low-pressure refrigerant passage 51. Further, the pressure in the valve chamber 5 19 is the same as the pressure in the low pressure refrigerant passage 5 1. Therefore, due to the balance between the elastic force of the coil spring 5 3 and the elastic force of the coil spring 64, the valve body 52 contacts the valve seat 5 1 ⁇ , and the constricted passage 5 1 is formed, as shown in Fig. 26. To be closed. ⁇ 2020/175 550 38
- the composite sensor 540 detects the pressure and temperature of the refrigerant passing through the evaporated refrigerant passage 51. That is, the temperature sensing part of the composite sensor 540 outputs a pressure signal and a temperature signal corresponding to the pressure and temperature of the refrigerant passing through the refrigerant passage 51 after evaporation.
- the driver circuit 54 acquires the pressure signal and the temperature signal, and determines the power to be supplied to the electric wirings 6 and 7 according to the acquired pressure signal and temperature signal.
- the driver circuit 54 is described as performing the electric power supplied to the electric wirings 6 and 7 under the control of ⁇ /1 ⁇ /1 with a constant maximum voltage. Therefore, the driver circuit 54 applies to the electric wirings 6 and 7 so that the superheat degree of the low-pressure refrigerant flowing out from the evaporator 6 becomes a predetermined constant value according to the obtained pressure signal and temperature signal. Determine the voltage duty ratio.
- the driver circuit 54 increases the duty ratio as the pressure indicated by the pressure signal is constant and the temperature indicated by the temperature signal increases, that is, as the degree of superheat increases. As a result, the lift amount of the valve body 52 increases and the heating degree decreases. Further, the duty ratio is reduced as the temperature indicated by the temperature signal is constant and the pressure indicated by the pressure signal increases, that is, as the degree of superheat decreases. As a result, the lift amount of the valve body 52 is reduced and the degree of superheat is increased.
- the driver circuit 54 applies a voltage to the microvalve 1 through the electric wiring 6 and 7 at the determined duty ratio. As a result, the superheat degree of the low-pressure refrigerant flowing out of the evaporator 6 is kept constant.
- the high-pressure refrigerant in the pressure refrigerant passage 510 is introduced into the microvalve 1 through the communication hole 57, the second communication hole V 2, the flow path 82, and the second refrigerant hole 17. Then, the high-pressure refrigerant is applied from the first refrigerant hole 16 of the microvalve 1 to the pressure chamber 5 8 3 via the flow path 8 1 and the first communication hole V 1.
- the pressure in the pressure chamber 583 becomes high, and the force transmitted to the valve body 52 via the pressure transmitting portion 65 is maximized.
- the opening degree and the lift amount of the throttle passage 51 II become maximum.
- the pressure chamber 583 and the low-pressure refrigerant passage 51 communicate with each other through the low-pressure communication passage 58, but since the low-pressure communication passage 58 is formed with the throttle portion 580. , The pressure difference between the pressure chamber 5 83 and the low-pressure refrigerant passage 5 1 is maintained.
- the second communication hole V 2 and the first communication hole V 1 communicate with each other through the microvalve 1.
- the opening degree of the second refrigerant hole 17 is smaller than when the duty ratio is 100%, and increases as the duty ratio increases. Therefore, the pressure in the through hole 120 of the micro valve 1 becomes lower as the duty ratio becomes smaller due to the pressure reducing effect of the first refrigerant hole 16.
- the refrigerant pressure output to the pressure chamber 58 3 via 1 becomes lower as the duty ratio becomes smaller.
- the force transmitted to the valve body 52 via the pressure transmission portion 65 becomes a value smaller than the maximum and larger than the minimum.
- the opening degree and lift amount of the throttle passage 51 II become smaller as the duty ratio becomes smaller within a range larger than the minimum and smaller than the maximum.
- the second refrigerant hole 17 is blocked. Then, the flow of the refrigerant from the high-pressure refrigerant passage 510 to the through hole 120 in the microvalve 1 is cut off. Then, the refrigerant in the pressure chamber 5 8 3 gradually passes through the low pressure communication passage 5 8 and the low pressure refrigerant passage 5 1 And the pressure of the refrigerant in the pressure chamber 583 decreases. And finally, the pressure of the cooling medium in the pressure chamber 5 83 becomes the same as the pressure in the low pressure refrigerant passage 5 1 ! ⁇ . Therefore, the pressure transmission ⁇ 2020/175 550 40 ⁇ (:171? 2020 /007726
- the lift amount and the opening degree of the throttle passage 5 1 II are reduced by gradually reducing the force transmitted from the portion 65 to the valve body 52, and finally become zero as shown in Fig. 26.
- the low-pressure communication flow channel 58 guides the cooling medium flowing out from the microvalve 1 to the high-pressure refrigerant passage 5100.
- the low-pressure communication channel 5 8 The refrigerant guided to the above flows into the evaporator 6. Therefore, as compared with the case where the refrigerant guided to the low pressure side from the first refrigerant hole 16 does not flow into the evaporator 6, the refrigerant that does not contribute to heat exchange can be reduced. As a result, the possibility of useless refrigerant is reduced, and the efficiency of refrigeration cycle 1 is improved.
- the first refrigerant hole 16 outputs a control pressure higher than the low pressure of the low-pressure refrigerant passage 5 1 to the pressure chamber 5 8 3, and the low-pressure communication channel 5 8 is the first refrigerant hole.
- the low-pressure refrigerant passage 5 1 Lead to.
- the low-pressure communication channel 5813 is provided with a narrowed section 580 whose flow channel cross-sectional area decreases along the low-pressure communication channel 58.
- the low-pressure communication channel 58 is configured so as to guide the refrigerant flowing out from the first refrigerant hole 16 to the low-pressure refrigerant passage 51, so that the third valve of the microvalve 1 is It is not necessary to connect the refrigerant hole 18 to the low pressure communication passage. Further, in such a configuration, since the throttle portion 580 is formed in the low pressure communication channel 58, a pressure difference can be generated before and after the throttle portion 580. ⁇ 2020/175 550 41
- the pressure transmitting portion 65 extends from the pressure chamber 583 through the low pressure refrigerant passage 51 to the valve body 52, and the low pressure communication flow passage 58 is formed inside the pressure transmitting portion 65. From the pressure chamber 5 8 3 to the low-pressure refrigerant passage 5 1 Communicate with. In this way, the pressure transmitting portion 65 receives the control pressure of the pressure chamber 583 and the low pressure refrigerant passage 51 By forming a low-pressure communication channel 5 8 that communicates from the pressure chamber 5 8 3 to the low-pressure refrigerant passage 5 1 by utilizing the above, it is not necessary to provide a member only for the low-pressure communication channel 5 8. ..
- the composite sensor 5400, the micro valve 1 and the driver circuit 5 4 are arranged on the opposite side of the valve body 5 2 with the evaporated refrigerant passage 5 1 as a reference. This makes it easier to arrange electrical wiring between the sensor, control valve parts and driver circuit.
- the micro valve 1, the post-evaporation refrigerant passage 51, and the pressure chamber 583 are arranged in this order in a line in the vertical direction.
- the first protruding portion 21 which is the control pressure pipe penetrates the evaporated refrigerant passage 51 from the side of the microvalve 1 to the side of the pressure chamber 583.
- the first protruding portion 21 communicates with the first refrigerant hole 16 on the micro valve side 1 side of the post-evaporation refrigerant passage 5 1 side, and has a pressure chamber higher than that of the post-evaporation refrigerant passage 5 1 h.
- a first communication hole V 1 that communicates with the pressure chamber 5 8 3 is formed on the 5 8 3 side.
- the control pressure can be exerted from the microvalve 1 through the first communication hole 1 formed in 1. Therefore, while maintaining the function of the microvalve 1, it is easy to arrange electrical wiring between the composite sensor 5400, the microvalve 1 and the driver circuit 5 4. Then, the physique of the valve device can be suppressed in the thickness direction of the microvalve 1.
- the refrigeration cycle 1 according to the embodiment is different from the refrigeration cycle 1 of the fourth embodiment in the arrangement form of the 58 low pressure communication passages 58.
- Other configurations are the same as those in the fourth embodiment.
- the low-pressure communication channel 58 of the present embodiment is not formed inside the pressure transmitting section 65, but between the outer peripheral surface of the pressure transmitting section 65 and the inner peripheral surface of the accommodation hole 58. It is arranged in the form of a gap. This low-pressure communication channel 58 is in communication with the pressure chamber 583 at one end and the low-pressure refrigerant passage 5 1 at the other end. Communicate with.
- the seal ring 6 6 can pass refrigerant as shown in Fig. 28.
- a simple slit 6 63 is formed.
- the slit 663 penetrates in the longitudinal direction (that is, the direction orthogonal to the paper surface of Fig. 28).
- the slit 663 is a part of the low pressure communication channel 58, and has a smaller flow passage cross-sectional area than the other portions of the slit 663. Therefore, the slit 663 is connected to the pressure chamber 583 and the low pressure refrigerant passage 51. It functions as a throttling part that generates a pressure difference between the two.
- the operation of the refrigeration cycle 1 in the present embodiment is performed by connecting the low pressure communication channel 58 and the slit 663 of the fourth embodiment to the low pressure communication channel 58 and slit 663 of the present embodiment. Will be replaced with.
- the accommodation hole 58 includes the pressure chamber 583 and the low-pressure refrigerant passage 51
- a low pressure communication channel 58 can be provided in the gap between the outer peripheral surface and the outer peripheral surface. By doing so, it is not necessary to provide a member only for the low pressure communication channel 58. Further, since the seal ring 66 can be used as the throttle portion, it is not necessary to complicate the shapes of the body 51 and the pressure transmitting portion 65 to provide the throttle portion. Further, in the present embodiment, the same effect as in the fourth embodiment can be obtained from the same configuration as in the fourth embodiment.
- the refrigeration cycle 1 is different from the refrigeration cycle 1 of the fourth embodiment in the arrangement of the low-pressure communication channel 58.
- Other configurations are the same as those in the fourth embodiment.
- the low-pressure communication flow path 5 8 of the present embodiment communicates with the low-pressure refrigerant passage 5 1 by bypassing the pressure transmission section 6 5 from the pressure chamber 5 8 3 rather than inside the pressure transmission section 65. So formed on the body 51.
- This low-pressure communication channel 58 is branched from the accommodation hole 58 in the pressure chamber 583, and extends inside the body 51 to the low-pressure refrigerant passage 51.
- the pressure chamber 5 8 3 and the low pressure refrigerant passage 5 1 in the low pressure communication passage 5 8 13 Similar to the fourth embodiment, a narrowed portion 580 having a flow passage cross-sectional area smaller than that of the front and rear is formed between them. With such a throttle section 580, a pressure difference can be generated before and after the throttle section. That is, the pressure chamber 5 8 3 and the low pressure refrigerant passage 5 1 A pressure difference can be created between the two. In the present embodiment, the same effect as the fourth embodiment can be obtained from the same structure as the fourth embodiment.
- the refrigeration cycle 1 according to the present embodiment is different from the refrigeration cycle 1 according to the fourth embodiment in that the configuration of the valve casing 2, the configuration of the conversion plate 8 and the arrangement of the low pressure communication flow path, and the body 5 are used.
- the structure of 1 is different.
- Other configurations are the same as those in the fourth embodiment.
- differences from the fourth embodiment will be mainly described.
- valve casing 2 of the present embodiment has the same base portion as that of the fourth embodiment.
- the base portion 20, the first protruding portion 21, the second protruding portion 22 and the third protruding portion 23 may or may not be integrally formed.
- the third protruding portion 23 is connected to the base portion 20 at one end, contacts the conversion plate 8 and penetrates through the opening 5 1 I and the evaporated refrigerant passage 5 1 It extends and fits into the communication hole 59 at the other end.
- the communication hole 59 is provided in this embodiment. ⁇ 2020/175 550 44 ⁇ (: 171? 2020 /007726
- one end communicates with the refrigerant passage 51 after evaporation, and the other end communicates with the low-pressure refrigerant passage 5 11 ⁇ .
- the third protruding portion 23 penetrates the evaporated refrigerant passage 51 from the microvalve 1 side to the pressure chamber 583 and the low-pressure refrigerant passage 51 side.
- the extending direction of the third protruding portion 23 intersects the width direction and the thickness direction, and more specifically, is the vertical direction.
- the first projecting portion 21 1, the second projecting portion 22 2, and the third projecting portion 23 are arranged in the width direction (that is, the refrigerant in the post-evaporation refrigerant passage 5 1 It is arranged side by side in the direction of flow). Due to this arrangement, the pressure loss of the refrigerant in the refrigerant passage 51 after evaporation is reduced.
- the first protruding portion 21 1, the second protruding portion 22 2, and the third protruding portion 23 are integrally connected to each other inside the opening 5 1 I. Then, the ⁇ ring 6 2 ⁇ similar to that of the fourth embodiment is arranged on the outer circumference of the first protruding portion 21 1, the second protruding portion 2 2, and the third protruding portion 23 inside the opening 5 11. Has been done.
- the O-ring 62 is arranged on the outer circumference of the third protrusion 23 in the communication hole 59. ⁇ The ring 6 2 contacts both the outer circumference of the third protruding part 23 and the inner wall of the communication hole 59, so that the post-evaporation refrigerant passage 51 and the low-pressure refrigerant passage 51 Seal between
- a third communicating hole (3) is formed inside the third projecting portion (23).
- the third communication hole 3 corresponds to the low pressure introduction hole.
- the third communication hole 3 communicates with the third refrigerant hole 18 on the microvalve 1 side of the post-evaporation refrigerant passage 51, and the low-pressure refrigerant passage 5 1 ! ⁇ than the post-evaporation refrigerant passage 5 1! Side through the communication hole 5 9 Communicate with.
- the third communicating hole 3 is formed in the third protruding portion 23 that penetrates the refrigerant passage 51 after evaporation, so that the body size of the body 51 in the thickness direction can be suppressed and It is possible to reduce the possibility that the cooling medium in the refrigerant passage 51 and the refrigerant in the low-pressure refrigerant passage 51 will be mixed.
- the third communication hole 3 corresponds to the low pressure communication flow path.
- the flow path 8 3 of the conversion plate 8 communicates with the third refrigerant hole 18 at one end, and communicates with the third communication hole 3 at the other end. ⁇ 2020/175 550 45 (:171? 2020/007726
- the microvalve 1 of the present embodiment may be the same microvalve 1 as in the fourth embodiment or the same microvalve 1 as in the first embodiment.
- the movable part 1 2 8 of the microvalve 1 receives the displacement amplified by the amplifying part (that is, the arm 1 2 6 and the beam 1 2 7) and the refrigerant chamber 1 1 Moves within 9.
- the openings of the second refrigerant hole 17 and the third refrigerant hole 18 with respect to the through hole V 120 can be adjusted.
- the low pressure communication channel 5 8 is not formed in the pressure transmitting portion 65 of the present embodiment. Therefore, the pressure chamber 583 of the present embodiment does not have the microvalve 1 in the expansion valve 5 so that the high pressure refrigerant passage 5 10 and the low pressure refrigerant passage 5 1 There is no communication with.
- the non-operation of the refrigeration cycle will be described.
- the operation, non-operation, energization, and de-energization of each device of the refrigeration cycle 1 are the same as in the first embodiment. Therefore, in this case, the third communication hole V 3 and the first communication hole V 1 communicate with each other through the micro valve 1, and the second communication hole 2 and the through hole 1 20 of the micro valve 1 The space is cut off.
- the pressure of the refrigerant between the receiver 4 and the expansion valve 5 and the pressure of the refrigerant between the expansion valve 5 and the evaporator 6 are equal to each other. Therefore, the pressure of the refrigerant in the high-pressure refrigerant passage 510 and the pressure of the cooling medium in the low-pressure refrigerant passage 51 are equal to each other. In addition, the pressure in the valve chamber 5 1 9 Same as pressure. Therefore, due to the balance between the elastic force of the coil spring 5 3 and the elastic force of the coil spring 6 4, the valve body 52 comes into contact with the valve seat 5 1 ”and the throttle passage 5 5 ⁇ 2020/175 550 46 ⁇ (: 171-1? 2020/007726
- the compressor 2 and the blower 8 operate.
- the pressure of the cooling medium in the high pressure refrigerant passage 5 Higher than the pressure of the refrigerant at.
- the composite sensor 540 and driver circuit 5 4 also operate. Therefore, electricity is supplied from the driver circuit 54 to the microvalve 1 via the electrical wiring 6 and 7 as needed.
- the driver circuit 54 ensures that the superheat degree of the low-pressure refrigerant flowing out from the evaporator 6 becomes a predetermined constant value according to the acquired pressure signal and temperature signal. , Determine the duty ratio of the voltage applied to electrical wiring 6 and 7.
- the second communication hole V2 and the first communication hole V1 communicate with each other via the microvalve 1, and 3
- the communication between the communication hole 3 and the through hole 1 20 of the micro valve 1 is blocked. Therefore, the high-pressure refrigerant in the high-pressure refrigerant passage 510 is introduced into the microvalve 1 through the communication hole 57, the second communication hole 2, the flow path 82, and the second refrigerant hole 17. To be done.
- the high-pressure refrigerant is applied from the first refrigerant hole 16 of the microvalve 1 to the pressure chamber 5 8 3 via the flow path 8 1 and the first communication hole 1.
- the pressure in the pressure chamber 583 becomes high, and the force transmitted to the valve body 52 via the pressure transmission portion 65 is maximized.
- the opening and lift of the throttle passage 5 1 II are maximized.
- the second communication hole 2 and the first communication hole 1 communicate with each other through the micro valve 1, and the third communication hole 3 and the first communication hole 1 form the micro valve. Communicate via 1 At this time, the control pressure output from the first refrigerant hole 16 of the microvalve 1 to the pressure chamber 5 83 is lower than the high pressure of the high pressure refrigerant passage 5 10 and the low pressure of the low pressure refrigerant passage 5 1. Will be higher than. Then, the smaller the duty ratio, the smaller the opening of the second refrigerant hole 17 becomes. ⁇ 2020/175 550 47 ⁇ (:171? 2020 /007726
- the opening degree of the third refrigerant hole 18 increases. Therefore, the control pressure output from the first refrigerant hole 16 of the microvalve 1 to the pressure chamber 58 3 is the duty ratio due to the pressure reducing action of the second refrigerant hole 17 and the third refrigerant hole 18. Becomes smaller, becomes smaller.
- the force transmitted to the valve body 52 via the pressure transmitting portion 65 becomes a value smaller than the maximum and larger than the minimum.
- the opening degree and the lift amount of the throttle passage 5 1 II become smaller as the duty ratio becomes smaller within a range larger than the minimum and smaller than the maximum.
- the duty ratio is greater than zero and less than 100%, the refrigerant passes from the high-pressure refrigerant passage 510 to the second communication hole 2, the micro valve 1, and the third communication hole 3 in this order, It flows into the low-pressure refrigerant passage 5 1.
- the amount of this flow is much smaller than the amount of flow from the high pressure refrigerant passage 5100 to the low pressure refrigerant passage 51 through the valve chamber 519.
- the third communication hole 3 and the first communication hole 1 communicate with each other via the microvalve 1, and the second communication hole 1
- the connection between V 2 and the through hole 1 2 0 of the micro valve 1 is blocked. Therefore, the low-pressure refrigerant in the low-pressure refrigerant passage 5 1 is introduced into the microvalve 1 through the communication hole 59, the third communication hole 3, the flow path 8 3, and the third refrigerant hole 18. It Then, the low-pressure refrigerant is applied from the first refrigerant hole 16 of the microvalve 1 to the pressure chamber 5 8 3 via the flow path 8 1 and the first communication hole 1. As a result, the pressure in the pressure chamber 583 becomes low, the valve body 52 contacts the valve seat 5 1 ", and the throttle passage 5 1 II is closed.
- the third communication hole 3 corresponding to the pressure communication flow passage communicates with the low pressure refrigerant passage 5 1 ! ⁇ over the post-evaporation refrigerant passage 5 1ch from the third refrigerant hole 18. ..
- an operation for adjusting the elastic force of the coil panel 5 3 can be received from the outside of the body 51, and the valve body 5 2 A load adjusting part 67 is provided on the same side as.
- the micro valve 1 is opposite to the load adjusting part 67, valve body 52, low pressure refrigerant passage 5 1 ! ⁇ with reference to the refrigerant passage 51 after evaporation.
- ⁇ side ⁇ 2020/175 550 48 (:171? 2020/007726
- the third communication hole 3 is communicated with the low-pressure refrigerant passage 5 1 1 ⁇ from the third refrigerant hole 18 through the post-evaporation refrigerant passage 5 1 5 to communicate with the micro valve 1 and load adjustment.
- Refrigerant can be guided from the micro valve 1 to the low-pressure refrigerant passage 5 11 ⁇ , while avoiding interference with the portion 67.
- a third protruding hole (23) penetrating to the side of 51 is formed with a third communicating hole (3) which is a low-pressure communicating channel.
- the refrigeration cycle 1 of this embodiment is different from the seventh embodiment in that the configuration of the valve casing 2, the configuration of the conversion plate 8 and the disposition form of the low pressure communication flow path, and the structure of the body 51 are Different.
- the other configurations are the same as in the seventh embodiment.
- the points different from the fourth embodiment will be mainly described below.
- the valve casing 2 of the present embodiment is different from the valve casing 2 of the seventh embodiment in the position and length of the third protruding portion 23.
- the third protruding portion 23 is arranged side by side in the thickness direction of the expansion valve 5 with respect to the second protruding portion 22.
- the third protruding portion 23 of this embodiment has a shorter length in the vertical direction than the seventh embodiment.
- the length of the third communicating hole 3 formed in the third projecting portion 23 is also shortened in accordance with the shortening of the third projecting portion 23.
- One end of the third communication hole 3 communicates with the flow path 8 3 of the conversion plate 8 and the other end communicates with the bypass flow path 5 8.
- the bypass flow path 58 is shown in Figure 32. ⁇ 2020/175 550 49 ⁇ (:171? 2020 /007726
- Is formed in the body 51 communicates with the third communication hole 3 at one end, extends in the longitudinal direction, then extends in the thickness direction, and communicates with the low-pressure refrigerant passage 5 1 1 ⁇ at the other end. .. Also, the body 5 1, the sealing member 6 2 6 seal is mounted between the bypass passage 5 8 and the body 5 of the external space.
- the flow path composed of the third communication hole 3 and the bypass flow path 58 is equivalent to the low-pressure communication flow path.
- This low-pressure communication flow passage communicates from the flow passage 8 3 to the low-pressure refrigerant passage 5 1 1 ⁇ , bypassing the post-evaporation refrigerant passage 5 1 in the valve casing 2 and the body 5 1. doing. That is, the low-pressure communication hole flow path passes through the position after being displaced in the thickness direction of the body 51 with respect to the post-evaporation refrigerant passage 51, and thus the post-evaporation refrigerant passage 5 1 From the microvalve 1 side to the low-pressure refrigerant passage 5 1 side after the evaporated refrigerant passage 5 1ch.
- Refrigerant hole 17 and 3rd refrigerant hole 18 are connected to the 1st communicating hole 1, 2nd communicating hole 2 and 3rd communicating hole 3 respectively so that the flow passage 8 1 and 8 2 , 8 3 are formed respectively.
- the communication hole 59 is not formed.
- the low-pressure communication flow path is formed outside the post-evaporation refrigerant passage 5 1 in the body 5 1 and the valve casing 2 so that the third refrigerant hole V 1 8 side is formed.
- the inside of the body 51 in the thickness direction is used to evaporate the refrigerant flowing out from the third refrigerant hole 18 into the low-pressure refrigerant passage 5 1 after passing through the refrigerant passage 51. I can guide you. It should be noted that, in this embodiment, the same effect as that of the seventh embodiment can be obtained from the same configuration as that of the seventh embodiment.
- FIGS. 33, 34, and 35 a ninth embodiment will be described with reference to FIGS. 33, 34, and 35.
- the position where the third refrigerant hole 18 communicates with the eighth embodiment is as shown in FIG. After evaporation, it has been changed to the refrigerant passage 51.
- the bypass flow passage 58 of the eighth embodiment is abolished, and the end portion of the third communication hole 3 opposite to the flow passage 8 3 is formed into the post-evaporation refrigerant passage 5 1. It is in communication.
- Low temperature refrigerant passage 5 1 Since the post-evaporation refrigerant passage 51 has almost the same pressure, the operation similar to that of the eighth embodiment is realized also in the present embodiment. It should be noted that, in the present embodiment, the same effect as that of the fourth embodiment can be obtained from the same structure as that of the eighth embodiment.
- the tenth embodiment will be described with reference to FIG.
- the present embodiment is different from the fourth embodiment in the arrangement of the composite sensor 5400.
- the compound sensor 540 is integrally formed with the valve module 0.
- the composite sensor 54 0 is sandwiched between the first protruding portion 2 1 and the second protruding portion 2 2 in the opening 5 11 1: and the wiring not shown is provided. It is connected to the driver circuit 5 4 mounted on the circuit board 5 4 via.
- the composite sensor 540 is attached to both the first protrusion 2 1 and the second protrusion 2 2 by adhesion or the like.
- adhesion or the like As a result, the space surrounded by the casing 5 4 3 between the composite sensor 5 40 and the first protruding portion 21 1 and between the composite sensor 5 40 and the second protruding portion 2 2 After the evaporation, a seal between the refrigerant passage 51 and the evaporation passage is realized.
- the composite sensor 540 and the valve module 0 are assembled into the body 5 1 as a unit. By doing so, it is possible to reduce the time and effort for assembling work and the parts for assembling as compared with the case where the composite sensor 540 and the microvalve 1 are separately assembled in the body 5 1. You can In fact, in the above structure, the member for assembling the composite sensor 540 to the body 51 becomes unnecessary. In addition, the combined sensor 540 ⁇ 2020/175 550 51 (:171? 2020/007726
- the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. Further, in each of the above-described embodiments, the constituent elements of the embodiment are not necessarily essential, except when it is clearly indicated that they are essential, or when they are considered to be obviously essential in principle. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated as being essential, and in principle, it is limited to a specific number.
- the number is not limited to the specific number, except in the case where Further, in the above embodiment, when it is described that the vehicle's external environment information (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished, and the external environment from the server or cloud outside the vehicle is removed. It is also possible to receive information. Alternatively, it is possible to eliminate the sensor, obtain related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information. In particular, when a plurality of values are exemplified for a certain amount, it is possible to adopt a value between the plurality of values unless otherwise specified or when it is obviously impossible in principle. is there.
- the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4 generate heat when energized, and the temperature rises due to the heat generation.
- these members may be composed of a shape memory material whose length changes as the temperature changes.
- the micro valve 1 when the electric current from the electrical wiring 6 and 7 to the micro valve 1 is stopped, the micro valve 1 is connected to the low pressure refrigerant passage 5 1 Communicate with. However, this does not have to be the case.
- the microvalve 1 may be communicated with the high pressure refrigerant passage 5 1 0 when the electricity supply from the electric wiring 6 and 7 to the microvalve 1 is stopped.
- the Hall element 55 is used as the gap sensor, but an eddy current type sensor may be used as the gap sensor.
- the magnet 56 is abolished and the Hall element 55 is replaced with a coil.
- a high frequency current flows through this coil.
- a high-frequency magnetic field is generated around this coil.
- the driver circuit 5401 can calculate the lift amount of the valve body 52 based on the impedance conversion.
- the function of detecting a failure of the expansion valve 5 by the Hall element 55, the magnet 5 6 and the driver circuit 5 4 using the same in the third embodiment may be applied to the second embodiment.
- the driver circuit 54 can detect both the failure of the expansion valve 5 and the failure of the micro valve 1.
- the alarm device 5 6 can notify both the failure of the expansion valve 5 and the failure of the micro valve 1. ⁇ 0 2020/175 550 53 ⁇ (: 17 2020 /007726
- the second refrigerant hole 17 communicates with the high-pressure refrigerant passage 5 10 via the second communication hole 2 and the high-pressure introduction passage 5 1.
- the second refrigerant hole 17 may not communicate with the high-pressure refrigerant passage 510, but may communicate with the high-pressure passage outside the body 51.
- the first passage corresponds not to the high-pressure refrigerant passage 510 but to the external high-pressure passage.
- the external high-pressure flow path may be, for example, a flow path downstream of the refrigerant flow of the receiver 4 and upstream of the refrigerant flow of the expansion valve 5.
- the third refrigerant hole 18 communicates with the low pressure refrigerant passage 5 1 via the third communication hole 3 and the low pressure introduction passage 5 1.
- the third refrigerant hole 18 may not communicate with the low-pressure refrigerant passage 51, but may communicate with the low-pressure passage outside the body 51.
- the second passage corresponds not to the low-pressure refrigerant passage 51 but to the external low-pressure passage.
- the external low-pressure flow path may be, for example, a flow path downstream of the expansion valve 5 in the refrigerant flow and upstream in the evaporator 6 in the refrigerant flow.
- the pressure of the refrigerant output from the refrigerant hole 16 varies.
- the holes that communicate with the through holes 1 20 from the outside of the microvalve 1 are the first refrigerant hole 1 6, the second refrigerant hole 1 7, and the third refrigerant hole 18 3. It was one. However, there may be four or more refrigerant holes that communicate with the through holes 120 from the outside of the microvalve 1.
- each of the fourth and subsequent refrigerant holes may or may not be adjusted by the movement of the movable portion 1228.
- the fourth and subsequent refrigerant holes are the same as the first refrigerant hole 16 and the back pressure chamber 5 1 May be in communication with. Further, the fourth and subsequent refrigerant holes may communicate with the high-pressure high-pressure refrigerant passage 510 similarly to the second refrigerant hole 17. Also, the fourth and subsequent refrigerant holes are the same as the third refrigerant hole 18 and the low-pressure low-pressure refrigerant passage 5 1 May be in communication with. Further, the fourth and subsequent refrigerant holes may be connected to a passage through which a refrigerant having a pressure different from the high pressure and the low pressure flows and which is not the back pressure chamber 5100!.
- the expansion valve 5 is applied to the cooler cycle that performs the air conditioning of the passenger compartment in the refrigeration cycle.
- the expansion valve 5 may be applied to a refrigeration cycle for other purposes.
- it may be applied to a heat pump cycle for vehicles as a flow rate adjusting valve, or may be applied to a battery cooler for vehicles as a flow rate adjusting valve.
- the failure of the expansion valve 5 has a great influence on the traveling distance or the battery. Therefore, it is useful to notify the vehicle-mounted device outside the expansion valve 5 of the failure of the expansion valve 5 or the failure of the micro valve 1.
- an expansion valve is cited as an example of a valve device that adjusts the flow rate with a valve.
- the valve device that adjusts the flow rate by moving the valve using the microvalve 1 is not limited to the expansion valve, and may be another flow rate adjustment valve in the refrigeration cycle. ⁇ 2020/175 550 55 ⁇ (:171? 2020 /007726
- the shape and size of the microvalve 1 are not limited to those shown in the above embodiment.
- the microvalve 1 is capable of controlling a very small flow rate, and has a hydraulic diameter of 1st refrigerant hole 16 and 2nd cooling medium hole 17 which prevent hydraulic dust from clogging the flow path. It suffices if the third refrigerant hole 18 is provided.
- the second communication hole 2 communicates the second refrigerant hole 17 with the high-pressure refrigerant passage 5 10.
- the communication destination of the second refrigerant hole V 17 via the second communication hole 2 is not limited to the high pressure refrigerant passage 5 10 but the low pressure refrigerant passage 5 1 Any flow channel may be used as long as it has a higher pressure than the coolant flowing through it.
- the control pressure is output from the first refrigerant hole 16 to the outside of the micro valve 1, and the second refrigerant hole 17 is provided to the outside of the micro valve 1. It communicates with the high-pressure passage, and the third refrigerant hole 18 is substantially closed.
- the control pressure is output from the first refrigerant hole 16 to the outside of the microvalve 1, and the second refrigerant hole 17 communicates with the high pressure passage outside the microvalve 1.
- the third refrigerant hole 18 communicates with a low-pressure passage outside the microvalve 1.
- control pressure is output from the first refrigerant hole 16 to the outside of the microvalve 1, the second refrigerant hole 17 is substantially closed, and the third refrigerant hole 18 is There may be an example of communicating with a low pressure passage outside the valve 1.
- the high pressure refrigerant passage 5 10 inside the expansion valve 5 is illustrated as an example of the first passage through which the second refrigerant hole 17 communicates.
- the first passage communicating with the second refrigerant hole 17 may be provided outside the expansion valve 5 as long as it has a higher pressure refrigerant than the low pressure refrigerant flowing out from the expansion valve 5.
- First communication hole 1, second communication hole 2, third communication hole in the above embodiment ⁇ 2020/175 550 56 ⁇ (:171? 2020 /007726
- the body 3 is a separate part from the body 51, but may be formed integrally with the body 5 1.
- the physical quantity detected by the composite sensor 540 is the pressure and temperature inside the refrigerant passage 51 after evaporation.
- the physical quantity detected by the composite sensor 540 may be only the pressure inside the refrigerant passage 51 after evaporation or only the temperature inside the refrigerant passage 51 after evaporation.
- the physical quantity detected by the composite sensor 540 may be another physical quantity that is neither the pressure nor the temperature.
- the second communication hole 2 is formed in the second protruding portion 22 that penetrates the inside of the evaporated refrigerant passage 51, so that the evaporated refrigerant passage 51 is dried. From the microvalve 1 side to the pressure chamber 5 8 3 side after evaporation, extending over the refrigerant passage 5 1ch. However, the second communication hole 2 passes through a position displaced in the thickness direction of the expansion valve 5 with respect to the post-evaporation refrigerant passage 51, and the pressure from the micro-valve 1 side of the post-evaporation refrigerant passage 5 1 After evaporating to the chamber 58 3 side, it may extend beyond the refrigerant passage 51.
- the valve device used in the refrigeration cycle includes an inlet, an outlet, and a refrigerant flowing from the inlet to the outlet.
- a pressure chamber that generates a control pressure for moving the control chamber, and a control valve component that changes the pressure acting on the pressure chamber, wherein the control valve component is a refrigerant chamber in which a refrigerant flows, and is connected to the pressure chamber while communicating with the refrigerant chamber.
- a drive unit, an amplification unit that amplifies a displacement due to a change in temperature of the drive unit, and the displacement amplified by the amplification unit is transmitted to move in the refrigerant chamber.
- a movable part that adjusts the opening degree of the second refrigerant hole with respect to the refrigerant chamber, and when the drive part is displaced due to a change in temperature, the drive part is at the bias position and the amplification part is provided.
- the amplifying section biases the movable section at the connection position between the amplifying section and the movable section, and the bias is applied from the hinge.
- the distance from the hinge to the connection position is longer than the distance to the position.
- the pressure chamber is the valve chamber
- the passage communicating with the second cooling medium hole is a first passage through which high-pressure refrigerant flows
- the base portion A third refrigerant hole communicating with the second passage through which a low pressure lower than the high pressure flows and communicating with the refrigerant chamber is formed, and the movable portion receives the displacement increased by the amplifying portion.
- the base is fixed by being sandwiched between the plate-shaped first outer layer, the plate-shaped second outer layer, and the first outer layer and the second outer layer. And a first refrigerant hole, a second refrigerant hole, and a third refrigerant hole are formed in the second outer layer. Due to this, the flow path in the control valve component has a II-turn structure.
- the second outer layer is arranged closer to the valve body than the first outer layer, and the first passage and the second passage are provided in the body. Has been formed. By doing so, it is possible to shorten the flow path through which the refrigerant flows from the control valve component to the body, compared to the case where the first outer layer is arranged closer to the valve body than the second outer layer. .. As a result, the valve device can be downsized.
- the first outer layer is formed with a hole through which an electric wire for changing the temperature of the drive section is passed.
- the flow path of the control valve component has a II-turn structure, and the electric current is applied to the first outer layer on the side opposite to the first refrigerant hole side.
- a hole for passing the air wiring is formed.
- the second outer layer is closer to the valve body than the first outer layer. Therefore, the electric wiring can be placed on the side closer to the atmosphere than the flow path of the coolant on the side of the first coolant. Therefore, the need for a hermetic seal structure for reducing the influence of the refrigerant atmosphere on the electric wiring is reduced.
- the movable portion includes a first position in which the second refrigerant hole is fully closed and the third refrigerant hole is fully opened in the refrigerant chamber, A second position in which the second refrigerant hole is fully opened and the third refrigerant hole is fully closed with respect to the cooling medium chamber; and a second refrigerant hole is fully closed and fully opened with respect to the refrigerant chamber.
- the third refrigerant hole is controlled to an intermediate position where the third refrigerant hole is opened at an intermediate opening between fully closed and fully opened with respect to the refrigerant chamber.
- the valve device is an expansion valve that decompresses and expands the refrigerant on the upstream side of the refrigerant flow in the evaporator in the refrigeration cycle, and includes an autonomous unit fixed to the body.
- the autonomous unit includes a composite sensor that detects the temperature and pressure of the refrigerant that has flowed out of the evaporator, and a driver circuit that controls the temperature of the drive unit according to the temperature and pressure detected by the composite sensor. And,. With this configuration, the valve device can adjust the flow rate autonomously.
- the valve device includes a gap sensor fixed to the body to detect a lift amount of the valve body. By having such a gap sensor, it becomes possible to acquire information for determining whether or not there is a failure in the valve device.
- the control valve component includes a failure detection unit that outputs a signal for determining whether the control valve component is operating normally or has a failure. .. When the control valve component outputs such a signal, it is possible to easily determine whether the control valve component has a failure.
- the signal is responsive to the distortion amount of the amplification unit. ⁇ 2020/175 550 59 ⁇ (:171? 2020 /007726
- the drive section generates heat by being energized, and the failure detection section responds to the control valve part when the control valve part is out of order.
- the signal is output to a device that stops energization. In this way, by stopping energization when the control valve part fails, it is possible to improve safety in the event of a failure.
- the valve device includes a circuit capable of notifying a control device that controls the notification device that notifies a person, and the circuit includes the circuit from the failure detection unit.
- a signal is received, and based on the signal, it is determined whether the control valve component is operating normally or has failed, and based on the determination that it has failed, the control valve component has failed.
- the control device is notified in order to notify the notification device that there is an error. This allows a person to know the failure of the control valve component.
- control valve component is composed of a semiconductor chip. Therefore, the control valve component can be made compact.
- the valve device is an expansion valve for decompressing a refrigerant
- the passage communicating with the second refrigerant hole has a high pressure before being decompressed by the expansion valve.
- the first passage through which the refrigerant flows and the refrigerant condensed by the condenser that condenses the refrigerant in the refrigeration cycle flows into the inlet, and the refrigerant that flows from the inlet into the valve body and the valve.
- the pressure is reduced to a pressure lower than that of the high-pressure refrigerant, and the refrigerant reduced in pressure through the throttle passage passes through the second passage and then flows out from the outlet.
- the outlet is provided with a low-pressure communication channel that communicates with the inlet side of the evaporator that evaporates the refrigerant in the refrigeration cycle and that guides the refrigerant in the refrigerant chamber to the second passage.
- the low-pressure communication channel guides the refrigerant in the refrigerant chamber to the second passage, so that the refrigerant guided to the second passage flows into the evaporator. Therefore, from the refrigerant chamber to the low pressure side ⁇ 2020/175 550 60 ⁇ (:171? 2020 /007726
- the amount of refrigerant that does not contribute to heat exchange can be reduced. As a result, the possibility of wasteful use of the refrigerant is reduced and the efficiency of the refrigeration cycle is improved.
- the first refrigerant hole outputs a control pressure higher than a low pressure of the second passage to the pressure chamber
- the low-pressure communication flow passage includes the first low-pressure communication passage. 1 is formed so as to guide the refrigerant flowing out from the refrigerant hole to the second passage, and the low-pressure communication passage is provided with a throttle portion whose flow passage cross-sectional area decreases along the low-pressure communication passage.
- the control valve component since the low-pressure communication flow path is configured to guide the refrigerant flowing out from the first refrigerant hole to the second passage, the control valve component has both the first refrigerant hole and the second refrigerant hole. However, it is not necessary to provide different refrigerant holes to communicate with the low-pressure communication channel. Further, in such a configuration, since the throttle portion is formed in the low-pressure communication channel, a pressure difference can be generated before and after the throttle portion, so that the first refrigerant hole that outputs the control pressure is controlled. The likelihood of loss of functionality is reduced.
- a movable pressure transmission unit that receives the control pressure generated in the pressure chamber and transmits a force corresponding to the control pressure to the valve body.
- the pressure transmitting portion extends from the pressure chamber to the valve body through the second passage, and the low-pressure communication passage is formed inside the pressure transmitting portion and communicates from the pressure chamber to the second passage. ..
- the low-pressure communication passage is formed. It is not necessary to provide a member only for
- a movable pressure transmission unit that receives the control pressure generated in the pressure chamber and transmits a force corresponding to the control pressure to the valve body.
- An accommodation hole for accommodating the pressure transmission portion is formed in the body, the accommodation hole includes the pressure chamber and communicates with the second passage, and the pressure transmission portion includes the accommodation hole and the second passage.
- the low-pressure communication passage is provided as a gap between the inner peripheral surface of the accommodation hole and the pressure transmitting portion.
- the accommodation hole includes the pressure chamber and communicates with the second passage, and the pressure transmitting portion receives the control pressure of the pressure chamber and passes through the second passage to utilize the inner periphery of the accommodation hole.
- a low-pressure communication channel can be provided in the gap between the surface and the outer peripheral surface of the pressure transmitting portion. By doing so, it is not necessary to provide a member only for the low-pressure communication channel.
- the passage communicating with the second refrigerant hole is a first passage through which a high-pressure refrigerant flows, and the base is provided with the low-pressure communication passage.
- a third refrigerant hole communicating with the second passage through which a low pressure lower than the high pressure flows and communicating with the refrigerant chamber is formed, and the movable portion receives the displacement increased by the amplifying portion and transmits the displacement.
- the inflow port is a first inflow port
- the outflow port is a first outflow port
- the refrigeration cycle compresses the refrigerant evaporated in the evaporator.
- a post-evaporation refrigerant passage which is a passage extending from the second outlet to the second outlet, are formed, and the valve device includes a movable pressure transmitting portion that transmits a force corresponding to the pressure of the refrigerant in the pressure chamber to the valve body.
- an adjusting portion that adjusts the elastic force of the elastic body, the elastic body urging the valve body with an elastic force from the side opposite to the pressure transmitting portion, and
- the pressure chamber, the pressure transmitting portion, the valve body, the elastic body, and the adjusting portion are arranged side by side in this order, and the second passage is on the valve body side with respect to the post-evaporation refrigerant passage.
- the operation receiving portion is disposed in the adjusting portion, the operation receiving portion being exposed to the outside of the body on the side opposite to the valve body, and the operation receiving portion is provided from the outside of the body.
- An operation for adjusting the elastic force of the elastic body can be accepted, and the low-pressure communication passage communicates with the second passage through the third refrigerant hole, beyond the post-evaporation refrigerant passage.
- the control valve component is located on the opposite side of the adjustment section, valve body, and second passage with the refrigerant passage as the reference.
- the low-pressure communication passage should be connected to the second passage after passing through the refrigerant passage after evaporation from the third cooling medium hole to avoid interference between the control valve parts and the adjustment part, and The refrigerant can be guided from the component to the second passage.
- a low-pressure pipe that penetrates the evaporated refrigerant passage from the side of the control valve component to the side of the second passage is provided, and the low-pressure communication passage includes the low-pressure communication passage. It is formed inside the pipe.
- the low-pressure communication channel is formed outside the evaporated refrigerant passage in the body, so that the evaporated refrigerant flows from the third refrigerant hole. It bypasses the passage and communicates with the second passage.
- the inside of the body is utilized in the direction that intersects the direction in which the refrigerant passage after evaporation, the pressure chamber, the pressure transmitting portion, and the valve body intersect, and the extension direction of the refrigerant passage after evaporation.
- the refrigerant flowing out of the third refrigerant hole can be introduced into the second passage after passing through the refrigerant passage after being evaporated.
- the refrigeration cycle includes a compressor that compresses the refrigerant evaporated by an evaporator that evaporates the refrigerant in the refrigeration cycle, and the valve device depressurizes the refrigerant.
- An expansion valve the inflow port is a first inflow port
- the outflow port is a first outflow port
- the refrigerant flowing from the first inlet is reduced in pressure to a pressure lower than that of the high-pressure refrigerant by passing through the throttle passage formed between the valve body and the valve seat, and the refrigerant reduced in pressure through the throttle passage. Passes through the second passage and then flows out from the first outlet, the first outlet communicates with the inlet side of the evaporator, and the body receives the low-pressure refrigerant flowing from the evaporator.
- a second inflow port for inflowing, a second outflow port for outflowing the refrigerant to the suction side of the compressor, and a post-evaporation refrigerant passage that is a passage from the second inflow port to the second outflow port are formed.
- the valve device includes a sensor that outputs a signal corresponding to a physical quantity related to the refrigerant passing through the refrigerant passage after evaporation, and a driver circuit that controls the operation of the control valve component based on the signal output by the sensor.
- the sensor, the control valve component, and the driver circuit are arranged on the opposite side of the valve body with respect to the post-evaporation refrigerant passage. This makes it easy to arrange electrical wiring between the sensor, control valve parts and driver circuit.
- the control valve component, the post-evaporation refrigerant passage, and the pressure chamber are arranged side by side in this order, and the valve device includes: A control pressure pipe penetrating the refrigerant passage from the control valve component side to the pressure chamber side; and a movable pressure transmission unit that transmits a force corresponding to the pressure of the refrigerant in the pressure chamber to the valve body.
- the control pressure pipe communicates with the first refrigerant hole on the control valve component side of the post-evaporation refrigerant passage, and communicates with the pressure chamber on the pressure chamber side of the post-evaporation refrigerant passage.
- a control pressure introducing hole is formed.
- control pressure can be exerted from the control valve component via the control pressure introducing hole formed in the control pressure pipe penetrating the refrigerant passage after evaporation. Therefore, the electrical wiring between the sensor, the control valve component and the driver circuit can be easily handled while maintaining the function of the control valve component.
- the control valve parts, the post-evaporation refrigerant passage, and the pressure chamber intersect in the direction in which they are aligned in the extending direction of the post-evaporation refrigerant passage. ⁇ 2020/175 550 64 (:171? 2020/007726
- the senor and the control valve component are integrally assembled to the body. By doing so, compared to the case where the sensor and the control valve part are separately mounted on the body, the time and effort for the assembling work and the parts for the assembling can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Temperature-Responsive Valves (AREA)
- Valve Housings (AREA)
Abstract
弁装置は、ボディ(51)と、弁体(52)と、弁体(52)を移動させるための制御圧を発生する圧力室(51g、58a)に作用する圧力を変化させる制御弁部品(Y1)と、を備える。制御弁部品(Y1)は、冷媒室(Y19)、冷媒室(Y19)に連通すると共に前記圧力室(51g、58a)に連通する第1冷媒孔(Y16)、冷媒室(Y19)に連通すると共に当該制御弁部品(Y1)の外の冷媒の通路(51c、51k)に連通する第2冷媒孔(Y17、Y18)が形成される基部(Y11、Y121、Y13)と、自らの温度が変化すると変位する駆動部(Y123、Y124、Y125)と、駆動部(Y123、Y124、Y125)の温度の変化による変位を増幅する増幅部(Y126、Y127)と、増幅部(Y126、Y127)によって増幅された変位が伝達されて冷媒室(Y19)内で動くことで、冷媒室(Y19)に対する第2冷媒孔(Y17、Y18)の開度を調整する可動部(Y128)と、を有する。
Description
〇 2020/175550 1 卩(:171? 2020 /007726 明 細 書
発明の名称 : 弁装置
関連出願への相互参照
[0001 ] 本出願は、 2 0 1 9年2月 2 8日に出願された日本特許出願番号 2 0 1 9 - 3 5 2 2 2号と、 2 0 2 0年 2月 2 0日に出願された日本特許出願番号 2 0 2 0 - 2 7 1 8 7号とに基づくもので、 ここにその記載内容が参照により 組み入れられる。
技術分野
[0002] 本開示は、 冷凍サイクルに用いられる弁装置に関するものである。
背景技術
[0003] 特許文献 1 には、 冷凍サイクル内で用いられる膨張弁において、 冷媒の流 量を調整する弁がステッピングモータで動かされる技術が記載されている。 先行技術文献
特許文献
[0004] 特許文献 1 :特開 2 0 1 5 _ 1 4 3 0 6号公報
発明の概要
[0005] 発明者の検討によれば、 特許文献 1 に記載の膨張弁はステッビングモータ を備えているため、 体格が大きくなってしまう。
本開示は、 冷凍サイクルに用いられる膨張弁等の弁装置の体格を、 従来よ りも低減し易くすることを目的とする。
[0006] 本開示の 1つの観点によれば、 冷凍サイクルに用いられる弁装置は、 流入口と、 流出口と、 前記流入口から前記流出口へ流れる冷媒を流通させ る弁室と、 が形成されたボディと、
前記弁室内において変位することで、 前記弁室を通じて前記流入口から前 記流出口へ流れる冷媒の流量を調整する弁体と、
前記弁体を移動させるための制御圧を発生する圧力室に作用する圧力を変 化させる制御弁部品と、 を備え、
〇 2020/175550 2 卩(:171? 2020 /007726
前記制御弁部品は、
冷媒が流通する冷媒室、 前記冷媒室に連通すると共に前記圧力室に連通す る第 1冷媒孔、 前記冷媒室に連通すると共に当該制御弁部品の外の冷媒の通 路に連通する第 2冷媒孔が、 形成される基部と、
自らの温度が変化すると変位する駆動部と、
前記駆動部の温度の変化による変位を増幅する増幅部と、
前記増幅部によって増幅された変位が伝達されて前記冷媒室内で動くこと で、 前記冷媒室に対する前記第 2冷媒孔の開度を調整する可動部と、 を有し
前記駆動部が温度の変化によって変位したときに、 前記駆動部が付勢位置 において前記増幅部を付勢することで、 前記増幅部がヒンジを支点として変 位するとともに、 前記増幅部と前記可動部の接続位置で前記増幅部が前記可 動部を付勢し、
前記ヒンジから前記付勢位置までの距離よりも、 前記ヒンジから前記接続 位置までの距離の方が長い。
[0007] このように構成された制御弁部品の増幅部は、 梃子として機能するので、 駆動部の温度変化に応じた変位量が、 梃子によって増幅されて可動部伝わる 。 このように、 梃子を利用して熱的な膨張による変位量が増幅されることが 、 そのような梃子を利用しない弁装置と比べた小型化に寄与する。
[0008] なお、 各構成要素等に付された括弧付きの参照符号は、 その構成要素等と 後述する実施形態に記載の具体的な構成要素等との対応関係の _例を示すも のである。
図面の簡単な説明
[0009] [図 1]第 1実施形態における冷凍サイクルの構成を示す図である。
[図 2]膨張弁の取り付け形態を示す図である。
[図 3]膨張弁の断面図である。
[図 4]図 3におけるバルブモジユールおよびその周辺の拡大断面図である。 [図 5]マイクロバルブの分解図である。
20/175550 3 卩(:171? 2020 /007726
[図 6]マイクロバルブの正面図である。
[図 7]図 6の V I I - V I I断面図であり、 非通電時の状態を示す。
[図 8]図 6の V I I I - V I I 丨断面図であり、 非通電時の状態を示す。
[図 9]図 6の V I I - V I I断面図であり、 最大電力通電時の状態を示す。 [図 10]図 6の V I I I - V I I 丨断面図であり、 最大電力通電時の状態を示 す。
[図 1 1]デューティ比と出力される冷媒の圧力との関係を示すグラフである。 [図 12]冷媒回路の非稼働時における弁の状態を示す断面図である。
[図 13]冷媒回路の稼働時でデューティ比がゼロの場合における弁の状態を示 す断面図である。
[図 14]冷媒回路の稼働時でデューティ比が 1 0 0 %の場合における弁の状態 を示す断面図である。
[図 15]第 2実施形態におけるマイクロバルブの断面図である。
[図 16]図 1 5の X V 丨部拡大図である。
[図 17]第 3実施形態における膨張弁の断面図である。
[図 18]第 4実施形態における膨張弁の断面図である。
[図 19]図 1 8の X 丨 X— X 丨 X断面図である。
[図 20]図 1 9の乂乂一乂乂断面図である。
[図 21]図 1 8の X X 丨矢視図である。
[図 22]マイクロバルブの分解図である。
[図 23]マイクロバルブの断面図であり、 非通電時の状態を示す。
[図 24]マイクロバルブの断面図であり、 通電時の状態を示す。
[図 25]膨張弁の開弁時の状態を示す断面図である。
[図 26]膨張弁の閉弁時の状態を示す断面図である。
[図 27]第 5実施形態における膨張弁の部分断面図である。
[図 28]図 2 7の X X V 丨 丨 I - X X V I I 丨断面図である。
[図 29]第 6実施形態における膨張弁の断面図である。
[図 30]第 7実施形態における膨張弁の断面図である。
〇 2020/175550 4 卩(:171? 2020 /007726
[図 31]第 8実施形態における膨張弁の断面図である。
[図 32]図 3 1の X X X I I - X X X I I断面図である。
[図 33]第 9実施形態における膨張弁の断面図である。
[図 34]図 3 3の X X X 丨 ー乂乂乂 丨 V断面図である。
[図 35]図 3 4の X X X V - X X X V断面図である。
[図 36]第 1 0実施形態における膨張弁の断面図である。
発明を実施するための形態
[0010] (第 1実施形態)
以下、 第 1実施形態について説明する。 図 1 に示すように、 膨張弁 5は、 電気式膨張弁であり、 車両用空調装置の蒸気圧縮式の冷凍サイクル 1 に適用 されている。 冷凍サイクル 1は、 冷媒としてフロン系冷媒 ([¾ 1 3 4 3) を 採用しており、 高圧冷媒の圧力が冷媒の臨界圧力を超えない亜臨界サイクル を構成している。 まず、 冷凍サイクル 1の圧縮機 2は図示しない車両走行用 エンジンから電磁クラッチ等を介して駆動力を得て、 冷媒を吸入して圧縮す るものである。 なお、 圧縮機 2は、 図示しない電動モータから出力される駆 動力によつて駆動する電動圧縮機で構成されていてもよい。
[001 1] 凝縮器 3は、 圧縮機 2から吐出された高圧冷媒と図示しない冷却ファンに より送風される外気 (すなわち、 車室外の空気) とを熱交換させて、 高圧冷 媒を放熱させて凝縮させる放熱用熱交換器である。
[0012] 凝縮器 3の出口側には、 凝縮器 3から流出した高圧冷媒を気相冷媒と液相 冷媒とに分離して、 サイクル内の余剰液相冷媒を溜めるレシーバ 4が接続さ れている。 さらに、 レシーバ 4の液相冷媒出口には、 膨張弁 5が接続されて いる。 膨張弁 5は、 車室内と車室外を仕切るファイアウォールの車室側に配 置されている。
[0013] この膨張弁 5は、 レシーバ 4から流出した高圧冷媒を減圧膨張させる弁装 置である。 膨張弁 5は、 蒸発器 6から流出した低圧冷媒の温度と圧力とに基 づいて、 蒸発器 6から流出した低圧冷媒の過熱度が予め定めた値に近づくよ うに絞り通路面積 (すなわち、 弁開度) を変化させて、 蒸発器 6の冷媒流入
〇 2020/175550 5 卩(:171? 2020 /007726
口側へ流出させる冷媒流量を調整する。 膨張弁 5の詳細については後述する 。 温度と圧力は、 物理量である。
[0014] 蒸発器 6は、 車両のダッシュボード内等に配置された空調ケーシング 7内 に配置される。 蒸発器は、 膨張弁 5にて減圧膨張された低圧冷媒と、 送風機 8によって付勢されて空調ケーシング 7内を流れる空気とを、 熱交換させる 。 この熱交換により、 当該空気が冷却されると共に低圧冷媒が蒸発する。 冷 却された空気は、 送風機 8によって車室内に送られる。
[0015] 次に、 膨張弁 5の詳細構成について説明する。 膨張弁 5は、 図 2に示すよ うに、 空調ケーシング 7の外側から、 空調ケーシングに固定されている。 蒸 発器 6の出口側は、 膨張弁 5の内部に形成された蒸発後冷媒通路 5 1 チを介 して、 圧縮機 2の吸入側に接続されている。
[0016] 膨張弁 5は、 図 2、 図 3に示すように、 ボディ 5 1、 弁体 5 2、 コイルバ ネ 5 3、 自律部 5 4、 バルブモジュール丫 0等を有する。 まず、 ボディ 5 1 は、 膨張弁 5の外殻および膨張弁 5内の冷媒通路等を構成するもので、 円筒 状あるいは角筒状の金属ブロックに穴開け加工等を施して形成されている。 ボディ 5 1 には、 第 1流入口 5 1 3、 第 1流出口 5 1 第 2流入口 5 1 、 第 2流入口 5 1 、 第 2流出口 5 1 6、 弁室 5 1 9、 絞り通路 5 1 1*1等が 形成されている。
[0017] 冷媒流入口 ·流出口としては、 凝縮器 3の出口に接続されて高圧液相冷媒 を流入させる第 1流入口 5 1 3、 第 1流入口 5 1 3から流入した冷媒を蒸発 器 6入口側へ流出させる第 1流出口 5 1 13が形成されている。 従って、 本実 施形態では、 第 1流入口 5 1 3から第 1流出口 5 1 匕へ至る冷媒通路によっ て、 高圧冷媒通路 5 1 〇が形成される。 高圧冷媒通路 5 1 〇は、 第 1通路に 対応する。
[0018] また、 他の冷媒流入口 流出口として、 蒸発器 6から流出した低圧冷媒を 流入させる第 2流入口 5 1 、 第 2流入口 5 1 から流入した冷媒を圧縮機 2吸入側へ流出させる第 2流出口 5 1 6が形成されている。 従って、 本実施 形態では、 第 2流入口 5 1 から第 2流出口 5 1 6へ至る冷媒通路によって
〇 2020/175550 6 卩(:171? 2020 /007726
、 蒸発後冷媒通路 5 1 〒が形成される。
[0019] 弁室 5 1 9は、 高圧冷媒通路 5 1 〇に設けられて、 その内部に後述する弁 体 5 2が収容される空間である。 弁室 5 1 9は圧力室に対応する。 より具体 的には、 弁室 5 1 9は、 第 1流入口 5 1 3に直接連通し、 絞り通路 5 1 1^を 介して第 1流出口 5 1 13に連通している。 絞り通路 5 1 IIは、 高圧冷媒通路 5 1 〇に設けられて、 第 1流入口 5 1 3から弁室 5 1 9へ流入した冷媒を、 減圧膨張させながら弁室 5 1 9側から第 1流出口 5 1 匕側へ導く通路である 。 絞り通路 5 1 IIは、 弁体 5 2と弁座 5 1 」 との間に形成される。
[0020] 弁座 5 1 」は、 弁室 5 1 9の下流端において冷媒流路を狭めるようにボデ ィ 5 1 に形成されている。 弁体 5 2は、 弁座 5 1 」に対して変位することに よって、 絞り通路 5 1 の冷媒通路面積を連続的にまたは 3段階以上の複数 段階で調整する弁体である。 絞り通路 5 1 IIはら第 1流出口 5 1 匕へ至る冷 媒通路は、 低圧冷媒通路 5 1 である。 低圧冷媒通路 5 1
は、 第 2通路に 対応する。
[0021 ] 低圧冷媒通路 5 1
には、 低圧導入路 5 1 9が接続されている。 この低圧 導入路 5 1 9は、 ボディ 5 1 に形成され、 一端が低圧冷媒通路 5 1
に連通 し、 他端がバルブモジュール丫 0の第 3連通孔丫 V 3に連通する。
[0022] また、 高圧冷媒通路 5 1 〇には、 高圧導入路 5 1 が接続されている。 こ の高圧導入路 5 1 は、 ボディ 5 1 に形成され、 一端が高圧冷媒通路 5 1 〇 に連通し、 他端がバルブモジュール丫 0の第 2連通孔丫 V 2に連通する。
[0023] コイルバネ 5 3は、 弁室 5 1 9に収容され、 弁体 5 2に対して絞り通路 5
1 IIを閉弁させる側に付勢している。 具体的には、 コイルパネ 5 3は、 弁室 5 1 9のうち背圧室
に配置される。 背圧室
弁体 5 2を基準 として絞り通路 5 1 IIとは反対側に形成される。 背圧室 5 1 には、 バルブ モジュール丫〇の第 1連通孔丫 1 に連通する。 以下、 弁室 5 1 9のうち、 弁体 5 2を基準として背圧室 5 1 とは反対側の空間を前側室 5 1 3という 。 弁室 5 1 9は、 弁体 5 2によって、 背圧室 5 1 と前側室 5 1 3に仕切ら れる。
〇 2020/175550 7 卩(:171? 2020 /007726
[0024] 自律部 5 4は、 ケーシング 5 4 3、 回路基板 5 4匕、 複合センサ 5 4〇、 ドライバ回路 5 4 を含む。 ケーシング 5 4 3は、 ボディ 5 1 に固定され、 回路基板 5 4匕、 複合センサ 5 4〇、 ドライバ回路 5 4 が収容された収容 空間を囲む樹脂製の部材である。 ボディ 5 1のうち、 蒸発後冷媒通路 5 1 干 を囲んでいる壁には、 この収容空間に対して開く開口 5 1 「が形成されてい る。 回路基板 5 4匕は、 ケーシング 5 4 3に固定され、 複合センサ 5 4〇、 ドライバ回路 5 4 等が実装されている。
[0025] 複合センサ 5 4〇は、 ケーシング 5 4 1 と、 感応部 5 4 2と、 リード咅^ 5 4 3と、 〇リング 5 4 4を有している。 樹脂製のケーシング 5 4 1は、 ケー シング 5 4 3に囲まれた収容空間において、 ボディ 5 1 に一体に固定されて いる。 より具体的には、 ケーシング 5 4 1は、 ボディ 5 1 に開けられた開口 5 1 「に揷通された状態となっている。 したがって、 ケーシング 5 4 1は、 蒸発後冷媒通路 5 1 チ内にある部分と、 上記収容空間内にある部分とを有す る。
[0026] 〇リング 5 4 4は、 ケーシング 5 4 1 とボディ 5 1の間に介在して、 蒸発 後冷媒通路 5 1 チからケーシング 5 4 3内部への冷媒の漏出を抑制する。 導 電性のリード部 5 4 3は、 回路基板 5 4匕にプリントされた配線に接続され ている。 複合センサ 5 4〇は、 空隙を介して回路基板 5 4匕に対向している ので、 リード部 5 4 3の配策が容易である。
[0027] 感応部 5 4 2は、 ケーシング 5 4 1のうち蒸発後冷媒通路 5 1 チ内にある 部分に固定される。 感応部 5 4 2は、 蒸発後冷媒通路 5 1 チにおける冷媒の 圧力に応じた圧力信号と、 蒸発後冷媒通路 5 1 チにおける冷媒の温度に応じ た温度信号とを、 出力する。
[0028] 感応部 5 4 2は、 例えば、 圧カセンサと、 当該圧カセンサとは別体の温度 センサとを備えていてもよい。 あるいは、 感応部 5 4 2は、 4つのゲージ抵 抗と、 当該ブリツジ回路が取り付けられた薄肉状のダイヤフラムとを有して いてもよい。 各ゲージ抵抗は、 ダイヤフラムの上に形成された薄膜抵抗とし て構成されていてもよい。
〇 2020/175550 8 卩(:171? 2020 /007726
[0029] 各ゲージ抵抗は、 ダイヤフラムの歪みに応じて抵抗値が変化する抵抗素子 である。 また、 各ゲージ抵抗は、 温度に応じて抵抗値が変化する素子である 。 これらゲージ抵抗は、 ホイートストンブリッジ回路を構成するように互い に電気的に接続されている。 ホイートストンブリッジ回路には、 ドライバ回 路 5 4 から、 回路基板 5 4匕、 リード部 5 4 3、 不図示の配線を介して、 定電流が供給される。 これにより、 各ゲージ抵抗のピエゾ抵抗効果により、 ダイヤフラムの歪みに応じた圧力信号やダイヤフラムの温度に応じた温度信 号が、 感応部 5 4 2から出力される。
[0030] 具体的には、 感応部 5 4 2は、 ダイヤフラムの歪みに応じた複数のゲージ 抵抗の抵抗変化をホイートストンプリッジ回路の中点電圧の変化として検出 し、 当該中点電圧を圧力信号として出力する。 一方、 感応部 5 4 2は、 感応 部 5 4 2の温度に応じた複数のゲージ抵抗の抵抗変化をホイートストンプリ ッジ回路のプリッジ電圧として検出し、 当該プリッジ電圧を温度信号として 出力する。
[0031 ] 感応部 5 4 2から出力された圧力信号と温度信号は、 不図示の配線および それに導通するリード部 5 4 3を介して感応部 5 4 2から回路基板 5 4匕に 伝達される。 回路基板 5 4 に伝達された圧力信号と温度信号は、 回路基板 5 4匕にプリントされたバターンを介してドライバ回路 5 4 に入力される
[0032] ドライバ回路 5 4 は、 複合センサ 5 4〇から回路基板 5 4匕を介して入 力された圧力信号と温度信号に基づいて、 バルブモジュール丫〇の作動を制 御する。 ドライバ回路 5 4 は、 例えば、 マイクロコンビュータによって実 現することが可能であり、 あるいは、 専用の回路構成を有するハードウエア によって実現することも可能である。
[0033] [バルブモジュール丫 0の構成]
ここで、 バルブモジュール丫 0の構成について、 図 3、 図 4、 図 5、 図 6 、 図 7、 図 8を用いて説明する。 図 3、 図 4に示すように、 バルブモジュー ル丫〇は、 マイクロバルブ丫 1、 バルブケーシング丫 2、 封止部材丫3、 3
〇 2020/175550 9 卩(:171? 2020 /007726
つの〇リング丫 4、 丫5 3、 丫5 2本の電気配線丫 6、 丫 7、 変換プレ —卜丫 8を有している。
[0034] マイクロバルブ丫 1は、 板形状の制御弁部品であり、 主として半導体チッ プによって構成されている。 マイクロバルブ丫 1は、 半導体チップ以外の部 品を有していてもいなくてもよい。 したがって、 マイクロバルブ丫 1 を小型 に構成できる。 マイクロバルブ丫
、 厚さ方向に直交する長手方向の長さは例えば 1 0
であり、 長手方向に も厚さ方向にも直交する短手方向の長さは例えば 5
であるが、 これに限 定されない。 マイクロバルブ丫 1への供給電力が変動することで、 マイクロ バルブ丫 1の流路構成が変化する。 マイクロバルブ丫 1は、 パイロッ ト弁と して機能する。
[0035] 電気配線丫6、 丫 7は、 マイクロバルブ丫 1の表裏にある 2つの板面のう ち、 バルブケーシング丫 2とは反対側の面から伸びて、 封止部材丫3、 バル ブケーシング丫 2内を通過して、 バルブモジュール丫〇の外部にある電源 ( すなわちドライバ回路 5 4 ) に接続される。 電気配線丫 6、 丫 7のマイク ロバルブ丫 1側とは反対側の端部は、 ドライバ回路 5 4 に接続される。 こ れにより、 電気配線丫 6、 丫 7を通して、 ドライバ回路 5 4 からマイクロ バルブ丫 1 に電力が供給可能となる。
[0036] 変換プレート丫8は、 マイクロバルブ丫 1 とバルブケーシング丫 2の間に 配置される板形状の部材である。 変換プレート丫8は、 ガラス基板である。 変換プレート丫 8の表裏にある 2つの板面の一方側は、 マイクロバルブ丫 1 に対して接着剤で固定され、 他方側はバルブケーシング丫 2に対して接着剤 で固定されている。 変換プレート丫 8には、 マイクロバルブ丫 1の後述する 3つの冷媒孔丫 1 6、 丫 1 7、 丫 1 8とバルブケーシング丫 2の 3つの連通 孔丫 1、 V V 2 , 丫 V 3とを繫げるための流路丫 8 1、 丫8 2、 丫8 3が 形成されている。 これら流路丫8 1、 丫8 2、 丫8 3は、 一列に並ぶ上記 3 つの冷媒孔丫 1 6、 丫 1 7、 丫 1 8間のピッチと、 一列に並ぶ上記 3つの連 通孔丫 1、 V V 2 , 丫 3間のピッチとの違いを、 吸収するための流路で
〇 2020/175550 10 卩(:171? 2020 /007726
ある。 連通孔丫 1、 V V 2 , 丫 V 3間のピッチは冷媒孔丫 1 6、 丫 1 7、 丫 1 8間のピッチよりも大きい。 流路丫8 1、 丫8 2、 丫8 3は、 変換プレ —卜丫 8の表裏にある 2つの板面の一方から他方に貫通している。 したがっ て、 流路丫8 1、 丫8 2、 丫8 3の連通孔丫 1、 V V 2 , 丫 3側の端部 の間のピッチは、 流路丫8 1、 丫8 2、 丫8 3の上記冷媒孔丫 1 6、 丫 1 7 、 丫 1 8側の端部の間のピッチよりも、 大きい。
[0037] バルブケーシング丫2は、 マイクロバルブ丫 1および変換プレート丫8を 収容する樹脂製のケーシングである。 バルブケーシング丫 2は、 ポリフエニ レンサルファイ ドを主成分として樹脂成型によって形成されている。 バルブ ケーシング丫 2は、 一方側に底壁を有し、 他方側が開放された箱体である。 バルブケーシング丫 2の底壁は、 マイクロバルブ丫 1および変換プレート丫 8がボディ 5 1 に直接接しないように、 ボディ 5 1 とマイクロバルブ丫 1の 間に介在する。 そして、 この底壁の一方側の面がボディ 5 1 に接触して固定 され、 他方側の面が変換プレート丫 8に接触して固定される。
[0038] このようになっていることで、 マイクロバルブ丫 1 とボディ 5 1の線膨張 係数の違いをバルブケーシング丫 2が吸収できる。 これは、 バルブケーシン グ丫 2の線膨張係数が、 マイクロバルブ丫 1の線膨張係数とボディ 5 1の線 膨張係数の間の値となっているからである。 なお、 変換プレート丫 8の線膨 張係数は、 マイクロバルブ丫 1の線膨張係数とバルブケーシング丫 2の線膨 張係数の間の値となっている。
[0039] また、 バルブケーシング丫 2の底壁は、 マイクロバルブ丫 1 に対向する板 形状のベース部丫 2 0と、 マイクロバルブ丫 1から離れる方向に当該べース 部丫 2 0から突出する柱形状の第 1突出部丫 2 1、 第 2突出部丫 2 2、 第 3 突出部丫 2 3を有する。
[0040] 第 1突出部丫2 1、 第 2突出部丫 2 2、 第 3突出部丫 2 3は、 ボディ 5 1 に形成された凹みに嵌め込まれている。 第 1突出部丫2 1 には、 マイクロバ ルブ丫 1側端からその反対側端まで貫通する第 1連通孔丫 V 1が形成されて いる。 第 2突出部丫2 2には、 マイクロバルブ丫 1側端からその反対側端ま
〇 2020/175550 1 1 卩(:171? 2020 /007726
で貫通する第 2連通孔丫 2が形成されている。 第 3突出部丫 2 3には、 マ イクロバルブ丫 1側端からその反対側端まで貫通する第 3連通孔丫 V 3が形 成されている。 第 1連通孔丫 1、 第 2連通孔丫 2、 第 3連通孔丫 3は 一列に並んでおり、 第 2連通孔丫 2と第 3連通孔丫 3の間に第 1連通孔 丫 V 1が位置する。
[0041 ] 第 1連通孔丫 V 1のマイクロバルブ丫 1側端は、 変換プレート丫 8に形成 された流路丫 8 1のバルブケーシング丫 2側端に連通している。 第 2連通孔 丫 2のマイクロバルブ丫 1側端は、 変換プレート丫 8に形成された流路丫 8 2のバルブケーシング丫 2側端に連通している。 第 3連通孔丫 V 3のマイ クロバルブ丫 1側端は、 変換プレート丫 8に形成された流路丫 8 3のバルブ ケーシング丫 2側端に連通している。
[0042] 封止部材丫 3は、 バルブケーシング丫 2の開放された上記他方側を封止す るエポキシ樹脂製の部材である。 封止部材丫 3は、 マイクロバルブ丫 1の表 裏にある 2つの板面のうち、 変換プレート丫 8側とは反対側の板面の全体を 覆う。 また、 封止部材丫 3は、 変換プレート丫 8の表裏にある 2つの板面の うち、 バルブケーシング丫 2の底壁側とは反対側の板面の一部を覆う。 また 、 封止部材丫 3は、 電気配線丫 6、 丫 7を覆うことで、 電気配線丫 6、 丫 7 の防水および絶縁を実現する。 封止部材丫 3は樹脂ポッティング等によって 形成される。
[0043] 〇リング丫4は、 第 1突出部丫 2 1の外周に取り付けられ、 ボディ 5 1 と 第 1突出部丫 2 1の間を封止することで、 膨張弁 5の外部かつ冷凍サイクル の外部への冷媒の漏出を抑制する。 〇リング丫 5 3は、 第 2突出部丫 2 2の 外周に取り付けられ、 ボディ 5 1 と第 2突出部丫 2 2の間を封止することで 、 膨張弁 5の外部かつ冷凍サイクルの外部への冷媒の漏出を抑制する。 〇リ ング丫 5匕は、 第 3突出部丫 2 3の外周に取り付けられ、 ボディ 5 1 と第 3 突出部丫 2 3の間を封止することで、 膨張弁 5の外部かつ冷凍サイクルの外 部への冷媒の漏出を抑制する。
[0044] ここで、 マイクロバルブ丫 1の構成について更に説明する。 マイクロバル
ブ Y 1は、 図 5、 図 6に示すように、 いずれも半導体である第 1外層 Y 1 1 、 中間層 Y 1 2、 第 2外層 Y 1 3を備えた ME MSである。 MEMS 、 Mic ro Electro Mechanical Systemsの略称である。 第 1外層 Y 1 1、 中間層 Y 1 2、 第 2外層 Y 1 3は、 それぞれが同じ外形を有する長方形の板形状の部材 であり、 第 1外層 Y 1 1、 中間層 Y 1 2、 第 2外層 Y 1 3の順に積層されて いる。 すなわち、 中間層 Y 1 2が、 第 1外層 Y 1 1 と第 2外層 Y 1 3に両側 から挟まれている。 第 1外層 Y 1 1、 中間層 Y 1 2、 第 2外層 Y 1 3のうち 、 第 2外層 Y 1 3が、 バルブケーシング Y 2の底壁に最も近い側に配置され る。 後述する第 1外層 Y 1 1、 中間層 Y 1 2、 第 2外層 Y 1 3の構造は、 化 学的エッチング等の半導体製造プロセスによって形成される。
[0045] 第 1外層 Y 1 1は、 表面に非導電性の酸化膜のある導電性の半導体部材で ある。 第 1外層 Y 1 1 には、 図 5に示すように、 表裏に貫通する 2つの貫通 孔 Y 1 4、 Y 1 5が形成されている。 この貫通孔 Y 1 4、 Y 1 5に、 それぞ れ、 電気配線 Y 6、 Y 7のマイクロバルブ Y 1側端が揷入される。
[0046] 第 2外層 Y 1 3は、 表面に非導電性の酸化膜のある導電性の半導体部材で ある。 第 2外層 Y 1 3には、 図 5、 図 7、 図 8に示すように、 表裏に貫通す る第 1冷媒孔 Y 1 6、 第 2冷媒孔 Y 1 7、 第 3冷媒孔 Y 1 8が形成されてい る。
[0047] 図 8に示すように、 第 1冷媒孔 Y 1 6、 第 2冷媒孔 Y 1 7、 第 3冷媒孔 Y
1 8は、 それぞれ、 変換プレート Y 8の流路 Y 81、 Y82、 Y 83に連通 する。 第 1冷媒孔 Y 1 6、 第 2冷媒孔 Y 1 7、 第 3冷媒孔 Y 1 8は、 一列に 並んでいる。 第 2冷媒孔 Y 1 7と第 3冷媒孔 Y 1 8の間に第 1冷媒孔 Y 1 6 が配置される。 第 1冷媒孔 Y 1 6、 第 2冷媒孔 Y 1 7、 第 3冷媒孔 Y 1 8の 各々の水力直径は、 例えば 0. 1 m m以上かつ 3 m m以下であるが、 これに 限定されない。
[0048] 中間層 Y 1 2は、 導電性の半導体部材であり、 第 1外層 Y 1 1 と第 2外層 Y 1 3に挟まれている。 中間層 Y 1 2は、 第 1外層 Y 1 1の酸化膜と第 2外 層 Y 1 3の酸化膜に接触するので、 第 1外層 Y 1 1 と第 2外層 Y 1 3とも電
〇 2020/175550 13 卩(:171? 2020 /007726
気的に非導通である。 中間層丫 1 2は、 図 7に示すように、 第 1固定部丫 1 2 1、 第 2固定部丫 1 2 2、 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ 丫 1 2 4、 スパイン丫 1 2 5、 アーム丫 1 2 6、 梁丫 1 2 7、 可動部丫 1 2 8を有している。
[0049] 第 1固定部丫 1 2 1は、 第 1外層丫 1 1、 第 2外層丫 1 3に対して固定さ れた部材である。 第 1固定部丫 1 2 1は、 第 2固定部丫 1 2 2、 第 1 リブ丫 1 2 3、 第 2リブ丫 1 2 4、 スパイン丫 1 2 5、 アーム丫 1 2 6、 梁丫 1 2 7、 可動部丫 1 2 8を同じ 1つの冷媒室丫 1 9内に囲むように形成されてい る。 冷媒室丫 1 9は、 第 1固定部丫 1 2 1、 第 1外層丫 1 1、 第 2外層丫 1 3によって囲まれた室である。 第 1固定部丫 1 2 1、 第 1外層丫 1 1、 第 2 外層丫 1 3は、 全体として基部に対応する。 なお、 電気配線丫 6、 丫 7は複 数の第 1 リブ丫 1 2 3および複数の第 2リブ丫 1 2 4の温度を変化させて変 位させるための電気配線である。
[0050] 第 1固定部丫 1 2 1の第 1外層丫 1 1および第 2外層丫 1 3に対する固定 は、 冷媒がこの冷媒室丫 1 9から第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8以外を通ってマイクロバルブ丫 1から漏出することを抑制す るような形態で、 行われている。
[0051 ] 第 2固定部丫 1 2 2は、 第 1外層丫 1 1、 第 2外層丫 1 3に対して固定さ れる。 第 2固定部丫 1 2 2は、 第 1固定部丫 1 2 1 に取り囲まれると共に、 第 1固定部丫 1 2 1から離れて配置される。
[0052] 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4、 スパイン丫 1 2
5、 アーム丫 1 2 6、 梁丫 1 2 7、 可動部丫 1 2 8は、 第 1外層丫 1 1、 第 2外層丫 1 3に対して固定されておらず、 第 1外層丫 1 1、 第 2外層丫 1 3 に対して変位可能である。
[0053] スパイン丫 1 2 5は、 中間層丫 1 2の矩形形状の短手方向に伸びる細長い 棒形状を有している。 スパイン丫 1 2 5の長手方向の一端は、 梁丫 1 2 7に 接続されている。
[0054] 複数本の第 1 リブ丫 1 2 3は、 スパイン丫 1 2 5の長手方向に直交する方
\¥02020/175550 14 卩(:17 2020 /007726
向におけるスパイン丫 1 25の一方側に配置される。 そして、 複数本の第 1 リブ丫 1 23は、 スパイン丫 1 25の長手方向に並んでいる。 各第 1 リブ丫 1 23は、 細長い棒形状を有しており、 温度に応じて伸縮可能となっている
[0055] 各第 1 リブ丫 1 23は、 その長手方向の一端で第 1固定部丫 1 2 1 に接続 され、 他端でスパイン丫 1 25に接続される。 そして、 各第 1 リブ丫 1 23 は、 第 1固定部丫 1 2 1側からスパイン丫 1 25側に近付くほど、 スパイン 丫 1 25の長手方向の梁丫 1 27側に向けてオフセツ トされるよう、 スパイ ン丫 1 25に対して斜行している。 そして、 複数の第 1 リブ丫 1 23は、 互 いに対して平行に伸びている。
[0056] 複数本の第 2リブ丫 1 24は、 スパイン丫 1 25の長手方向に直交する方 向におけるスパイン丫 1 25の他方側に配置される。 そして、 複数本の第 2 リブ丫 1 24は、 スパイン丫 1 25の長手方向に並んでいる。 各第 2リブ丫 1 24は、 細長い棒形状を有しており、 温度に応じて伸縮可能となっている
[0057] 各第 2リブ丫 1 24は、 その長手方向の一端で第 2固定部丫 1 22に接続 され、 他端でスパイン丫 1 25に接続される。 そして、 各第 2リブ丫 1 24 は、 第 2固定部丫 1 22側からスパイン丫 1 25側に近付くほど、 スパイン 丫 1 25の長手方向の梁丫 1 27側に向けてオフセツ トされるよう、 スパイ ン丫 1 25に対して斜行している。 そして、 複数の第 2リブ丫 1 24は、 互 いに対して平行に伸びている。
[0058] 複数本の第 1 リブ丫 1 23、 複数本の第 2リブ丫 1 24、 スパイン丫 1 2
5は、 全体として、 駆動部に対応する。
[0059] アーム丫 1 26は、 スパイン丫 1 25と非直交かつ平行に伸びる細長い棒 形状を有している。 アーム丫 1 26の長手方向の一端は梁丫 1 27に接続さ れており、 他端は第 1固定部丫 1 2 1 に接続されている。
[0060] 梁丫 1 27は、 スパイン丫 1 25およびアーム丫 1 26に対して約 90° で交差する方向に伸びる細長い棒形状を有している。 梁丫 1 27の一端は、
〇 2020/175550 15 卩(:171? 2020 /007726
可動部丫 1 2 8に接続されている。 アーム丫 1 2 6と梁丫 1 2 7は、 全体と して、 増幅部に対応する。
[0061 ] アーム丫 1 2 6と梁丫 1 2 7の接続位置丫 1、 スパイン丫 1 2 5と梁丫
1 2 7の接続位置丫 2、 梁丫 1 2 7と可動部丫 1 2 8の接続位置丫 3は 、 梁丫 1 2 7の長手方向に沿って、 この順に並んでいる。 そして、 第 1固定 部丫 1 2 1 とアーム丫 1 2 6との接続点をヒンジ丫 0とすると、 中間層丫 1 2の板面に平行な面内におけるヒンジ丫 0から接続位置丫 2までの直 線距離よりも、 ヒンジ丫 0から接続位置丫 3までの直線距離の方が、 長 い。 例えば、 前者の直線距離を後者の直線距離で除算した値は、 1 / 5以下 であってもよいし、 1 / 1 0以下であってもよい。
[0062] 可動部丫 1 2 8は、 その外形が、 梁丫 1 2 7の長手方向に対して概ね 9 0 ° の方向に伸びる矩形形状を有している。 この可動部丫 1 2 8は、 冷媒室丫 1 9内において梁丫 1 2 7と一体に動くことができる。 そして、 可動部丫 1 2 8は、 中間層丫 1 2の表裏に貫通する貫通孔丫 1 2 0を囲む枠形状となっ ている。 したがって、 貫通孔丫 1 2 0も、 可動部丫 1 2 8と一体的に移動す る。 貫通孔丫 1 2 0は、 冷媒室丫 1 9の一部である。
[0063] 可動部丫 1 2 8は、 上記のように動くことで、 第 2冷媒孔丫 1 7の貫通孔 丫 1 2 0に対する開度および、 第 3冷媒孔丫 1 8の貫通孔丫 1 2 0に対する 開度を変更する。 第 1冷媒孔丫 1 6は、 貫通孔丫 1 2 0に対して常に全開で 連通している。
[0064] また、 第 1固定部丫 1 2 1のうち、 複数の第 1 リブ丫 1 2 3と接続する部 分の近傍の第 1印加点丫 1 2 9には、 図 5に示した第 1外層丫 1 1の貫通孔 丫 1 4を通った電気配線丫 6のマイクロバルブ丫 1側端が接続される。 また 、 第 2固定部丫 1 2 2の第 2印加点丫 1 3 0には、 図 5に示した第 1外層丫 1 1の貫通孔丫 1 5を通った電気配線丫 7のマイクロバルブ丫 1側端が接続 される。
[0065] [バルブモジュール丫 0の作動]
ここで、 バルブモジュール丫 0の作動について説明する。 マイクロバルブ
〇 2020/175550 16 卩(:171? 2020 /007726
丫 1への通電が開始されると、 電気配線丫 6、 丫 7から第 1印加点丫 1 2 9 、 第 2印加点丫 1 3 0の間に電圧が印加される。 すると、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4を電流が流れる。 この電流によって、 複数 の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4が発熱する。 その結果、 複数 の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4の各々が、 その長手方向に膨 張する。
[0066] このような熱的な膨張の結果、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ V 1 2 4は、 スパイン丫 1 2 5を接続位置丫 2側に付勢する。 付勢された スパイン丫 1 2 5は、 接続位置丫 2において、 梁丫 1 2 7を押す。 このよ うに、 接続位置丫 2は付勢位置に対応する。 その結果、 梁丫 1 2 7とアー ム丫 1 2 6から成る部材は、 ヒンジ丫 0を支点として、 接続位置丫 2を 力点として、 一体に姿勢を変える。 その結果、 梁丫 1 2 7のアーム丫 1 2 6 とは反対側の端部に接続された可動部丫 1 2 8も、 その長手方向の、 スパイ ン丫 1 2 5が梁丫 1 2 7を押す側に、 移動する。
[0067] また、 マイクロバルブ丫 1への通電が停止されたときは、 電気配線丫6、 丫 7から第1印加点丫 1 2 9、 第 2印加点丫 1 3 0への電圧印加が停止され る。 すると、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4を電流が流 れなくなり、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4の温度が低 下する。 その結果、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4の各 々が、 その長手方向に収縮する。
[0068] このような熱的な収縮の結果、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ 丫 1 2 4は、 スパイン丫 1 2 5を接続位置丫 2とは反対側に付勢する。 付 勢されたスパイン丫 1 2 5は、 接続位置丫 2において、 梁丫 1 2 7を引っ 張る。 その結果、 梁丫 1 2 7とアーム丫 1 2 6から成る部材は、 ヒンジ丫 0を支点として、 接続位置丫 2を力点として、 一体に姿勢を変える。 その 結果、 梁丫 1 2 7のアーム丫 1 2 6とは反対側の端部に接続された可動部丫 1 2 8も、 その長手方向の、 スパイン丫 1 2 5が梁丫 1 2 7を引っ張る側に 、 移動する。 その移動の結果、 可動部丫 1 2 8は、 所定の非通電時位置で停
〇 2020/175550 17 卩(:171? 2020 /007726
止する。 非通電時位置は、 第 1位置に対応する。
[0069] このようなマイクロバルブ丫 1への通電時、 電気配線丫 6、 丫 7から第 1 印加点丫 1 2 9、 第 2印加点丫 1 3 0を介してマイクロバルブ丫 1 に供給さ れる電力が大きいほど、 非通電時位置に対する可動部丫 1 2 8の移動量も大 きくなる。 これは、 マイクロバルブ丫 1 に供給される電力が高いほど、 第 1 リブ丫 1 2 3、 第 2リブ丫 1 2 4の温度が高くなり、 膨張度合いが大きいか らである。
[0070] 例えば電気配線丫 6、 丫 7から第 1印加点丫 1 2 9、 第 2印加点丫 1 3 0 へ印加される電圧が
制御される場合、 電圧のデューティ比が大きいほ ど非通電時に対する可動部丫 1 2 8の移動量も大きくなる。 以下、 \^/1\/1制 御における電圧のデューティ比を、 単にデューティ比という。
[0071 ] 図 7、 図 8に示すように、 可動部丫 1 2 8が非通電時位置にある場合、 貫 通孔丫 1 2 0は、 中間層丫 1 2の板面に直交する方向に第 1冷媒孔丫 1 6、 第 3冷媒孔丫 1 8と重なるが、 当該方向に第 2冷媒孔丫 1 7とは重ならない 。 第 2冷媒孔丫 1 7は、 中間層丫 1 2の板面に直交する方向に可動部丫 1 2 8と重なる。 つまりこのとき、 貫通孔丫 1 2 0に対して第 1冷媒孔丫 1 6、 第 3冷媒孔丫 1 8は全開になり、 第 2冷媒孔丫 1 7は全閉になる。 したがっ てこの場合、 第 1冷媒孔丫 1 6が第 3冷媒孔丫 1 8に可動部丫 1 2 8を介し て連通し、 第 2冷媒孔丫 1 7は第 1冷媒孔丫 1 6とも第 3冷媒孔丫 1 8とも 遮断される。 この結果、 第 1連通孔丫 1 と第 3連通孔丫 3との間で、 流 路丫8 1、 第 1冷媒孔丫 1 6、 貫通孔丫 1 2 0、 第 3冷媒孔丫 1 8、 流路丫 8 3を介した、 冷媒の流通が可能となる。
[0072] また、 図 9、 図 1 0に示すように、 マイクロバルブ丫 1への通電によって 可動部丫 1 2 8が非通電時位置から最も遠ざかった位置にある場合、 そのと きの可動部丫 1 2 8の位置を最大通電時位置という。 最大通電時位置は第 2 位置に対応する。 可動部丫 1 2 8が最大通電時位置にある場合は、 マイクロ バルブ丫 1へ供給される電力が制御範囲内の最大となる。 例えば、 可動部丫 1 2 8が最大通電時位置にある場合、 上述の \^/!\/1制御においてデューティ
〇 2020/175550 18 卩(:171? 2020 /007726
比が制御範囲内の最大値 (例えば 1 00%) となる。
[0073] 可動部丫 1 28が最大通電時位置にある場合、 貫通孔丫 1 20は、 中間層 丫 1 2の板面に直交する方向に第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7と重な るが、 当該方向に第 3冷媒孔丫 1 8とは重ならない。 第 3冷媒孔丫 1 8は、 中間層丫 1 2の板面に直交する方向に可動部丫 1 28と重なる。 つまりこの とき、 貫通孔丫 1 20に対して第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7は全開 になり、 第 3冷媒孔丫 1 8は全閉になる。 したがってこの場合、 第 1冷媒孔 丫 1 6が第 2冷媒孔丫 1 7に可動部丫 1 28を介して連通し、 第 3冷媒孔丫 1 8は第 1冷媒孔丫 1 6とも第 2冷媒孔丫 1 7とも遮断される。 この結果、 第 1連通孔丫 1 と第 2連通孔丫 2との間で、 流路丫81、 第 1冷媒孔丫 1 6、 貫通孔丫 1 20、 第 2冷媒孔丫 1 7、 流路丫 83を介した、 冷媒の流 通が可能となる。
[0074] また、 マイクロバルブ丫 1 に供給される電力が (例えば \^/1\/1制御で) 、 最大電力未満かつゼロより大きい範囲内で、 複数段階でまたは連続的に、 調 整される。 これにより、 可動部丫 1 28を、 非通電時位置と最大通電時位置 の間のどの中間位置にでも、 停止させることができる。 例えば、 最大通電時 位置と非通電時位置からも等距離の位置 (すなわち、 中央位置) で可動部丫 1 28を停止させるには、 マイクロバルブ丫 1 に供給される電力が、 制御範 囲内の最大値の半分であればいい。 例えば、 \^/1\/1制御におけるデューティ 比が 50%であればいい。
[0075] 可動部丫 1 28が中間位置に停止している場合、 第 1冷媒孔丫 1 6、 第 2 冷媒孔丫 1 7、 第 3冷媒孔丫 1 8は、 いずれも貫通孔丫 1 20に連通してい る。 しかし、 第 2冷媒孔丫 1 7および第 3冷媒孔丫 1 8は、 貫通孔丫 1 20 に対して全開状態ではなく、 1 00%未満かつ 0%よりも大きい中間開度と なっている。 可動部丫 1 28が中間位置において最大通電位時位置に近づく ほど、 貫通孔丫 1 20に対する第 3冷媒孔丫 1 8の中間開度が減少し、 第 2 冷媒孔丫 1 7の中間開度が増大する。
[0076] 本実施形態では、 後述する通り、 第 2冷媒孔丫 1 7に対して高圧が作用し
〇 2020/175550 19 卩(:171? 2020 /007726
、 第 3冷媒孔丫 1 8に対して当該高圧よりも高い低圧が作用する。 このとき 、 可動部丫 1 2 8が中間位置にあれば、 第 1冷媒孔丫 1 6からマイクロバル ブ丫 1の外部に、 当該低圧よりも高く当該高圧よりも低い中間圧が作用する 。 中間圧の値は、 可動部丫 1 2 8に対する第 2冷媒孔丫 1 7の開度と第 3冷 媒孔丫 1 8の開度によって変動する。
[0077] 図 1 1 に、 電気配線丫 6、 丫 7から第1印加点丫 1 2 9、 第 2印加点丫 1
3 0へ印加される電圧が \^/1\/1制御される場合における、 デューティ比と、 第 1冷媒孔丫 1 6からマイクロバルブ丫 1の外部に作用される圧力 (すなわ ち、 制御圧または出口圧) との関係を例示する。 この図に示すように、 デュ —ティ比が大きくなるほど、 デューティ比の増加量に比例して、 制御圧が高 くなる。 そして、 デューティ比が 1 0 0 %の場合、 制御圧が上記高圧と一致 する。 また、 デューティ比が 0 %の場合、 すなわち、 非通電時、 制御圧が上 記低圧と一致する。
[0078] 以上のように、 梁丫 1 2 7およびアーム丫 1 2 6は、 ヒンジ丫 〇を支点 とし、 接続位置丫 2を力点とし、 接続位置丫 3を作用点とする梃子とし て機能する。 上述の通り、 中間層丫 1 2の板面に平行な面内におけるヒンジ 丫 0から接続位置丫 2までの直線距離よりも、 ヒンジ丫 0から接続位 置丫 3までの直線距離の方が、 長い。 したがって、 力点である接続位置丫 2の移動量よりも、 作用点である接続位置丫 3の移動量の方が大きくな る。 したがって、 熱的な膨張による変位量が、 梃子によって増幅されて可動 部丫 1 2 8に伝わる。
[0079] また、 マイクロバルブ丫 1 における冷媒の流路は、 II夕ーン構造を有して いる。 具体的には、 冷媒は、 マイクロバルブ丫 1の一方側の面からマイクロ バルブ丫 1内に流入し、 マイクロバルブ丫 1内を通って、 マイクロバルブ丫 1の同じ側の面からマイクロバルブ丫 1外に流出する。 そして同様にバルブ モジュール丫 0における冷媒の流路も、 IIターン構造を有している。 具体的 には、 冷媒は、 バルブモジュール丫 0の一方側の面からバルブモジュール丫 0内に流入し、 バルブモジュール丫 0内を通って、 バルブモジュール丫〇の
〇 2020/175550 20 卩(:171? 2020 /007726
同じ側の面からバルブモジュール丫 0外に流出する。 これは、 上述の通り、 同じ中間層丫 1 2に第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8が形成されているからである。 なお、 中間層丫 1 2の板面に直交する方向 は、 第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3の積層方向である。
[0080] このように構成されたマイクロバルブ丫 1は、 電磁弁およびステッピング モータと比べて容易に小型化できる。 その理由の 1つは、 マイクロバルブ丫 1が上述の通り半導体チップにより形成されていることである。 また、 上述 の通り、 梃子を利用して熱的な膨張による変位量が増幅されることも、 その ような梃子を利用せずに電磁弁またはステッビングモータを利用する弁装置 と比べた小型化に寄与する。 また、 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4の変位は熱に起因して発生するので、 騒音低減効果が高い。
[0081 ] また、 梃子を利用しているので、 熱的な膨張による変位量を可動部丫 1 2
8の移動量より抑えることができるので、 可動部丫 1 2 8を駆動するための 消費電力も低減することができる。 また、 電磁弁の駆動時における衝撃音を 無くすことができるので、 騒音を低減することができる。
[0082] 上述のように、 マイクロバルブ丫 1 もバルブモジュール丫 0も IIターンの 構造の冷媒流路を有しているので、 ボディ 5 1の掘り込みを少なくすること ができる。 つまり、 バルブモジュール丫 0を配置するためにボディ 5 1 に形 成された凹みの深さを抑えることができる。 その理由は以下の通りである。
[0083] 例えば、 バルブモジュール丫0が1)ターンの構造の冷媒流路を有しておら ず、 バルブモジュール丫〇のボディ 5 1側の面に冷媒流入口があり、 バルブ モジュール丫 0の反対側の面に冷媒出口があったとする。 その場合、 バルブ モジュール丫〇の両面に、 冷媒流路を形成する必要がある。 したがって、 バ ルブモジュール丫 0の両面の冷媒流路までボディ 5 1 に収容しようとすると 、 バルブモジュール丫 0を配置するためにボディ 5 1 に形成しなければなら ない凹みが深くなってしまう。 また、 マイクロバルブ丫 1 自体が小型である ので、 ボディ 5 1の掘り込みを更に低減することができる。
[0084] また、 マイクロバルブ丫 1の両面のうち、 第 1冷媒孔丫 1 6、 第 2冷媒孔
〇 2020/175550 21 卩(:171? 2020 /007726
丫 1 7が形成される面とは反対側の面に電気配線丫 6、 丫 7を配置した場合 、 電気配線丫 6、 丫 7を大気雰囲気により近い側に置くことができる。 した がって、 電気配線丫 6、 丫 7への冷媒雰囲気の影響を低減するためのハーメ チック等のシール構造が不要となる。 その結果、 膨張弁 5の小型化が実現で きる。
[0085] また、 マイクロバルブ丫 1が軽量であることから、 膨張弁 5が軽量化され る。 また、 マイクロバルブ丫 1の消費電力が小さいので、 膨張弁 5が省電力 化される。
[0086] [全体の作動]
以下、 上記のように構成された冷凍サイクルの作動について説明する。
[0087] [非稼働時]
まず、 冷凍サイクルの非稼働時について説明する。 この場合、 圧縮機 2、 送風機 8が作動しておらず、 冷凍サイクル内の冷媒は循環しない。 また、 複 合センサ 5 4〇もドライバ回路 5 4 も作動していない。 また、 マイクロバ ルブ丫 1へは通電されていない。 この場合、 既に説明した通り、 第 3連通孔 丫 3と第 1連通孔丫 1 とがマイクロバルブ丫 1 を介して連通し、 第 2連 通孔丫 V 2とマイクロバルブ丫 1の貫通孔丫 1 2 0の間が遮断される。 した がって、 図 1 2に示すように、 背圧室
と低圧冷媒通路 5 1
とが、 低 圧導入路 5 1 9およびマイクロバルブ丫 1 を介して、 連通している。
[0088] またこのとき、 レシーバ 4と膨張弁 5の間の冷媒の圧力と、 膨張弁 5と蒸 発器 6の間の冷媒の圧力は互いに等しい。 したがって、 高圧冷媒通路 5 1 〇 における冷媒の圧力と低圧冷媒通路 5 1
における冷媒の圧力も互いに等し い。 それ故、 低圧冷媒通路 5 1
に連通する背圧室 5 1 における冷媒の圧 力と、 高圧冷媒通路 5 1 〇に連通する前側室 5 1 3の圧力も、 互いに等しい
[0089] したがって、 弁体 5 2に対して背圧室 5 1 の冷媒が及ぼす力と前側室 5
1 の冷媒が及ぼす力とが概ね同じになる。 これにより、 圧縮されたコイル パネ 5 3の伸長しようとする力に付勢されて、 弁体 5 2は弁座 5 1 」に接触
〇 2020/175550 22 卩(:171? 2020 /007726
するまで移動し、 絞り通路 5 1 IIが閉じられる。
[0090] [稼働時]
次に、 冷凍サイクルが稼働している状態について説明する。 この場合、 圧 縮機 2、 送風機 8が作動する。 これにより、 高圧冷媒通路 5 1 〇における冷 媒の圧力が、 低圧冷媒通路 5 1
における冷媒の圧力よりも高くなる。
[0091 ] また、 複合センサ 5 4〇、 ドライバ回路 5 4 も作動する。 したがってド ライバ回路 5 4 から電気配線丫 6、 丫 7を介してマイクロバルブ丫 1 に、 必要に応じて通電が行われる。
[0092] 具体的には、 蒸発後冷媒通路 5 1 チを通る冷媒の圧力と温度を、 複合セン サ 5 4〇が検出する。 すなわち、 複合センサ 5 4〇の感温部が、 蒸発後冷媒 通路 5 1 チを通る冷媒の圧力および温度にそれぞれ応じた圧力信号および温 度信号を出力する。 ドライバ回路 5 4 は、 その圧力信号および温度信号を 取得し、 取得した圧力信号と温度信号に応じて、 電気配線丫 6、 丫 7に供給 する電力を決定する。 なお、 以下では、 ドライバ回路 5 4 は、 電気配線丫 6、 丫 7に供給する電力を、 最大電圧一定の \^/1\/1制御で行うものとして説 明する。 したがって、 ドライバ回路 5 4 は、 取得した圧力信号と温度信号 に応じて、 蒸発器 6から流出した低圧冷媒の過熱度が所定の一定値になるよ う、 電気配線丫 6、 丫 7に印加する電圧のデューティ比を決定する。
[0093] 具体的には、 ドライバ回路 5 4 は、 圧力信号が示す圧力が一定で温度信 号が示す温度が高くなるほど、 すなわち、 過熱度が高くなるほど、 デューテ ィ比を小さくする。 これにより、 弁体 5 2のリフト量が増大し、 加熱度が低 下する。 また、 温度信号が示す温度が一定で圧力信号が示す圧力が高くなる ほど、 すなわち、 過熱度が低くなるほど、 デューティ比を大きくする。 これ により、 弁体 5 2のリフト量が減少し、 過熱度が上昇する。
[0094] そして、 ドライバ回路 5 4 は、 決定したデューティ比で、 電気配線丫 6 、 丫 7を介して、 マイクロバルブ丫 1 に電圧を印加する。 これによって、 蒸 発器 6から流出した低圧冷媒の過熱度が一定に保たれる。
[0095] 例えば、 デューティ比がゼロの場合、 既に説明した通り、 第 3連通孔丫
〇 2020/175550 23 卩(:171? 2020 /007726
3と第 1連通孔丫 1 とがマイクロバルブ丫 1 を介して連通し、 第 2連通孔 丫 V 2とマイクロバルブ丫 1の貫通孔丫 1 2 0の間が遮断される。 したがっ て、 図 1 3に示すように、 背圧室 5 1 と低圧冷媒通路 5 1 1<とが、 低圧導 入路 5 1 9およびマイクロバルブ丫 1 を介して、 連通している。
[0096] したがって、 背圧室 5 1
には低圧の冷媒が存在し、 前側室 5 1 3には高 圧冷媒通路 5 1 〇から高圧の冷媒が存在する状態になる。 つまり、 背圧室 5 1 の冷媒の圧力よりも前側室 5 1 3における冷媒の圧力の方が高い。 その 結果、 弁体 5 2は、 コイルパネ 5 3の伸長しようとする力に杭して背圧室 5 1 側にオフセツ トされる。 その結果、 絞り通路 5 1 IIの開度が最大の状態 になる。 したがって、 高圧冷媒通路 5 1 〇と低圧冷媒通路 5 1 の圧力差が 小さい。
[0097] また例えば、 デューティ比が 1 0 0 %の場合、 既に説明した通り、 第 2連 通孔丫 V 2と第 1連通孔丫 V 1 とがマイクロバルブ丫 1 を介して連通し、 第 3連通孔丫 3とマイクロバルブ丫 1の貫通孔丫 1 2 0の間が遮断される。 したがって、 図 1 4に示すように、 高圧冷媒通路 5 1 〇と背圧室
、 高圧導入路 5 1 およびマイクロバルブ丫 1 を介して、 連通している。
[0098] したがって、 背圧室 5 1
にも前側室 5 1 3にも同等の高圧の冷媒が存在 する状態になる。 その結果、 弁体 5 2は、 コイルパネ 5 3の伸長しようとす る力によって、 弁座 5 1 」側にオフセツ トされる。 その結果、 絞り通路 5 1 1*1の開度が最小の状態になる。 ただし、 開度はゼロより大きい。 したがって 、 高圧冷媒通路 5 1 〇と低圧冷媒通路 5 1
の圧力差が大きくなる。
[0099] また例えば、 デューティ比がゼロより大きく 1 0 0 %より小さい場合、 既 に説明した通り、 第 2連通孔丫 V 2と第 1連通孔丫 V 1 とがマイクロバルブ V 1 を介して連通すると共に、 第 3連通孔丫 3と第 1連通孔丫 1 とがマ イクロバルブ丫 1 を介して連通する。 そして、 マイクロバルブ丫 1の第 1冷 媒孔丫 1 6から第 1連通孔丫 1 を介して背圧室 5 1 に印加される冷媒圧 力は、 図 1 1 に示すように、 低圧より大きく高圧より小さい範囲内で、 デュ —ティ比が大きくなるほど大きくなる。 したがって、 絞り通路 5 1 の開度
〇 2020/175550 24 卩(:171? 2020 /007726
は、 最小よりも大きくかつ最大よりも小さい範囲で、 デューティ比が小さく なるほど大きくなる。 ここで、 低圧とは、 低圧冷媒通路 5 1
における冷媒 の圧力である。 また、 高圧とは、 高圧冷媒通路 5 1 〇における冷媒の圧力で あり、 上記低圧よりも高い。
[0100] また、 マイクロバルブ丫 1の II夕ーン構造において、 第 1外層丫 1 1 より も第 2外層丫 1 3の方が弁体 5 2に近い側に配置される。 しかも、 高圧冷媒 通路 5 1 〇と低圧冷媒通路 5 1 がボディ 5 1 に形成されている。 したがっ て、 第 2外層丫 1 3よりも第 1外層丫 1 1の方が弁体 5 2に近い側に配置さ れる場合に比べ、 マイクロバルブ丫 1からボディ 5 1へ冷媒を流す流路を短 くすることができる。 ひいては、 膨張弁 5を小型化することができる。
[0101 ] また、 自律部 5 4は、 蒸発器 6から流出した冷媒の温度および圧力を検出 する複合センサ 5 4〇と、 複合センサ 5 4〇が検出した温度および圧力に応 じてリブ丫 1 2 3、 リブ丫 1 2 4の温度を制御するドライバ回路 5 4 と、 を有する。 このようになっていることで、 膨張弁 5は、 自律的に高圧冷媒通 路 5 1 〇から低圧冷媒通路 5 1 へ流れる流量を調整できる。
[0102] (第 2実施形態)
次に第 2実施形態について説明する。 本実施形態は、 第 1実施形態のマイ クロバルブ丫 1が、 故障検知機能を有するよう変更されている。 具体的には 、 マイクロバルブ丫 1は、 第 1実施形態と同じ構成に加え、 図 1 5、 図 1 6 に示すように、 故障検知部丫 5 0を備えている。
[0103] 故障検知部丫 5 0は、 中間層丫 1 2のアーム丫 1 2 6に形成されたプリッ ジ回路を含む。 プリッジ回路は、 図 1 6のように接続された 4つのゲージ抵 抗を含んでいる。 つまり、 故障検知部丫 5 0は、 ダイヤフラムに相当するア —ム丫 1 2 6の歪みに応じて抵抗が変化するプリッジ回路である。 つまり、 故障検知部丫 5 0は半導体ピエゾ抵抗式の歪みセンサである。 故障検知部丫 5 0は、 電気的絶縁膜を介して、 アーム丫 1 2 6と導通しないように、 アー ム丫 1 2 6に接続されていてもよい。
[0104] このブリッジ回路の対角にある 2つの入力端子に配線丫 5 1、 丫5 2が接
〇 2020/175550 25 卩(:171? 2020 /007726
続される。 そして、 配線丫5 1、 丫 5 2から当該入力端子に、 定電流発生用 の電圧が印加される。 この配線丫5 1、 丫5 2は、 電気配線丫 6、 丫 7を介 してマイクロバルブ丫 1 に印加される電圧 (すなわち、 マイクロバルブ駆動 電圧) から分岐して上記 2つの入力端子まで伸びている。
[0105] また、 このブリッジ回路の別の対角にある 2つの出力端子に、 配線丫 5 3 、 丫 5 4が接続される。 そして、 アーム丫 1 2 6の歪み量に応じた電圧信号 が配線丫 5 3、 丫 5 4から出力される。 この電圧信号は、 後述する通り、 マ イクロバルブ丫 1が正常に作動しているか否かを判別するための情報として 使用される。 配線丫5 3、 丫 5 4から出力される電圧信号は、 ドライバ回路 5 4 ¢1に入力される。
[0106] アーム丫 1 2 6の歪み量に応じた電圧信号をドライバ回路 5 4 が配線丫
5 3、 丫 5 4を介して取得すると、 ドライバ回路 5 4 当該電圧信号に応じ て、 マイクロバルブ丫 1の故障の有無を検知するための故障検知処理を行う 。 検知対象の故障としては、 例えば、 アーム丫 1 2 6が折れる故障、 可動部 丫 1 2 8と第 1外層丫 1 1 または第 2外層丫 1 3との間に微小な異物が挟ま って可動部丫 1 2 8が動かなくなる故障、 等がある。
[0107] 複数本の第 1 リブ丫 1 2 3および複数本の第 2リブ丫 1 2 4の伸縮に応じ て、 梁丫 1 2 7および可動部丫 1 2 8が変位する際、 アーム丫 1 2 6の歪み 量が変化する。 したがって、 アーム丫 1 2 6の歪み量に応じた電圧信号から 、 可動部丫 1 2 8の位置を推定できる。 一方、 マイクロバルブ丫 1が正常で あれば、 電気配線丫6、 丫 7からマイクロバルブ丫 1への通電量と可動部丫 1 2 8の位置との間にも相関関係がある。 この通電量は、 マイクロバルブ丫 1 を制御するための制御量である。
[0108] ドライバ回路 5 4 は、 このことを利用して、 マイクロバルブ丫 1の故障 の有無を検知する。 つまり、 ドライバ回路 5 4 は、 配線丫5 3、 丫5 4か らの電圧信号から、 あらかじめ定められた第 1マップに基づいて、 可動部丫 1 2 8の位置を算出する。 そして、 あらかじめ定められた第 2マップに基づ いて、 可動部丫 1 2 8の位置から、 正常時において当該位置を実現するため
〇 2020/175550 26 卩(:171? 2020 /007726
に必要な電気配線丫 6、 丫 7からマイクロバルブ丫 1への供給電力を算出す る。 これら第 1マップ、 第 2マップは、 ドライバ回路 5 4 の不揮発性メモ リに記録されている。 不揮発性メモリは、 非遷移的実体的記憶媒体である。 第 1マップにおける電圧信号のレベルと位置との対応関係は、 あらかじめ実 験等によって定められてもよい。 また、 第 2マップにおける位置と供給電力 との対応関係も、 あらかじめ実験等によって定められてもよい。
[0109] そしてドライバ回路 5 4 は、 算出された電力と、 実際に電気配線丫 6、 丫 7からマイクロバルブ丫 1へ供給されている電力とを比較する。 そして、 ドライバ回路 5 4 は、 前者の電力と後者の電力の差の絶対値が許容値を超 えていれば、 マイクロバルブ丫 1が故障していると判定し、 許容値を超えて いなければ、 マイクロバルブ丫 1が正常であると判定する。 そして、 ドライ バ回路 5 4 は、 マイクロバルブ丫 1が故障していると判定した場合に、 マ イクロバルブ丫 1が故障していることを、 不図示の信号線を介して、 膨張弁 5の外部の制御装置丫 5 5に通知する。
[01 10] この制御装置丫5 5は、 例えば、 車両用空調装置において圧縮機、 送風機
、 エアミックスドア、 内外気切替ドア等の作動を制御するエアコン巳(3 IIで あってもよい。 あるいは、 この制御装置丫5 5は、 車両において、 車速、 燃 料残量、 電池残量等を表示するメータ巳(3 11であってもよい。 制御装置丫5 5は、 マイクロバルブ丫 1が故障していることの通知をドライバ回路 5 4 から受けると、 所定の故障報知制御を行う。
[01 1 1 ] 制御装置丫 5 5は、 この故障報知制御においては、 車内の人に報知を行う 報知装置丫 5 6を作動させる。 例えば、 制御装置丫5 5は、 警告ランプを点 灯させてもよい。 また、 制御装置丫5 5は、 画像表示装置に、 マイクロバル ブ丫 1 に故障が発生したことを示す画像を表示させてもよい。 これによって 、 車両の乗員は、 マイクロバルブ丫 1の故障に気付くことができる。
[01 12] また、 制御装置丫 5 5は、 この故障報知制御においては、 車両内の記憶装 置に、 マイクロバルブ丫 1 に故障が発生したことを示す情報を記録してもよ い。 この記憶装置は、 非遷移的実体的記憶媒体である。 これにより、 マイク
〇 2020/175550 27 卩(:171? 2020 /007726
ロバルブ丫 1の故障を、 膨張弁 5の外部において記録に残すことができる。
[01 13] また、 ドライバ回路 5 4 は、 マイクロバルブ丫 1が故障していると判定 した場合は、 通電停止制御を行う。 通電停止制御では、 ドライバ回路 5 4
は、 電気配線丫 6、 丫 7からマイクロバルブ丫 1への通電を停止させる。 こ のように、 マイクロバルブ丫 1の故障時にマイクロバルブ丫 1への通電を停 止することで、 マイクロバルブ丫 1の故障時の安全性を高めることができる
[01 14] 以上のように、 故障検知部丫 5 0が、 マイクロバルブ丫 1が正常に作動し ているか否かを判別するための電圧信号を出力することで、 ドライバ回路 5
4 は、 マイクロバルブ丫 1の故障の有無を容易に判別することができる。
[01 15] また、 この電圧信号は、 アーム丫 1 2 6の歪み量に応じた信号である。 し たがって、 電気配線丫 6、 丫 7からマイクロバルブ丫 1への通電量とこの電 圧信号との関係に基づいて、 マイクロバルブ丫 1の故障の有無を容易に判別 することができる。
[01 16] なお、 本実施形態では、 ブリッジ回路を構成する抵抗の変化に基づいてマ イクロバルブ丫 1が故障しているか否かが判定されている。 しかし、 他の方 法として、 静電容量の変化に基づいてマイクロバルブ丫 1が故障しているか 否かが判定されてもよい。 この場合、 ブリッジ回路の代わりに容量成分を形 成する複数の電極がアーム丫 1 2 6に形成される。 アーム丫 1 2 6の歪み量 と複数の電極間の静電容量の間は相関関係がある。 したがって、 制御装置丫
5 5は、 この複数の電極間の静電容量の変化に基づいて、 マイクロバルブ丫 1が故障しているか否かを判定できる。 なお、 第 1実施形態に対する本実施 形態の変更は、 後述する第 4〜第 1 0実施形態に対しても適用可能である。
[01 17] (第 3実施形態)
次に第 3実施形態について説明する。 本実施形態は、 第 1実施形態に対し て、 ホール素子 5 5および磁石 5 6が追加されている。 ホール素子 5 5およ び磁石 5 6は、 弁体 5 2と弁座 5 1 」 との間の距離を、 すなわち、 弁体 5 2 のリフト量を、 検出するための構成である。
〇 2020/175550 28 卩(:171? 2020 /007726
[01 18] ホール素子 5 5は、 ボディ 5 1 における弁座 5 1 」の近傍に固定される。
そしてホール素子 5 5は、 弁室 5 1 9と低圧冷媒通路 5 1
とを繫ぐ流路を とり囲むように、 配置される。 そしてホール素子 5 5は、 ドライバ回路 5 4 に電気的に接続されている。 磁石 5 6は、 弁体 5 2の弁座 5 1 」側の先端 部に固定されている。 磁石 5 6は、 永久磁石でも、 ドライバ回路 5 4 の作 動時に通電されている電磁石でもよい。
[01 19] 弁体 5 2が移動すると、 それと一体に磁石 5 6も移動する。 したがって、 弁体 5 2が移動すると、 ホール素子 5 5およびその周囲の磁界が変化する。 ホール素子 5 5からドライバ回路 5 4 には、 この磁界に応じたセンサ信号 が入力される。 ドライバ回路 5 4 は、 このセンサ信号に基づいて、 弁体 5 2のリフト量を算出することができる。 したがって、 ホール素子 5 5は、 ギ ヤップセンサとして機能する。
[0120] 膨張弁 5の動作が正常であれば、 電気配線丫 6、 丫 7からマイクロバルブ 丫 1への通電量と弁体 5 2のリフト量との間にも相関関係がある。 ドライバ 回路 5 4 は、 このことを利用して、 このリフト量の情報から、 膨張弁 5の 故障の有無を検知する。
[0121 ] 具体的には、 ドライバ回路 5 4 は、 算出されたリフト量から、 あらかじ め定められた対応マップに基づいて、 正常時において当該リフト量を実現す るために必要な電気配線丫 6、 丫 7からマイクロバルブ丫 1への供給電力を 算出する。 算出された供給電力を、 必要供給電力という。 対応マップは、 ド ライバ回路 5 4 の不揮発性メモリに記録されている。 不揮発性メモリは、 非遷移的実体的記憶媒体である。 対応マップにおけるリフト量と供給電力と の対応関係は、 あらかじめ実験等によって定められてもよい。
[0122] そしてドライバ回路 5 4 は、 算出された必要供給電力と、 実際に電気配 線丫 6、 丫 7からマイクロバルブ丫 1へ供給されている電力とを比較する。 そして、 ドライバ回路 5 4 は、 前者の電力と後者の電力の差の絶対値が許 容値を超えていれば、 膨張弁 5が故障していると判定し、 許容値を超えてい なければ、 膨張弁 5が正常であると判定する。 そして、 ドライバ回路 5 4
〇 2020/175550 29 卩(:171? 2020 /007726
は、 膨張弁 5が故障していると判定した場合に、 膨張弁 5が故障しているこ とを、 膨張弁 5の外部の制御装置丫 5 5に通知する。 なお、 本実施形態では 、 ドライバ回路 5 4 から制御装置丫 5 5に通知が可能なように、 ドライバ 回路 5 4 から制御装置丫 5 5まで信号線が接続されている。
[0123] この制御装置丫 5 5は、 例えば、 車両用空調装置において圧縮機、 送風機 、 エアミックスドア、 内外気切替ドア等の作動を制御するエアコン巳(3 IIで あってもよい。 あるいは、 この制御装置丫5 5は、 車両において、 車速、 燃 料残量、 電池残量等を表示するメータ巳(3 11であってもよい。 制御装置丫5 5は、 膨張弁 5が故障していることの通知をドライバ回路 5 4 から受ける と、 所定の故障報知制御を行う。
[0124] 制御装置丫 5 5は、 この故障報知制御においては、 車内の人に報知を行う 報知装置丫 5 6を作動させる。 例えば、 制御装置丫5 5は、 警告ランプを点 灯させてもよい。 また、 制御装置丫 5 5は、 画像表示装置に、 膨張弁 5に故 障が発生したことを示す画像を表示させてもよい。 これによって、 車両の乗 員は、 膨張弁 5の故障に気付くことができる。
[0125] また、 制御装置丫 5 5は、 この故障報知制御においては、 車両内の記憶装 置に、 膨張弁 5に故障が発生したことを示す情報を記録してもよい。 この記 憶装置は、 非遷移的実体的記憶媒体である。 これにより、 膨張弁 5の故障を 、 膨張弁 5の外部において記録に残すことができる。
[0126] また、 ドライバ回路 5 4 は、 膨張弁 5が故障していると判定した場合は 、 通電停止制御を行う。 通電停止制御では、 ドライバ回路 5 4 ¢1は、 電気配 線丫6、 丫 7から膨張弁 5への通電を停止させる。 このように、 マイクロバ ルブ丫 1 の故障時にマイクロバルブ丫 1への通電を停止することで、 マイク ロバルブ丫 1の故障時の安全性を高めることができる。
[0127] 以上のように、 ギャップセンサであるホール素子 5 5が、 マイクロバルブ 丫 1が正常に作動しているか否かを判別するためのセンサ信号を出力するこ とで、 ドライバ回路 5 4 は、 マイクロバルブ丫 1の故障の有無を容易に判 別することができる。 なお、 第 1実施形態に対する本実施形態の変更は、 後
〇 2020/175550 30 卩(:171? 2020 /007726
述する第 4〜第 1 0実施形態に対しても適用可能である。
[0128] (第 4実施形態)
次に、 第 4実施形態について、 図 1 8〜図 2 6を用いて説明する。 本実施 形態と第 1実施形態で同じ符号が付された部材は、 以下に別記しない限り、 同等の構成を有する。 本実施形態の冷凍サイクル 1は、 第 1実施形態の冷凍 サイクル 1 に対して、 膨張弁 5の構成のみが異なっている。 圧縮機 2、 凝縮 器 3、 レシーバ 4の構成は第 1実施形態と同じである。
[0129] 本実施形態の膨張弁 5が第 1実施形態の膨張弁 5と異なるのは、 バルブモ ジュール丫〇の位置、 構成、 弁室 5 1 9の構成等である。 以下、 膨張弁 5の 第 1実施形態と異なる部分を中心に説明する。
[0130] 膨張弁 5は、 図 1 8に示すように、 ボディ 5 1、 弁体 5 2、 コイルバネ 5
3、 自律部 5 4、 バルブモジュール丫〇、 荷重調整部 6 7等を有する。
[0131 ] ボディ 5 1の用途および材質は、 第 1実施形態と同じである。 ボディ 5 1 に形成された第 1流入口 5 1 3、 第 1流出口 5 1 匕、 第 2流入口 5 1 、 第 2流入口 5 1 、 第 2流出口 5 1 蒸発後冷媒通路 5 1 チ、 弁室 5 1 9、 絞り通路 5 1 の構成、 用途および外部との接続形態は、 第 1実施形態と同 様である。 ただし、 弁体 5 2が収容される弁室 5 1 9においては、 弁室 5 1 9の絞り通路 5 1 II側とは異なる圧力となる背圧室は設けられていない。
[0132] 以下、 膨張弁 5において、 蒸発後冷媒通路 5 1 チと弁体 5 2の並び方向を 縦方向といい、 蒸発後冷媒通路 5 1 チの伸びる方向を幅方向といい、 縦方向 にも幅方向にも直交する方向を厚み方向という。 図 1 8においては、 上下方 向が縦方向に相当し、 左右方向が幅方向に相当し、 紙面垂直方向が厚み方向 に相当する。 なお、 膨張弁 5の外形は、 縦方向の長さ、 幅方向の長さ、 厚み 方向の長さの順に、 長い。 これは、 第 1〜第 3実施形態も同様である。
[0134] コイルパネ 5 3は、 第 1実施形態と同様、 弁体 5 2に対して絞り通路 5 1
IIを閉弁させる側に付勢している弾性体である。 具体的には、 コイルパネ 5
〇 2020/175550 31 卩(:171? 2020 /007726
3は、 弁体 5 2を基準として蒸発後冷媒通路 5 1 チとは反対側に位置してい る。 コイルパネ 5 3の弁体 5 2側の端部は弁体 5 2に当接して弁体 5 2を押 圧し、 弁体 5 2とは反対側の端部は荷重調整部 6 7に当接して荷重調整部 6 7を押圧している。
[0135] 荷重調整部 6 7は、 弁室 5 1 9を閉じて弁室 5 1 9をボディ 5 1の外部の 空間から仕切る蓋部材である。 また、 荷重調整部 6 7とボディ 5 1の間には 、 シールリング 6 8が配置されている。 このシールリング 6 8により、 弁室 5 1 9とボディ 5 1の外部空間との間が液密にシールされる。
[0136] 荷重調整部 6 7の中心軸を囲む外周にはネジ山およびネジ溝が形成されて おり、 ボディ 5 1の荷重調整部 6 7が嵌る部分にもネジ山およびネジ溝が形 成されている。 これにより、 荷重調整部 6 7が雄ネジとなり、 ボディ 5 1が 雌ネジとなって、 荷重調整部 6 7がボディ 5 1 に螺合される。 なお、 荷重調 整部 6 7の中心軸は、 図 1 8において縦方向 (すなわち、 弁体 5 2の移動方 向) に伸びる。
[0137] 荷重調整部 6 7の弁室 5 1 9とは反対側の表面は、 ボディ 5 1の外部の空 間に露出した操作受付部 6 7 3が形成されている。 操作受付部 6 7 3は、 図 2 1 に示すように、 六角柱形状の穴を囲む形状となっている。 この操作受付 部 6 7 3は、 ボディ 5 1の外部からコイルバネ 5 3の弾性力の調整のための 作業者等の操作を受け付けることができる。
[0138] 操作とは、 この六角柱形状の穴に六角レンチ等の治具を挿入して荷重調整 部 6 7の中心軸を中心として回転させる操作である。 この操作が行われるこ とで、 荷重調整部 6 7は中心軸を回転中心として回転しながら中心軸に沿っ た方向に移動する。 この荷重調整部 6 7の移動により、 コイルバネ 5 3の弾 性力が調整される。
[0139] 膨張弁 5には、 第 1実施形態には無い連通孔 5 7、 収容孔 5 8が形成され ている。 連通孔 5 7は、 一端が蒸発後冷媒通路 5 1 チに連通し、 縦方向に伸 び、 他端が高圧冷媒通路 5 1 〇に連通する。 連通孔 5 7のうち、 蒸発後冷媒 通路 5 1 チ側の部分に対し、 高圧冷媒通路 5 1 〇側の部分の方が、 流路断面
〇 2020/175550 32 卩(:171? 2020 /007726
積が小さい。
[0140] 収容孔 5 8は、 _端が蒸発後冷媒通路 5 1 チに連通し、 縦方向に伸び、 他 端が低圧冷媒通路 5 1 1<に連通する。
[0141 ] また、 膨張弁 5は、 コイルパネ 6 4、 圧力伝達部 6 5を有している。 コイ ルバネ 6 4は、 その全部が収容孔 5 8内に収容された弾性部材であり、 収容 孔 5 8内を縦方向に移動可能である。 コイルパネ 6 4は、 圧力伝達部 6 5を 弁体 5 2の方向に付勢している。 収容孔 5 8のうち、 コイルバネ 6 4が配置 されている部分は、 弁体 5 2を移動させるための制御圧を発生する圧力室 5 8 3である。
[0142] 圧力伝達部 6 5は、 コイルパネ 6 4側の一部が収容孔 5 8内に収容されて コイルパネ 6 4に当接する。 そして圧力伝達部 6 5は、 コイルパネ 6 4と当 接する部分から、 収容孔 5 8と低圧冷媒通路 5 1 !<の連通部分を通って低圧 冷媒通路 5 1 内に伸びる。 更に圧力伝達部 6 5は、 低圧冷媒通路 5 1 内 を通って低圧冷媒通路 5 1 と弁室 5 1 9の連通部分から弁室 5 1 9内に伸 びる。 更に圧力伝達部 6 5は、 弁室 5 1 9において、 弁体 5 2の、 コイルバ ネ 5 3とは反対側に、 当接する。 そして圧力伝達部 6 5は、 収容孔 5 8内で 縦方向に移動可能になっている。
[0143] このような配置により、 圧力伝達部 6 5は、 圧力室 5 8 3に発生した制御 圧と、 コイルパネ 6 4の弾性力を受けて、 当該制御圧および弾性力に応じた 力 (すなわちそれらの合力) を弁体 5 2に伝達する。 したがって、 弁体 5 2 は、 圧力室 5 8 3の制御圧、 コイルバネ 6 4の弾性力、 およびコイルバネ 5 3の弾性力が釣り合うよう、 圧力室 5 8 3の制御圧に応じて、 弁室 5 1 9内 で位置を変える。 そして弁体 5 2の位置の変化に応じて、 絞り通路 5 1 1^の 開度が変動する。
[0144] また、 圧力伝達部 6 5の外周には、 圧力伝達部 6 5の外周と収容孔 5 8の 内壁に接触するシールリング 6 6が固定されている。 このシールリング 6 6 により、 圧力伝達部 6 5の外周において、 圧力室 5 8 3と低圧冷媒通路 5 1 !<の間がシ _ルされる。
〇 2020/175550 33 卩(:171? 2020 /007726
[0145] また、 圧力伝達部 6 5の内部には、 圧力室 5 8 3の冷媒を低圧冷媒通路 5
1 1<に導く低圧連通流路 5 8匕が形成されている。 この低圧連通流路 5 8匕 は、 一端が圧力室 5 8 3に開口し、 他端が低圧冷媒通路 5 1 1<に開口するこ とで、 低圧連通流路 5 8 から低圧冷媒通路 5 1 1<まで連通する。
[0146] また、 低圧連通流路 5 8 13における圧力室 5 8 3と低圧冷媒通路 5 1 1<の 間には、 絞り部 5 8〇が形成されている。 絞り部 5 8〇は、 低圧連通流路 5 8匕に沿って流路断面積が低下する形状となっている。 つまり絞り部 5 8〇 は、 その両端の流路よりも流路断面積が小さい。 このような絞り部 5 8〇に より、 その前後で圧力差を生じさせることができる。 つまり、 圧力室 5 8 3 と低圧冷媒通路 5 1 1<の間で圧力差を生じさせることができる。
[0147] ここで、 バルブモジュール丫 0について、 図 1 8、 図 1 9、 図 2 0、 図 2
2、 図 2 3、 図 2 4を用いて説明する。 本実施形態のバルブモジュール丫〇 は、 回路基板 5 4匕と弁体 5 2の間に配置され、 マイクロバルブ丫 1、 バル ブケーシング丫 2、 3つの〇リング 6 2 3、 6 2 6 2〇, 2本の電気配 線丫6、 丫 7、 および変換プレート丫 8を有している。
[0148] 本実施形態のマイクロバルブ丫 1は、 第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1
7、 第 3冷媒孔丫 1 8の形状が円形でなく矩形である点で、 第 1実施形態と 異なる。 本実施形態のマイクロバルブ丫 1は、 第 2外層丫 1 3において第 1 冷媒孔丫 1 6が形成される位置が、 第 1実施形態と異なる。 また、 本実施形 態のマイクロバルブ丫 1は、 梁丫 1 2 7および可動部丫 1 2 8の形状が、 第 1実施形態と異なる。 マイクロバルブ丫 1の他の構成は、 第 1実施形態と同 じである。
[0149] 梁丫 1 2 7、 可動部丫 1 2 8が第 1実施形態と異なるのは、 図 2 2、 図 2
3、 図 2 4に示すように、 可動部丫 1 2 8と共に中間層丫 1 2の表裏に貫通 する貫通孔丫 1 2 0を囲む枠形状となっている点である。
[0150] そして、 第 1冷媒孔丫 1 6は、 その貫通孔丫 1 2 0のうち梁丫 1 2 7に囲 まれた部分と、 第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3の積層方向 に重なる。 そして第 1冷媒孔丫 1 6は、 可動部丫 1 2 8とアーム丫 1 2 6か
〇 2020/175550 34 卩(:171? 2020 /007726
ら等距離の位置よりもアーム丫 1 2 6に近い位置に配置されている。 梁丫 1 2 7、 可動部丫 1 2 8のその他の構成は、 第 1実施形態と同じである。
[0151 ] マイクロバルブ丫 1の作動の形態は、 第 1実施形態と同様である。 可動部 丫 1 2 8が非通電時位置にあっても、 最大通電時位置にあっても、 どの中間 位置にあっても、 第 1冷媒孔丫 1 6と貫通孔丫 1 2 0は第 1外層丫 1 1、 中 間層丫 1 2、 第 2外層丫 1 3の積層方向に重なるからである。 可動部丫 1 2 8の位置にかかわらず、 第 1冷媒孔丫 1 6は冷媒室丫 1 9の貫通孔丫 1 2 0 に連通する。 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8の連通、 遮断の態様につ いては、 第 1実施形態と同様である。
[0152] 電気配線丫 6、 丫 7は、 それぞれ一端がマイクロバルブ丫 1の第 1印加点 丫 1 2 9、 第 2印加点丫 1 3 0に接続され、 貫通孔丫 1 4、 丫 1 5を通って 、 他端で回路基板 5 4匕にプリントされたパターンに接続される。 回路基板 5 4匕に実装されたドライバ回路 5 4 は、 当該パターンに接続されている 。 これにより、 電気配線丫 6、 丫 7を通して、 ドライバ回路 5 4 からマイ クロバルブ丫 1 に電力が供給可能となる。 互いに対向するマイクロバルブ丫 1 と回路基板 5 4匕の間には空隙が介在するので、 電気配線丫 6、 丫 7の配 策が容易である。
[0153] 変換プレート丫8は、 第 1実施形態と同様、 マイクロバルブ丫 1 とバルブ ケーシング丫 2の間に配置されており、 その表裏に貫通する流路丫8 1、 丫 8 2、 丫 8 3が形成されている。 これら流路丫8 1、 丫8 2は、 冷媒孔丫 1 6、 丫 1 7の配置関係と、 連通孔丫 1、 丫 2間の配置関係との違いを、 吸収する。
[0154] 流路丫 8 1の一端は第 1冷媒孔丫 1 6に連通し、 他端は後述する第 1連通 孔丫 1 に連通する。 したがって、 第 1冷媒孔丫 1 6は流路丫8 1 を介して 第 1連通孔丫 1 に連通する。 流路丫 8 2の一端は第 2冷媒孔丫 1 7に連通 し、 他端は後述する第 2連通孔丫 2に連通する。 したがって、 第 2冷媒孔 丫 1 7は流路丫 8 2を介して第 2連通孔丫 2に連通する。 流路丫8 3の一 端は第 3冷媒孔丫 1 8に連通するが、 図 2 0に示すように、 流路丫8 3の他
〇 2020/175550 35 卩(:171? 2020 /007726
端はバルブケーシング丫 2によって堰き止められている。 Iうまり、 第 3冷 媒孔丫 1 8は実質的に塞がれている。
[0155] バルブケーシング丫 2は、 第 1実施形態と同様、 マイクロバルブ丫 1およ び変換プレート丫 8を収容してマイクロバルブ丫 1 とボディ 5 1の線膨張係 数の違いを吸収する樹脂製のケーシングである。 また、 バルブケーシング丫 2は、 マイクロバルブ丫 1 を囲むベース部丫 2 0と、 マイクロバルブ丫 1か ら突出する柱形状の第 1突出部丫 2 1、 第 2突出部丫 2 2を有する。 第 1突 出部丫2 1は制御圧パイプに対応し、 第 2突出部丫 2 2は低圧パイプに対応 する。 ベース部丫 2 0、 第 1突出部丫2 1、 第 2突出部丫 2 2は、 一体に形 成されてもよいし、 されなくてもよい。
[0156] ベース部丫 2 0は、 ケーシング 5 4 3とボディ 5 1の間に配置され、 ボデ ィ 5 1 に形成された開口 5 1 を囲むように固定部 6 3によって固定される 。 開口 5 1 1:は、 ボディ 5 1 に形成され、 ケーシング 5 4 3に囲まれる空間 から蒸発後冷媒通路 5 1 チに貫通する。
[0157] 第 1突出部丫 2 1は、 一端においてべース部丫 2 0に接続されると共に変 換プレート丫8に接し、 開口 5 1 Iおよび蒸発後冷媒通路 5 1 干を貫通して 伸び、 他端において収容孔 5 8内に嵌っている。 このように、 第 1突出部丫 2 1は、 蒸発後冷媒通路 5 1 チをマイクロバルブ丫 1の側から圧力室 5 8 3 の側へ貫通する。
[0158] 第 2突出部丫 2 2は、 一端においてべース部丫 2 0に接続されると共に変 換プレート丫8に接し、 開口 5 1 Iおよび蒸発後冷媒通路 5 1 干を貫通して 伸び、 他端において連通孔 5 7内に嵌っている。 このように、 第 2突出部丫 2 2は、 蒸発後冷媒通路 5 1 チをマイクロバルブ丫 1の側から圧力室 5 8 3 の側へ貫通する。 第 1突出部丫2 1、 第 2突出部丫 2 2の伸びる方向は、 幅 方向に対しても厚み方向に対しても交差する。 より具体的には、 第 1突出部 丫2 1、 第 2突出部丫 2 2の伸びる方向は、 縦方向である。
[0159] 第 1突出部丫 2 1 と第 2突出部丫 2 2は、 蒸発後冷媒通路 5 1 干において 、 幅方向 (すなわち、 蒸発後冷媒通路 5 1 チ内を冷媒が流れる方向) に並ん
〇 2020/175550 36 卩(:171? 2020 /007726
で配置されている。 この並びにより、 蒸発後冷媒通路 5 1 チ内における冷媒 の圧力損失が低減される。 第 1突出部丫 2 1 と第 2突出部丫 2 2は、 開口 5 1 1:内部においては、 互いに一体に接続されている。 そして、 開口 5 1 1:内 の第 1突出部丫 2 1および第 2突出部丫 2 2の外周に、 〇リング 6 2〇が配 置されている。 〇リング 6 2〇は、 第 1突出部丫 2 1および第 2突出部丫 2 2の外周と開口 5 1 1;の内壁の両方に接触することで、 ケーシング 5 4 3に 囲まれた空間と蒸発後冷媒通路 5 1 チとの間をシールする。
[0160] また、 収容孔 5 8内の第 1突出部丫 2 1の外周に、 〇リング 6 2 3が配置 されている。 〇リング 6 2 3は、 第 1突出部丫 2 1の外周と収容孔 5 8の内 壁の両方に接触することで、 蒸発後冷媒通路 5 1 チと圧力室 5 8 3の間をシ —ルする。 また、 連通孔 5 7内の第 2突出部丫 2 2の外周に、 〇リング 6 2 匕が配置されている。 〇リング 6 2匕は、 第 2突出部丫 2 2の外周と連通孔 5 7の内壁の両方に接触することで、 蒸発後冷媒通路 5 1 チと高圧冷媒通路 5 1 〇の間をシ _ルする。
[0161 ] また、 第 1突出部丫 2 1の内部には、 第 1連通孔丫 V 1が形成されている 。 第 1連通孔丫 V 1は、 制御圧導入孔に対応する。 第 1連通孔丫 V 1は、 蒸 発後冷媒通路 5 1 チよりもマイクロバルブ丫 1側において第 1冷媒孔丫 1 6 に連通し、 蒸発後冷媒通路 5 1 チよりも圧力室 5 8 3側において圧力室 5 8 3に連通する。 このように、 蒸発後冷媒通路 5 1 チを貫通する第 1突出部丫 2 1内に第 1連通孔丫 V 1が形成されることで、 ボディ 5 1の厚み方向の体 格を抑えながら、 圧力室 5 8 3に導入される冷媒と蒸発後冷媒通路 5 1 干を 流れる冷媒の干渉を防止できる。
[0162] また、 第 2突出部丫 2 2の内部には、 第 2連通孔丫 2が形成されている 。 第 2連通孔丫 2は、 高圧導入孔に対応する。 第 2連通孔丫 2は、 蒸発 後冷媒通路 5 1 干よりもマイクロバルブ丫 1側において第 2冷媒孔丫 1 7に 連通し、 蒸発後冷媒通路 5 1 チよりも高圧冷媒通路 5 1 〇側において連通孔 5 7を介して高圧冷媒通路 5 1 〇に連通する。 このように、 蒸発後冷媒通路 5 1 干を貫通する第 2突出部丫 2 2内に第 2連通孔丫 2が形成されること
〇 2020/175550 37 卩(:171? 2020 /007726
で、 ボディ 5 1の厚み方向の体格を抑えながら、 高圧冷媒と蒸発後冷媒通路 5 1 チを流れる低圧冷媒の干渉を防止できる。
5 2、 コイルパネ 5 3、 荷重調整部 6 7が、 この順に縦方向に一列に並ぶ。 また、 マイクロバルブ丫 1、 蒸発後冷媒通路 5 1 チ、 圧力室 5 8 3、 低圧冷 媒通路 5 1 1<、 弁室 5 1 9も、 この順に縦方向に一列に並ぶ。
[0164] 以下、 このような構成の冷凍サイクル 1の作動について、 第 1実施形態と 異なる点を中心に説明する。 なお、 第 3冷媒孔丫 1 8は、 開口しても開口し なくても、 貫通孔丫 1 2 0を他の冷媒流路と連通させることはない。 また、 第 1冷媒孔丫 1 6は、 可動部丫 1 2 8の位置によらず常に開口するので、 マ イクロバルブ丫 1の貫通孔丫 1 2 0は第 1連通孔丫 V 1 を介して収容孔 5 8 と常に連通する。
[0165] [非稼働時]
まず、 冷凍サイクルの非稼働時について説明する。 この場合、 冷凍サイク ル 1の各装置の作動、 非作動および通電、 非通電は、 第 1実施形態と同じで ある。 この場合、 第 2連通孔丫 V 2とマイクロバルブ丫 1の貫通孔丫 1 2 0 の間が遮断される。
[0166] またこのとき、 第 1実施形態と同様、 レシーバ 4と膨張弁 5の間の冷媒の 圧力と、 膨張弁 5と蒸発器 6の間の冷媒の圧力は互いに等しい。 したがって 、 高圧冷媒通路 5 1 〇における冷媒の圧力と低圧冷媒通路 5 1 における冷 媒の圧力も互いに等しい。
[0167] また、 低圧連通流路 5 8 を介して低圧冷媒通路 5 1
と収容孔 5 8とが 長時間連通しているので、 収容孔 5 8の圧力は低圧冷媒通路 5 1 の圧力と 同じになる。 また、 弁室 5 1 9の圧力は低圧冷媒通路 5 1 の圧力と同じに なる。 したがって、 コイルバネ 5 3の弾性力とコイルバネ 6 4の弾性力との つり合いにより、 図 2 6に示すように、 弁体 5 2は弁座 5 1 」に接角虫し、 絞 り通路 5 1 が閉じられる。
〇 2020/175550 38 卩(:171? 2020 /007726
[0168] [稼働時]
次に、 冷凍サイクルが稼働している状態について説明する。 この場合、 圧 縮機 2、 送風機 8が作動する。 これにより、 高圧冷媒通路 5 1 〇における冷 媒の圧力が、 低圧冷媒通路 5 1
における冷媒の圧力よりも高くなる。 また 、 複合センサ 5 4〇、 ドライバ回路 5 4 も作動する。 したがってドライバ 回路 5 4 から電気配線丫 6、 丫 7を介してマイクロバルブ丫 1 に、 必要に 応じて通電が行われる。
[0169] 具体的には、 蒸発後冷媒通路 5 1 チを通る冷媒の圧力と温度を、 複合セン サ 5 4〇が検出する。 すなわち、 複合センサ 5 4〇の感温部が、 蒸発後冷媒 通路 5 1 チを通る冷媒の圧力および温度にそれぞれ応じた圧力信号および温 度信号を出力する。 ドライバ回路 5 4 は、 その圧力信号および温度信号を 取得し、 取得した圧力信号と温度信号に応じて、 電気配線丫 6、 丫 7に供給 する電力を決定する。 なお、 以下では、 ドライバ回路 5 4 は、 電気配線丫 6、 丫 7に供給する電力を、 最大電圧一定の \^/1\/1制御で行うものとして説 明する。 したがって、 ドライバ回路 5 4 は、 取得した圧力信号と温度信号 に応じて、 蒸発器 6から流出した低圧冷媒の過熱度が所定の一定値になるよ う、 電気配線丫 6、 丫 7に印加する電圧のデューティ比を決定する。
[0170] 具体的には、 ドライバ回路 5 4 は、 圧力信号が示す圧力が一定で温度信 号が示す温度が高くなるほど、 すなわち、 過熱度が高くなるほど、 デューテ ィ比を大きくする。 これにより、 弁体 5 2のリフト量が増大し、 加熱度が低 下する。 また、 温度信号が示す温度が一定で圧力信号が示す圧力が高くなる ほど、 すなわち、 過熱度が低くなるほど、 デューティ比を小さくする。 これ により、 弁体 5 2のリフト量が減少し、 過熱度が上昇する。
[0171 ] そして、 ドライバ回路 5 4 は、 決定したデューティ比で、 電気配線丫 6 、 丫 7を介して、 マイクロバルブ丫 1 に電圧を印加する。 これによって、 蒸 発器 6から流出した低圧冷媒の過熱度が一定に保たれる。
[0172] 例えば、 デューティ比が 1 0 0 %に上昇した場合、 第 2連通孔丫 2と第
1連通孔丫 1 とがマイクロバルブ丫 1 を介して連通する。 したがって、 高
〇 2020/175550 39 卩(:171? 2020 /007726
圧冷媒通路 5 1 〇における高圧冷媒が、 連通孔 5 7、 第 2連通孔丫 V 2、 流 路丫8 2、 第 2冷媒孔丫 1 7を介してマイクロバルブ丫 1内に導入される。 そして、 当該高圧冷媒が、 マイクロバルブ丫 1の第 1冷媒孔丫 1 6から、 流 路丫8 1、 第 1連通孔丫 V 1 を介して、 圧力室 5 8 3に印加される。
[0173] これにより、 圧力室 5 8 3の圧力が高圧になり、 圧力伝達部 6 5を介して 弁体 5 2に伝達される力が最大になる。 その結果、 図 2 5に示すように、 絞 り通路 5 1 IIの開度およびリフト量が最大の状態になる。 なお、 圧力室 5 8 3と低圧冷媒通路 5 1 は低圧連通流路 5 8 を介して連通しているが、 低 圧連通流路 5 8匕には絞り部 5 8〇が形成されているので、 圧力室 5 8 3と 低圧冷媒通路 5 1 の圧力差は維持される。
[0174] また例えば、 デューティ比がゼロより大きく 1 0 0 %より小さい場合、 第
2連通孔丫 V 2と第 1連通孔丫 V 1 とがマイクロバルブ丫 1 を介して連通す る。 ただし、 第 2冷媒孔丫 1 7の開度は、 デューティ比が 1 0 0 %のときよ りは小さく、 かつ、 デューティ比が大きくなるほど大きくなる。 したがって 、 マイクロバルブ丫 1の貫通孔丫 1 2 0における圧力は、 第 1冷媒孔丫 1 6 による減圧効果により、 デューティ比が小さくなるほど低くなる。
[0175] したがって、 マイクロバルブ丫 1の第 1冷媒孔丫 1 6から第 1連通孔丫 V
1 を介して圧力室 5 8 3に出力される冷媒圧力は、 デューティ比が小さくな るほど低くなる。 これにより、 圧力伝達部 6 5を介して弁体 5 2に伝達され る力が、 最大よりも小さく最小よりも大きい値になる。 そして、 絞り通路 5 1 IIの開度およびリフト量は、 最小よりも大きくかつ最大よりも小さい範囲 で、 デューティ比が小さくなるほど小さくなる。
[0176] また例えば、 デューティ比が 0 %に低下した場合、 第 2冷媒孔丫 1 7が遮 断される。 すると、 高圧冷媒通路 5 1 〇からマイクロバルブ丫 1内の貫通孔 丫 1 2 0への冷媒の流れが断たれる。 すると、 圧力室 5 8 3内の冷媒が低圧 連通流路 5 8匕を通って徐々に低圧冷媒通路 5 1
に流出すると共に、 圧力 室 5 8 3内の冷媒の圧力が低下する。 そして最終的に、 圧力室 5 8 3内の冷 媒の圧力が低圧冷媒通路 5 1 !<の圧力と同じになる。 したがって、 圧力伝達
〇 2020/175550 40 卩(:171? 2020 /007726
部 6 5から弁体 5 2に伝達される力も徐々に減少することでリフト量および 絞り通路 5 1 IIの開度が低下し、 最終的に、 図 2 6のようにゼロになる。
[0177] なお、 上述の通り、 冷凍サイクル 1の稼働時において、 デューティ比が 0 より大きく弁体 5 2のリフト量がゼロより大きい場合、 圧力室 5 8 3と低圧 冷媒通路 5 1 の間に圧力差が発生する。 そしてこのとき、 高圧冷媒通路 5 1 〇から、 連通孔 5 7、 第 2連通孔丫 2、 第 2冷媒孔丫 1 7、 貫通孔丫 1 2 0、 第 1冷媒孔丫 1 6、 第 1連通孔丫 V 1、 圧力室
低圧連通流路
5 8匕をこの順に通って、 低圧冷媒通路 5 1
に、 冷媒が流れる。 その際、 上述の通り、 絞り部 5 8〇の減圧作用により、 圧力室 5 8 3と低圧冷媒通路 5 1 の間の圧力差はあり続ける。 ただし、 このような冷媒の流量は、 弁室 5 1 9を介して高圧冷媒通路 5 1 〇から低圧冷媒通路 5 1
に流れる冷媒の 流量よりも遙かに少ない。
[0178] このように、 低圧連通流路 5 8匕は、 マイクロバルブ丫 1から流出する冷 媒を高圧冷媒通路 5 1 〇に導く。 これにより、 低圧連通流路 5 8 から低圧 冷媒通路 5 1
に導かれた冷媒は、 蒸発器 6に流入する。 したがって、 第 1 冷媒孔丫 1 6から低圧側に導かれた冷媒が蒸発器 6に流入しない場合に比べ て、 熱交換に寄与しない冷媒を低減することができる。 ひいては、 冷媒を無 駄に使用する可能性が低減され、 冷凍サイクル 1の効率が向上する。
[0179] また、 第 1冷媒孔丫 1 6は、 低圧冷媒通路 5 1 の低圧よりも高い制御圧 を圧力室 5 8 3に出力し、 低圧連通流路 5 8匕は、 第 1冷媒孔丫 1 6から流 出した冷媒を低圧冷媒通路 5 1
に導く。 そして、 低圧連通流路 5 8 13には 、 低圧連通流路 5 8 に沿って流路断面積が低下する絞り部 5 8〇が設けら れている。
[0180] このように、 低圧連通流路 5 8匕が第 1冷媒孔丫 1 6から流出した冷媒を 低圧冷媒通路 5 1 に導くように構成されていることで、 マイクロバルブ丫 1の第 3冷媒孔丫 1 8を低圧連通流路に連通させる必要がなくなる。 また、 このような構成において低圧連通流路 5 8匕に絞り部 5 8〇が形成されてい ることで、 絞り部 5 8〇の前後で圧力差を生じさせることができるので、 制
〇 2020/175550 41 卩(:171? 2020 /007726
御圧を出力するという第 1冷媒孔丫 1 6の機能が損ねられる可能性が低減さ れる。
[0181 ] また、 圧力伝達部 6 5は、 圧力室 5 8 3から低圧冷媒通路 5 1 を通って 弁体 5 2まで伸び、 低圧連通流路 5 8 は、 圧力伝達部 6 5の内部に形成さ れて圧力室 5 8 3から低圧冷媒通路 5 1
まで連通する。 このように、 圧力 伝達部 6 5が圧力室 5 8 3の制御圧を受けると共に低圧冷媒通路 5 1
ることを利用し、 圧力室 5 8 3から低圧冷媒通路 5 1 まで連通する低圧連 通流路 5 8 を形成することで、 低圧連通流路 5 8 のためだけの部材を設 ける必要がなくなる。
[0182] また、 複合センサ 5 4〇、 マイクロバルブ丫 1、 ドライバ回路 5 4 は、 蒸発後冷媒通路 5 1 チを基準として弁体 5 2とは反対側に配置される。 この ようになっていることで、 センサ、 制御弁部品およびドライバ回路間の電気 的配線の配策が容易になる。
[0183] また、 ボディ 5 1 において、 マイクロバルブ丫 1、 蒸発後冷媒通路 5 1 干 、 圧力室 5 8 3が、 この順に縦方向に一列に並んで配置されている。 そして 、 制御圧パイプである第 1突出部丫 2 1は、 蒸発後冷媒通路 5 1 干をマイク ロバルブ丫 1の側から圧力室 5 8 3の側へ貫通する。 そして、 第 1突出部丫 2 1 には、 蒸発後冷媒通路 5 1 干よりもマイクロバルブ丫 1の側において第 1冷媒孔丫 1 6に連通し、 蒸発後冷媒通路 5 1 チよりも圧力室 5 8 3側にお いて圧力室 5 8 3に連通する第 1連通孔丫 V 1が形成される。
[0184] このような構成により、 蒸発後冷媒通路 5 1 チを貫通する第 1突出部丫2
1 に形成された第 1連通孔丫 1 を介して、 マイクロバルブ丫 1から制御圧 を及ぼすことができる。 したがって、 マイクロバルブ丫 1の機能も維持しつ つ、 複合センサ 5 4〇、 マイクロバルブ丫 1およびドライバ回路 5 4 間の 電気的配線の配策が容易になる。 そして、 マイクロバルブ丫 1、 厚み方向に おける弁装置の体格を抑制することができる。
[0185] (第 5実施形態)
次に第 5実施形態について、 図 2 7、 図 2 8を用いて説明する。 本実施形
〇 2020/175550 42 卩(:171? 2020 /007726
態に係る冷凍サイクル 1は、 第 4実施形態の冷凍サイクル 1 に対して、 低圧 連通流路 5 8匕の配設形態が変更されている。 その他の構成は、 第 4実施形 態と同じである。
[0186] 本実施形態の低圧連通流路 5 8 は、 圧力伝達部 6 5の内部に形成されて いるのではなく、 圧力伝達部 6 5の外周面と収容孔 5 8の内周面の間の隙間 という形態で、 配設される。 この低圧連通流路 5 8匕は、 一端において圧力 室 5 8 3に連通し、 他端において低圧冷媒通路 5 1
に連通する。
[0187] また、 低圧連通流路 5 8 が圧力室 5 8 3と低圧冷媒通路 5 1 の両方に 連通するために、 シールリング 6 6には、 図 2 8に示すように、 冷媒が通過 可能なスリッ ト 6 6 3が形成されている。 このスリッ ト 6 6 3は、 縦方向 ( ずなわち、 図 2 8の紙面に直交する方向) に貫通している。 このスリッ ト 6 6 3は、 低圧連通流路 5 8匕の一部であり、 スリッ ト 6 6 3の他の部分より も流路断面積が小さい。 したがって、 スリッ ト 6 6 3は、 圧力室 5 8 3と低 圧冷媒通路 5 1
の間に圧力差を発生させる絞り部として機能する。
[0188] 本実施形態における冷凍サイクル 1の作動は、 第 4実施形態の低圧連通流 路 5 8匕、 スリッ ト 6 6 3を本実施形態の低圧連通流路 5 8匕、 スリッ ト 6 6 3に置き換えたものとなる。
[0189] 以上のように、 収容孔 5 8は圧力室 5 8 3を含むと共に低圧冷媒通路 5 1
!<に連通すること、 圧力伝達部 6 5が圧力室 5 8 3の制御圧を受けると共に 低圧冷媒通路 5 1 を通ることを利用し、 収容孔 5 8の内壁面と圧力伝達部 6 5の外周面との間の隙間に低圧連通流路 5 8匕を設けることができる。 こ のようにすることで、 低圧連通流路 5 8匕のためだけの部材を設ける必要が なくなる。 また、 シールリング 6 6を絞り部として利用することができるの で、 絞り部を設けるためにボディ 5 1、 圧力伝達部 6 5の形状を複雑にする 必要がなくなる。 また、 本実施形態において第 4実施形態と同様の構成から は、 第 4実施形態と同様の効果を得ることができる。
[0190] (第 6実施形態)
次に第 6実施形態について、 図 2 9を用いて説明する。 本実施形態に係る
〇 2020/175550 43 卩(:171? 2020 /007726
冷凍サイクル 1は、 第 4実施形態の冷凍サイクル 1 に対して、 低圧連通流路 5 8匕の配設形態が変更されている。 その他の構成は、 第 4実施形態と同じ である。
[0191 ] 本実施形態の低圧連通流路 5 8 は、 圧力伝達部 6 5の内部ではなく、 圧 力室 5 8 3から圧力伝達部 6 5をバイパスして低圧冷媒通路 5 1 に連通す るよう、 ボディ 5 1 に形成されている。 この低圧連通流路 5 8匕は、 圧力室 5 8 3において収容孔 5 8から分岐して、 ボディ 5 1内を低圧冷媒通路 5 1 まで伸びている。
[0192] また、 低圧連通流路 5 8 13における圧力室 5 8 3と低圧冷媒通路 5 1
間には、 第 4実施形態と同様に流路断面積が前後よりも小さい絞り部 5 8〇 が形成されている。 このような絞り部 5 8〇により、 その前後で圧力差を生 じさせることができる。 つまり、 圧力室 5 8 3と低圧冷媒通路 5 1
の間で 圧力差を生じさせることができる。 本実施形態において第 4実施形態と同様 の構成からは、 第 4実施形態と同様の効果を得ることができる。
[0193] (第 7実施形態)
次に第 7実施形態について、 図 3 0を用いて説明する。 本実施形態に係る 冷凍サイクル 1は、 第 4実施形態の冷凍サイクル 1 に対して、 バルブケーシ ング丫 2の構成、 変換プレート丫 8の構成、 低圧連通流路の配設形態、 およ びボディ 5 1の構造が、 異なっている。 その他の構成は、 第 4実施形態と同 じである。 以下、 第 4実施形態と異なる点を中心に説明する。
[0194] 本実施形態のバルブケーシング丫 2は、 第 4実施形態と同様のベース部丫
2 0、 第 1突出部丫2 1、 第 2突出部丫 2 2、 〇リング 6 2 3、 6 2 6 2〇に加え、 第 3突出部丫 2 3を有する。 第 3突出部丫 2 3は低圧パイプに 対応する。 ベース部丫 2 0、 第 1突出部丫 2 1、 第 2突出部丫 2 2、 第 3突 出部丫 2 3は、 一体に形成されてもよいし、 されなくてもよい。
[0195] 第 3突出部丫 2 3は、 一端においてべース部丫 2 0に接続されると共に変 換プレート丫8に接し、 開口 5 1 Iおよび蒸発後冷媒通路 5 1 干を貫通して 伸び、 他端において連通孔 5 9内に嵌っている。 連通孔 5 9は、 本実施形態
〇 2020/175550 44 卩(:171? 2020 /007726
においてボディ 5 1 に形成された孔であり、 一端は蒸発後冷媒通路 5 1 干に 連通し、 他端は低圧冷媒通路 5 1 1<に連通する。
[0196] このように、 第 3突出部丫2 3は、 蒸発後冷媒通路 5 1 干をマイクロバル ブ丫 1の側から圧力室 5 8 3および低圧冷媒通路 5 1 の側へ貫通する。 第 3突出部丫 2 3の伸びる方向は、 幅方向にも厚み方向にも交差し、 より具体 的には、 縦方向である。 第 1突出部丫2 1、 第 2突出部丫 2 2、 第 3突出部 丫2 3は、 蒸発後冷媒通路 5 1 チにおいて、 幅方向 (すなわち、 蒸発後冷媒 通路 5 1 チ内を冷媒が流れる方向) に並んで配置されている。 この並びによ り、 蒸発後冷媒通路 5 1 チ内における冷媒の圧力損失が低減される。
[0197] 第 1突出部丫 2 1、 第 2突出部丫 2 2、 第 3突出部丫 2 3は、 開口 5 1 I 内部においては、 互いに一体に接続されている。 そして、 開口 5 1 1:内の第 1突出部丫2 1、 第 2突出部丫 2 2、 第 3突出部丫 2 3の外周に、 第 4実施 形態と同様の〇リング 6 2〇が配置されている。
[0198] また、 連通孔 5 9内の第 3突出部丫 2 3の外周に、 〇リング 6 2 が配置 されている。 〇リング 6 2 は、 第 3突出部丫 2 3の外周と連通孔 5 9の内 壁の両方に接触することで、 蒸発後冷媒通路 5 1 チと低圧冷媒通路 5 1
の 間をシールする。
[0199] また、 第 3突出部丫 2 3の内部には、 第 3連通孔丫 3が形成されている 。 第 3連通孔丫 3は、 低圧導入孔に対応する。 第 3連通孔丫 3は、 蒸発 後冷媒通路 5 1 干よりもマイクロバルブ丫 1側において第 3冷媒孔丫 1 8に 連通し、 蒸発後冷媒通路 5 1 チよりも低圧冷媒通路 5 1 !<側において連通孔 5 9を介して低圧冷媒通路 5 1
に連通する。 このように、 蒸発後冷媒通路 5 1 干を貫通する第 3突出部丫 2 3内に第 3連通孔丫 3が形成されること で、 ボディ 5 1の厚み方向の体格を抑えながら、 蒸発後冷媒通路 5 1 チの冷 媒と低圧冷媒通路 5 1 の冷媒とが混合してしまう可能性を低減できる。 本 実施形態においては、 この第 3連通孔丫 3が、 低圧連通流路に相当する。
[0200] また、 本実施形態においては、 変換プレート丫 8の流路丫 8 3は、 一端に おいて第 3冷媒孔丫 1 8に連通し、 他端において第 3連通孔丫 3に連通す
〇 2020/175550 45 卩(:171? 2020 /007726
る。 これにより、 第 3連通孔丫 3と第 3冷媒孔丫 1 8の連通が実現する。 したがって、 第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8と第 1連通孔丫 1、 第 2連通孔丫 2、 第 3連通孔丫 3の接続関係は、 第 1 実施形態と同じである。
[0201] なお、 本実施形態のマイクロバルブ丫 1は、 第 4実施形態と同じマイクロ バルブ丫 1であってもよいし、 第 1実施形態と同じマイクロバルブ丫 1であ ってもよい。 どちらの場合であっても、 マイクロバルブ丫 1の可動部丫 1 2 8は、 増幅部 (すなわちアーム丫 1 2 6、 梁丫 1 2 7) によって増幅された 変位が伝達されて冷媒室丫 1 9内で動く。 そして、 この動きにより、 貫通孔 V 1 2 0に対する第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8の開度を調整するこ とができる。
[0202] また、 本実施形態の圧力伝達部 6 5には、 低圧連通流路 5 8 が形成され ていない。 したがって、 本実施形態の圧力室 5 8 3は、 膨張弁 5内において マイクロバルブ丫 1 を介さず高圧冷媒通路 5 1 〇、 低圧冷媒通路 5 1
に連 通することはない。
[0203] このような構成の冷凍サイクル 1の作動について、 以下説明する。
[非稼働時]
まず、 冷凍サイクルの非稼働時について説明する。 この場合、 冷凍サイク ル 1の各装置の作動、 非作動および通電、 非通電は、 第 1実施形態と同じで ある。 したがってこの場合、 第 3連通孔丫 V 3と第 1連通孔丫 V 1 とがマイ クロバルブ丫 1 を介して連通し、 第 2連通孔丫 2とマイクロバルブ丫 1の 貫通孔丫 1 2 0の間が遮断される。
[0204] またこのとき、 第 1実施形態と同様、 レシーバ 4と膨張弁 5の間の冷媒の 圧力と、 膨張弁 5と蒸発器 6の間の冷媒の圧力は互いに等しい。 したがって 、 高圧冷媒通路 5 1 〇における冷媒の圧力と低圧冷媒通路 5 1 における冷 媒の圧力も互いに等しい。 また、 弁室 5 1 9の圧力は低圧冷媒通路 5 1
圧力と同じになる。 したがって、 コイルバネ 5 3の弾性力とコイルバネ 6 4 の弾性力とのつり合いにより、 弁体 5 2は弁座 5 1 」に接触し、 絞り通路 5
〇 2020/175550 46 卩(:171? 2020 /007726
1 が閉じられる。
[0205] [稼働時]
次に、 冷凍サイクルが稼働している状態について説明する。 この場合、 圧 縮機 2、 送風機 8が作動する。 これにより、 高圧冷媒通路 5 1 〇における冷 媒の圧力が、 低圧冷媒通路 5 1
における冷媒の圧力よりも高くなる。 また 、 複合センサ 5 4〇、 ドライバ回路 5 4 も作動する。 したがってドライバ 回路 5 4 から電気配線丫 6、 丫 7を介してマイクロバルブ丫 1 に、 必要に 応じて通電が行われる。 その際、 第 4実施形態と同様の作動により、 ドライ バ回路 5 4 は、 取得した圧力信号と温度信号に応じて、 蒸発器 6から流出 した低圧冷媒の過熱度が所定の一定値になるよう、 電気配線丫 6、 丫 7に印 加する電圧のデューティ比を決定する。
[0206] 例えば、 デューティ比が 1 0 0 %の場合、 第 1実施形態と同様、 第 2連通 孔丫 V 2と第 1連通孔丫 V 1 とがマイクロバルブ丫 1 を介して連通し、 第 3 連通孔丫 3とマイクロバルブ丫 1の貫通孔丫 1 2 0の間が遮断される。 し たがって、 高圧冷媒通路 5 1 〇における高圧冷媒が、 連通孔 5 7、 第 2連通 孔丫 2、 流路丫8 2、 第 2冷媒孔丫 1 7を介してマイクロバルブ丫 1内に 導入される。 そして、 当該高圧冷媒が、 マイクロバルブ丫 1の第 1冷媒孔丫 1 6から、 流路丫8 1、 第 1連通孔丫 1 を介して、 圧力室 5 8 3に印加さ れる。 これにより、 圧力室 5 8 3の圧力が高圧になり、 圧力伝達部 6 5を介 して弁体 5 2に伝達される力が最大になる。 その結果、 絞り通路 5 1 IIの開 度およびリフト量が最大の状態になる。
[0207] また例えば、 デューティ比がゼロより大きく 1 0 0 %より小さい場合、 第
1実施形態と同様、 第 2連通孔丫 2と第 1連通孔丫 1 とがマイクロバル ブ丫 1 を介して連通すると共に、 第 3連通孔丫 3と第 1連通孔丫 1 とが マイクロバルブ丫 1 を介して連通する。 このとき、 マイクロバルブ丫 1の第 1冷媒孔丫 1 6から圧力室 5 8 3に出力される制御圧は、 高圧冷媒通路 5 1 〇の高圧よりも低く、 かつ、 低圧冷媒通路 5 1 の低圧よりも高くなる。 そ して、 デューティ比が小さくなるほど、 第 2冷媒孔丫 1 7の開度が小さくな
〇 2020/175550 47 卩(:171? 2020 /007726
り第 3冷媒孔丫 1 8の開度が大きくなる。 したがって、 マイクロバルブ丫 1 の第 1冷媒孔丫 1 6から圧力室 5 8 3に出力される制御圧は、 第 2冷媒孔丫 1 7と第 3冷媒孔丫 1 8の減圧作用により、 デューティ比が小さくなるほど 低下する。
[0208] これにより、 圧力伝達部 6 5を介して弁体 5 2に伝達される力が、 最大よ りも小さく最小よりも大きい値になる。 そして、 絞り通路 5 1 IIの開度およ びリフト量は、 最小よりも大きくかつ最大よりも小さい範囲で、 デューティ 比が小さくなるほど小さくなる。 なお、 デューティ比がゼロより大きく 1 0 0 %より小さい場合、 冷媒は、 高圧冷媒通路 5 1 〇から第 2連通孔丫 2、 マイクロバルブ丫 1、 第 3連通孔丫 3をこの順に通って、 低圧冷媒通路 5 1 に流れる。 ただし、 この流れる量は、 弁室 5 1 9を通って高圧冷媒通路 5 1 〇から低圧冷媒通路 5 1 に流れる量よりも遙かに少ない。
[0209] また例えば、 デューティ比がゼロの場合、 第 1実施形態と同様、 第 3連通 孔丫 3と第1連通孔丫 1 とがマイクロバルブ丫 1 を介して連通し、 第 2 連通孔丫 V 2とマイクロバルブ丫 1の貫通孔丫 1 2 0の間が遮断される。 し たがって、 低圧冷媒通路 5 1 における低圧冷媒が、 連通孔 5 9、 第 3連通 孔丫 3、 流路丫8 3、 第 3冷媒孔丫 1 8を介してマイクロバルブ丫 1内に 導入される。 そして、 当該低圧冷媒が、 マイクロバルブ丫 1の第 1冷媒孔丫 1 6から、 流路丫8 1、 第 1連通孔丫 1 を介して、 圧力室 5 8 3に印加さ れる。 これにより、 圧力室 5 8 3の圧力が低圧になり、 弁体 5 2は弁座 5 1 」に接触し、 絞り通路 5 1 IIが閉じられる。
[0210] また、 圧連通流路に対応する第 3連通孔丫 3は、 第 3冷媒孔丫 1 8から 蒸発後冷媒通路 5 1 チを越えて低圧冷媒通路 5 1 !<に連通している。 本実施 形態では、 第 4実施形態と同様、 ボディ 5 1の外部からコイルパネ 5 3の弾 性力の調整のための操作を受け付け可能で蒸発後冷媒通路 5 1 チを基準とし て弁体 5 2と同じ側にある荷重調整部 6 7が設けられている。 この荷重調整 部 6 7との干渉を避けるように、 マイクロバルブ丫 1が蒸発後冷媒通路 5 1 干を基準として荷重調整部 6 7、 弁体 5 2、 低圧冷媒通路 5 1 !<とは反対側
〇 2020/175550 48 卩(:171? 2020 /007726
にある。 この場合、 第 3連通孔丫 3を、 第 3冷媒孔丫 1 8から蒸発後冷媒 通路 5 1 チを越えて低圧冷媒通路 5 1 1<に連通させることで、 マイクロバル ブ丫 1 と荷重調整部 6 7との干渉を避けつつ、 マイクロバルブ丫 1から低圧 冷媒通路 5 1 1<に冷媒を導くことができる。
[021 1 ] また、 蒸発後冷媒通路 5 1 チをマイクロバルブ丫 1の側から低圧冷媒通路
5 1 の側へ貫通する第 3突出部丫 2 3の内部に、 低圧連通流路である第 3 連通孔丫 3が形成されている。 このようになっていることで、 蒸発後冷媒 通路 5 1 チと第 3連通孔丫 3が交差しても、 両者が流路的に絶縁される。 そして、 蒸発後冷媒通路 5 1 チ、 圧力室
圧力伝達部 6 5、 弁体 5 2 の並び方向に交差して蒸発後冷媒通路 5 1 チの延伸方向に交差する厚み方向 における膨張弁 5の体格を抑制することができる。 また、 本実施形態におい て第 4実施形態と同様の構成からは、 第 4実施形態と同様の効果を得ること ができる。
[0212] (第 8実施形態)
次に第 8実施形態について、 図 3 1、 図 3 2を用いて説明する。 本実施形 態の冷凍サイクル 1は、 第 7実施形態に対して、 バルブケーシング丫 2の構 成、 変換プレート丫 8の構成、 低圧連通流路の配設形態、 およびボディ 5 1 の構造が、 異なっている。 その他の構成は、 第 7実施形態と同じである。 以 下、 第 4実施形態と異なる点を中心に説明する。
[0213] 本実施形態のバルブケーシング丫 2は、 第 7実施形態のバルブケーシング 丫 2に対して、 第 3突出部丫 2 3の位置および長さが異なっている。 具体的 には、 第 3突出部丫 2 3は、 図 3 2に示すように、 第 2突出部丫 2 2に対し て膨張弁 5の厚み方向に並んで配置されている。 また、 本実施形態の第 3突 出部丫 2 3は、 第 7実施形態に比べて縦方向の長さが短い。 また、 第 3突出 部丫2 3内に形成されている第 3連通孔丫 3の長さも、 第 3突出部丫2 3 が短くなったのに合わせて短くなっている。
[0214] 第 3連通孔丫 3は、 一端が変換プレート丫8の流路丫8 3に連通し、 他 端が迂回流路 5 8 に連通している。 迂回流路 5 8 は、 図 3 2に示すよう
〇 2020/175550 49 卩(:171? 2020 /007726
に、 ボディ 5 1 に形成され、 一端で第 3連通孔丫 3に連通し、 縦方向に伸 びた後、 厚み方向に伸びて、 他端で低圧冷媒通路 5 1 1<に連通している。 ま た、 ボディ 5 1 には、 迂回流路 5 8 とボディ 5 1の外部空間との間をシー ルするシール部材 6 2 6が取り付けられている。 第 3連通孔丫 3と迂回流 路 5 8 から成る流路が、 低圧連通流路に相当する。
[0215] この低圧連通流路は、 流路丫 8 3から、 バルブケーシング丫 2内およびボ ディ 5 1内において、 蒸発後冷媒通路 5 1 チを迂回して低圧冷媒通路 5 1 1< に連通している。 すなわち、 低圧連通孔流路は、 蒸発後冷媒通路 5 1 チに対 してボディ 5 1の厚み方向にずれた位置を通ることで、 蒸発後冷媒通路を越 えて、 蒸発後冷媒通路 5 1 チよりもマイクロバルブ丫 1側から、 蒸発後冷媒 通路 5 1 チよりも低圧冷媒通路 5 1 側に伸びる。
[0216] 変換プレート丫 8において、 マイクロバルブ丫 1の第 1冷媒孔丫 1 6、 第
2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8がそれぞれ第 1連通孔丫 1、 第 2連通 孔丫 2、 第 3連通孔丫 3に連通するよう、 流路丫8 1、 丫8 2、 丫8 3 がそれぞれ形成されている。 これは、 第 7実施形態と同様である。 なお、 本 実施形態では、 連通孔 5 9は形成されていない。
[0217] 本実施形態の作動は、 第 7実施形態と同じである。 ただし、 第 3冷媒孔丫
1 8が開口したときは、 第 3冷媒孔丫 1 8、 第 3連通孔丫 3、 迂回流路 5 8 を介して冷凍サイクル 1 と低圧冷媒通路 5 1 が連通する。
[0218] このように、 低圧連通流路は、 ボディ 5 1およびバルブケーシング丫 2に おいて、 蒸発後冷媒通路 5 1 チの外部に形成されていることで、 第 3冷媒孔 V 1 8側から蒸発後冷媒通路 5 1 チを迂回して蒸発後冷媒通路 5 1 チ側に連 通している。 このようになっていることで、 厚み方向におけるボディ 5 1の 内部等を利用して、 第 3冷媒孔丫 1 8から出る冷媒を蒸発後冷媒通路 5 1 干 を越えて低圧冷媒通路 5 1 に導くことができる。 なお、 本実施形態におい て第 7実施形態と同様の構成からは、 第 7実施形態と同様の効果を得ること ができる。
[0219] (第 9実施形態)
〇 2020/175550 50 卩(:171? 2020 /007726
次に第 9実施形態について、 図 3 3、 図 3 4、 図 3 5を用いて説明する。 本実施形態は、 第 8実施形態に対して、 第 3冷媒孔丫 1 8が連通する位置が 、 図 3 5に示すように、 低圧冷媒通路 5 1
ら蒸発後冷媒通路 5 1 チに変 更されている。
[0220] 具体的には、 第 8実施形態の迂回流路 5 8 が廃され、 第 3連通孔丫 3 の流路丫 8 3とは反対側の端部が蒸発後冷媒通路 5 1 チに連通している。 冷 凍サイクル 1の作動中、 低圧冷媒通路 5 1
と蒸発後冷媒通路 5 1 チはほぼ 同じ圧力なので、 本実施形態においても、 第 8実施形態と同様の作動が実現 する。 なお、 本実施形態において第 8実施形態と同様の構成からは、 第 4実 施形態と同様の効果を得ることができる。
[0221 ] (第 1 0実施形態)
次に第 1 〇実施形態について、 図 3 6を用いて説明する。 本実施形態は、 第 4実施形態に対して、 複合センサ 5 4〇の配置が異なる。 具体的には、 複 合センサ 5 4〇は、 バルブモジユール丫 0と一体に形成されている。
[0222] より具体的には、 複合センサ 5 4〇は、 開口 5 1 1:内において、 第 1突出 部丫2 1 と第 2突出部丫 2 2の間に挟まれ、 不図示の配線を介して、 回路基 板 5 4匕に実装されたドライバ回路 5 4 に接続されている。
[0223] そして、 複合センサ 5 4〇は、 第 1突出部丫 2 1および第 2突出部丫 2 2 の両方に接着等で取り付けられる。 これにより、 複合センサ 5 4〇と第 1突 出部丫 2 1の間、 および、 複合センサ 5 4〇と第 2突出部丫 2 2の間に、 ケ —シング 5 4 3で囲まれた空間と蒸発後冷媒通路 5 1 干の間のシールが実現 する。
[0224] 以上のように、 複合センサ 5 4〇とバルブモジユール丫 0は、 一体として ボディ 5 1 に組み付けられている。 このようになっていることで、 複合セン サ 5 4〇とマイクロバルブ丫 1が別体としてボディ 5 1 に組み付けられてい る場合に比べ、 組み付け作業の手間および組み付けのための部品を低減する ことができる。 実際、 上記のような構成においては、 複合センサ 5 4〇をボ ディ 5 1 に組み付けるための部材が不要になる。 また、 複合センサ 5 4〇を
〇 2020/175550 51 卩(:171? 2020 /007726
蒸発後冷媒通路 5 1 チに露出させるための孔を開口 5 1 「以外に設ける必要 がない。
[0225] なお、 第 4実施形態に対する本実施形態の変更は、 他の実施形態にも同様 に適用可能である。 また、 本実施形態において、 適用先の実施形態と同様の 構成からは、 第 4実施形態と同様の効果を得ることができる。
[0226] (他の実施形態)
なお、 本開示は上記した実施形態に限定されるものではなく、 適宜変更が 可能である。 また、 上記各実施形態は、 互いに無関係なものではなく、 組み 合わせが明らかに不可な場合を除き、 適宜組み合わせが可能である。 また、 上記各実施形態において、 実施形態を構成する要素は、 特に必須であると明 示した場合および原理的に明らかに必須であると考えられる場合等を除き、 必ずしも必須のものではない。 また、 上記各実施形態において、 実施形態の 構成要素の個数、 数値、 量、 範囲等の数値が言及されている場合、 特に必須 であると明示した場合および原理的に明らかに特定の数に限定される場合等 を除き、 その特定の数に限定されるものではない。 また、 上記実施形態にお いて、 センサから車両の外部環境情報 (例えば車外の湿度) を取得すること が記載されている場合、 そのセンサを廃し、 車両の外部のサーバまたはクラ ウドからその外部環境情報を受信することも可能である。 あるいは、 そのセ ンサを廃し、 車両の外部のサーバまたはクラウドからその外部環境情報に関 連する関連情報を取得し、 取得した関連情報からその外部環境情報を推定す ることも可能である。 特に、 ある量について複数個の値が例示されている場 合、 特に別記した場合および原理的に明らかに不可能な場合を除き、 それら 複数個の値の間の値を採用することも可能である。 また、 上記各実施形態に おいて、 構成要素等の形状、 位置関係等に言及するときは、 特に明示した場 合および原理的に特定の形状、 位置関係等に限定される場合等を除き、 その 形状、 位置関係等に限定されるものではない。 また、 本開示は、 上記各実施 形態に対する以下のような変形例および均等範囲の変形例も許容される。 な お、 以下の変形例は、 それぞれ独立に、 上記実施形態に適用および不適用を
〇 2020/175550 52 卩(:171? 2020 /007726
選択できる。 すなわち、 以下の変形例のうち任意の組み合わせを、 上記実施 形態に適用することができる。
[0227] (変形例 1)
上記各実施形態では、 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4、 は、 通電されることで発熱し、 その発熱によって自らの温度が上昇す ることで膨張する。 しかし、 これら部材は、 温度が変化すると長さが変化す る形状記憶材料から構成されていてもよい。
[0228] (変形例 2)
第 5実施形態では、 電気配線丫6、 丫 7からマイクロバルブ丫 1への通電 が停止したとき、 マイクロバルブ丫 1は低圧冷媒通路 5 1
に連通する。 し かし、 必ずしもこのようになっておらずともよい。 例えば、 電気配線丫 6、 丫 7からマイクロバルブ丫 1への通電が停止したとき、 マイクロバルブ丫 1 は高圧冷媒通路 5 1 〇に連通してもよい。
[0229] (変形例 3)
第 3実施形態では、 ギャップセンサとしてホール素子 5 5が用いられてい るが、 ギャップセンサとしては、 渦電流式のセンサが用いられてもよい。 こ の場合、 第 3実施形態に対して、 磁石 5 6が廃され、 ホール素子 5 5がコイ ルに置き換わる。 このコイルには、 高周波電流が流れる。 その結果、 このコ イルの周囲には、 高周波磁界が発生する。 この磁界内における金属製の弁体 5 2の位置が変化すると、 コイルのインピーダンスが変化する。 ドライバ回 路 5 4〇1は、 このインピーダンスの変換に基づいて、 弁体 5 2のリフト量を 算出することができる。
[0230] (変形例 4)
第 3実施形態のホール素子 5 5、 磁石 5 6およびそれを用いたドライバ回 路 5 4 による膨張弁 5の故障検知の機能については、 第 2実施形態に適用 されてもよい。 その場合、 ドライバ回路 5 4 は、 膨張弁 5の故障と、 マイ クロバルブ丫 1の故障を、 共に検出可能となる。 そして、 報知装置丫5 6は 、 膨張弁 5の故障と、 マイクロバルブ丫 1の故障を、 両方とも報知可能とな
\¥0 2020/175550 53 卩(:17 2020 /007726
る。
[0231 ] (変形例 5)
上記各実施形態では、 第 2冷媒孔丫 1 7は、 第 2連通孔丫 2、 高圧導入 路 5 1 を介して高圧冷媒通路 5 1 〇に連通している。 しかし、 第 2冷媒孔 丫 1 7は、 高圧冷媒通路 5 1 〇に連通するのではなく、 ボディ 5 1の外部の 高圧の流路に連通していてもよい。 その場合、 第 1通路は、 高圧冷媒通路 5 1 〇ではなく当該外部の高圧の流路に対応する。 当該外部の高圧の流路は、 例えば、 レシーバ 4の冷媒流れ下流かつ膨張弁 5の冷媒流れ上流の流路であ ってもよい。
[0232] (変形例 6)
上記各実施形態では、 第 3冷媒孔丫 1 8は、 第 3連通孔丫 3、 低圧導入 路 5 1 を介して低圧冷媒通路 5 1 に連通している。 しかし、 第 3冷媒孔 丫 1 8は、 低圧冷媒通路 5 1 に連通するのではなく、 ボディ 5 1の外部の 低圧の流路に連通していてもよい。 その場合、 第 2通路は、 低圧冷媒通路 5 1 ではなく当該外部の低圧の流路に対応する。 当該外部の低圧の流路は、 例えば、 膨張弁 5の冷媒流れ下流かつ蒸発器 6の冷媒流れ上流の流路であっ てもよい。
[0233] (変形例 7)
上記各実施形態では、 可動部丫 1 2 8が移動することで、 貫通孔丫 1 2 0 に対する第 2冷媒孔丫 1 7の開度および貫通孔丫 1 2 0に対する第 3冷媒孔 丫 1 8の開度の両方が連動して調整されている。 しかし、 必ずしもこのよう になっておらずともよい。
[0234] 例えば、 可動部丫 1 2 8が移動することで、 貫通孔丫 1 2 0に対する第 2 冷媒孔丫 1 7の開度のみが調整され、 貫通孔丫 1 2 0に対する第 3冷媒孔丫 1 8の開度は常に一定であってもよい。 あるいは例えば、 可動部丫 1 2 8が 移動することで、 貫通孔丫 1 2 0に対する第 3冷媒孔丫 1 8の開度のみが調 整され、 貫通孔丫 1 2 0に対する第 2冷媒孔丫 1 7の開度は常に一定であっ てもよい。 これらのようにしても、 可動部丫 1 2 8が移動することで、 第 1
〇 2020/175550 54 卩(:171? 2020 /007726
冷媒孔丫 1 6から出力される冷媒圧力が変動する。
[0235] (変形例 8)
上記各実施形態では、 マイクロバルブ丫 1の外部から貫通孔丫 1 2 0に連 通する孔は第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8の 3つ であった。 しかし、 マイクロバルブ丫 1の外部から貫通孔丫 1 2 0に連通す る冷媒孔は、 4つ以上あってもよい。
[0236] 4番目以降の冷媒孔も、 可動部丫 1 2 8の動きによって開度が調整されて もよいし、 調整されなくてもよい。 4番目以降の冷媒孔は、 第 1冷媒孔丫 1 6と同様に背圧室 5 1
に連通していてもよい。 また、 4番目以降の冷媒孔 は、 第 2冷媒孔丫 1 7と同様に高圧の高圧冷媒通路 5 1 〇に連通していても よい。 また、 4番目以降の冷媒孔は、 第 3冷媒孔丫 1 8と同様に低圧の低圧 冷媒通路 5 1
に連通していてもよい。 また、 4番目以降の冷媒孔は、 上記 高圧とも上記低圧とも違う圧力の冷媒が流れる流路であって、 背圧室 5 1 〇! でもない流路に連通していてもよい。
[0237] (変形例 9)
上記実施形態では、 膨張弁 5は、 冷凍サイクルのうち、 車室内の空調を行 うクーラサイクルに適用されている。 しかし、 膨張弁 5の適用先は、 他の用 途の冷凍サイクルであってもよい。 例えば、 車両用のヒートポンプサイクル に流量調整弁として適用されてもよいし、 車両用電池冷却器に流量調整弁と して適用されてもよい。 このような適用例においては、 膨張弁 5が故障する と走行距離または電池への影響が大きい。 したがって、 膨張弁 5の故障また はマイクロバルブ丫 1の故障を膨張弁 5の外部の車載装置に通知することが 、 有益である。
[0238] (変形例 1 0)
上記各実施形態では、 弁によって流量を調整する弁装置の一例として膨張 弁が挙げられている。 しかし、 マイクロバルブ丫 1 を利用して弁を動かすこ とで流量を調整する弁装置は、 膨張弁に限らず、 冷凍サイクルにおける他の 流量調整弁であってもよい。
〇 2020/175550 55 卩(:171? 2020 /007726
[0239] (変形例 1 1)
マイクロバルブ丫 1の形状やサイズは、 上記実施形態で示したものに限ら れない。 マイクロバルブ丫 1は、 極微小流量制御可能で、 かつ、 流路内に存 在する微小ゴミを詰まらせないような水力直径の第 1冷媒孔丫 1 6、 第 2冷 媒孔丫 1 7、 第 3冷媒孔丫 1 8を有していればよい。
[0240] (変形例 1 2)
上記実施形態では、 第 2連通孔丫 2は、 第 2冷媒孔丫 1 7と高圧冷媒通 路 5 1 〇を連通させている。 しかし、 第 2連通孔丫 2を介して第 2冷媒孔 V 1 7の連通先は、 高圧冷媒通路 5 1 〇に限らず、 低圧冷媒通路 5 1
を流 れる冷媒よりも高圧の冷媒が流れる流路であれば、 どこでもよい。
[0241 ] (変形例 1 3)
上記第 4、 5、 6、 9実施形態では、 第 1冷媒孔丫 1 6からマイクロバル ブ丫 1の外部に制御圧が出力され、 第 2冷媒孔丫 1 7はマイクロバルブ丫 1 の外部の高圧の通路に連通し、 第 3冷媒孔丫 1 8は実質的に塞がれている。 それ以外の実施形態では、 第 1冷媒孔丫 1 6からマイクロバルブ丫 1の外部 に制御圧が出力され、 第 2冷媒孔丫 1 7はマイクロバルブ丫 1の外部の高圧 の通路に連通し、 第 3冷媒孔丫 1 8はマイクロバルブ丫 1の外部の低圧の通 路に連通している。 これら以外にも、 第 1冷媒孔丫 1 6からマイクロバルブ 丫 1の外部に制御圧が出力され、 第 2冷媒孔丫 1 7が実質的に塞がれ、 第 3 冷媒孔丫 1 8がマイクロバルブ丫 1の外部の低圧の通路に連通する例があつ てもよい。
[0242] (変形例 1 4)
上記実施形態では、 第 2冷媒孔丫 1 7が連通する第 1通路の一例として、 膨張弁 5内部の高圧冷媒通路 5 1 〇が例示されている。 しかし、 第 2冷媒孔 丫 1 7が連通する第 1通路は、 膨張弁 5から流出する低圧の冷媒よりも高圧 の冷媒が流れる箇所であれば、 膨張弁 5の外部にあつてもよい。
[0243] (変形例 1 5)
上記実施形態における第 1連通孔丫 1、 第 2連通孔丫 2、 第 3連通孔
〇 2020/175550 56 卩(:171? 2020 /007726
丫 3は、 ボディ 5 1 とは別の部品となっているが、 ボディ 5 1 と一体に形 成されていてもよい。
[0244] (変形例 1 6)
上記実施形態では、 複合センサ 5 4〇が検出する物理量は、 蒸発後冷媒通 路 5 1 干内の圧力と温度である。 しかし、 複合センサ 5 4〇が検出する物理 量は、 蒸発後冷媒通路 5 1 チ内の圧力のみであってもよいし、 蒸発後冷媒通 路 5 1 干内の温度のみであってもよい。 まら、 複合センサ 5 4〇が検出する 物理量は、 上記圧力でも上記温度でもない他の物理量であってもよい。
[0245] (変形例 1 7)
上記第 4〜 1 0実施形態では、 第 2連通孔丫 2は蒸発後冷媒通路 5 1 干 内を貫通する第 2突出部丫 2 2内に形成されることで、 蒸発後冷媒通路 5 1 干のマイクロバルブ丫 1側から圧力室 5 8 3側へ蒸発後冷媒通路 5 1 チを越 えて伸びている。 しかし、 第 2連通孔丫 2は、 蒸発後冷媒通路 5 1 チに対 して膨張弁 5の厚み方向にずれた位置を通って、 蒸発後冷媒通路 5 1 チのマ イクロバルブ丫 1側から圧力室 5 8 3側へ蒸発後冷媒通路 5 1 チを越えて伸 びていてもよい。
(まとめ)
上記各実施形態の一部または全部で示された第 1の観点によれば、 冷凍サ イクルに用いられる弁装置は、 流入口と、 流出口と、 前記流入口から前記流 出口へ流れる冷媒を流通させる弁室と、 が形成されたボディと、 前記弁室内 において変位することで、 前記弁室を通じて前記流入口から前記流出口へ流 れる冷媒の流量を調整する弁体と、 前記弁体を移動させるための制御圧を発 生する圧力室作用する圧力を変化させる制御弁部品と、 を備え、 前記制御弁 部品は、 冷媒が流通する冷媒室、 前記冷媒室に連通すると共に前記圧力室に 連通する第 1冷媒孔、 前記冷媒室に連通すると共に当該制御弁部品の外の冷 媒の通路に連通する第 2冷媒孔が、 形成される基部と、 自らの温度が変化す ると変位する駆動部と、 前記駆動部の温度の変化による変位を増幅する増幅 部と、 前記増幅部によって増幅された変位が伝達されて前記冷媒室内で動く
〇 2020/175550 57 卩(:171? 2020 /007726
ことで、 前記冷媒室に対する前記第 2冷媒孔の開度を調整する可動部と、 を 有し、 前記駆動部が温度の変化によって変位したときに、 前記駆動部が付勢 位置において前記増幅部を付勢することで、 前記増幅部がヒンジを支点とし て変位するとともに、 前記増幅部と前記可動部の接続位置で前記増幅部が前 記可動部を付勢し、 前記ヒンジから前記付勢位置までの距離よりも、 前記ヒ ンジから前記接続位置までの距離の方が長い。
[0246] また、 第 2の観点によれば、 前記圧力室は、 前記弁室であり、 前記第 2冷 媒孔が連通する前記通路は、 高圧の冷媒が流れる第 1通路であり、 前記基部 には、 前記高圧よりも低い低圧が流れる第 2通路に連通すると共に前記冷媒 室に連通する第 3冷媒孔が形成され、 前記可動部は、 前記増幅部によって増 幅された変位が伝達されて前記冷媒室内で動くことで、 前記冷媒室に対する 前記第 2冷媒孔の開度および前記冷媒室に対する前記第 3冷媒孔の開度のう ち少なくとも一方を調整する。 これにより、 制御圧が出力される流路を経ず に弁部品が低圧に連通する。
[0247] また、 第 3の観点によれば、 前記基部は、 板形状の第 1外層と、 板形状の 第 2外層と、 前記第 1外層と前記第 2外層に挟まれて固定される固定部とを 有し、 前記第 2外層に、 前記第 1冷媒孔、 前記第 2冷媒孔、 および前記第 3 冷媒孔が形成されている。 このようになっていることで、 制御弁部品におけ る流路が IIターン構造を有する。
[0248] また、 第 4の観点によれば、 前記第 1外層よりも前記第 2外層の方が前記 弁体に近い側に配置され、 前記第 1通路および前記第 2通路は、 前記ボディ に形成されている。 このようになっていることで、 第 2外層よりも第 1外層 の方が弁体に近い側に配置される場合に比べ、 制御弁部品からボディへ冷媒 を流す流路を短くすることができる。 ひいては、 弁装置を小型化することが できる。
[0249] また、 第 5の観点によれば、 前記第 1外層に、 前記駆動部の温度を変化さ せるための電気配線を通す孔が形成されている。 このように、 制御弁部品の 流路は IIターン構造を有し、 更に、 第 1冷媒孔側とは反対側の第 1外層に電
〇 2020/175550 58 卩(:171? 2020 /007726
気配線を通す孔が形成されている。 しかも、 第 1外層よりも第 2外層の方が 弁体に近い。 したがって、 第 1冷媒孔側にある冷媒の流路等と比べて大気雰 囲気により近い側に電気配線を置くことができる。 したがって、 電気配線へ の冷媒雰囲気の影響を低減するためのハーメチック等のシール構造の必要性 が低下する。
[0250] また、 第 6の観点によれば、 前記可動部は、 前記冷媒室に対して前記第 2 冷媒孔が全閉されると共に前記第 3冷媒孔が全開される第 1位置と、 前記冷 媒室に対して前記第 2冷媒孔が全開されると共に前記第 3冷媒孔が全閉され る第 2位置と、 前記冷媒室に対して前記第 2冷媒孔が全閉と全開の間の中間 開度で開くと共に前記冷媒室に対して前記第 3冷媒孔が全閉と全開の間の中 間開度で開く中間位置と、 に制御される。 このようになっていることで、 第 2冷媒孔から導入される高圧と第 3冷媒孔から導入される低圧までの広い 範囲で、 第 1冷媒孔から出力される冷媒圧力を調整することができる。
[0251 ] また、 第 7の観点によれば、 当該弁装置は、 前記冷凍サイクルにおいて蒸 発器の冷媒流れ上流側で冷媒を減圧膨張させる膨張弁であり、 前記ボディに 固定される自律部を備え、 前記自律部は、 前記蒸発器から流出した冷媒の温 度および圧力を検出する複合センサと、 前記複合センサが検出した温度およ び圧力に応じて前記駆動部の温度を制御するドライバ回路と、 を有する。 こ のようになっていることで、 弁装置は、 自律的に流量を調整できる。
[0252] また、 第 8の観点によれば、 弁装置は、 前記ボディに固定されて前記弁体 のリフト量を検出するギャップセンサを備える。 このようなギャップセンサ を有することで、 弁装置の故障の有無を判別するための情報が取得可能とな る。
[0253] また、 第 9の観点によれば、 前記制御弁部品は、 当該制御弁部品が正常に 作動しているか故障しているかを判別するための信号を出力する故障検知部 を備えている。 制御弁部品がこのような信号を出力することで、 制御弁部品 の故障の有無を容易に判別できる。
[0254] また、 第 1 0の観点によれば、 前記信号は、 前記増幅部の歪み量に応じた
〇 2020/175550 59 卩(:171? 2020 /007726
信号である。 このようになっていることで、 この信号と制御弁部品を制御す るための制御量との関係に基づいて、 弁装置の故障の有無を判別することが できる。
[0255] また、 第 1 1の観点によれば、 前記駆動部は、 通電されることで発熱し、 前記故障検知部は、 前記制御弁部品が故障している場合に前記制御弁部品に 対する通電を停止する装置に、 前記信号を出力する。 このように、 制御弁部 品の故障時に通電を停止することで、 故障時の安全性を高めることができる
[0256] また、 第 1 2の観点によれば、 当該弁装置は、 人に報知を行う報知装置を 制御する制御装置に通知可能な回路を備え、 前記回路は、 前記故障検知部か ら前記信号を受け、 前記信号に基づいて前記制御弁部品が正常に作動してい るか故障しているかを判定し、 故障していると判定したことに基づいて、 前 記制御弁部品が故障していることを前記報知装置に報知させるため、 前記制 御装置に通知を行う。 これにより、 人は、 制御弁部品の故障を知ることがで きる。
[0257] また、 第 1 3の観点によれば、 前記制御弁部品は半導体チップによって構 成されている。 したがって、 制御弁部品を小型に構成できる。
[0258] また、 第 1 4の観点によれば、 当該弁装置は、 冷媒を減圧させる膨張弁で あり、 前記第 2冷媒孔が連通する前記通路は、 前記膨張弁によって減圧され る前の高圧の冷媒が流れる第 1通路であり、 前記流入口には、 前記冷凍サイ クルにおいて冷媒を凝縮させる凝縮器によって凝縮された冷媒が流入し、 前 記流入口から流入した冷媒が前記弁体と弁座の間に形成される絞り通路を通 ることで前記高圧の冷媒よりも低圧に減圧され、 前記絞り通路を通って減圧 された冷媒は第 2通路を通ってその後に前記流出口からから流出し、 前記流 出口は、 前記冷凍サイクルにおいて冷媒を蒸発させる蒸発器の入口側に連通 し、 前記冷媒室の冷媒を第 2通路に導く低圧連通流路が設けられている。
[0259] このように、 低圧連通流路が冷媒室の冷媒を第 2通路に導くことで、 第 2 通路に導かれた冷媒は蒸発器に流入する。 したがって、 冷媒室から低圧側に
〇 2020/175550 60 卩(:171? 2020 /007726
導かれた冷媒が蒸発器に流入しない場合に比べて、 熱交換に寄与しない冷媒 を低減することができる。 ひいては、 冷媒を無駄に使用する可能性が低減さ れ、 冷凍サイクルの効率が向上する。
[0260] また、 第 1 5の観点によれば、 前記第 1冷媒孔は、 前記第 2通路の低圧よ りも高い制御圧を前記圧力室に出力し、 前記低圧連通流路は、 前記第 1冷媒 孔から流出した冷媒を前記第 2通路に導くよう形成されており、 前記低圧連 通流路には、 前記低圧連通流路に沿って流路断面積が低下する絞り部が設け られている。
[0261 ] このように、 低圧連通流路が第 1冷媒孔から流出した冷媒を第 2通路に導 くように構成されていることで、 制御弁部品に第 1冷媒孔とも第 2冷媒孔と も異なる冷媒孔を設けて低圧連通流路に連通させる必要がなくなる。 また、 このような構成において低圧連通流路に絞り部が形成されていることで、 絞 り部の前後で圧力差を生じさせることができるので、 制御圧を出力するとい う第 1冷媒孔の機能が損ねられる可能性が低減される。
[0262] また、 第 1 6の観点によれば、 前記圧力室に発生した前記制御圧を受けて 前記制御圧に応じた力を前記弁体に伝達する移動可能な圧力伝達部を備え、 前記圧力伝達部は、 前記圧力室から前記第 2通路を通って前記弁体まで伸び 、 前記低圧連通流路は、 前記圧力伝達部の内部に形成されて前記圧力室から 前記第 2通路まで連通する。 このように、 圧力伝達部が圧力室の制御圧を受 けると共に第 2通路を通ることを利用し、 圧力室から第 2通路まで連通する 低圧連通流路を形成することで、 低圧連通流路のためだけの部材を設ける必 要がなくなる。
[0263] また、 第 1 7の観点によれば、 前記圧力室に発生した前記制御圧を受けて 前記制御圧に応じた力を前記弁体に伝達する移動可能な圧力伝達部を備え、 前記ボディには、 前記圧力伝達部を収容する収容孔が形成され、 前記収容孔 は前記圧力室を含むと共に前記第 2通路に連通し、 前記圧力伝達部は、 前記 収容孔および前記第 2通路を通って前記弁体まで伸び、 前記低圧連通流路は 、 前記収容孔の内周面と前記圧力伝達部との間の隙間として設けられる。
〇 2020/175550 61 卩(:171? 2020 /007726
[0264] このように、 収容孔は圧力室を含むと共に第 2通路に連通すること、 圧力 伝達部が圧力室の制御圧を受けると共に第 2通路を通ることを利用し、 収容 孔の内周面と圧力伝達部の外周面との間の隙間に低圧連通流路を設けること ができる。 このようにすることで、 低圧連通流路のためだけの部材を設ける 必要がなくなる。
[0265] また、 第 1 8の観点によれば、 前記第 2冷媒孔が連通する前記通路は、 高 圧の冷媒が流れる第 1通路であり、 前記基部には、 前記低圧連通流路を介し て前記高圧よりも低い低圧が流れる前記第 2通路に連通すると共に前記冷媒 室に連通する第 3冷媒孔が形成され、 前記可動部は、 前記増幅部によって増 幅された変位が伝達されて前記冷媒室内で動くことで、 前記冷媒室に対する 前記第 2冷媒孔の開度および前記冷媒室に対する前記第 3冷媒孔の開度のう ち少なくとも一方を調整する。
[0266] このようにすることで、 第 3冷媒孔を有して開度調整により制御圧を調整 可能な制御弁部品において、 冷媒を無駄に使用する可能性が低減され、 冷凍 サイクルの効率が向上する。
[0267] また、 第 1 9の観点によれば、 前記流入口は第 1流入口であり、 前記流出 口は第 1流出口であり、 前記冷凍サイクルは前記蒸発器で蒸発した冷媒を圧 縮する圧縮機を含み、 前記ボディには、 前記蒸発器から流出した低圧冷媒を 流入させる第 2流入口と、 冷媒を前記圧縮機の吸入側へ流出させる第 2流出 口と、 前記第 2流入口から前記第 2流出口へ至る通路である蒸発後冷媒通路 と、 が形成され、 当該弁装置は、 前記圧力室における冷媒の圧力に応じた力 を前記弁体に伝達する移動可能な圧力伝達部と、 前記圧力伝達部とは反対側 から弾性力で前記弁体を付勢する弾性体と、 前記弾性体の弾性力を調整する 調整部と、 を備え、 前記ボディにおいて、 前記蒸発後冷媒通路、 前記圧力室 、 前記圧力伝達部、 前記弁体、 前記弾性体、 前記調整部が、 この順に並んで 配置され、 前記第 2通路は、 前記蒸発後冷媒通路に対して前記弁体の側に配 置され、 前記調整部には、 前記弁体とは反対側において前記ボディの外部に 露出する操作受付部が形成され、 前記操作受付部は、 前記ボディの外部から
〇 2020/175550 62 卩(:171? 2020 /007726
前記弾性体の弾性力の調整のための操作を受け付けることができ、 前記低圧 連通流路は、 前記第 3冷媒孔から前記蒸発後冷媒通路を越えて前記第 2通路 に連通している。
[0268] このように、 ボディの外部から弾性体の弾性力の調整のための操作を受け 付け可能で蒸発後冷媒通路を基準として弁体と同じ側にある調整部との干渉 を避けるように、 制御弁部品が蒸発後冷媒通路を基準として調整部、 弁体、 第 2通路とは反対側にある。 このような場合には、 低圧連通流路を、 第 3冷 媒孔から蒸発後冷媒通路を越えて第 2通路に連通させることで、 制御弁部品 と調整部との干渉を避けつつ、 制御弁部品から第 2通路に冷媒を導くことが できる。
[0269] また、 第 2 0の観点によれば、 前記蒸発後冷媒通路を前記制御弁部品の側 から前記第 2通路の側へ貫通する低圧パイプを備え、 前記低圧連通流路は、 前記低圧パイプの内部に形成されている。 このようになっていることで、 前 記蒸発後冷媒通路と低圧連通流路が交差しても、 両者が流路的に絶縁される 。 そして、 蒸発後冷媒通路、 圧力室、 圧力伝達部、 弁体の並び方向に交差し て蒸発後冷媒通路の延伸方向に交差する方向における弁装置の体格を抑制す ることができる。
[0270] また、 第 2 1の観点によれば、 前記低圧連通流路は、 前記ボディにおいて 、 前記蒸発後冷媒通路の外部に形成されていることで、 前記第 3冷媒孔から 前記蒸発後冷媒通路を迂回して前記第 2通路に連通している。 このようにな っていることで、 蒸発後冷媒通路、 圧力室、 圧力伝達部、 弁体の並び方向に 交差して蒸発後冷媒通路の延伸方向に交差する方向におけるボディの内部を 利用して、 第 3冷媒孔から出る冷媒を蒸発後冷媒通路を越えて第 2通路に導 くことができる。
[0271 ] また、 第 2 2の観点によれば、 前記冷凍サイクルは前記冷凍サイクルにお いて冷媒を蒸発させる蒸発器で蒸発した冷媒を圧縮する圧縮機を含み、 当該 弁装置は、 冷媒を減圧させる膨張弁であり、 前記流入口は第 1流入口であり 、 前記流出口は第 1流出口であり、 前記第 2冷媒孔が連通する前記通路は、
〇 2020/175550 63 卩(:171? 2020 /007726
前記膨張弁によって減圧される前の高圧の冷媒が流れる第 1通路であり、 前 記第 1流入口には、 前記冷凍サイクルにおいて冷媒を凝縮させる凝縮器によ って凝縮された冷媒が流入し、 前記第 1流入口から流入した冷媒が前記弁体 と弁座の間に形成される絞り通路を通ることで前記高圧の冷媒よりも低圧に 減圧され、 前記絞り通路を通って減圧された冷媒は第 2通路を通ってその後 に前記第 1流出口からから流出し、 前記第 1流出口は、 前記蒸発器の入口側 に連通し、 前記ボディには、 前記蒸発器から流出した低圧冷媒を流入させる 第 2流入口と、 冷媒を前記圧縮機の吸入側へ流出させる第 2流出口と、 前記 第 2流入口から前記第 2流出口へ至る通路である蒸発後冷媒通路と、 が形成 され、 当該弁装置は、 前記蒸発後冷媒通路を通る冷媒に関する物理量に応じ た信号を出力するセンサと、 前記センサが出力した前記信号に基づいて、 前 記制御弁部品の作動を制御するドライバ回路とを備え、 前記センサ、 前記制 御弁部品および前記ドライバ回路は、 前記蒸発後冷媒通路を基準として前記 弁体とは反対側に配置される。 このようになっていることで、 センサ、 制御 弁部品およびドライバ回路間の電気的配線の配策が容易になる。
[0272] また、 第 2 3の観点によれば、 前記ボディにおいて、 前記制御弁部品、 前 記蒸発後冷媒通路、 前記圧力室が、 この順に並んで配置され、 当該弁装置は 、 前記蒸発後冷媒通路を前記制御弁部品の側から前記圧力室の側へ貫通する 制御圧パイプと、 前記圧力室における冷媒の圧力に応じた力を前記弁体に伝 達する移動可能な圧力伝達部と、 を備え、 前記制御圧パイプには、 前記蒸発 後冷媒通路よりも前記制御弁部品の側において前記第 1冷媒孔に連通し、 前 記蒸発後冷媒通路よりも前記圧力室側において前記圧力室に連通する制御圧 導入孔が形成される。
[0273] このような構成により、 蒸発後冷媒通路を貫通する制御圧パイプに形成さ れた制御圧導入孔を介して、 制御弁部品から制御圧を及ぼすことができる。 したがって、 制御弁部品の機能も維持しつつ、 センサ、 制御弁部品およびド ライバ回路間の電気的配線の取り回しが容易になる。 そして、 制御弁部品、 蒸発後冷媒通路、 圧力室の並び方向に交差して蒸発後冷媒通路の延伸方向に
〇 2020/175550 64 卩(:171? 2020 /007726
交差する方向における弁装置の体格を抑制することができる。
[0274] また、 第 2 4の観点によれば、 前記センサと前記制御弁部品は、 一体とし て前記ボディに組み付けられている。 このようになっていることで、 センサ と制御弁部品が別体としてボディに組み付けられている場合に比べ、 組み付 け作業の手間および組み付けのための部品を低減することができる。
Claims
[請求項 1 ] 冷凍サイクルに用いられる弁装置であって、
流入口 (5 1 3) と、 流出口 (5 1 13) と、 前記流入口から前記流 出口へ流れる冷媒を流通させる弁室 (5 1 9) と、 が形成されたボデ ィ (5 1) と、
前記弁室内において変位することで、 前記弁室を通じて前記流入口 から前記流出口へ流れる冷媒の流量を調整する弁体 (5 2) と、 前記弁体を移動させるための制御圧を発生する圧力室 (5 1 9、 5 8 3) に作用する圧力を変化させる制御弁部品 (丫 1) と、 を備え、 前記制御弁部品は、
冷媒が流通する冷媒室 (丫 1 9) 、 前記冷媒室に連通すると共に前 記圧力室に連通する第 1冷媒孔 (丫 1 6) 、 前記冷媒室に連通すると 共に当該制御弁部品の外の冷媒の通路 (5 1 〇、 5 1 1<) に連通する 第 2冷媒孔 (丫 1 7、 丫 1 8) が、 形成される基部 (丫 1 1、 丫 1 2 1、 丫 1 3) と、
自らの温度が変化すると変位する駆動部 (丫 1 2 3、 丫 1 2 4、 丫 1 2 5) と、
前記駆動部の温度の変化による変位を増幅する増幅部 (丫 1 2 6、 丫 1 2 7) と、
前記増幅部によって増幅された変位が伝達されて前記冷媒室内で動 くことで、 前記冷媒室に対する前記第 2冷媒孔の開度を調整する可動 部 (丫 1 2 8) と、 を有し、
前記駆動部が温度の変化によって変位したときに、 前記駆動部が付 勢位置 (丫? 2) において前記増幅部を付勢することで、 前記増幅部 がヒンジ (丫 〇) を支点として変位するとともに、 前記増幅部と前 記可動部の接続位置 (丫? 3) で前記増幅部が前記可動部を付勢し、 前記ヒンジから前記付勢位置までの距離よりも、 前記ヒンジから前 記接続位置までの距離の方が長い、 弁装置。
〇 2020/175550 66 卩(:171? 2020 /007726
[請求項 2] 前記圧力室は、 前記弁室であり、
前記第 2冷媒孔が連通する前記通路は、 高圧の冷媒が流れる第 1通 路 (5 1 〇) であり、
前記基部には、 前記高圧よりも低い低圧が流れる第 2通路 (5 1 ) に連通すると共に前記冷媒室に連通する第 3冷媒孔 (丫 1 8) が形 成され、
前記可動部は、 前記増幅部によって増幅された変位が伝達されて前 記冷媒室内で動くことで、 前記冷媒室に対する前記第 2冷媒孔の開度 および前記冷媒室に対する前記第 3冷媒孔の開度のうち少なくとも一 方を調整する、 請求項 1 に記載の弁装置。
[請求項 3] 前記基部は、 板形状の第 1外層 (丫 1 1) と、 板形状の第 2外層 ( 丫 1 3) と、 前記第 1外層と前記第 2外層に挟まれて固定される固定 部 (丫 1 2 1) とを有し、
前記第 2外層に、 前記第 1冷媒孔、 前記第 2冷媒孔、 および前記第 3冷媒孔が形成されている請求項 2に記載の弁装置。
[請求項 4] 前記第 1外層よりも前記第 2外層の方が前記弁体に近い側に配置さ れ、
前記第 1通路および前記第 2通路は、 前記ボディに形成されている 請求項 3に記載の弁装置。
[請求項 5] 前記第 1外層に、 前記駆動部の温度を変化させるための電気配線 ( 丫6、 丫 7) を通す孔 (丫 1 4、 丫 1 5) が形成されている請求項 3 に記載の弁装置。
[請求項 6] 前記可動部は、 前記冷媒室に対して前記第 2冷媒孔が全閉されると 共に前記第 3冷媒孔が全開される第 1位置と、 前記冷媒室に対して前 記第 2冷媒孔が全開されると共に前記第 3冷媒孔が全閉される第 2位 置と、 前記冷媒室に対して前記第 2冷媒孔が全閉と全開の間の中間開 度で開くと共に前記冷媒室に対して前記第 3冷媒孔が全閉と全開の間 の中間開度で開く中間位置と、 に制御される請求項 2ないし 5のいず
〇 2020/175550 67 卩(:171? 2020 /007726
れか 1つに記載の弁装置。
[請求項 7] 前記ボディに固定されて前記弁体のリフト量を検出するギャップセ ンサ (5 5) を備えた請求項 1ないし 6のいずれか 1つに記載の弁装 置。
[請求項 8] 当該弁装置は、 前記冷凍サイクルにおいて蒸発器 (6) の冷媒流れ 上流側で冷媒を減圧膨張させる膨張弁であり、
前記ボディに固定される自律部 (5 4) を備え、 前記自律部は、 前記蒸発器から流出した冷媒の温度および圧力を検 出する複合センサ (5 4〇) と、 前記複合センサが検出した温度およ び圧力に応じて前記駆動部の温度を制御するドライバ回路 (5 4 ) と、 を有する、 請求項 1ないし 7のいずれか 1つに記載の弁装置。
[請求項 9] 前記制御弁部品は、 当該制御弁部品が正常に作動しているか故障し ているかを判別するための信号を出力する故障検知部 (丫5 0) を備 えている、 請求項 1ないし 6のいずれか 1つに記載の弁装置。
[請求項 10] 前記信号は、 前記増幅部の歪み量に応じた信号である請求項 9に記 載の弁装置。
[請求項 1 1 ] 前記駆動部は、 通電されることで発熱し、
前記故障検知部は、 前記制御弁部品が故障している場合に前記制御 弁部品に対する通電を停止する装置 (5 4〇〇 に、 前記信号を出力す る、 請求項 9または 1 0に記載の弁装置。
[請求項 12] 人に報知を行う報知装置 (丫 5 6) を制御する制御装置 (丫 5 5) に通知可能な回路 (5 4〇〇 を備え、
前記回路は、 前記故障検知部から前記信号を受け、 前記信号に基づ いて前記制御弁部品が正常に作動しているか故障しているかを判定し 、 故障していると判定したことに基づいて、 前記制御弁部品が故障し ていることを前記報知装置に報知させるため、 前記制御装置に通知を 行う、 請求項 9または 1 0に記載の弁装置。
[請求項 13] 前記制御弁部品は半導体チップによって構成されている請求項 1な
〇 2020/175550 68 卩(:171? 2020 /007726
いし 1 2のいずれか 1つに記載の弁装置。
[請求項 14] 当該弁装置は、 冷媒を減圧させる膨張弁であり、
前記第 2冷媒孔が連通する前記通路は、 前記膨張弁によって減圧さ れる前の高圧の冷媒が流れる第 1通路 (5 1 〇) であり、
前記流入口には、 前記冷凍サイクルにおいて冷媒を凝縮させる凝縮 器 (3) によって凝縮された冷媒が流入し、
前記流入口から流入した冷媒が前記弁体と弁座 (5 1 」) の間に形 成される絞り通路 (5 1 II) を通ることで前記高圧の冷媒よりも低圧 に減圧され、 前記絞り通路 (5 1 ) を通って減圧された冷媒は第 2 通路 (5 1 1<) を通ってその後に前記流出口からから流出し、 前記流出口は、 前記冷凍サイクルにおいて冷媒を蒸発させる蒸発器 (6) の入口側に連通し、
前記冷媒室の冷媒を第 2通路に導く低圧連通流路 (5 8 、 丫 3 ) が設けられている、 請求項 1 に記載の弁装置。
[請求項 15] 前記第 1冷媒孔は、 前記第 2通路の低圧よりも高い制御圧を前記圧 力室に出力し、
前記低圧連通流路は、 前記第 1冷媒孔から流出した冷媒を前記第 2 通路に導くよう形成されており、
前記低圧連通流路には、 前記低圧連通流路に沿って流路断面積が低 下する絞り部 (5 8〇、 6 6 3) が設けられている、 請求項 1 4に記 載の弁装置。
[請求項 16] 前記圧力室に発生した前記制御圧を受けて前記制御圧に応じた力を 前記弁体に伝達する移動可能な圧力伝達部 (6 5) を備え、
前記圧力伝達部は、 前記圧力室から前記第 2通路を通って前記弁体 まで伸び、
前記低圧連通流路は、 前記圧力伝達部の内部に形成されて前記圧力 室から前記第 2通路まで連通する、 請求項 1 5に記載の弁装置。
[請求項 17] 前記圧力室に発生した前記制御圧を受けて前記制御圧に応じた力を
〇 2020/175550 69 卩(:171? 2020 /007726
前記弁体に伝達する移動可能な圧力伝達部 (6 5) を備え、
前記ボディには、 前記圧力伝達部を収容する収容孔 (5 8) が形成 され、
前記収容孔は前記圧力室を含むと共に前記第 2通路に連通し、 前記圧力伝達部は、 前記収容孔および前記第 2通路を通って前記弁 体まで伸び、
前記低圧連通流路は、 前記収容孔の内周面と前記圧力伝達部との間 の隙間として設けられる、 請求項 1 5に記載の弁装置。
[請求項 18] 前記第 2冷媒孔が連通する前記通路は、 高圧の冷媒が流れる第 1通 路 (5 1 〇) であり、
前記基部には、 前記低圧連通流路を介して前記高圧よりも低い低圧 が流れる前記第 2通路に連通すると共に前記冷媒室に連通する第 3冷 媒孔 (丫 1 8) が形成され、
前記可動部は、 前記増幅部によって増幅された変位が伝達されて前 記冷媒室内で動くことで、 前記冷媒室に対する前記第 2冷媒孔の開度 および前記冷媒室に対する前記第 3冷媒孔の開度のうち少なくとも一 方を調整する、 請求項 1 4に記載の弁装置。
[請求項 19] 前記流入口は第 1流入口であり、
前記流出口は第 1流出口であり、
前記冷凍サイクルは前記蒸発器で蒸発した冷媒を圧縮する圧縮機 ( 2) を含み、
前記ボディには、 前記蒸発器から流出した低圧冷媒を流入させる第 2流入口 (5 1 ¢0 と、 冷媒を前記圧縮機の吸入側へ流出させる第 2 流出口 (5 1 6) と、 前記第 2流入口から前記第 2流出口へ至る通路 である蒸発後冷媒通路 (5 1 チ) と、 が形成され、
当該弁装置は、 前記圧力室における冷媒の圧力に応じた力を前記弁 体に伝達する移動可能な圧力伝達部 (6 5) と、 前記圧力伝達部とは 反対側から弾性力で前記弁体を付勢する弾性体 (5 3) と、 前記弾性
〇 2020/175550 70 卩(:171? 2020 /007726
体の弾性力を調整する調整部 (6 7) と、 を備え、 前記ボディにおいて、 前記蒸発後冷媒通路、 前記圧力室、 前記圧力 伝達部、 前記弁体、 前記弾性体、 前記調整部が、 この順に並んで配置 され、 前記第 2通路は、 前記蒸発後冷媒通路に対して前記弁体の側に 配置され、
前記調整部には、 前記弁体とは反対側において前記ボディの外部に 露出する操作受付部 (6 7 3) が形成され、
前記操作受付部は、 前記ボディの外部から前記弾性体の弾性力の調 整のための操作を受け付けることができ、
前記低圧連通流路は、 前記第 3冷媒孔から前記蒸発後冷媒通路を越 えて前記第 2通路に連通している、 請求項 1 8に記載の弁装置。
[請求項 20] 前記蒸発後冷媒通路を前記制御弁部品の側から前記第 2通路の側へ 貫通する低圧パイプ (丫2 3) を備え、
前記低圧連通流路は、 前記低圧パイプの内部に形成されている、 請 求項 1 9に記載の弁装置。
[請求項 21 ] 前記低圧連通流路は、 前記ボディにおいて、 前記蒸発後冷媒通路の 外部に形成されていることで、 前記第 3冷媒孔から前記蒸発後冷媒通 路を迂回して前記第 2通路に連通している、 請求項 1 9に記載の弁装 置。
[請求項 22] 前記冷凍サイクルは前記冷凍サイクルにおいて冷媒を蒸発させる蒸 発器 (6) で蒸発した冷媒を圧縮する圧縮機 (2) を含み、
当該弁装置は、 冷媒を減圧させる膨張弁であり、 前記流入口は第 1流入口であり、
前記流出口は第 1流出口であり、
前記第 2冷媒孔が連通する前記通路は、 前記膨張弁によって減圧さ れる前の高圧の冷媒が流れる第 1通路 (5 1 〇) であり、
前記第 1流入口には、 前記冷凍サイクルにおいて冷媒を凝縮させる 凝縮器 (3) によって凝縮された冷媒が流入し、
〇 2020/175550 71 卩(:171? 2020 /007726
前記第 1流入口から流入した冷媒が前記弁体と弁座 (5 1 」) の間 に形成される絞り通路 (5 1 II) を通ることで前記高圧の冷媒よりも 低圧に減圧され、 前記絞り通路 (5 1 II) を通って減圧された冷媒は 第 2通路 (5 1 1<) を通ってその後に前記第 1流出口からから流出し 前記第 1流出口は、 前記蒸発器の入口側に連通し、 前記ボディには、 前記蒸発器から流出した低圧冷媒を流入させる第 2流入口 (5 1 ¢0 と、 冷媒を前記圧縮機の吸入側へ流出させる第 2 流出口 (5 1 6) と、 前記第 2流入口から前記第 2流出口へ至る通路 である蒸発後冷媒通路 (5 1 チ) と、 が形成され、 当該弁装置は、 前記蒸発後冷媒通路を通る冷媒に関する物理量に応 じた信号を出力するセンサ (5 4) と、 前記センサが出力した前記信 号に基づいて、 前記制御弁部品の作動を制御するドライバ回路 (5 4 ¢1) とを備え、
前記センサ、 前記制御弁部品および前記ドライバ回路は、 前記蒸発 後冷媒通路を基準として前記弁体とは反対側に配置される、 請求項 1 、 1 4ないし 2 1のいずれか 1つに記載の弁装置。
[請求項 23] 前記ボディにおいて、 前記制御弁部品、 前記蒸発後冷媒通路、 前記 圧力室が、 この順に並んで配置され、
当該弁装置は、 前記蒸発後冷媒通路を前記制御弁部品の側から前記 圧力室の側へ貫通する制御圧パイプ (丫2 1) と、 前記圧力室におけ る冷媒の圧力に応じた力を前記弁体に伝達する移動可能な圧力伝達部 (6 5) と、 を備え、
前記制御圧パイプには、 前記蒸発後冷媒通路よりも前記制御弁部品 の側において前記第 1冷媒孔に連通し、 前記蒸発後冷媒通路よりも前 記圧力室側において前記圧力室に連通する制御圧導入孔 (丫 1) が 形成される、 請求項 2 2に記載の弁装置。
[請求項 24] 前記センサと前記制御弁部品は、 一体として前記ボディに組み付け
\¥0 2020/175550 72 卩(:17 2020 /007726
られている、 請求項 2 2または 2 3に記載の弁装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080016790.6A CN113544085B (zh) | 2019-02-28 | 2020-02-26 | 阀装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-035222 | 2019-02-28 | ||
JP2019035222 | 2019-02-28 | ||
JP2020027187A JP7014239B2 (ja) | 2019-02-28 | 2020-02-20 | 弁装置 |
JP2020-027187 | 2020-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020175550A1 true WO2020175550A1 (ja) | 2020-09-03 |
Family
ID=72239200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/007726 WO2020175550A1 (ja) | 2019-02-28 | 2020-02-26 | 弁装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020175550A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008286302A (ja) * | 2007-05-17 | 2008-11-27 | Panasonic Corp | ロータリージョイントおよび回転弁体の異常検出機構 |
JP2010078002A (ja) * | 2008-09-24 | 2010-04-08 | Aisan Ind Co Ltd | 流量制御弁 |
CN104344611A (zh) * | 2013-08-08 | 2015-02-11 | 盾安环境技术有限公司 | 一种膨胀阀 |
US20150354875A1 (en) * | 2013-06-25 | 2015-12-10 | Zhejiang Dunan Hetian Metal Co., Ltd. | On-Demand Micro Expansion Valve for a Refrigeration System |
-
2020
- 2020-02-26 WO PCT/JP2020/007726 patent/WO2020175550A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008286302A (ja) * | 2007-05-17 | 2008-11-27 | Panasonic Corp | ロータリージョイントおよび回転弁体の異常検出機構 |
JP2010078002A (ja) * | 2008-09-24 | 2010-04-08 | Aisan Ind Co Ltd | 流量制御弁 |
US20150354875A1 (en) * | 2013-06-25 | 2015-12-10 | Zhejiang Dunan Hetian Metal Co., Ltd. | On-Demand Micro Expansion Valve for a Refrigeration System |
CN104344611A (zh) * | 2013-08-08 | 2015-02-11 | 盾安环境技术有限公司 | 一种膨胀阀 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3623673B1 (en) | Electronic expansion valve, thermal management assembly, cooling system, and method for manufacturing electronic expansion valve | |
US20100031681A1 (en) | Electronic block valve | |
JP2022190675A (ja) | ヒートポンプモジュール | |
JP7014239B2 (ja) | 弁装置 | |
WO2020175550A1 (ja) | 弁装置 | |
WO2020175544A1 (ja) | 冷凍サイクル装置 | |
JP6958582B2 (ja) | エジェクタ式冷凍サイクル装置 | |
JP6992777B2 (ja) | 冷凍サイクル装置、蒸発圧力調整弁 | |
WO2020175545A1 (ja) | 弁装置 | |
JP7074097B2 (ja) | 弁装置 | |
JP6973431B2 (ja) | 統合弁 | |
JP2023517251A (ja) | 電動弁及び熱管理システム | |
JP6988846B2 (ja) | オイル戻し装置 | |
CN113758064B (zh) | 一种电子膨胀阀和热管理组件 | |
WO2020175542A1 (ja) | 冷凍サイクル装置 | |
CN110030748B (zh) | 具有同时过冷和过热控制功能的加热通风空调制冷系统 | |
CN114593258A (zh) | 膨胀阀 | |
JP7302468B2 (ja) | 弁装置、冷凍サイクル装置 | |
WO2021131498A1 (ja) | 弁装置 | |
CN112238729A (zh) | 通过改变电源电压确定信号处理电路和压力温度检测单元中异常的传感器装置和传感器系统 | |
CN113758063B (zh) | 一种电子膨胀阀、热管理组件及汽车空调系统 | |
WO2023281986A1 (ja) | 冷凍サイクル用機能品モジュール | |
JP2021195955A (ja) | 弁装置 | |
JP2021105404A (ja) | バルブ装置 | |
JP2023008783A (ja) | 冷凍サイクル用機能品モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20763772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20763772 Country of ref document: EP Kind code of ref document: A1 |