WO2020175544A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2020175544A1
WO2020175544A1 PCT/JP2020/007720 JP2020007720W WO2020175544A1 WO 2020175544 A1 WO2020175544 A1 WO 2020175544A1 JP 2020007720 W JP2020007720 W JP 2020007720W WO 2020175544 A1 WO2020175544 A1 WO 2020175544A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
unit
battery
hole
Prior art date
Application number
PCT/JP2020/007720
Other languages
English (en)
French (fr)
Inventor
陽平 長野
陽一郎 河本
孝紀 横井
康介 白鳥
押谷 洋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020175544A1 publication Critical patent/WO2020175544A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to a vapor compression refrigeration cycle device.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 2 _ 1 1 1 4 8 6
  • an electric expansion valve that drives a valve body by an electric motor such as a stepping motor is arranged on the upstream side of each of the plurality of evaporators. ⁇ 2020/175544 ⁇ (:171? 2020 /007720
  • the electric expansion valve becomes very large in size due to the electric motor. This is not preferable because it causes deterioration of mountability.
  • An object of the present disclosure is to provide a refrigeration cycle device capable of distributing a refrigerant at a desired ratio to a plurality of evaporators connected in parallel while suppressing deterioration of mountability.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that radiates heat from the refrigerant discharged from the compressor A radiator that radiates heat from the refrigerant discharged from the compressor
  • a plurality of pressure reducing parts connected in parallel to each other on the downstream side of the radiator in the refrigerant flow;
  • a plurality of evaporators connected to the refrigerant flow downstream side of each of the plurality of decompression units and evaporating the refrigerant decompressed by the decompression unit;
  • At least one of the plurality of pressure reducing units is a variable pressure reducing unit including a valve component for adjusting the throttle opening,
  • the valve parts are identical to The valve parts.
  • a drive unit that displaces when its own temperature changes
  • An amplification unit that amplifies the displacement due to the change in the temperature of the drive unit
  • the displacement amplified by the amplification unit is transmitted to move the movable unit that adjusts the pressure of the refrigerant in the fluid chamber.
  • the drive section When the drive section is displaced due to a change in temperature, the drive section biases the amplification section at the bias position, so that the amplification section displaces with the hinge as a fulcrum and the amplification section is connected at the connection position between the amplification section and the movable section. Urges the movable part, ⁇ 2020/175544 3 ⁇ (: 171-1? 2020/007720
  • the distance from the hinge to the connecting position is longer than the distance from the hinge to the biasing position.
  • At least one depressurizing unit of the plurality of depressurizing units has a configuration in which the throttle opening can be changed. Easy to distribute.
  • the amplification part of the valve component functions as a lever. Therefore, the amount of displacement corresponding to the temperature change of the drive unit is increased by the lever and transmitted to the movable unit.
  • the valve component in which the displacement amount due to the thermal expansion is amplified by using the lever can be made smaller than the solenoid valve or the electric valve that does not use the lever.
  • the refrigeration cycle apparatus of the present disclosure it becomes possible to distribute the refrigerant at a desired ratio to a plurality of evaporators connected in parallel while suppressing deterioration of mountability.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that radiates heat from the refrigerant discharged from the compressor A radiator that radiates heat from the refrigerant discharged from the compressor
  • a plurality of pressure reducing parts connected in parallel to each other on the downstream side of the radiator in the refrigerant flow;
  • a plurality of evaporators connected to the refrigerant flow downstream side of each of the plurality of decompression units and evaporating the refrigerant decompressed by the decompression unit;
  • At least one of the plurality of decompression units is a variable decompression unit whose throttle opening can be adjusted
  • variable decompression unit The variable decompression unit
  • the inlet flow path where the refrigerant that has passed through the radiator flows in the valve chamber that communicates with the inlet flow path, the throttle flow path that decompresses and expands the refrigerant that flows into the valve chamber, and the refrigerant that passes through the throttle flow path toward the evaporator.
  • the block body has an opening adjustment chamber into which the refrigerant for pressing the main valve body toward the valve opening side or the valve closing side is introduced.
  • the drive member includes a valve component for adjusting the pressure of the opening adjustment chamber, and the valve component is
  • An amplification unit that amplifies the displacement due to the change in the temperature of the drive unit
  • the displacement amplified by the amplification unit is transmitted to move the movable unit that adjusts the pressure of the refrigerant flowing through the fluid chamber.
  • the drive section When the drive section is displaced due to a change in temperature, the drive section biases the amplification section at the bias position, so that the amplification section displaces with the hinge as a fulcrum and the amplification section is connected at the connection position between the amplification section and the movable section. Urges the movable part,
  • the distance from the hinge to the connecting position is longer than the distance from the hinge to the biasing position.
  • the throttle opening of the variable pressure reducing unit can be changed by displacing the main valve body to the valve opening side or the valve closing side by adjusting the pressure of the valve opening control chamber. Therefore, it becomes easy to distribute the refrigerant containing the refrigerating machine oil to the plurality of evaporators at a desired ratio.
  • the amplification part of the valve component functions as a lever. Therefore, the amount of displacement according to the temperature change of the drive section is amplified by the lever and transmitted to the movable section.
  • the valve component in which the displacement amount due to the thermal expansion is amplified by using the lever can be made smaller than the solenoid valve or the electric valve that does not use the lever.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment.
  • FIG. 2 A block diagram showing an electronic control unit of the refrigeration cycle apparatus according to the first embodiment. 20/175544 5 ⁇ (: 171? 2020 /007720
  • FIG. 3 is a schematic perspective view showing an appearance of a first battery decompression unit of the refrigeration cycle device according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a first battery decompression unit of the refrigeration cycle device according to the first embodiment.
  • FIG. 5 is a schematic exploded perspective view of a microvalve used in the first battery decompression unit of the refrigeration cycle device according to the first embodiment.
  • FIG. 6 is a schematic side view of a microvalve used in the first battery decompression unit of the refrigeration cycle device according to the first embodiment.
  • Fig. 7 is a cross-sectional view taken along line V I -V I of Fig. 6, showing a closed state of the microvalve.
  • Fig. 8 is a cross-sectional view showing the V V I I V I I cross section of Fig. 7.
  • Fig. 9 is a cross-sectional view taken along line V I -V I of Fig. 6 and is a cross-sectional view showing a valve open state of the microvalve.
  • Fig. 10 is a cross-sectional view showing a cross-section taken along the line of Fig. 9.
  • Fig. 11 is an explanatory diagram for explaining the operation of the first battery decompression unit of the refrigeration cycle device according to the first embodiment.
  • FIG. 12 is a schematic configuration diagram of a refrigeration cycle device according to a second embodiment.
  • FIG. 13 is a schematic cross-sectional view of a first battery decompression unit of the refrigeration cycle device according to the third embodiment.
  • FIG. 14 is an explanatory diagram for explaining the operation of the first battery decompression unit of the refrigeration cycle device according to the third embodiment.
  • FIG. 15 is an explanatory diagram for explaining the relationship between the first battery evaporator and the first battery decompression unit of the refrigeration cycle device according to the fourth embodiment.
  • FIG. 16 A schematic cross-sectional view showing a first battery pressure reducing portion of a refrigeration cycle apparatus according to a fourth embodiment.
  • FIG. 17 is a schematic cross-sectional view showing the first battery decompression unit of the refrigeration cycle device according to the fifth embodiment, showing a state in which the throttle opening is maximized. ⁇ 2020/175544 6 ⁇ (: 171-1?2020/007720
  • FIG. 18 is a schematic cross-sectional view showing the first battery decompression unit of the refrigeration cycle device according to the fifth embodiment, showing a state in which the throttle opening is at a minimum.
  • FIG. 19 is an explanatory diagram for explaining the relationship between the control pressure of the first battery decompression unit and the throttle opening of the refrigeration cycle apparatus according to the fifth embodiment.
  • FIG. 20 A schematic exploded perspective view of a microvalve used in a first battery decompression unit of a refrigeration cycle apparatus according to a fifth embodiment.
  • FIG. 21 is a schematic side view of a microvalve used in the first battery decompression unit of the refrigeration cycle device according to the fifth embodiment.
  • Fig. 22 is a cross-sectional view taken along the line X X I I -X X I in Fig. 21 and showing a non-energized state to the microvalve.
  • Fig. 23 is a cross-sectional view showing a cross section taken along the line X X ⁇ I-XX I I of Fig. 22.
  • Fig. 24 is a cross-sectional view taken along the line X X I I -X X I in Fig. 21 and showing a state of energization to the microvalve.
  • FIG. 25 is a cross-sectional view showing the X X V -X X V cross section of FIG.
  • FIG. 26 is an explanatory diagram for explaining the operation of the first battery decompression unit of the refrigeration cycle device according to the fifth embodiment.
  • FIG. 27 is a schematic diagram showing the inside of a microvalve used in the first battery decompression unit of the refrigeration cycle device according to the sixth embodiment.
  • FIG. 28 An enlarged view of a part of Fig. 27.
  • FIG. 29 A schematic diagram showing the inside of a microvalve used in the first battery decompression unit of the refrigeration cycle device according to the seventh embodiment.
  • FIG. 30 An enlarged view of a part of Fig. 29.
  • the present embodiment will be described with reference to FIGS. 1 to 11.
  • an example will be described in which the refrigeration cycle device 10 of the present disclosure is applied to an electric vehicle that obtains a driving force for vehicle traveling from an electric motor.
  • An electric vehicle is equipped with a battery knife that stores electric power supplied to an electric motor for traveling.
  • the battery knife is configured as a rechargeable secondary battery.
  • the battery module is composed of multiple battery modules IV! 1, 1 ⁇ /12 that are electrically connected in series.
  • the battery knife of this embodiment is composed of a first battery module IV! 1 and a second battery module IV! 2.
  • Each battery module IV! 1, 1 ⁇ /12 is composed of a series connection body in which a plurality of cells ⁇ are electrically connected in series.
  • the battery knife generates heat when power is supplied to the electric motor for traveling. If the temperature of the battery knife rises excessively, the battery knife will deteriorate or the output will be limited. For this reason, the battery knife needs to be appropriately cooled so that its temperature is maintained at a predetermined reference temperature (for example, 50 ° C or lower).
  • a predetermined reference temperature for example, 50 ° C or lower.
  • the air supplied to the vehicle interior and the battery knife are the cooling targets of the refrigeration cycle device 10. That is, the refrigeration cycle device 10 is configured to adjust the air supplied to the vehicle interior and the battery knife to a desired temperature.
  • the refrigeration cycle apparatus 10 includes a compressor 11, a radiator 12, a cooling decompression unit 14, a cooling evaporator 15 and a first battery decompression unit 16, An evaporator 17 for the first battery, a decompression unit 18 for the second battery, an evaporator 19 for the second battery, and a pressure adjusting valve 20 are provided. These components are connected to each other by a refrigerant pipe.
  • the refrigeration cycle apparatus 10 includes a control device 100 that controls the operation of each component. ⁇ 2020/175 544 8 ⁇ (:171? 2020 /007720
  • the refrigeration cycle apparatus 10 uses, as a refrigerant, 1 to 1 (three-system refrigerant (specifically, 1
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant, and some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • a 1 to 10 type refrigerant for example, Alternatively, a natural cooling medium (eg, [3 ⁇ 4 7 4]) or the like may be used.
  • the compressor 11 is, in the refrigeration cycle device 10, sucking the refrigerant, compressing it, and discharging it.
  • the compressor 11 is composed of an electric compressor in which a fixed displacement type compression mechanism having a fixed discharge capacity is driven by an electric motor.
  • the compressor 1 1 is located inside the vehicle's bonnet. The operation (for example, the number of rotations) of the electric motor that constitutes the compressor 11 is controlled by a control signal output from the control device 100.
  • the refrigerant inlet side of the radiator 12 is connected to the refrigerant discharge side of the compressor 11.
  • the radiator 12 is a heat exchanger that radiates the heat of the refrigerant discharged from the compressor 11.
  • the radiator 12 is equipped with a refrigerant flow path section 1 2 1 through which a refrigerant flows and a heater circuit !! (3) a heat medium flow path section 1 2 2 through which a heat medium flows.
  • a heating heat exchanger that heats the heat medium by exchanging heat with the heat medium flowing through !! ⁇ is provided. Note that the heater circuits 1 to 1 (3 are the refrigerant discharged from the compressor 11).
  • a heater circuit This is provided with a heater core for radiating the heat medium to the air blown into the passenger compartment, a radiator for radiating the heat medium to the battery knife, and the like.
  • a cooling decompression unit 14 is connected to the refrigerant outlet side of the radiator 12.
  • the cooling decompression unit 14 is a decompression unit that decompresses the refrigerant that has passed through the radiator 12 when the vehicle interior is air-conditioned.
  • the cooling decompression unit 14 has the same configuration as the first battery decompression unit 16 described later. Therefore, the description of the cooling decompression unit 14 is omitted.
  • a refrigerant inlet section 150 of a cooling evaporator 15 is connected to the refrigerant outlet side of the cooling decompression section 14.
  • the cooling evaporator 15 is an evaporator that evaporates the refrigerant decompressed by the cooling decompression unit 14.
  • the cooling evaporator 15 is an air conditioning cable (not shown). ⁇ 2020/175 544 9 ⁇ (: 171-1? 2020/007720
  • the cooling evaporator 15 is an air cooler that cools the air blown from the indoor fan 1 51 by exchanging heat with the refrigerant.
  • the indoor fan 155 is a blower that blows the air cooled by the cooling evaporator 15 into the passenger compartment.
  • the first battery decompression unit 16 and the second battery decompression unit are arranged so as to be in parallel with the cooling decompression unit 14 on the refrigerant outlet side of the radiator 12. Part 18 is connected.
  • the first branch portion 21 is provided between the radiator 12 and the cooling decompression portion 14. The first branch portion 21 flows a part of the refrigerant flowing from the radiator 12 toward the cooling pressure reducing portion 14 toward the first battery pressure reducing portion 16 and the second battery pressure reducing portion 18. belongs to.
  • the refrigerant branched in the first branch portion 21 is distributed to the first battery pressure reducing portion 16 and the second battery pressure reducing portion 18.
  • a second branch 22 is provided for this purpose.
  • the first branch pressure reducing section 16 is connected to one refrigerant outlet side of the second branch section 22 and the second battery pressure reducing section 6 18 is connected to the other refrigerant outlet side.
  • the first battery decompression unit 16 is a decompression unit that decompresses the refrigerant flowing through the respective branch units 21 and 22 when the battery knife is cooled.
  • the first battery decompression unit 16 is configured as a variable diaphragm whose throttle opening can be changed. The details of the first battery pressure reducing unit 16 will be described later.
  • the refrigerant inlet side of the first battery evaporator 17 is connected to the refrigerant outlet side of the first battery decompression unit 16.
  • the first battery evaporator 17 is an evaporator that evaporates the refrigerant decompressed by the first battery decompression unit 16.
  • the first battery evaporator 17 is a heat absorber that evaporates the refrigerant by absorbing heat from the first battery module IV! 1 of the battery knife.
  • the first battery evaporator 17 is a battery cooler that cools the first battery module IV! 1 by exchanging heat with the refrigerant.
  • the second battery decompression unit 18 is a decompression unit that decompresses the refrigerant that flows in through the respective branch units 21 and 22 when the battery knife is cooled.
  • the refrigerant inlet port 190 of the second battery evaporator 19 is connected to the refrigerant outlet side of the second battery pressure reducing unit 18.
  • the second battery evaporator 19 is an evaporator that evaporates the refrigerant decompressed by the second battery decompression unit 18.
  • the second battery evaporator 19 is a heat absorber that absorbs heat from the second battery module IV! 2 of Battery Co., Ltd. to evaporate the refrigerant.
  • the second battery evaporator 19 is a battery cooler that cools the second battery module IV! 2 by exchanging heat with the refrigerant.
  • a first merging section 23 is provided for merging with the refrigerant passing through 9.
  • a second merging section 24 for merging the refrigerant merging in the first merging section 23 and the refrigerant having passed through the cooling evaporator 15 is provided on the downstream side of the first merging section 23 in the refrigerant flow. ing .
  • the refrigerant flow downstream side of the second merging section 24 is connected to the refrigerant suction side of the compressor 11.
  • the pressure regulating valve 20 is arranged between the first merging portion 23 and the second merging portion 24.
  • the pressure control valve 20 is for maintaining the pressure of the refrigerant passing through the first battery evaporator 17 and the second battery evaporator 19 at or above a predetermined set pressure value.
  • the pressure control valve 20 is composed of, for example, a bellows type evaporation pressure control valve.
  • the refrigeration cycle apparatus 10 is provided with the pressure regulating valve 20, so that, for example, when cooling the buttery knife and cooling the passenger compartment at the same time, the evaporators 17 and 1 for each battery are provided.
  • the pressure of the refrigerant passing through the cooling evaporator 15 can be reduced while maintaining the pressure of the refrigerant passing through 9.
  • control device 100 that constitutes the electronic control unit of the refrigeration cycle device 10 will be described with reference to FIG.
  • the control device 100 is composed of a processor, a micro-computer including memories such as [1 0/1 ⁇ and [1/8 1 ⁇ /1], and its peripheral circuits.
  • the memory of the controller 100 is a non-transitional real ⁇ 2020/175544 1 1 ⁇ (: 171-1?2020/007720
  • the air conditioning sensor 10 1 and a battery sensor 10 2 are connected to the input side of the control device 100.
  • the air conditioning sensor 1101 is composed of a plurality of types of sensors used for controlling the cooling process.
  • the air conditioning sensor 101 is, for example, a temperature sensor (evaporator temperature sensor, etc.) that detects the refrigerant temperature on the low pressure side of the cycle, a high pressure sensor that detects the refrigerant pressure on the high pressure side of the cycle, and the temperature of the high pressure refrigerant. Includes temperature sensor.
  • the battery sensor 102 is composed of a plurality of types of sensors used to control the cooling process of the battery knife.
  • the battery sensor 102 includes, for example, a temperature sensor that detects the battery temperature of each battery module IV! 1, IV! 2.
  • the control device 100 performs various arithmetic processings based on various information acquired from the air conditioning sensor 101 and the battery sensor 1002 and the control program stored in the memory, and outputs to the output side. Controls the operation of each connected component.
  • the decompression section 18 is connected on the output side of the control device 100.
  • the control unit 100 determines the refrigerant discharge performance (for example, refrigerant pressure) by the compressor 11, the throttle opening of each pressure reducing unit 14, 16, and 18 and the ventilation performance of the indoor fan 1 5 1 depending on the situation. Can be adjusted.
  • the control unit 100 controls the operation of the compressor 11, each pressure reducing section 14, 16 and 18 and the indoor fan 1 5 1 to control the operation of the vehicle.
  • Each of the air supplied to the room and the battery setting tool can be adjusted to a desired temperature.
  • the refrigeration cycle apparatus 10 is provided with a pressure regulating valve 20 on the downstream side of the refrigerant flow of the first battery evaporator 17 and the second battery evaporator 19.
  • a pressure regulating valve 20 on the downstream side of the refrigerant flow of the first battery evaporator 17 and the second battery evaporator 19.
  • the refrigeration cycle apparatus 10 includes an evaporator for cooling 15 and an evaporator for first battery 1
  • a decompression unit 16 for the pond and a decompression unit 18 for the second battery are provided.
  • each evaporator 15 , 17 and 19 can appropriately distribute a gas-liquid two-phase refrigerant including a gas refrigerant and a liquid refrigerant.
  • the refrigerating machine oil contained in the refrigerant is also distributed to the evaporators 15, 17 and 19 so that the refrigerating machine oil may be contained in some of the evaporators. It is possible to prevent uneven lubrication of the compressor 11 from being biased.
  • the cooling decompression unit 14 the first battery decompression unit 16 and the second battery decompression unit 1
  • 8 includes a solenoid valve that drives the valve body with a solenoid actuator, and an electric valve that drives the valve body with an electric motor such as a stepping motor.
  • the freeze/freeze cycle device 10 becomes large-sized.
  • the depressurization sections 14, 16 and 18 are provided corresponding to the evaporators 15, 17 and 19 respectively, so The size increase of the cycle device 10 becomes remarkable.
  • each pressure reducing unit 14 is configured to reduce the pressure of the refrigeration cycle device 10.
  • each depressurizing unit 14, 16, 16 and 18 are constructed by a valve module including a micro valve X 1.
  • the micro valve X I is a valve component for changing the throttle opening of each pressure reducing unit 14, 16, 16 and 18.
  • Each of the 18 corresponds to the variable decompression section, and each of the evaporators 15, 17 and 19 corresponds to the variable evaporator.
  • the microvalve X I is a valve component for varying the throttle opening of each pressure reducing unit 14, 16, and 18.
  • the depressurizing units 14, 16, and 18 have the same basic configuration. Therefore, in the present embodiment, the configuration and the like of the first battery decompression unit 16 will be described, and the description of the cooling decompression unit 14 and the second battery decompression unit 18 will be omitted. ⁇ 2020/175 544 13 ⁇ (:171? 2020 /007720
  • the valve module ⁇ is a block body 27 provided in a refrigerant pipe 26 that connects the second branch portion 22 and the first battery evaporator 17. Is integrally configured with respect to.
  • the block body 27 constitutes an object to be attached to which the micro valve X 1 is attached.
  • the block body 27 constitutes a part of the first battery decompression unit 16.
  • 2 7 is an upstream side portion of the refrigerant pipe 26 connected to the refrigerant outlet portion of the radiator 12 6 and a downstream portion connected to the refrigerant inlet portion 1 70 of the first battery evaporator 17 A metal (eg, aluminum) fitting that connects to the side position 2 62.
  • metal eg, aluminum
  • a bottomed upstream fitting hole 271 into which the upstream portion 261 is fitted is formed on one side surface of the block body 27. Further, the block body 27 has a bottomed downstream fitting hole 2 7 2 in which a downstream side portion 2 62 is fitted on the side opposite to the one side surface where the upstream fitting hole 2 7 1 is formed. Are formed.
  • the upstream side fitting hole 271 and the downstream side fitting hole 272 communicate with each other through an orifice 2733.
  • the orifice 2733 is a through hole that penetrates the bottoms of the fitting holes 271 and 272.
  • the orifice 273 is composed of fine holes so as to function as a fixed throttle that exerts a pressure reducing action when the refrigerant flows.
  • 2 Recesses 2 7 5 are formed.
  • a through hole 2 7 4 3 is formed in the bottom of the first recess 2 7 4 to connect the first recess 2 7 4 and the upstream fitting hole 2 7 1.
  • a through hole 2 75 3 is formed in the bottom of the second recess 2 75 so that the second recess 2 7 5 communicates with the downstream fitting hole 2 72.
  • valve module X 0 The configuration of the valve module X 0 will be described below.
  • the valve module ⁇ has a micro valve XI, a valve casing 2, a sealing member X3, two ⁇ rings X4, X5, and two electrical wirings X6, X7. doing.
  • the microvalve XI is a plate-shaped valve component, and is mainly used for semiconductor chips. ⁇ 2020/175 544 14 ⁇ (:171? 2020 /007720
  • the microvalve XI may or may not have components other than the semiconductor chip. Therefore, the micro valve X 1 can be constructed in a small size.
  • the length of the microvalve X 1 in the thickness direction is, for example, 201 01, and the length in the longitudinal direction orthogonal to the thickness direction is, for example, 1
  • the length in the lateral direction orthogonal to both the longitudinal direction and the thickness direction is, for example, 5
  • Opening and closing is switched by switching between energized and de-energized micro valve X1.
  • the micro valve XI is a normally closed valve that opens when energized and closes when de-energized.
  • the electrical wiring X6, 7 extends from the surface opposite to the valve casing X2 of the two plate surfaces on the front and back of the micro valve X1, and the sealing member X3, valve 7 It passes through the casing X 2 and is connected to the power supply outside the valve module X 0. As a result, electric power is supplied from the power supply to the micro valve X 1 through the electric wiring X 6 and X 7.
  • the valve casing 2 is a resin casing that houses the microvalve X 1.
  • the valve casing 2 is formed by resin molding with polyphenylene sulfide as a main component.
  • the valve casing 2 is configured such that the linear expansion coefficient is a value between the linear expansion coefficient of the microvalve X 1 and the linear expansion coefficient of the block body 27.
  • the valve casing X 2 constitutes a component mounting part for mounting the micro valve X 1 to the block body 27.
  • the valve casing X2 is a concave box having a bottom wall on one side and an open side on the other side.
  • the bottom wall of the valve casing X 2 is interposed between the block body 27 and the micro valve 1 so that the micro valve XI and the block body 27 do not come into direct contact with each other.
  • one surface of the bottom wall is in contact with and fixed to the block body 27, and the other surface is in contact with and fixed to one of the two plate surfaces of the microvalve X 1.
  • the valve casing X 2 can absorb the difference in linear expansion coefficient between the microvalve XI and the block body 27. This is because the linear expansion coefficient of the valve casing X2 is the same as that of the microvalve XI. This is because the value is between the tension coefficient and the linear expansion coefficient of the block body 27.
  • the bottom wall of the valve casing X2 has a plate-shaped base portion X20 facing the microvalve X1 and a columnar shape protruding from the base portion X20 in a direction away from the microvalve X1. It has a first protrusion X21 and a second protrusion X22.
  • the first protrusion X21 and the second protrusion X22 are formed on the block body 27.
  • the first protruding portion X21 is formed with a first communication hole XV1 penetrating from the micro valve X1 side end to the bottom side end of the first recess 274.
  • the second projecting portion X 22 is formed with a second communicating hole XV 2 penetrating from the end on the microvalve X 1 side to the end on the bottom side of the second recess 275.
  • the sealing member X3 is a member made of epoxy resin that seals the other open side of the valve casing X2.
  • the sealing member X 3 covers the plate surface on the opposite side of the bottom wall side of the valve casing X 2 among the two plate surfaces on the front and back of the microvalve X 1. Further, the sealing member X 3 covers the electric wirings X 6 and X 7 to realize waterproofing and insulation of the electric wirings X 6 and X 7.
  • the sealing member X 3 is formed by resin potting or the like.
  • the ring X4 is attached to the outer periphery of the first protrusion X21, and the block body 2
  • the ring X5 is attached to the outer periphery of the second projecting portion X22 and seals between the block body 27 and the second projecting portion X22, so that the pressure reducing portion for the first battery 16 is exposed to the outside. Suppress leakage of refrigerant.
  • the microvalve X 1 is a MEMS including a first outer layer X 1 1, a middle layer X 1 2, and a second outer layer X 1 3, both of which are semiconductors.
  • MEMS Micro Electro Mechanical Systems.
  • the first outer layer X11, the middle layer X12, and the second outer layer X13 are rectangular plate-shaped members having the same outer shape. ⁇ 2020/175544 16 ⁇ (: 171-1?2020/007720
  • the first outer layer X I 1, the middle layer X I 2, and the second outer layer X 13 are laminated in this order.
  • the second outer layer X13 is arranged on the side closest to the bottom wall of the valve casing X2.
  • the structures of the first outer layer X11, the intermediate layer X12, and the second outer layer X13, which will be described later, are formed by a semiconductor manufacturing process such as chemical etching.
  • the first outer layer X11 is a conductive semiconductor member having a non-conductive oxide film on its surface. As shown in FIG. 5, the first outer layer X I 1 is formed with two through holes 14 and X 15 penetrating the front and back. The ends of the electrical wirings X 6 and X 7 on the micro valve X 1 side are inserted into the through holes 14 and X 15 respectively.
  • the second outer layer XI 3 is a conductive semiconductor member having a non-conductive oxide film on its surface. As shown in FIGS. 5, 7, and 8, the second outer layer XI 3 is formed with a first refrigerant hole XI 6 and a second refrigerant hole XI 7 penetrating through the front and back. As shown in Fig. 8, the first refrigerant hole X 16 communicates with the first communication hole 1 of the valve casing X 2, and the second refrigerant hole XI 7 communicates with the second communication hole 2 of the valve casing X 2. To do.
  • the hydraulic diameter of each of the first refrigerant hole XI 6 and the second refrigerant hole XI 7 is, for example, 0.1 111 or more and 3 or more. However, the present invention is not limited to this. 1st refrigerant hole X 16
  • the intermediate layer X 12 is a conductive semiconductor member and is sandwiched between the first outer layer X 11 and the second outer layer X 13. Since the intermediate layer XI 2 contacts the oxide film of the first outer layer XI 1 and the oxide film of the second outer layer X 1 3, it is electrically non-conductive with both the first outer layer X 1 1 and the second outer layer X 1 3. Is. As shown in FIG. 7, the middle layer XI 2 includes a first fixing portion XI 21, a second fixing portion XI 22, a plurality of first ribs XI 23, a plurality of second ribs X 1 24, and a spine XI 25. , Arm XI 26, beam XI 27, and moving part X 1 28.
  • the first fixing portion X 121 is a member fixed to the first outer layer X 11 and the second outer layer X 13.
  • the 1st fixed part X 122 has the 2nd fixed part X 122, 1st rib X 1 23, 2nd rib XI 24, spine XI 25, arm X 1 26, beam X 1 2 7, movable part X 1 28 Are formed so as to surround the same fluid chamber X 19 ⁇ 2020/175 544 17 ⁇ (: 171-1? 2020/007720
  • the fluid chamber X 19 is a chamber surrounded by the first fixed portion X 1 21 1, the first outer layer X 11 and the second outer layer X 1 3. At least part of the refrigerant that has passed through the radiator 12 flows through the fluid chamber X19.
  • the first fixed part X 1 2 1, the first outer layer X 11 and the second outer layer X I 3 correspond to the base as a whole.
  • the electric wirings X 6 and 7 are electric wirings for changing the temperature of the plurality of first ribs X 1 2 3 and the plurality of second ribs X 1 2 4 for displacement.
  • the fixation of the first fixed portion X1 2 1 to the first outer layer X 1 1 and the second outer layer X 13 is performed by the refrigerant flowing from the fluid chamber XI 9 to the first refrigerant hole XI 6 and the second refrigerant hole XI 7 It is carried out in a form that suppresses leakage from the microvalve X 1 through other than.
  • the second fixing portion X 1 2 2 is fixed to the first outer layer X 1 1 and the second outer layer X 1 3.
  • the second fixed portion X 1 2 2 is surrounded by the first fixed portion X 1 2 1 and is arranged apart from the first fixed portion X 1 2 1.
  • arm X 1 2 6, beam X 1 2 7, movable part X 1 2 8 is not fixed to the first outer layer X 1 1 and the second outer layer X 1 3, and the first outer layer X 1 1 , Is displaceable with respect to the second outer layer X 1 3.
  • the spine X I 25 has the shape of an elongated rod that extends in the lateral direction of the rectangular shape of the intermediate layer X 12. One end of the spine X I 2 5 in the longitudinal direction is connected to the beam X 1 27.
  • the plurality of first ribs X I 23 are arranged on one side of the spine X I 25 in a direction orthogonal to the longitudinal direction of the spine X I 25.
  • the plurality of first ribs X I 23 are arranged in the longitudinal direction of the spine X I 25.
  • Each 1st rib X 1 2 3 3 has an elongated rod shape and can expand and contract depending on the temperature.
  • Each first rib X1 23 is connected to the first fixed portion X1 21 at one end in the longitudinal direction and is connected to the spine XI 25 at the other end. Then, as the first ribs XI 2 3 become closer to the spine X 1 2 5 side from the 1st fixed part X 1 2 1 side, the spine ⁇ 2020/175 544 18 ⁇ (:171? 2020 /007720
  • the plurality of first ribs X I 23 extend parallel to each other.
  • the plurality of second ribs X 124 are arranged on the other side of the spine X I 25 in the direction orthogonal to the longitudinal direction of the spine X 125.
  • the plurality of second ribs X I 24 are arranged in the longitudinal direction of the spine X I 25.
  • Each second rib X 1 24 has an elongated rod shape and can expand and contract depending on the temperature.
  • Each second rib X124 is connected to the second fixing portion X122 at one end in the longitudinal direction and is connected to the spine XI25 at the other end. Then, each second rib XI 24 is offset so as to be offset toward the beam X 1 27 side in the longitudinal direction of the spine X 1 25 as the second fixing portion XI 22 side is closer to the spine XI 25 side. It is skewed to XI 25. Then, the plurality of second ribs X I 24 extend parallel to each other.
  • the plurality of first ribs 1 23, the plurality of second ribs X 1 24, and the spine X I 25 collectively correspond to the drive unit.
  • the arm X I 26 has an elongated rod shape that extends non-orthogonally and parallel to the spine X 125. One end of the arm X I 26 in the longitudinal direction is connected to the beam X 1 27, and the other end is connected to the first fixed portion X 1 2 1.
  • the beam X 127 has an elongated rod shape extending in a direction intersecting with the spine X I 25 and the arm X I 26 at about 90°. One end of the beam X 1 27 is connected to the movable part X 1 28. Arm X I 26 and beam X I 27 collectively correspond to the amplification section.
  • connection position X 92 of the beam 127, the connection position X 3 of the beam X 127 and the connection position X 3 of the movable part X 128 are arranged in this order along the longitudinal direction of the beam X 127. If the connection point between the first fixed part X 1 2 1 and the arm X 1 26 is the hinge X 0, then from the hinge X 0 to the connection position X 2 in the plane parallel to the plate surface of the intermediate layer X 1 2. The straight line distance from hinge X 0 to connection position X 3 is longer than the straight line distance. ⁇ 2020/175 544 19 ⁇ (: 171-1? 2020/007720
  • the movable portion X 1 2 8 is for adjusting the pressure of the refrigerant in the fluid chamber X 1 9.
  • the outer shape of the movable portion X 1 28 has a rectangular shape that extends in the direction of approximately 90 ° with respect to the longitudinal direction of the beam X 1 27. This movable part XI 28 can move integrally with the beam XI 27 in the fluid chamber X 19.
  • the movable portion X 1 28 makes the first refrigerant hole X 16 and the second refrigerant hole XI 7 communicate with each other through the fluid chamber XI 9 when in a certain position, At the position of, the first refrigerant hole X 16 and the second refrigerant hole XI 7 are shut off in the fluid chamber XI 9.
  • the movable portion X 1 2 8 has a frame shape surrounding a through hole 1 2 0 penetrating the front and back of the intermediate layer XI 2. Therefore, the through-hole X 1 2 0 also moves integrally with the movable portion X 1 2 8.
  • the through hole X 1 20 is part of the fluid chamber X 1 9.
  • the first application point X1 2 9 near the portion of the first fixed portion X 1 2 1 that is connected to the plurality of first ribs X 1 2 3 has the number shown in FIG. 1
  • the end of the electrical wiring X6 that has passed through the through-hole X14 of the outer layer X11 is connected to the microvalve X1 side end.
  • the micro valve X 7 of the electrical wiring X 7 that passes through the through hole X 1 5 of the first outer layer X 11 shown in FIG. One end is connected.
  • valve module X 0 When the micro valve X 1 is energized, a voltage is applied between the electric wiring X 6, X 7 and the first application point X I 29 and the second application point X 130. Then, a current flows through the plurality of first ribs 1 2 3 and the plurality of second ribs X 1 2 4. Due to this current, the plurality of first ribs X I 2 3 and the plurality of second ribs X I 2 4 generate heat and their temperatures rise. As a result, each of the plurality of first ribs 1 2 3 and the plurality of second ribs X 1 2 4 expands in the longitudinal direction.
  • the biased spine X I 2 5 pushes the beam X 1 2 7 at the connecting position 2.
  • the connecting position X 2 corresponds to the biasing position.
  • the member composed of the beam X 1 27 and the arm X 1 2 6 integrally changes its posture with the hinge ⁇ as a fulcrum and the connection position X 2 as a force point.
  • the moving part X 1 2 8 connected to the end of the beam X 1 2 7 opposite to the arm X 1 2 6 also has its longitudinal side on which the spine XI 2 5 pushes the beam XI 2 7.
  • the movable portion X 1 28 reaches the position where the tip in the moving direction abuts the first fixed portion X 1 21 as shown in FIGS. 9 and 10.
  • this position of the movable part X1 28 is referred to as the energized position.
  • the beam X 1 27 and the arm X 1 26 function as a lever with the hinge ⁇ as a fulcrum, the connection position 2 as a force point, and the connection position 3 as an action point.
  • the straight line distance from the hinge X 0 to the connection position 3 is longer than the straight line distance from the hinge X 0 to the connection position X 2 in the plane parallel to the plate surface of the intermediate layer X I 2. Therefore, the amount of movement of the connection position X 3, which is the point of action, is greater than the amount of movement of the connection position 2, which is the force point. Therefore, the amount of displacement due to thermal expansion is amplified by the lever and transmitted to the movable part X 1 28.
  • the through hole X1 20 is located in a direction perpendicular to the plate surface of the intermediate layer X1 2.
  • 1 Refrigerant hole X 16 and 2nd refrigerant hole X 17 overlap.
  • the first refrigerant hole X 16 and the second refrigerant hole X 17 are communicated with each other through the through hole X 120 which is a part of the fluid chamber X 19.
  • the refrigerant flow through the first refrigerant hole X16, the through hole X120, and the second refrigerant hole XI7.
  • the micro valve X 1 opens.
  • the first refrigerant hole X I 6, the through hole X I 20 and the second refrigerant hole X I 7 are refrigerant passages through which the refrigerant flows in the micro valve X 1 when the micro valve X 1 is opened.
  • the flow path of the refrigerant in the micro valve X 1 has the II vane structure. Specifically, the refrigerant is cooled from one side of the micro valve X1. ⁇ 2020/175544 21 ⁇ (: 171-1?2020/007720
  • the flow path of the refrigerant in the valve module X 0 also has the II opening structure. Specifically, the refrigerant flows into the valve module ⁇ from one surface of the valve module ⁇ , passes through the valve module X 0, and from the same side surface of the valve module ⁇ . ⁇ It leaks out.
  • the direction orthogonal to the plate surface of the intermediate layer X 1 2 is the laminating direction of the first outer layer X I 1, the intermediate layer X I 2, and the second outer layer X 1 3.
  • the moving part XI 2 8 connected to the end of the beam X 1 2 7 opposite to the arm XI 2 6 also moves in the longitudinal direction on the side where the spine XI 2 5 pulls the beam XI 2 7. , Moving.
  • the movable portion X I 28 reaches a position where it does not contact the first fixed portion X 1 21 as shown in FIGS. 7 and 8.
  • this position of the movable part X1 28 is referred to as the non-energized position.
  • the through hole X 1 20 is formed in a direction orthogonal to the plate surface of the intermediate layer X 1 2. It overlaps with the first refrigerant hole X 16 but does not overlap with the second refrigerant hole XI 7 in that direction.
  • the second refrigerant hole XI 7 overlaps with the movable portion X 1 28 in the direction orthogonal to the plate surface of the intermediate layer XI 2. That is ⁇ 2020/175 544 22 ⁇ (:171? 2020 /007720
  • the second refrigerant hole X I 7 is closed by the movable part X 1 28. Therefore, in this case, the first refrigerant hole X 16 and the second refrigerant hole X 17 are blocked in the fluid chamber X 19. As a result, the flow of the refrigerant between the first communication hole 1 and the second communication hole 2 through the first refrigerant hole X I 6 and the second refrigerant hole X I 7 is hindered. That is, the micro valve X 1 is closed.
  • the flow passage area becomes the flow passage area of the orifice 2 7 3 when the micro valve X 1 is not energized, and is the orifice 2 7 3 when energized. It is the sum of the flow passage cross-sectional area of the valve module and the flow passage area of the valve module. That is, as shown in Fig. 11, the first battery decompression unit 16 has a small opening 31 when the micro valve X1 is not energized and a large opening 32 when the micro valve X1 is energized.
  • the pressure reducing unit 16 for the first battery can adjust the throttle opening degree of the pressure reducing unit 16 for the first battery by switching between energization and de-energization of the micro valve X 1.
  • the first battery decompression unit 16 can reduce the throttle opening by stopping energization of the micro valve X 1.
  • the cooling decompression unit 14 and the second battery decompression unit 18 have the same structure as the first battery decompression unit 16. For this reason, the cooling decompression unit 14 and the second battery decompression unit 18 are switched between energization and de-energization of the microvalve X 1 provided therein, respectively, so that the cooling decompression unit 14 and the second battery The throttle opening of the decompression unit 18 can be adjusted.
  • the control device 100 of the present embodiment may use the first battery evaporator 17 and the second battery evaporator.
  • the pressure reducing units 14, 16, and 18 are controlled so that the refrigerant flow rate of 19 is large.
  • the control unit 100 should respectively decompress the first battery decompression unit 16 and the second battery decompression unit 18.
  • the control device 100 controls each decompression so that the refrigerant flow rate of the cooling evaporator 15 becomes a large flow rate. Controls parts 14, 16, and 18. Specifically, when it is necessary to prioritize the cooling of the vehicle interior over the cooling of the battery knife, the control device 100 energizes the microvalve X 1 of the cooling decompression unit 14 and Stop energizing the micro-valve X1 of the battery decompression unit 16 and the second battery decompression unit 18 respectively. According to this, since the cooling capacity of the refrigeration cycle device 10 is enhanced, the cooling of the vehicle compartment can be prioritized over the cooling of the battery knife.
  • the refrigeration cycle apparatus 10 described above corresponds to each of the cooling evaporator 15, the first battery evaporator 17 and the second battery evaporator 19 which are connected in parallel to each other.
  • a cooling decompression unit 14, a first battery decompression unit 16 and a second battery decompression unit 18 are provided. This makes it possible to distribute the refrigerant and the refrigerating machine oil to the respective evaporators 15, 17 and 19 at a desired ratio.
  • each pressure reducing unit 14, 16, 16 and 18 is configured to adjust the throttle opening degree by using the microvalve XI, so that it is more effective than when using a solenoid valve or a motorized valve. And can be easily miniaturized.
  • the microvalve X 1 is formed by the semiconductor chip as described above. Further, as described above, the fact that a lever is used to amplify the amount of displacement due to thermal expansion also contributes to downsizing as compared to a solenoid valve or a motorized valve that does not use such a lever.
  • the deterioration of the mountability is suppressed, and at a desired ratio to each of the evaporators 15, 17, 17 which are connected in parallel. Refrigerant and refrigeration oil can be distributed.
  • each depressurizing unit 14, 16, and 18 is an orifice with a fixed throttle opening.
  • the micro valve XI switches the communication and cutoff of the first refrigerant hole XI 6 and the second refrigerant hole XI 7 by the movable part XI 28 so that the depressurizing parts 14, 16, 16 and 18 are connected. It is configured to adjust the throttle opening.
  • each depressurizing section 14, 16 and 18 is configured to include the fixed throttle, the first refrigerant hole X16 and the second refrigerant hole X17 in the microvalve X1. It is possible to adjust the opening degree of each pressure reducing section 14, 16, and 18 step by step by switching the connection and disconnection. If each pressure reducing unit 14, 16, 16 and 18 includes a fixed throttle, use microvalve X 1 when it is not necessary to adjust the throttle opening of each pressure reducing unit 14, 16, 16 or 18. By not driving it, the frequency of driving the microvalve X 1 can be reduced and energy consumption can be suppressed.
  • the valve casing X2 is made of a resin material in which the linear expansion coefficient of the valve casing X2 is a value between the linear expansion coefficient of the microvalve X1 and the linear expansion coefficient of the block body 27. It is configured. This allows the valve casing X 2 to absorb the difference in linear expansion coefficient between the microvalve X I and the block body 27. That is, since the stress of thermal strain due to the temperature change of the block body 27 is absorbed by the valve casing 2, the microvalve X I can be protected.
  • both the microvalve X1 and the valve module ⁇ have the cooling medium flow path of the structure of II bain, it is possible to reduce the dug of the block body 27. That is, it is possible to suppress the depth of the recess formed in the block body 27 for disposing the valve module. The reason is as follows.
  • the valve module ⁇ does not have a refrigerant flow path with a structure of II turns, the valve module ⁇ has a refrigerant inlet on the surface of the block body 27 side, and it is the opposite of the valve module ⁇ . It is assumed that there is a refrigerant outlet on the side surface. In that case, it is necessary to form a refrigerant flow path on both sides of the valve module. Therefore, if the refrigerant flow passages on both sides of the valve module ⁇ are to be accommodated in the block body 27, they must not be formed in the block body 27 to arrange the valve module ⁇ . ⁇ 2020/175 544 25 ⁇ (:171? 2020 /007720
  • the dent that must be made becomes deeper. Moreover, since the microvalve X I itself is small, the digging of the block body 27 can be further reduced.
  • each pressure reducing unit 14, 16 is lightweight, each pressure reducing unit 14, 16,
  • the present embodiment is different from the first embodiment in that the pressure regulating valve 20 is arranged on the refrigerant flow downstream side of the cooling evaporator 15.
  • the pressure regulating valve 20 is arranged on the refrigerant flow downstream side of the cooling evaporator 15.
  • parts different from the first embodiment will be mainly described, and description of the same parts as in the first embodiment may be omitted.
  • the refrigeration cycle apparatus 10 includes a cooling evaporator 15
  • a pressure regulating valve 20 is arranged between the confluence part 24.
  • the pressure regulating valve 20 maintains the pressure of the refrigerant passing through the cooling evaporator 15 at or above a predetermined set pressure value.
  • the refrigeration cycle apparatus 10 of the present embodiment is provided with the pressure adjusting valve 20 on the downstream side of the cooling evaporator 15 in which the refrigerant flows. For this reason, for example, when cooling the battery knife and cooling the passenger compartment at the same time, while maintaining the pressure of the refrigerant passing through the cooling evaporator 15 and passing through the battery evaporators 17 and 19 respectively.
  • FIGS. 13 and 14 The present embodiment is different from the first embodiment in that the orifice 2 73 is not provided for the block body 27.
  • parts different from the first embodiment will be mainly described, and description of the same parts as in the first embodiment may be omitted.
  • the block body 27 is not provided with the orifice 2 73 between the upstream side fitting hole 2 71 and the downstream side fitting hole 2 7 2.
  • the block body 27 has a structure in which the cooling medium does not flow directly from the upstream side fitting hole 271 to the downstream side fitting hole 272 so that the cooling medium does not flow.
  • Partitions 2 7 6 are set between the bottoms.
  • the microvalve XI is the electric power supplied to the microvalve X1 from the electric wiring 6, 6 through the first application point X 1 2 9 and the second application point XI 30 when energized.
  • the microvalve XI adjusts the electric power supplied to the microvalve X1 so that the movable part X1 28 is located at any intermediate position between the non-energized position and the maximum energized position. But you can stop it.
  • the electric power supplied to the micro valve X1 is It only needs to be half the maximum value within the control range.
  • the duty ratio should be 50%.
  • Each of the second refrigerant holes X I 7 communicates with the through hole X 1 20.
  • the second refrigerant hole X I 7 is not in a fully open state with respect to the through hole 120, but has an opening degree of less than 100% and greater than 0%. The closer the movable part X 1 28 is to the position at the maximum conducting potential at the intermediate position, the larger the opening of the second refrigerant hole X 17 with respect to the through hole X 1 20.
  • the voltage applied to the microvalve XI is changed by the ⁇ /1 ⁇ /1 control, so that each pressure reducing unit 14, 1 Change the aperture of 6 and 18.
  • the refrigeration cycle system 10 increases the duty ratio of ⁇ /1 ⁇ /1 control to increase the throttle opening of each pressure reducing unit 14, 16, 16, 18.
  • the duty ratio of ⁇ /1 ⁇ /1 control By increasing the duty ratio of ⁇ /1 ⁇ /1 control, the throttle opening of each pressure reducing unit 14, 16, 16 is reduced.
  • the control unit 100 controls the micro valve X1 of each of the battery pressure reducing units 16 and 18 respectively. Increase the duty ratio of ⁇ /1 ⁇ /1 control for. Then, the control device 100 reduces the duty ratio of ⁇ /1 ⁇ /1 control for the microvalve X I of the cooling decompression unit 14. According to this, the cooling capacity of the battery by the refrigeration cycle apparatus 10 is enhanced, so that the cooling of the battery knife can be prioritized over the cooling in the vehicle compartment.
  • the control unit 100 determines the duty ratio of IV! control for the microvalve XI of the cooling decompression unit 14 To increase. Then, the control device 100 reduces the duty ratio of ⁇ /1 ⁇ /1 control for the microvalve X 1 of each of the battery pressure reducing units 16 and 18. According to this, the cooling capacity of the refrigeration cycle apparatus 10 is enhanced, so that the cooling of the vehicle compartment can be prioritized over the cooling of the battery knife.
  • the pressure reducing units 14, 16, 16 and 18 change the refrigerant flow rate to a large flow rate by increasing the duty ratio of ⁇ /1 ⁇ /1 control, and the duty ratio of IV! control is increased. It is possible to change the refrigerant flow rate to a small flow rate by reducing the.
  • the micro valve X1 is configured as a variable throttle capable of changing the throttle opening of each pressure reducing section 14, 16, 16 and 18, the opening of the fluid hole in the micro valve X1 can be reduced. By changing it, it is possible to adjust the throttle opening degree of each pressure reducing section 14, 16, 16 and 18 to a desired opening degree. According to this, even if the block body 2 7 8 is not provided with a fixed restrictor such as Liffith 2 7 3 etc., it is possible to obtain a desired ratio for each evaporator 15 1, 17 and 19. Refrigerant can be distributed. With regard to the operational effects obtained by each of the pressure reducing sections 14, 16, and 18 including the microvalve X I, the same effects as in the first embodiment can be obtained.
  • each depressurizing section 14, 16 and 18 may be provided with an orifice 2 73 for the block body 28.
  • the present embodiment is different from the third embodiment in that the first battery decompression unit 16 is integrally formed with the first battery evaporator 17.
  • the present embodiment parts different from the third embodiment will be mainly described, and description of the same parts as the third embodiment may be omitted.
  • the decompression unit 16 for the first battery is integrally formed with the refrigerant inlet port 170 of the evaporator 17 for the first battery. Specifically, the first battery decompression unit 16 also functions as a connector for connecting the refrigerant inlet port 170 of the first battery evaporator 17 and the refrigerant pipe 26.
  • the block body 270 of the first battery decompression unit 16 has a refrigerant pipe 26 and a refrigerant inlet unit 170 of the first battery evaporator 17.
  • Metal to connect ⁇ 2020/175 544 29 ⁇ (:171? 2020 /007720
  • a bottomed upstream fitting hole 271 into which the refrigerant pipe 26 is fitted is formed on the side surface of the block body 2700.
  • the block body 27 (3 has a bottomed end where the refrigerant inlet portion 170 of the first battery evaporator 17 is fitted to the upper surface connected to the side surface where the upstream side fitting hole 271 is formed.
  • the downstream mating hole 2 72 is formed between the mating holes 2 7 1 and 2 72. It is divided by the partition section 2 7 6.
  • the downstream fitting hole 2 72 extends in a direction orthogonal to the extending direction of the upstream fitting hole 2 7 1. Specifically, the downstream fitting hole 2 72 is formed so as to extend along the protruding direction of the refrigerant inlet portion 170 so that the refrigerant flows straight to the refrigerant inlet portion 170. Has been done.
  • the block body 2700 of the first battery decompression unit 16 and the refrigerant inlet unit 1700 of the first battery evaporator 17 are integrated. Are fitted so that In this way, if the first battery decompression unit 16 is configured at the connection between the refrigerant pipe 26 and the refrigerant inlet port 170 of the first battery evaporator 17 7, the refrigeration cycle device 10 can be simplified. Can be planned.
  • the high-temperature high-pressure refrigerant before passing through the first battery decompression unit 16 flows through the refrigerant pipe 26.
  • the refrigerant pipe 26 heat can be dissipated to the surroundings of the refrigerant pipe 26, so that it is possible to improve the heat absorption capability of the first battery evaporator 17.
  • Such a configuration is suitable when the first battery evaporator 17 is used as a heat exchanger on the use side.
  • the first battery decompression unit 16 is integrally formed with the first battery evaporator 17; however, the present invention is not limited to this.
  • the cooling decompression unit 14 is connected to the cooling evaporator 15 ⁇ 2020/175 544 30 ⁇ (: 171-1? 2020/007720
  • the second battery decompression unit 18 may be integrally formed with the second battery evaporator 19.
  • the fitting holes 271, 2 are provided.
  • the depressurizing portions 14, 16 and 18 may be formed, for example, so that the fitting holes 271 and 272 with respect to the block body 27 (3 extend in the same direction as each other.
  • Orifices 2 73 may be formed on the block body 2 70.
  • the present embodiment differs from the first embodiment in that the throttle openings of the pressure reducing sections 14, 16, 16 and 18 are changed by utilizing the pressure difference of the refrigerant.
  • parts different from the first embodiment will be mainly described, and description of the same parts as the first embodiment may be omitted.
  • Each of the pressure reducing units 14, 16 and 18 is configured to drive the main valve body 2 85 for adjusting the throttle opening by the valve module 0.
  • the valve module 0 constitutes a drive member for driving the main valve body 2 85.
  • valve module As shown in Fig. 17 and Fig. 18, the valve module
  • the block body 28 constitutes an attached object to which the micro valve 1 is attached.
  • the block body 28 constitutes a part of the first battery pressure reducing portion 16.
  • 2 8 is an upstream side portion 2 6 1 of the refrigerant pipe 26 connected to the second branch portion 2 2 and a downstream side portion 2 7 connected to the refrigerant inlet portion 1 7 0 of the first battery evaporator 17 7. 6 It is a metal fitting (for example, aluminum) that connects with 2 2. ⁇ 2020/175544 31 ⁇ (: 171-1? 2020/007720
  • a bottomed upstream fitting hole 281 into which the upstream portion 261 is fitted is formed on one side surface of the block body 28 .
  • the upstream fitting hole 281 constitutes an inlet passage into which the refrigerant from the radiator 12 flows.
  • the block body 28 has a bottomed downstream fitting hole into which the downstream side portion 2 62 is fitted on the opposite side of one side where the upstream fitting hole 2 81 is formed. 2 82 is formed.
  • This downstream side fitting hole 2 82 constitutes an outlet flow path for letting out the refrigerant toward the first battery evaporator 17 2.
  • valve chamber 2 8 3 in which the main valve body 2 8 5 is housed is formed.
  • the valve chamber 2 8 3 extends in a direction orthogonal to the direction in which the upstream fitting hole 2 8 1 and the downstream fitting hole 2 8 2 are arranged.
  • the valve chamber 2 8 3 communicates with the upstream side fitting hole 2 8 1 via the first through hole 2 8 1 3 and to the downstream side fitting hole 2 8 2 via the second through hole 2 8 2 3. It is in communication.
  • the second through hole 2 8 2 3 forms a throttle flow passage 2 8 4 whose throttle opening is adjusted by the main valve body 2 8 5.
  • a main valve body 2 8 5 for adjusting the throttle opening degree of the throttle passage 2 8 4 is slidably accommodated.
  • the main valve body 2 8 5 is arranged in the valve chamber 2 8 3 so as to be slidable along the extending direction of the valve chamber 2 8 3.
  • the main valve body 2 8 5 has a hemispherical curved surface at the tip end located on the throttle channel 2 8 4 side.
  • the valve chamber 2 8 3 has an opening adjustment for adjusting the throttle opening of the throttle passage 2 8 4 and the space on the throttle passage 2 8 4 side where the refrigerant flows by the main valve body 2 8 5. It is divided into rooms 286.
  • the opening adjustment chamber 2 86 is a space in the valve chamber 2 8 3 that is on the opposite side of the throttle channel 2 8 4 with the main valve body 2 8 5 interposed therebetween.
  • a refrigerant for pressing the main valve body 2 85 to the valve opening side or the valve closing side by the micro valve 1 described later is introduced into the opening degree adjusting chamber 2 86.
  • the spring 286 3 is arranged in the opening adjustment chamber 286.
  • the spring 286 3 is a cylindrical coil spring extending in the displacement direction of the main valve body 285.
  • the spring 2 8 6 3 applies a load that biases the main valve body 2 8 5 in the valve closing direction. ⁇ 2020/175 544 32 ⁇ (:171? 2020 /007720
  • the first protruding portion 21, the second protruding portion 2 2, and the third protruding portion 2 3 of the valve module 0 to be described later are fitted on the lower surface of the block body 28.
  • the concave portion 287, the second concave portion 288, and the third concave portion 289 are formed.
  • the first concave portion 2 8 7, the second concave portion 2 8 8 and the third concave portion 2 8 9 are the second concave portion 2 8 8 8
  • the recesses 289 are arranged in a straight line in this order.
  • the first recessed portion 287 communicates with the valve chamber 283 and communicates with the opening adjustment chamber 286.
  • a through hole 2 8 8 3 that connects the second recess 2 8 8 and the upstream side fitting hole 2 7 1 is formed in the bottom of the second recess 2 8 8.
  • a through hole 2 89 3 is formed in the bottom of the third recess 2 89 to connect the third recess 2 8 9 and the downstream fitting hole 2 82.
  • the flow passage area of the throttle flow passage 2 84 (that is, the throttle opening) changes depending on the position of the main valve body 2 85. Then, the main valve body 2 85 is determined by the force acting on the main valve body 2 85. Specifically, the load balance acting on the main valve body 2 85 can be expressed by the following mathematical formula 1.
  • Equation 1 the pressure of the refrigerant that has passed through the radiator 12 (that is, high pressure) is indicated by II, the pressure of the refrigerant in the opening adjustment chamber 286 (that is, control pressure) is indicated by 111, and The pressure receiving area of the main valve body 2 85 is shown by 8 3. Also, in the above formula 1, the panel constant of the spring 2 8 6 3 is represented by ⁇ 3, and the displacement of the main valve body 2 8 5 is! The initial load of the spring 2 8 6 ⁇ acting on the main valve body 2 8 5 is indicated by 0.
  • control pressure ⁇ ! is the same as the refrigerant pressure (ie, the low pressure pressure) on the downstream side of the throttle flow passage 2 84
  • the pressure reduction unit 16 for the first battery is high pressure and control pressure. And the pressure difference between them becomes maximum, and as shown in Fig. 17, the main valve body 285 is displaced to the position where the throttle opening becomes maximum.
  • control pressure ⁇ ! becomes higher than the low pressure pressure I from this state, the high pressure ⁇ 2020/175544 33 ⁇ (: 171-1? 2020/007720
  • the control pressure is adjusted by the microvalve 1 provided in the valve module 10.
  • the details of the valve module 0 will be described below.
  • the valve module ⁇ consists of a micro valve 1, a valve casing 2, a sealing member 3, three ⁇ rings 4, 4, 5 3 and 5 2 It has electrical wiring 6 and 7, conversion plate 8
  • the micro valve 1 is a plate-shaped valve component and is mainly composed of a semiconductor chip.
  • the microvalve 1 may or may not have components other than the semiconductor chip. Therefore, the microvalve 1 can be constructed in a small size.
  • the microvalve 1 is a valve component for adjusting the pressure of the refrigerant in the opening adjustment chamber 286.
  • the length of the micro valve 1 in the thickness direction is, for example, 2 And the length in the longitudinal direction orthogonal to the thickness direction is, for example, 1 And the length in the lateral direction orthogonal to both the longitudinal direction and the thickness direction is, for example, 5
  • the flow configuration of the microvalve 1 changes as the power supplied to the microvalve 1 changes.
  • the micro valve 1 functions as a pilot valve that drives the main valve body 2 85.
  • Electrical wiring 6 and 7 are the two valve surfaces of the micro valve 1 ⁇ 2020/175 544 34 ⁇ (:171? 2020 /007720
  • the conversion plate 8 is a plate-shaped member that is arranged between the micro valve 1 and the valve casing 2.
  • the conversion plate 8 is a glass substrate.
  • One of the two plate surfaces of the conversion plate 8 is fixed to the microvalve 1 with an adhesive, and the other side is fixed to the valve casing 2 with an adhesive.
  • the conversion plate 8 is provided with flow passages 8 1, 8 2 and 8 3 for connecting the three refrigerant holes of the micro valve 1 described later and the three communication holes of the valve casing 2 to each other.
  • the flow passages 81, 82, and 83 are members for absorbing the difference between the pitch of the three refrigerant holes arranged in a line and the pitch of the three communication holes arranged in a line.
  • the flow channels 8 1, 8 2 and 8 3 pass from one of the two plate surfaces of the conversion plate 8 to the other.
  • the valve casing 2 is a resin casing that houses the microvalve 1 and the conversion plate 8.
  • the valve casing 2 is formed by resin molding with polyphenylene sulfide as a main component.
  • the valve casing 2 is configured such that the coefficient of linear expansion is a value between the coefficient of linear expansion of the microvalve 1 and the coefficient of linear expansion of the block body 28.
  • the valve casing 2 constitutes a part mounting part for mounting the micro valve 1 to the block body 28.
  • the valve casing 2 is a box body having a bottom wall on one side and an open side on the other side.
  • the bottom wall of the valve casing 2 is interposed between the block body 28 and the microvalve 1 so that the microvalve 1 and the conversion plate 8 do not directly contact the block body 28. Then, one surface of this bottom wall is in contact with and fixed to the block body 28, and the other surface is in contact with and fixed to the conversion plate 8.
  • valve casing 2 can absorb the difference in linear expansion coefficient between the microvalve 1 and the block body 28. This is the valve case ⁇ 2020/175 544 35 ⁇ (:171? 2020 /007720
  • the linear expansion coefficient of Thing 2 is a value between the linear expansion coefficient of Micro Valve 1 and the linear expansion coefficient of Block 28.
  • the linear expansion coefficient of the conversion plate 8 is a value between the linear expansion coefficient of the microvalve 1 and the linear expansion coefficient of the valve casing 2.
  • the valve casing 2 constitutes a component mounting portion for mounting the micro valve 1 to the block body 28.
  • the bottom wall of the valve casing 2 projects from the plate-shaped base 20 facing the microvalve 1 and the base 20 in a direction away from the microvalve 1. It has a pillar-shaped first projecting portion 21 1, a second projecting portion 22 2, and a third projecting portion 23.
  • the first projecting portion 2 1, the second projecting portion 2 2 and the third projecting portion 23 are block bodies.
  • the first protruding portion 21 is formed with a first communication hole 1 that penetrates from the end on the side of the microvalve 1 to the end on the opposite side.
  • the second projecting portion 22 is formed with a second communicating hole 2 that penetrates from the end on the side of the microvalve 1 to the end on the opposite side.
  • the third protruding portion 23 is formed with a third communication hole V 3 that penetrates from the end on the side of the microvalve 1 to the end on the opposite side.
  • the first communication hole 1, the second communication hole 2, and the third communication hole 3 are arranged in a line, and the first communication hole 1 is located between the second communication hole 2 and the third communication hole 3.
  • the end of the first communication hole V1 on the side of the microvalve 1 communicates with the end of the flow channel 8 1 formed on the conversion plate 8 on the side of the valve casing 2 on the side thereof.
  • the end of the second communication hole (2) on the side of the micro valve (1) communicates with the end of the flow channel (82) formed on the conversion plate (8) on the side of the valve casing (2).
  • the end of the third communication hole V 3 on the side of the micro valve 1 is communicated with the end of the flow passage 8 3 formed on the conversion plate 8 on the side of the valve casing 2.
  • the sealing member 3 is a member made of epoxy resin that seals the opened other side of the valve casing 2.
  • the sealing member 3 is the same as the microvalve 1 table. ⁇ 2020/175 544 36 ⁇ (:171? 2020 /007720
  • the sealing member 3 covers a part of the two plate surfaces of the conversion plate 8 on the side opposite to the bottom wall side of the valve casing 2. Further, the sealing member (3) covers the electric wirings (6) and (7) to realize waterproofing and insulation of the electric wirings (6) and (7).
  • the sealing member 3 is formed by resin potting or the like.
  • the ring 4 is attached to the outer periphery of the first protrusion 21, and the block 2
  • the ring 5 3 is attached to the outer periphery of the second protruding portion 22 2 and seals between the block body 28 and the second protruding portion 22 2 so that each depressurizing portion 14, 1 6, Suppress the leakage of the refrigerant to the outside of 18 and the outside of the refrigerant circuit.
  • the ring 5 is attached to the outer periphery of the third protruding part 23, and by sealing between the block body 28 and the third protruding part 23, each depressurizing part 14, 16, 16 Suppress the leakage of refrigerant to the outside of 18 and the outside of the refrigerant circuit.
  • the micro-valve 1 is an IV!M IV equipped with a first outer layer 1 1, an intermediate layer 1 2 and a second outer layer 1 3, both of which are semiconductors. !3.
  • the first outer layer 1 1, the middle layer 1 2 and the second outer layer 1 3 are rectangular plate-shaped members having the same outer shape, and the first outer layer 1 1 and the intermediate layer 1 2 ,
  • the second outer layer 13 is laminated in this order.
  • the first outer layer 11 and the second outer layer 13 the second outer layer 13 is arranged on the side closest to the bottom wall of the valve casing 2.
  • the structures of the first outer layer 11 and the intermediate layer 12 and the second outer layer 13 which will be described later are formed by a semiconductor manufacturing process such as chemical etching.
  • the first outer layer 11 is a conductive semiconductor member having a non-conductive oxide film on its surface. As shown in FIG. 20, the first outer layer 11 has two through holes 1 4 and 1 5 penetrating the front and back. The ends of the electric valves 6 and 7 on the side of the micro valve 1 are inserted into the through holes 14 and 15 respectively. ⁇ 2020/175 544 37 ⁇ (:171? 2020 /007720
  • the second outer layer 13 is a conductive semiconductor member having a non-conductive oxide film on its surface. As shown in FIG. 20, FIG. 22, and FIG. 23, the second outer layer 13 has a first refrigerant hole 16 that penetrates the front and back, a second refrigerant hole 17 and a third refrigerant hole. 18 are formed.
  • the hydraulic diameter of each of the first refrigerant hole 16 and the second refrigerant hole 17 and the third refrigerant hole 18 is, for example, And above 3 It is, but not limited to, the following.
  • the first refrigerant hole 16 and the second refrigerant hole 17 and the third refrigerant hole 18 correspond to the first fluid hole, the second fluid hole and the third fluid hole, respectively.
  • the first coolant hole 16 and the second coolant hole 17 and the third coolant hole 18 are respectively the flow passages 8 1 and 8 of the conversion plate 8 respectively. It communicates with 8 2 and 8 3.
  • the first refrigerant hole 16 and the second refrigerant hole 17 and the third refrigerant hole 18 are arranged in a line.
  • the first refrigerant hole (16) is arranged between the second refrigerant hole (17) and the third refrigerant hole (18).
  • the intermediate layer 12 is a conductive semiconductor member, and is sandwiched between the first outer layer 11 and the second outer layer 13.
  • the intermediate layer 12 contacts the oxide film of the first outer layer 11 and the oxide film of the second outer layer 13 so that both the first outer layer 1 1 and the second outer layer 13 are electrically charged. It is non-conductive.
  • the middle layer 12 includes the first fixed part 1 2 1, the second fixed part 1 2 2 and the multiple first ribs 1 2 3 and the multiple second ribs. It has a boot 1 2 4, a spine 1 2 5, an arm 1 2 6, a beam 1 2 7 and a movable part 1 2 8.
  • the first fixed part 1 1 2 1 is a member fixed to the first outer layer 1 1 and the second outer layer 1 3.
  • the 1st fixed part 1 2 1 is the 2nd fixed part 1 2 2, the 1st rib 1 2 3, the 2nd rib 1 2 4, the spine 1 2 5, the arm 1 2 6 and the beam 1 2 7 and the movable part 1 2 8 are formed so as to surround the same one fluid chamber 1 9.
  • the room is surrounded by the first fixed part 1 2 1, the first outer layer 1 1 and the second outer layer 1 3.
  • the fluid chamber 19 flows into the fluid chamber 19 through which the refrigerant introduced into the opening adjustment chamber 286 flows.
  • the first fixed part 1 2 1, the first outer layer 1 1 and the second outer layer 1 3 correspond to the base as a whole.
  • the electrical wiring 6 and 7 were displaced by changing the temperature of the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4. ⁇ 2020/175544 38 ⁇ (:171? 2020 /007720
  • the first fixing portion 1 2 1 is fixed to the first outer layer 1 1 and the second outer layer 1 3 by fixing the refrigerant from the fluid chamber 1 9 to the first refrigerant hole 1 6 and the second refrigerant hole 1 3. It is carried out in a form that suppresses leakage from the microvalve 1 through the parts other than 17 and the third cooling medium hole 18.
  • the second fixed portion 1 2 2 is fixed to the first outer layer 1 1 and the second outer layer 1 3.
  • the second fixed part 1 1 2 2 is surrounded by the first fixed part 1 1 2 1 and is arranged apart from the first fixed part 1 1 2.
  • first ribs 1 2 3 Multiple second ribs 1 2 4, spine 1 2
  • arm 1 2 6, beam 1 2 7 and movable part 1 2 8 are not fixed to the 1st outer layer 1 1 and the 2nd outer layer 1 3, but the 1st outer layer 1 1 ,
  • the second outer layer 13 can be displaced.
  • the spine needle 125 has an elongated rod shape that extends in the lateral direction of the rectangular shape of the intermediate layer 12. One end of the spine 1 125 in the longitudinal direction is connected to the beam 1 27.
  • the plurality of first ribs 1 2 3 are arranged on one side of the spine 1 2 5 5 in a direction orthogonal to the longitudinal direction of the spine 1 2 5.
  • the plurality of first ribs 1 2 3 are arranged in the longitudinal direction of the spine 1 2 5.
  • Each of the first ribs 1 23 has an elongated rod shape and can expand and contract depending on the temperature.
  • Each of the first ribs 1 2 3 is connected to the first fixed portion 1 1 2 1 at one end in the longitudinal direction and is connected to the spine 1 2 5 at the other end. As the first ribs 1 2 3 get closer to the spine 1 2 5 side from the 1st fixed part 1 2 1 side, they go toward the beam 1 2 7 side in the longitudinal direction of the spine 1 2 5. It is skewed to the spine 1 2 5 to be offset. Then, the plurality of first ribs 1 23 extend in parallel to each other.
  • the plurality of second ribs 1 2 4 are arranged on the other side of the spine 1 1 2 5 in the direction orthogonal to the longitudinal direction of the spine 1 2 5. And the second of multiple ⁇ 0 2020/175 544 39 ⁇ (: 17 2020 /007720
  • the ribs 1 2 4 are arranged in the longitudinal direction of the spine 1 2 5.
  • Each of the second ribs 1 2 4 has an elongated rod shape and can expand and contract depending on the temperature.
  • Each of the second ribs 1 2 4 is connected to the second fixed portion 1 2 2 at one end in the longitudinal direction and is connected to the spine 1 2 5 at the other end. As the second ribs 1 2 4 get closer to the spine 1 2 5 side from the 2nd fixed part 1 2 2 side, they are directed toward the beam 1 2 7 side in the longitudinal direction of the spine 1 2 5. It is skewed to the spine 1 2 5 to be offset. Then, the plurality of second ribs 1 2 4 extend parallel to each other.
  • first ribs 1 2 3 Multiple second ribs 1 2 4, spine 1 2
  • the arm 1 2 6 has an elongated rod shape that extends non-orthogonally and parallel to the spine 1 2 5. One end in the longitudinal direction of the arm 1 2 6 is connected to the beam 1 2 7 and the other end is connected to the first fixed portion 1 2 1.
  • the beam 1 27 has a slender rod shape extending in a direction intersecting with the spine 1 25 and the arm 1 26 at about 90°.
  • One end of the beam 1 2 7 is connected to the movable portion 1 2 8.
  • the arm 1 2 6 and the beam 1 2 7 as a whole correspond to the amplification section.
  • connection position 2 of the 1 2 7 and the connection position 3 of the beam 1 2 7 and the movable part 1 2 8 are arranged in this order along the longitudinal direction of the beam 1 2 7.
  • connection point between the first fixed part 1 2 1 and the arm 1 2 6 is defined as the hinge 0, from the hinge 0 to the connection position 2 in the plane parallel to the plate surface of the intermediate layer 1 2
  • the straight line distance from the hinge 0 to the connection position 3 is longer than the straight line distance of.
  • the value obtained by dividing the former linear distance by the latter linear distance may be 1/5 or less, or 1/10 or less.
  • the movable portion 1 28 is for adjusting the pressure of the refrigerant flowing through the fluid chamber 1 9.
  • the outer shape of the movable part 1 28 is approximately 9 with respect to the longitudinal direction of the beam 1 2 7. ⁇ 2020/175 544 40 ⁇ (:171? 2020 /007720
  • the movable part 1 28 can move integrally with the beam 1 2 7 within the fluid chamber 1 9.
  • the movable portion 1 28 is in the shape of a frame that surrounds the through hole 1 2 0 that penetrates the front and back of the intermediate layer 1 2. Therefore, the through hole 1208 also moves integrally with the movable portion 1208.
  • the through hole 112 is a part of the fluid chamber 19.
  • the movable portion 1 28 is opened by the second refrigerant hole 17 to the through hole 1 20 and the opening of the third refrigerant hole 18 is 1 Change the opening for 20.
  • the first refrigerant hole 16 is always fully open to the through hole 1 20.
  • valve module 0 When the energization of the microvalve 1 is started, a voltage is applied between the electric wiring 6 and 7 to the first application point 1 29 and the second application point 1 30. Then, a current flows through the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4. Due to this current, the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4 generate heat. As a result, each of the plurality of first ribs 1 23 and the plurality of second ribs 1 2 4 expands in the longitudinal direction.
  • connection position? 2 corresponds to the biasing position and the pressure regulating biasing position.
  • the member consisting of the beam 1 2 7 and the arm 1 2 6 supports the hinge 0. ⁇ 0 2020/175 544 41 (: 17 2020/007720
  • the posture is changed as a unit with the connection point 2 as the point of emphasis.
  • the movable part 1 2 8 connected to the end of the beam 1 2 7 opposite to the arm 1 2 6 also has its spine 1 2 5 in the longitudinal direction. Move to push side
  • the plurality of first ribs 1 2 3 and the plurality of second ribs 1 2 4 attach the spine 1 2 5 on the side opposite to the connection position 2 1.
  • the biased spine 1 2 5 pulls the beam 1 2 7 at the connecting position 2.
  • the member consisting of the beam 1 2 7 and the arm 1 2 6 integrally changes its posture with the hinge 0 as a fulcrum and the connection position 2 as a force point.
  • the movable part 1 2 8 connected to the end of the beam 1 2 7 opposite to the arm 1 2 6 also has its spine 1 2 5 in the longitudinal direction. Move to the pulling side.
  • the movable portion 1 28 is stopped at a predetermined non-energized position.
  • the electric wiring 6, 6 is supplied to the micro valve 1 through the first application point 1 2 9 and the second application point 1 3 0.
  • the greater the electric power supplied the greater the amount of movement of the movable part 1 28 with respect to the non-energized position. This is because the higher the power supplied to the microvalve 1, the higher the temperature of the first rib 1 2 3 and the second rib 1 2 4 and the greater the degree of expansion.
  • the through hole 120 is the first refrigerant in the direction orthogonal to the plate surface of the intermediate layer 12. It overlaps the hole 16 and the third refrigerant hole 18 but does not overlap the second refrigerant hole 17 in that direction.
  • the second refrigerant hole 17 overlaps the movable portion 128 in the direction orthogonal to the plate surface of the intermediate layer 12. That is, at this time, the first refrigerant hole 16 and the third refrigerant hole 18 are fully opened and the second refrigerant hole 17 is fully closed with respect to the through hole 120.
  • the first refrigerant hole 16 is communicated with the third refrigerant hole 18 via the movable part 128, and the second refrigerant hole 17 is also connected to the first refrigerant hole 16.
  • the third refrigerant hole 18 is also shut off.
  • the flow path 81, the first refrigerant hole 16, the through hole 120, the third refrigerant hole 18 Refrigerant can be distributed through the flow path 83.
  • the through hole 120 is the first refrigerant hole 16 and the second refrigerant hole 16 in the direction orthogonal to the plate surface of the intermediate layer 12. Although it overlaps with 17, it does not overlap with the third refrigerant hole 18 in that direction.
  • the third refrigerant hole (18) overlaps the movable portion (128) in a direction orthogonal to the plate surface of the intermediate layer (12). That is, at this time, the first refrigerant hole 16 and the second refrigerant hole 17 are fully opened and the third refrigerant hole 18 is fully closed with respect to the through hole 120.
  • the first refrigerant hole 16 communicates with the second refrigerant hole 17 through the movable part 128, and the third refrigerant hole 18 is the first refrigerant hole 16 and the second refrigerant hole 16 is the second refrigerant hole.
  • the hole 17 is also blocked.
  • the flow path 81, the first refrigerant hole 16, the through hole 1 20, the second refrigerant hole 17 and the flow path Refrigerant flow through the 83 ⁇ 2020/175544 43 ⁇ (: 171-1? 2020/007720
  • the movable portion 1 28 is moved between the non-energized position and the maximum energized position. It can be stopped at any intermediate position in the. For example, in order to stop the movable part 1 28 at a position equidistant from the maximum energized position and the non-energized position (that is, the center position), the electric power supplied to the microvalve 1 is controlled. It should be half the maximum value in the range. For example, the duty ratio of ⁇ /1 ⁇ /1 control should be 50%.
  • the first refrigerant hole 1 6, the second refrigerant hole 1 7 and the third refrigerant hole 18 are all through holes 1 1 It communicates with 20.
  • the second refrigerant hole 17 and the third refrigerant hole 18 are not fully open with respect to the through hole 120, and the opening degree is less than 100% and greater than 0%. ..
  • the opening of the third refrigerant hole 18 with respect to the through hole 1 20 decreases, and the opening of the second refrigerant hole 17 increases. Will increase.
  • the beam 1 2 7 and the arm 1 2 6 are hinged.
  • connection position 2 As a force point, connection position 3 as an action point.
  • connection position 3 As described above, the straight line distance from the hinge 0 to the connecting position 3 is smaller than the straight line distance from the hinge 0 to the connecting position 2 in the plane parallel to the plate surface of the intermediate layer 1 2. But it's long. Therefore, the connection position, which is the focus point? The connection position, which is the point of action, rather than the movement amount of 2? The movement amount of 3 is larger. Therefore, the amount of displacement due to thermal expansion is amplified by the lever and transmitted to the movable part 1 28.
  • the flow path of the refrigerant in the microvalve 1 has a II vane structure. Specifically, the refrigerant flows into the micro valve 1 from one surface of the micro valve 1, passes through the micro valve 1, and then flows from the same surface of the micro valve 1 to the micro valve 1. It leaks out. Similarly, the refrigerant passage in the valve module 0 also has a II-turn structure. concrete ⁇ 2020/175 544 44 ⁇ (:171? 2020 /007720
  • the direction orthogonal to the plate surface of the intermediate layer 12 is the stacking direction of the first outer layer 11, the intermediate layer 12 and the second outer layer 13.
  • the second refrigerant hole 17 communicates with the inside of the upstream fitting hole 2 81 via the second communication hole 2 and the through hole 2 8 8 3 of the second recess 2 8 8. ..
  • the third refrigerant hole 18 communicates with the inside of the downstream fitting hole 2 82 via the third communication hole V 3 and the through hole 2 89 3 of the third recess 2 89. ..
  • the refrigeration cycle apparatus 10 of the present embodiment has a ⁇ 2020/175 544 45 ⁇ (: 171-1? 2020 /007720
  • the control pressure is changed by changing the voltage applied to lube 1 by ⁇ /1 ⁇ /1 control.
  • the refrigeration cycle device 10 increases the control pressure by increasing the duty ratio of ⁇ /1 ⁇ /1 control, and increases the duty ratio of ⁇ /1 ⁇ /1 control.
  • the control pressure is reduced by decreasing.
  • the drive member of the main valve body 2 85 is composed of the valve module 0.
  • This valve module 0 is configured to displace the main valve body 2 8 5 to the open side or the closed side by adjusting the pressure of the opening adjustment chamber 2 8 6 by the micro valve 1 so that the solenoid valve It can be made smaller than a motorized valve.
  • the microvalve 1 is formed by the semiconductor chip as described above. Further, as described above, the displacement amount due to the thermal expansion is amplified by using the lever, and it is possible to make it smaller than the solenoid valve or the motorized valve that does not use the lever. Becomes
  • the microvalve 1 adjusts the openings of the second refrigerant hole 17 and the third refrigerant hole 18 by the movable part 1 28 to adjust the opening adjustment chamber 2 8 6 It is configured to change the pressure of. According to this, the main valve body 2 85 can be displaced to the valve closing side and the valve opening side by the pressure adjustment of the opening degree adjusting chamber 2 86 by the microvalve 1.
  • the flow rate of the refrigerant can be adjusted to an appropriate amount according to the load condition etc. by changing the throttle opening degree of the first battery decompression unit 16. That is, in the refrigeration cycle device 10 of the present embodiment, as in the first embodiment, the refrigerant and the refrigerating machine oil are supplied in a desired ratio to each of the evaporators 15, 17, 17 connected in parallel. Can be distributed.
  • the microvalve 1 uses a lever, and the amount of displacement due to thermal expansion can be suppressed below the amount of movement of the movable part 1 28, so that the movable part 1 2 8
  • the power consumption for driving can also be reduced.
  • the impact sound when the solenoid valve is driven can be eliminated, the noise can be reduced.
  • the displacement of the multiple first ribs 1 2 3 and the multiple 2nd ribs 1 2 4 ⁇ 2020/175 544 46 ⁇ (:171? 2020 /007720
  • the micro valve 1 and the valve module 0 have the refrigerant flow path having the structure of II bain, it is possible to reduce the dug of the block body 28. In other words, the depth of the recess formed in the block body 28 for disposing the valve module 0 can be suppressed. The reason is as follows.
  • the valve module 0 does not have a 1)-turn structure refrigerant flow path, the valve module 0 has a refrigerant inlet on the block body 28 side, and the valve module 0 It is assumed that there is a refrigerant outlet on the opposite surface. In that case, it is necessary to form a refrigerant flow path on both sides of the valve module. Therefore, when the refrigerant flow paths on both sides of the valve module 0 are to be accommodated in the block body 28, the recess that must be formed in the block body 28 for disposing the valve module 0 becomes deep. Further, since the microvalve 1 itself is small, the digging of the block body 28 can be further reduced.
  • the electric wiring layers 6 and 7 are arranged on the surface opposite to the surface on which the first refrigerant hole 16 and the second refrigerant hole 17 are formed.
  • the electrical wiring 6 and 7 can be placed closer to the atmosphere. Therefore, a hermetic sealing structure for reducing the influence of the refrigerant atmosphere on the electric wiring 6 and 7 is not required. As a result, downsizing of the pressure reducing units 14, 16 and 18 can be realized.
  • each pressure reducing unit 14, 16 is lightweight, each pressure reducing unit 14, 16,
  • the micro valve XI of the first embodiment is modified so as to have a failure detection function.
  • the microvalve XI includes a failure detection unit X 5 that detects a failure of the microvalve X 1 as shown in FIGS. 27 and 28. ⁇ 2020/175 544 47 ⁇ (:171? 2020 /007720
  • the failure detection unit X50 includes a pledge circuit formed in the arm X1226 of the intermediate layer X12.
  • the bridge circuit contains four gauge resistors connected as shown in Figure 28.
  • the failure detection unit 50 is a bridge circuit whose resistance changes according to the distortion of the arm X I 26, which corresponds to the diaphragm.
  • the failure detection unit X 50 is a semiconductor piezoresistive strain sensor.
  • the failure detection unit X 50 may be connected to the arm X 1 26 via an electrically insulating film so as not to be electrically connected to the arm X I 26.
  • Wirings X51 and X52 are connected to the two diagonal input terminals of this bridge circuit. Then, a voltage for generating a constant current is applied to the input terminal from the wirings 51 and X52. These wirings 5 1 and 5 2 are branched from the voltage (that is, the microvalve driving voltage) applied to the microvalve X 1 via the electrical wiring X 6 and 7 and extend to the above two input terminals. ing.
  • Wirings X 5 3 and X 5 4 are connected to the two output terminals on another diagonal of this bridge circuit. Then, a voltage signal of a level corresponding to the amount of distortion of the arm X I 2 6 is output from the wirings 5 3 and 5 4. As will be described later, this voltage signal is used as information for determining whether or not the micro valve X 1 is operating normally. The voltage signal output from the wiring 5 3 and X 5 4 is input to the external control device X 5 5 outside the micro valve X 1.
  • This external control device X 55 is, for example, the control device 1 of the refrigeration cycle device 10
  • the external control device X 55 may be a meter (3 11) that displays the vehicle speed, the remaining fuel amount, the remaining battery amount, and the like in the vehicle.
  • the external control device X 5 5 connects the voltage signal according to the distortion amount of the arm X 1 2 6 to the wiring X.
  • the external control device 5 5 detects the presence or absence of a failure of the microvalve X 1 according to the voltage signal. Faults to be detected include, for example, a broken arm X 1 26, movement of a moving part X 1 28 and the first outer layer X 1 1 or the second outer layer X 1 3 with a minute foreign object sandwiched between them. Part X 1 2 8 is stuck, there is a malfunction, etc. ⁇ 2020/175 544 48 ⁇ (:171? 2020 /007720
  • the external control device X55 utilizes this fact to detect whether or not there is a failure in the microvalve XI. That is, the external control device X 55 calculates the position of the movable part X 1 28 from the voltage signals from the wirings 5 3 and 5 4 based on the first map determined in advance. Then, based on the second map determined in advance, from the position of the movable part X1 28 to the electrical wiring X6, X7 necessary to realize the position under normal conditions to the microvalve X1. Calculate the power supply. These 1st map and 2nd map are recorded in the non-volatile memory of the external controller X 55. Non-volatile memory is a non-transitional tangible storage medium. The correspondence between the level of the voltage signal and the position in the first map may be determined in advance by an experiment or the like. Also, the correspondence relationship between the position on the second map and the supplied power may be determined in advance by experiments or the like.
  • the external control device X 55 compares the calculated electric power with the electric power actually supplied from the electric wiring 6, 6 to the micro valve X 1. Then, if the absolute value of the difference between the former power and the latter power exceeds the allowable value, the external control device X 55 determines that the microvalve X 1 is out of order and does not exceed the allowable value. If not, the microvalve X 1 is determined to be normal. Then, when the external control device 55 determines that the microvalve X 1 is out of order, it performs a predetermined failure notification control.
  • the external control device X55 activates the notification device X55 that notifies the person in the vehicle.
  • the external controller X 55 may turn on the warning lamp.
  • the external control device X 55 is ⁇ 2020/175 544 49 ⁇ (:171? 2020 /007720
  • An image indicating that a failure has occurred in the microvalve X 1 may be displayed. This allows the vehicle occupant to be aware of the failure of microvalve X 1.
  • the external control device X55 may record information indicating that a failure has occurred in the micro valve XI in a storage device in the vehicle.
  • This storage device is a non-transitional tangible storage medium. This allows the failure of the micro valve X 1 to be recorded.
  • the external control device 55 determines that the microvalve X1 is out of order, the external control device 55 controls energization stop.
  • the external controller X 5 5 de-energizes the micro valve X 1 from the electric wiring X 6, X 7.
  • the safety in the event of the micro valve X 1 failure can be improved.
  • the failure detection unit 50 outputs the voltage signal for determining whether or not the microvalve X1 is operating normally, so that the external control device X55 It is possible to easily determine whether the microvalve X 1 has a failure.
  • this voltage signal is a signal corresponding to the amount of distortion of the arm X1 26. Therefore, it is possible to easily determine whether or not there is a failure in the microvalve X 1, based on the relationship between the amount of electricity supplied to the microvalve X 1 from the electrical wiring X 6 and X 7 and this voltage signal.
  • the microvalve X1 it is determined whether or not the microvalve X1 is out of order, based on the change in the resistance forming the bridge circuit.
  • the bridge circuit instead of the bridge circuit, a plurality of electrodes forming the capacitive component are formed on the arm X 1 26. There is a correlation between the amount of strain of arm XI 26 and the capacitance between multiple electrodes. Therefore, the external control device 55 can determine whether or not the microvalve X 1 has a failure based on the change in the electrostatic capacitance between the plurality of electrodes. ⁇ 2020/175 544 50 ⁇ (:171? 2020 /007720
  • the micro valve 1 of the fifth embodiment is modified to have a failure detection function.
  • the microvalve 1 includes a failure detection unit 50 as shown in FIGS. 29 and 30.
  • the failure detection unit 50 includes a pledge circuit formed in the arm 1 26 of the intermediate layer 1 2.
  • the bridge circuit contains four gauge resistors connected as shown in Figure 30.
  • the failure detection unit 50 is a bridge circuit whose resistance changes according to the strain of the arm 1 26, which corresponds to the diaphragm. That is, the failure detection unit 50 is a semiconductor piezoresistive strain sensor.
  • the failure detection unit 50 may be connected to the arm 1 26 through an electrically insulating film so as not to be electrically connected to the arm 1 26.
  • Wirings 5 1 and 5 2 are connected to the two diagonal input terminals of this bridge circuit. Then, a voltage for generating a constant current is applied from the wirings 51 and 52 to the input terminal.
  • the wirings 5 1 and 5 2 are branched from the voltage (that is, the microvalve driving voltage) applied to the microvalve 1 via the electrical wiring 6 and 7 and extend to the above two input terminals. ing.
  • Wirings 5 3 and 5 4 are connected to the two output terminals on another diagonal of this bridge circuit. Then, a voltage signal corresponding to the amount of distortion of the arm 1 2 6 is output from the wiring 5 3 and 5 4. As will be described later, this voltage signal is used as information for determining whether or not the micro valve 1 is operating normally.
  • the voltage signals output from the wirings 5 3 and 5 4 are input to the external control device 5 5 outside the micro valve 1.
  • the external control device 55 is, for example, the control device 1 of the refrigeration cycle device 10
  • the external control device 55 may be a meter (311) that displays the vehicle speed, the remaining fuel amount, the remaining battery amount, and the like in the vehicle.
  • the external control device 5 5 wires the voltage signal according to the distortion amount of the arm 1 2 6
  • failures to be detected include, for example, failures in which the arm 1 2 6 breaks, or a small foreign matter is caught between the movable part 1 2 8 and the first outer layer 1 1 or the second outer layer 1 3 Part 1 1 2 8 is stuck, there is a malfunction, etc.
  • the external control device 55 uses this fact to detect whether or not the microvalve 1 is out of order. That is, the external control device 55 calculates the position of the movable part 1 28 from the voltage signals from the wirings 5 3 and 5 4 based on the predetermined first map. Then, based on the second map determined in advance, from the position of the movable part 1 28 to the electrical wiring 6 and 7 required to realize the position under normal conditions to the microvalve 1 Calculate the power supply. These first map and second map are recorded in the non-volatile memory of the external control device 55. Non-volatile memory is a non-transitional tangible storage medium. The correspondence between the level of the voltage signal and the position in the first map may be determined in advance by an experiment or the like. Also, the correspondence relationship between the position on the second map and the supplied power may be determined in advance by experiments or the like.
  • the external control device 55 compares the calculated electric power with the electric power actually supplied from the electric wirings 6 and 7 to the microvalve 1. Then, if the absolute value of the difference between the former power and the latter power exceeds the allowable value, the external control device 55 determines that the microvalve 1 has failed and does not exceed the allowable value. If not, the microvalve 1 is determined to be normal. If the external control device 55 determines that the microvalve 1 is out of order, it ⁇ 2020/175 544 52 ⁇ (:171? 2020 /007720
  • the external control device 5 5 operates the notification device 5 6 that notifies the person in the vehicle.
  • the external control device 55 may turn on the warning lamp.
  • the external control device 55 may display an image indicating that the microvalve 1 has failed on the image display device. This allows the vehicle occupant to notice the failure of the microvalve 1.
  • the external control device 55 may record information indicating that a failure has occurred in the microvalve 1 in a storage device inside the vehicle.
  • This storage device is a non-transitional tangible storage medium. This allows the failure of the micro valve 1 to be recorded.
  • the external control device 55 determines that the microvalve 1 is out of order, the external control device 55 performs energization stop control.
  • the external control device 5 5 stops energization from the electric wiring 6 and 7 to the micro valve 1. In this way, by stopping the power supply to the microvalve 1 when the microvalve 1 fails, it is possible to enhance the safety when the microvalve 1 fails.
  • the failure detection unit 50 outputs the voltage signal for determining whether the microvalve 1 is operating normally, so that the external control device 5 5 It is possible to easily determine whether or not there is a failure in the microvalve 1.
  • this voltage signal is a signal corresponding to the amount of distortion of the arm 1 126. Therefore, it is possible to easily determine whether or not there is a failure in the microvalve 1 based on the relationship between the voltage applied to the microvalve 1 from the electric wiring 6 and 7 and the voltage signal.
  • the micro valve 1 it is determined whether or not the micro valve 1 is out of order on the basis of the change in the resistance forming the bridge circuit.
  • a plurality of electrodes are formed on the arm 1 26. There is a correlation between the amount of strain on the arm 1 2 6 and the capacitance between multiple electrodes. Therefore, the external control device 55 can determine whether or not the microvalve 1 is out of order, based on the change in the electrostatic capacitance between the plurality of electrodes.
  • each depressurizing unit 14, 16 and 18 has, for example, a plurality of micro valves X 1, and the throttle opening can be adjusted in multiple stages by switching the open/close state of the plurality of micro valves X 1. It may be.
  • the micro valve X1 according to the above-described first embodiment is configured as a normally open valve that maximizes the throttle opening when not energized, rather than a normally closed valve that minimizes the throttle opening when not energized. It may have been done. In this case, in each of the pressure reducing sections 14, 16, 16 and 18, the throttle opening becomes a large opening 3 2 when the micro valve X 1 is not energized, and the throttle opening is a small opening 3 1 when the micro valve X 1 is energized.
  • each depressurizing unit 14, 16, and 18 is provided with the micro valve X.
  • valve casing X 2 It is desirable to interpose the valve casing X 2 between 1 and the block body, but it is not limited to this.
  • Each of the depressurizing units 14, 16 and 18 may be configured such that the microvalve X 1 and the block body are in contact with each other without the valve casing X 2.
  • the valve casing X 2 is not limited to resin.
  • an additional member capable of absorbing the difference in linear expansion coefficient may be interposed between the valve casing X 2 and the block body. The same applies to Microvalve 1.
  • these members may be composed of a shape memory material whose length changes as the temperature changes.
  • the depressurization units 14, 16 and 18 each include the valve module, but the invention is not limited thereto.
  • the refrigeration cycle apparatus 10 may be configured such that at least one of the pressure reducing sections 14, 16, and 18 includes the valve module 0.
  • the refrigeration cycle device 10 of the present disclosure exemplifies the one in which the air supplied to the vehicle interior and the battery knife are targeted for cooling, but the present invention is not limited to this.
  • the air other than the air supplied to the vehicle interior and the battery knife may be the cooling target.
  • the shapes of components and their positional relationships when referring to the shapes of components and their positional relationships, the shapes thereof are excluded unless otherwise specified and in principle limited to specific shapes, positional relationships, etc.
  • the positional relationship is not limited.
  • the shape and size of the micro valve X 1 are not limited to those shown in the above embodiment.
  • the micro valve XI is capable of controlling a very small flow rate, and has a first refrigerant hole X 16 and a second refrigerant hole XI 7 having hydraulic diameters that do not block the minute dust existing in the flow path. Good. This also applies to the microvalve 1.
  • control unit and the method thereof described in the present disclosure are provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. It may be realized by a dedicated computer. Alternatively, the control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method thereof described in the present disclosure are a combination of a processor and a memory programmed to execute one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by. Further, the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
  • At least one of the plurality of pressure reducing units includes a variable pressure reducing valve including a valve component for adjusting the throttle opening. It is a department.
  • the valve part has a base part where a fluid chamber in which the refrigerant flows is formed, a drive part that is displaced by a temperature change, an amplification part that amplifies the displacement due to the temperature change of the drive part, and the displacement amplified by the amplification part is transmitted. And a movable part that adjusts the refrigerant pressure in the fluid chamber by moving.
  • the amplification section functions as a lever with the hinge as a fulcrum, the amplification section as a force point at the biasing position of the drive section, and the connection point between the widening section and the movable section as a point of action. It is being touched.
  • variable decompression unit includes a fixed throttle whose opening is fixed.
  • the base part has a first fluid hole that serves as a refrigerant inlet for the fluid chamber, and ⁇ 2020/175 544 56 ⁇ (:171? 2020 /007720
  • a second fluid hole that serves as an outlet for the cooling medium is formed.
  • the valve part is configured to adjust the throttle opening of the variable pressure reducing part by switching the communication and blocking of the first fluid hole and the second fluid hole by the movable part.
  • variable pressure reducing unit when configured to include not only the valve component but also the fixed throttle, the variable pressure reducing unit is opened and closed by switching the communication and blocking of the first fluid hole and the second fluid hole in the valve component.
  • the degree can be adjusted in stages.
  • variable decompression unit includes a fixed throttle, the valve components are not driven when adjustment of the throttle opening of the variable decompression unit is unnecessary, reducing the drive frequency of the valve components and making the variable pressure reduction variable. Energy consumption in the part can be suppressed.
  • a first fluid hole serving as a refrigerant inlet in the fluid chamber and a second fluid hole serving as a refrigerant outlet in the fluid chamber are formed in the base portion.
  • the valve part not only switches the communication and blockage of the first fluid hole and the second fluid hole by the movable part, but it also allows the movable part to connect at least one of the first fluid hole and the second fluid hole.
  • the throttle opening of the variable pressure reducing unit is adjusted by adjusting the opening. In this way, if the valve part is configured as a variable throttle that can change the throttle opening of the pressure reducing part, by changing the opening of the fluid hole in the valve part, the throttle opening of the pressure reducing part can be set to a desired opening. Can be adjusted.
  • At least one of the plurality of decompression units is a variable decompression unit whose throttle opening can be adjusted.
  • the variable decompression unit includes a block body in which an inlet flow passage, a valve chamber, a throttle flow passage, and an outlet flow passage are formed, a main valve body, and a drive member that drives the main valve body.
  • An opening adjustment chamber is formed in the block.
  • the drive member includes a valve component for adjusting the pressure in the opening adjustment chamber.
  • the valve part has a base part where a fluid chamber in which the refrigerant flows is formed, a drive part that is displaced by a temperature change, an amplification part that amplifies the displacement due to a temperature change of the drive part, and the displacement amplified by the amplification part is transmitted. And a movable portion that adjusts the refrigerant pressure in the opening adjustment chamber by moving the opening. Then, the amplification unit functions as a lever with the hinge as a fulcrum, the biasing position where the amplification unit is biased by the drive unit as a power point, and the connection position between the amplification unit and the movable unit as a point of action. Has been done. ⁇ 2020/175 544 57 ⁇ (:171? 2020 /007720
  • a first fluid hole that connects the fluid chamber and the opening adjustment chamber, a second fluid hole that communicates the fluid chamber and the inlet passage, a fluid chamber and the outlet are provided at the base.
  • a third fluid hole is formed that communicates with the flow path.
  • the valve part not only opens and closes the second fluid hole and the third fluid hole by the movable part, but also adjusts the opening degree of at least one of the second fluid hole and the third fluid hole by the movable part. It is configured to change the pressure in the opening adjustment chamber.
  • the pressure in the opening adjustment chamber can be finely adjusted, and the refrigerant flow rate can be adjusted to an appropriate amount according to the load conditions, etc. Therefore, the heat exchanger, which is the user side of the radiator and the evaporator It is possible to exert the ability of the in an efficient state.
  • variable pressure reducing portion includes a component mounting portion for mounting the valve component on an attachment target object to which the valve component is attached.
  • the component mounting portion is interposed between the component mounting portion and the valve component so that the valve component and the object to be mounted are not in direct contact with each other. In this way, if the component mounting portion is interposed between the mounted object and the valve component, the valve mounting component can be protected by the component mounting portion functioning as a cushioning material.
  • the component mounting portion is configured such that the linear expansion coefficient of the component mounting portion is a value between the linear expansion coefficient of the valve component and the linear expansion coefficient of the mounted object. Has been done. According to this, even if thermal strain occurs due to the temperature change of the object to be attached, the stress of thermal strain due to the temperature change of the object to be attached is absorbed by the component mounting part, so it is possible to protect the valve component. it can.
  • the attachment target connects the refrigerant inlet section of the variable evaporator connected to the refrigerant flow downstream side of the variable pressure reducing section of the plurality of evaporators and the refrigerant pipe. It is a block body.
  • the valve component is attached to the block body via the component mounting part, and is integrated with the variable evaporator.
  • the high-temperature, high-pressure refrigerant before passing through the pressure reducing section flows in the refrigerant pipe.
  • heat can be dissipated to the periphery of the refrigerant pipe, so that the heat absorbing ability of the evaporator can be improved.
  • Such a configuration is suitable when the evaporator is used as the heat exchanger on the use side.
  • the plurality of evaporators include a cooling evaporator that cools air supplied to the room and a battery evaporator that cools a chargeable/dischargeable battery. ing.
  • the refrigerant outlet side of the battery evaporator is provided with a pressure regulating valve for maintaining the refrigerant outlet side pressure of the battery evaporator at a predetermined pressure. According to this, for example, when simultaneously cooling the battery and cooling the vehicle compartment, the pressure of the refrigerant passing through the battery evaporator can be reduced while maintaining the pressure of the refrigerant passing through the battery evaporator. ..
  • the plurality of evaporators include a cooling evaporator for cooling the air supplied to the room and a battery evaporator for cooling a chargeable/dischargeable battery.
  • a pressure adjusting valve for maintaining the pressure on the refrigerant outlet side of the cooling evaporator at a predetermined pressure is provided.
  • the pressure of the refrigerant passing through the battery evaporator is reduced while maintaining the pressure of the refrigerant passing through the cooling evaporator. be able to.
  • the valve component includes a failure detection unit that outputs a signal for determining whether the valve component is operating normally or is malfunctioning. By outputting such a signal from the valve component, it is possible to easily determine whether or not there is a failure in the valve component.
  • the signal output by the valve component is a signal corresponding to the amount of distortion of the amplification section.
  • the drive unit generates heat when energized, and the failure detection unit notifies the device that stops energization of the valve component when the valve component is out of order. Is output. In this way, by stopping energization when a valve component fails, it is possible to enhance safety in the event of a failure.
  • the failure detection unit outputs a signal to a device that operates a notification device that notifies a person when a valve component has a failure. This allows ⁇ 0 2020/175 544 59 ⁇ (: 17 2020 /007720
  • the person can know the failure of the valve part.
  • the valve component is composed of a semiconductor chip. According to this, the valve component can be made compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

冷凍サイクル装置(10)は、減圧部の少なくとも1つが弁部品(X1)を含む可変減圧部(14、16、18)である。弁部品は、放熱器を通過した冷媒が流通する流体室(X19)が形成される基部(X11、X12、X13)と、自らの温度が変化すると変位する駆動部(X123、X124、X125)と、を有する。弁部品は、駆動部の温度の変化による変位を増幅する増幅部(X126、X127)と、増幅部によって増幅された変位が伝達されて動くことで、流体室における冷媒の圧力を調整する可動部(X128)と、を有する。駆動部が温度の変化によって変位したときに、駆動部が付勢位置(XP2)において増幅部を付勢することで、増幅部がヒンジ(XP0)を支点として変位するとともに、増幅部と可動部の接続位置(XP3)で増幅部が可動部を付勢する。ヒンジから付勢位置までの距離よりも、ヒンジから接続位置までの距離の方が長くなっている。

Description

\¥0 2020/175544 1 卩(:17 2020 /007720 明 細 書
発明の名称 : 冷凍サイクル装置
関連出願への相互参照
[0001 ] 本出願は、 2 0 1 9年2月 2 8日に出願された日本特許出願番号 2 0 1 9 - 3 5 2 2 5号に基づくもので、 ここにその記載内容が参照により組み入れ られる。
技術分野
[0002] 本開示は、 蒸気圧縮式の冷凍サイクル装置に関する。
背景技術
[0003] 従来、 膨張弁を備える空気冷却用の蒸発器と、 膨張弁を備える電池冷却器 とが、 室外熱交換器の下流側に並列に接続された冷凍サイクル装置が知られ ている (例えば、 特許文献 1参照) 。 電池冷却器は、 膨張弁の下流側に並列 に接続される複数の蒸発器で構成されている。 膨張弁と複数の蒸発器との間 には、 膨張弁を通過した気液二相の冷媒を分配するための分配器が設けられ ており、 当該分配器によって複数の蒸発器に気液二相冷媒が分配される。 先行技術文献
特許文献
[0004] 特許文献 1 :特開 2 0 1 2 _ 1 1 1 4 8 6号公報
発明の概要
[0005] ところで、 ガス冷媒と液冷媒を含む気液二相の冷媒を複数の蒸発器に対し て均等に分配することは、 技術的に非常に難しく、 どうしても一部の蒸発器 に液冷媒が偏って流れ込んでしまう。 複数の蒸発器の一部に液冷媒が偏って 流れ込むと、 電池は、 一部の蒸発器に近接するセルが冷え、 他の蒸発器に近 接するセルが冷え難くなってしまう。 電池の性能は、 性能の悪いセルに依存 する。 このため、 電池において温度分布が生ずると、 電池性能が低下する。
[0006] この対策としては、 複数の蒸発器それぞれの上流側にステッビングモータ 等の電動モータによって弁体を駆動する電気式膨張弁を配置し、 当該電気式 〇 2020/175544 卩(:171? 2020 /007720
膨張弁によって複数の蒸発器に流す冷媒を均等な流量に調整することが考え られる。
[0007] しかしながら、 電気式膨張弁は、 電動モータによって、 その体格が非常に 大型になってしまう。 このことは、 搭載性の悪化を招く要因となることから 好ましくない。
本開示は、 搭載性の悪化を抑制しつつ、 並列に接続される複数の蒸発器に 対して所望の割合で冷媒を分配可能な冷凍サイクル装置を提供することを目 的とする。
[0008] 本開示の 1つの観点によれば、
冷凍サイクル装置は、
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒を放熱させる放熱器と、
放熱器の冷媒流れ下流側において、 互いに並列となるように接続される複 数の減圧部と、
複数の減圧部それぞれの冷媒流れ下流側に接続され、 減圧部で減圧された 冷媒を蒸発させる複数の蒸発器と、 を備え、
複数の減圧部の少なくとも 1つは、 絞り開度を調整するための弁部品を含 む可変減圧部であり、
弁部品は、
放熱器を通過した冷媒の少なくとも一部が流通する流体室が形成される基 部と、
自らの温度が変化すると変位する駆動部と、
駆動部の温度の変化による変位を増幅する増幅部と、
増幅部によって増幅された変位が伝達されて動くことで、 流体室における 冷媒の圧力を調整する可動部と、 を有し、
駆動部が温度の変化によって変位したときに、 駆動部が付勢位置において 増幅部を付勢することで、 増幅部がヒンジを支点として変位するとともに、 増幅部と可動部の接続位置で増幅部が可動部を付勢し、 〇 2020/175544 3 卩(:171? 2020 /007720
ヒンジから付勢位置までの距離よりも、 ヒンジから接続位置までの距離の 方が長くなっている。
[0009] これによると、 複数の減圧部のうち少なくとも 1つの減圧部が絞り開度を 変更可能な構成になっているので、 複数の蒸発器に対して所望の割合で冷凍 機油を含む冷媒を分配し易くなる。 加えて、 弁部品の増幅部は、 梃子として 機能する。 このため、 駆動部の温度変化に応じた変位量が、 梃子によって増 幅されて可動部伝わる。 このように、 梃子を利用して熱的な膨張による変位 量が増幅される弁部品は、 そのような梃子を利用しない電磁弁や電動弁に比 ベて小型に構成することが可能となる。
[0010] したがって、 本開示の冷凍サイクル装置によれば、 搭載性の悪化を抑制し つつ、 並列に接続される複数の蒸発器に対して所望の割合で冷媒を分配する ことが可能となる。
[001 1 ] 本開示の別の観点によれば、
冷凍サイクル装置は、
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒を放熱させる放熱器と、
放熱器の冷媒流れ下流側において、 互いに並列となるように接続される複 数の減圧部と、
複数の減圧部それぞれの冷媒流れ下流側に接続され、 減圧部で減圧された 冷媒を蒸発させる複数の蒸発器と、 を備え、
複数の減圧部の少なくとも 1つは、 絞り開度を調整可能な可変減圧部であ り、
可変減圧部は、
放熱器を通過した冷媒が流入する入口流路、 入口流路に連通する弁室、 弁 室に流入した冷媒を減圧膨張させる絞り流路、 絞り流路を通過した冷媒を蒸 発器に向けて流出させる出口流路が形成されたブロック体と、
弁室に収容され、 絞り流路における絞り開度を調整する主弁体と、 主弁体を駆動する駆動部材と、 を含んでおり、 〇 2020/175544 卩(:171? 2020 /007720
ブロック体には、 主弁体を開弁側または閉弁側に押圧するための冷媒が導 入される開度調整室が形成されており、
駆動部材は、 開度調整室の圧力を調整するための弁部品を含んでおり、 弁部品は、
開度調整室に導入する冷媒が流通する流体室が形成される基部と、 自らの温度が変化すると変位する駆動部と、
駆動部の温度の変化による変位を増幅する増幅部と、
増幅部によって増幅された変位が伝達されて動くことで、 流体室を流れる 冷媒の圧力を調整する可動部と、 を有し、
駆動部が温度の変化によって変位したときに、 駆動部が付勢位置において 増幅部を付勢することで、 増幅部がヒンジを支点として変位するとともに、 増幅部と可動部の接続位置で増幅部が可動部を付勢し、
ヒンジから付勢位置までの距離よりも、 ヒンジから接続位置までの距離の 方が長くなっている。
[0012] これによると、 弁部品による開度調整室の圧力調整によって、 主弁体を開 弁側または閉弁側に変位させることで、 可変減圧部の絞り開度を変更するこ とができるので、 複数の蒸発器に対して所望の割合で冷凍機油を含む冷媒を 分配し易くなる。 加えて、 弁部品の増幅部は、 梃子として機能する。 このた め、 駆動部の温度変化に応じた変位量が、 梃子によって増幅されて可動部伝 わる。 このように、 梃子を利用して熱的な膨張による変位量が増幅される弁 部品は、 そのような梃子を利用しない電磁弁や電動弁に比べて小型に構成す ることが可能となる。
[0013] なお、 各構成要素等に付された括弧付きの参照符号は、 その構成要素等と 後述する実施形態に記載の具体的な構成要素等との対応関係の _例を示すも のである。
図面の簡単な説明
[0014] [図 1]第 1実施形態に係る冷凍サイクル装置の概略構成図である。
[図 2]第 1実施形態に係る冷凍サイクル装置の電子制御部を示すブロック図で 20/175544 5 卩(:171? 2020 /007720
ある。
[図 3]第 1実施形態に係る冷凍サイクル装置の第 1電池用減圧部の外観を示す 模式的な斜視図である。
[図 4]第 1実施形態に係る冷凍サイクル装置の第 1電池用減圧部の模式的な断 面図である。
[図 5]第 1実施形態に係る冷凍サイクル装置の第 1電池用減圧部に用いられる マイクロバルブの模式的な分解斜視図である。
[図 6]第 1実施形態に係る冷凍サイクル装置の第 1電池用減圧部に用いられる マイクロバルブの模式的な側面図である。
[図 7]図 6の V 丨 I - V I 丨断面を示すものであって、 マイクロバルブの閉弁 状態を示す断面図である。
[図 8]図 7の V 丨 丨 I - V I I 丨断面を示す断面図である。
[図 9]図 6の V 丨 I - V I 丨断面を示すものであって、 マイクロバルブの開弁 状態を示す断面図である。
[図 10]図 9の乂_乂断面を示す断面図である。
[図 1 1]第 1実施形態に係る冷凍サイクル装置の第 1電池用減圧部の動作を説 明するための説明図である。
[図 12]第 2実施形態に係る冷凍サイクル装置の概略構成図である。
[図 13]第 3実施形態に係る冷凍サイクル装置の第 1電池用減圧部の模式的な 断面図である。
[図 14]第 3実施形態に係る冷凍サイクル装置の第 1電池用減圧部の動作を説 明するための説明図である。
[図 15]第 4実施形態に係る冷凍サイクル装置の第 1電池用蒸発器と第 1電池 用減圧部との関係を説明するための説明図である。
[図 16]第 4実施形態に係る冷凍サイクル装置の第 1電池用減圧部を示す模式 的な断面図である。
[図 17]第 5実施形態に係る冷凍サイクル装置の第 1電池用減圧部を示すもの であって、 絞り開度が最大となっている状態を示す模式的な断面図である。 〇 2020/175544 6 卩(:171? 2020 /007720
[図 18]第 5実施形態に係る冷凍サイクル装置の第 1電池用減圧部を示すもの であって、 絞り開度が最小となっている状態を示す模式的な断面図である。 [図 19]第 5実施形態に係る冷凍サイクル装置の第 1電池用減圧部の制御圧力 と絞り開度との関係を説明するための説明図である。
[図 20]第 5実施形態に係る冷凍サイクル装置の第 1電池用減圧部に用いられ るマイクロバルブの模式的な分解斜視図である。
[図 21]第 5実施形態に係る冷凍サイクル装置の第 1電池用減圧部に用いられ るマイクロバルブの模式的な側面図である。
[図 22]図 2 1の X X I I - X X I 丨断面を示すものであって、 マイクロバル ブへの非通電状態を示す断面図である。
[図 23]図 2 2の X X 丨 丨 I - X X I I 丨断面を示す断面図である。
[図 24]図 2 1の X X I I - X X I 丨断面を示すものであって、 マイクロバル ブへの通電状態を示す断面図である。
[図 25]図 2 4の X X V - X X V断面を示す断面図である。
[図 26]第 5実施形態に係る冷凍サイクル装置の第 1電池用減圧部の動作を説 明するための説明図である。
[図 27]第 6実施形態に係る冷凍サイクル装置の第 1電池用減圧部に用いられ るマイクロバルブの内部を示す模式図である。
[図 28]図 2 7の一部を拡大した拡大図である。
[図 29]第 7実施形態に係る冷凍サイクル装置の第 1電池用減圧部に用いられ るマイクロバルブの内部を示す模式図である。
[図 30]図 2 9の一部を拡大した拡大図である。
発明を実施するための形態
[0015] 以下、 本開示の実施形態について図面を参照して説明する。 なお、 以下の 実施形態において、 先行する実施形態で説明した事項と同一もしくは均等で ある部分には、 同 _の参照符号を付し、 その説明を省略する場合がある。 ま た、 実施形態において、 構成要素の一部だけを説明している場合、 構成要素 の他の部分に関しては、 先行する実施形態において説明した構成要素を適用 〇 2020/175544 7 卩(:171? 2020 /007720
することができる。 以下の実施形態は、 特に組み合わせに支障が生じない範 囲であれば、 特に明示していない場合であっても、 各実施形態同士を部分的 に組み合わせることができる。
[0016] (第 1実施形態)
本実施形態について、 図 1〜図 1 1 を参照して説明する。 本実施形態では 、 本開示の冷凍サイクル装置 1 〇を車両走行用の駆動力を電動モータから得 る電気自動車に適用した例について説明する。
[0017] 電気自動車には、 走行用の電動モータへ供給される電力を蓄えるバッテリ 巳丁が搭載されている。 バッテリ巳丁は、 充放電可能な二次電池として構成 されている。 具体的には、 バッテリ巳丁は、 電気的に直列に接続される複数 の電池モジュール IV! 1、 1\/1 2で構成されている。 本実施形態のバッテリ巳丁 は、 第 1電池モジュール IV! 1および第 2電池モジュール IV! 2によって構成さ れている。 なお、 各電池モジュール IV! 1、 1\/1 2は、 複数のセル〇を電気的に 直列に接続した直列接続体で構成されている。
[0018] バッテリ巳丁は、 走行用の電動モータへの電力供給時に発熱する。 バッテ リ巳丁の温度が過度に上昇すると、 バッテリ巳丁が劣化したり、 出力が制限 されたりする。 このため、 バッテリ巳丁は、 その温度が所定の基準温度 (例 えば、 5 0 °〇 以下に維持されるように適宜冷却する必要がある。
[0019] このような背景を加味して、 本実施形態では、 車室内に供給する空気およ びバッテリ巳丁を冷凍サイクル装置 1 0の冷却対象としている。 すなわち、 冷凍サイクル装置 1 0は、 車室内に供給する空気およびバッテリ巳丁それぞ れを所望の温度に調整するように構成されている。
[0020] 図 1 に示すように、 冷凍サイクル装置 1 0は、 圧縮機 1 1、 放熱器 1 2、 冷房用減圧部 1 4、 冷房用蒸発器 1 5、 第 1電池用減圧部 1 6、 第 1電池用 蒸発器 1 7、 第 2電池用減圧部 1 8、 第 2電池用蒸発器 1 9、 および圧力調 整弁 2 0を備えている。 これらの各構成機器同士は、 冷媒配管によって接続 されている。 また、 冷凍サイクル装置 1 0は、 各構成機器の動作を制御する 制御装置 1 〇〇を備えている。 〇 2020/175544 8 卩(:171? 2020 /007720
[0021] 冷凍サイクル装置 1 0は、 冷媒として、 1~1 (3系冷媒 (具体的には、
Figure imgf000010_0001
1
3 4 3) が採用されている。 冷媒には圧縮機 1 1 を潤滑するための冷凍機油 が混入されており、 冷凍機油の一部は冷媒とともにサイクルを循環している 。 なお、 冷媒としては、 1~1 〇系冷媒 (例えば、
Figure imgf000010_0002
や自然冷 媒 (例えば、 [¾ 7 4 4) 等が採用されていてもよい。
[0022] 圧縮機 1 1は、 冷凍サイクル装置 1 0において、 冷媒を吸入し、 圧縮して 吐出するものである。 圧縮機 1 1は、 吐出容量が固定された固定容量型の圧 縮機構を電動モータにて駆動する電動圧縮機で構成されている。 圧縮機 1 1 は、 車両のボンネッ トの内側に配置される。 なお、 圧縮機 1 1 を構成する電 動モータは、 制御装置 1 0 0から出力される制御信号によって、 その作動 ( 例えば、 回転数) が制御される。
[0023] 圧縮機 1 1の冷媒吐出側には、 放熱器 1 2の冷媒入口側が接続されている 。 放熱器 1 2は、 圧縮機 1 1から吐出された冷媒を放熱させる熱交換器であ る。 具体的には、 放熱器 1 2は、 冷媒が流通する冷媒流路部 1 2 1 とヒータ 回路 ! !(3の熱媒体が流通する熱媒体流路部 1 2 2を備え、 冷媒とヒータ回路 ! !〇を流れる熱媒体とを熱交換させて、 熱媒体を加熱する加熱用熱交換器を 構成している。 なお、 ヒータ回路 1~1(3は、 圧縮機 1 1から吐出された冷媒を 車室内へ送風する送風空気の加熱、 バッテリ巳丁の暖機等を行うための熱源 として利用するための回路である。 図示しないが、 ヒータ回路
Figure imgf000010_0003
には、 熱 媒体を車室内への送風空気に放熱させるためのヒータコア、 熱媒体をバッテ リ巳丁に放熱させるための放熱器等が設けられている。
[0024] 放熱器 1 2の冷媒出口側には、 冷房用減圧部 1 4が接続されている。 冷房 用減圧部 1 4は、 車室内の空調時に、 放熱器 1 2を通過した冷媒を減圧する 減圧部である。 冷房用減圧部 1 4は、 後述の第 1電池用減圧部 1 6と同様に 構成されている。 このため、 冷房用減圧部 1 4に関する説明を省略する。
[0025] 冷房用減圧部 1 4の冷媒出口側には、 冷房用蒸発器 1 5の冷媒入口部 1 5 〇が接続されている。 冷房用蒸発器 1 5は、 冷房用減圧部 1 4で減圧された 冷媒を蒸発させる蒸発器である。 冷房用蒸発器 1 5は、 図示しない空調ケー 〇 2020/175544 9 卩(:171? 2020 /007720
スの内側に配置され、 冷媒と室内ファン 1 5 1から送風される空気とを熱交 換させて冷媒を蒸発させる。 換言すると、 冷房用蒸発器 1 5は、 室内ファン 1 5 1からの送風空気を冷媒と熱交換させて冷却する空気冷却器である。 な お、 室内ファン 1 5 1は、 冷房用蒸発器 1 5で冷却された空気を車室内へ送 風する送風機である。
[0026] ここで、 冷凍サイクル装置 1 0には、 放熱器 1 2の冷媒出口側において、 冷房用減圧部 1 4と並列となるように第 1電池用減圧部 1 6および第 2電池 用減圧部 1 8が接続されている。 具体的には、 放熱器 1 2と冷房用減圧部 1 4との間に第 1分岐部 2 1が設けられている。 第 1分岐部 2 1は、 放熱器 1 2から冷房用減圧部 1 4に向かって流れる冷媒の一部を第 1電池用減圧部 1 6および第 2電池用減圧部 1 8に向けて流すためのものである。
[0027] さらに、 第 1分岐部 2 1の冷媒流れ下流側には、 第 1分岐部 2 1で分岐し た冷媒を第 1電池用減圧部 1 6および第 2電池用減圧部 1 8に分配するため の第 2分岐部 2 2が設けられている。 第 2分岐部 2 2には、 一方の冷媒出口 側に第 1電池用減圧部 1 6が接続され、 他方の冷媒出口側に第 2電池用減圧 咅6 1 8が接続されている。
[0028] 第 1電池用減圧部 1 6は、 バッテリ巳丁の冷却時に、 各分岐部 2 1、 2 2 を介して流入する冷媒を減圧する減圧部である。 第 1電池用減圧部 1 6は、 絞り開度を変更可能な可変絞りとして構成されている。 なお、 第 1電池用減 圧部 1 6の詳細については後述する。
[0029] 第 1電池用減圧部 1 6の冷媒出口側には、 第 1電池用蒸発器 1 7の冷媒入 口部 1 7 0が接続されている。 第 1電池用蒸発器 1 7は、 第 1電池用減圧部 1 6で減圧された冷媒を蒸発させる蒸発器である。 第 1電池用蒸発器 1 7は 、 バッテリ巳丁の第1電池モジュール IV! 1から吸熱して冷媒を蒸発させる吸 熱器である。 換言すると、 第 1電池用蒸発器 1 7は、 第 1電池モジュール IV! 1 を冷媒と熱交換させて冷却する電池冷却器である。
[0030] また、 第 2電池用減圧部 1 8は、 バッテリ巳丁の冷却時に、 各分岐部 2 1 、 2 2を介して流入する冷媒を減圧する減圧部である。 第 2電池用減圧部 1 〇 2020/175544 10 卩(:171? 2020 /007720
8は、 第 1電池用減圧部 1 6と同様に構成されているため、 第 2電池用減圧 部 1 8に関する説明を省略する。
[0031] 第 2電池用減圧部 1 8の冷媒出口側には、 第 2電池用蒸発器 1 9の冷媒入 口部 1 9 0が接続されている。 第 2電池用蒸発器 1 9は、 第 2電池用減圧部 1 8で減圧された冷媒を蒸発させる蒸発器である。 第 2電池用蒸発器 1 9は 、 バツテリ巳丁の第 2電池モジュール IV! 2から吸熱して冷媒を蒸発させる吸 熱器である。 換言すると、 第 2電池用蒸発器 1 9は、 第 2電池モジュール IV! 2を冷媒と熱交換させて冷却する電池冷却器である。
[0032] 第 1電池用蒸発器 1 7および第 2電池用蒸発器 1 9それぞれの冷媒流れ下 流側には、 第 1電池用蒸発器 1 7を通過した冷媒と第 2電池用蒸発器 1 9を 通過した冷媒とを合流させる第 1合流部 2 3が設けられている。 また、 第 1 合流部 2 3の冷媒流れ下流側には、 第 1合流部 2 3で合流した冷媒と冷房用 蒸発器 1 5を通過した冷媒とを合流させる第 2合流部 2 4が設けられている 。 なお、 第 2合流部 2 4の冷媒流れ下流側は、 圧縮機 1 1の冷媒吸入側に接 続される。
[0033] ここで、 第 1合流部 2 3と第 2合流部 2 4との間には、 圧力調整弁 2 0が 配置されている。 圧力調整弁 2 0は、 第 1電池用蒸発器 1 7および第 2電池 用蒸発器 1 9を通過する冷媒の圧力を所定の設定圧力値以上に維持するもの である。 圧力調整弁 2 0は、 例えば、 ベローズ式の蒸発圧力調整弁で構成さ れる。
[0034] 冷凍サイクル装置 1 0は、 圧力調整弁 2 0が設けられていることで、 例え ば、 バツテリ巳丁の冷却と車室内の冷房を同時に行う際、 各電池用蒸発器 1 7、 1 9を通過する冷媒の圧力を維持しつつ、 冷房用蒸発器 1 5を通過する 冷媒の圧力を低下させることができる。
[0035] 次に、 冷凍サイクル装置 1 0の電子制御部を構成する制御装置 1 0 0につ いて図 2を参照して説明する。 図 2に示すように、 制御装置 1 0 0は、 プロ セツサ、 [¾〇1\/1および[¾八1\/1等のメモリを含むマイクロコンビュータとその 周辺回路で構成されている。 なお、 制御装置 1 0 0のメモリは、 非遷移的実 〇 2020/175544 1 1 卩(:171? 2020 /007720
体的記憶媒体で構成される。
[0036] 制御装置 1 0 0の入力側には、 空調用センサ 1 0 1およびバッテリ用セン サ 1 0 2が接続されている。 空調用センサ 1 0 1は、 冷房処理の制御に用い られる複数種類のセンサによって構成されている。 空調用センサ 1 〇 1は、 例えば、 サイクルの低圧側における冷媒温度を検出する温度センサ (蒸発器 温度センサ等) 、 サイクルの高圧側の冷媒圧力を検出する高圧センサ、 高圧 冷媒の温度を検出する温度センサを含んでいる。 バッテリ用センサ 1 0 2は 、 バッテリ巳丁の冷却処理の制御に用いられる複数種類のセンサによって構 成されている。 バッテリ用センサ 1 0 2は、 例えば、 各電池モジュール IV! 1 、 IV! 2の電池温度を検出する温度センサを含んでいる。
[0037] 制御装置 1 0 0は、 空調用センサ 1 0 1およびバッテリ用センサ 1 0 2か ら取得した各種情報、 およびメモリに記憶された制御プログラムに基づいて 各種演算処理を行い、 出力側に接続された各構成機器の作動を制御する。
[0038] 具体的には、 制御装置 1 0 0の出力側には、 圧縮機 1 1、 冷房用減圧部 1 4、 室内ファン 1 5 1、 第 1電池用減圧部 1 6、 第 2電池用減圧部 1 8が接 続されている。 制御装置 1 〇〇は、 圧縮機 1 1 による冷媒吐出性能 (例えば 、 冷媒圧力) 、 各減圧部 1 4、 1 6、 1 8の絞り開度、 室内ファン 1 5 1の 送風性能を状況に応じて調整することができる。 すなわち、 冷凍サイクル装 置 1 0は、 制御装置 1 0 0が、 圧縮機 1 1、 各減圧部 1 4、 1 6、 1 8、 室 内ファン 1 5 1それぞれの動作を制御することで、 車室内に供給する空気お よびバッテリ巳丁それぞれを所望の温度に調整することができる。
[0039] 特に、 冷凍サイクル装置 1 0は、 第 1電池用蒸発器 1 7および第 2電池用 蒸発器 1 9の冷媒流れ下流側に圧力調整弁 2 0が設けられている。 これによ ると、 例えば、 バッテリ巳丁の冷却と車室内の冷房を同時に行う際に、 各電 池用蒸発器 1 7、 1 9を通過する冷媒の圧力を維持しつつ、 冷房用蒸発器 1 5を通過する冷媒の圧力を低下させることができる。
[0040] また、 冷凍サイクル装置 1 0は、 冷房用蒸発器 1 5、 第 1電池用蒸発器 1
7、 第 2電池用蒸発器 1 9それぞれに対応して、 冷房用減圧部 1 4、 第 1電 〇 2020/175544 12 卩(:171? 2020 /007720
池用減圧部 1 6、 第 2電池用減圧部 1 8が設けられている。 これによれば、 従来技術のように減圧部を通過した後のガス冷媒と液冷媒を含む気液二相冷 媒を複数の蒸発器に対して分配する構成に比べて、 各蒸発器 1 5、 1 7、 1 9に対してガス冷媒と液冷媒を含む気液二相冷媒を適切に分配することがで きる。 この結果、 バッテリ巳丁における温度分布に起因する電池性能の低下 を抑制することができる。 また、 上記の構成になっていることで、 冷媒に含 まれる冷凍機油についても、 各蒸発器 1 5、 1 7、 1 9に対して分配される ので、 一部の蒸発器に冷凍機油が偏って圧縮機 1 1の潤滑不良が生じること を抑制できる。
[0041 ] ここで、 冷房用減圧部 1 4、 第 1電池用減圧部 1 6、 第 2電池用減圧部 1
8は、 ソレノイ ドアクチユエータで弁体を駆動する電磁弁、 ステッピングモ —夕等の電動モータで弁体を駆動する電動弁を含む構成とすることが考えら れる。
[0042] しかしながら、 この場合、 大型なアクチユエータを用いる必要があり、 冷 凍サイクル装置 1 0が大型になってしまう。 特に、 本実施形態の冷凍サイク ル装置 1 0では、 各蒸発器 1 5、 1 7、 1 9それぞれに対応して、 各減圧部 1 4、 1 6、 1 8が設けられているので、 冷凍サイクル装置 1 0の大型化が 顕著となる。
[0043] これらを加味して、 本開示の冷凍サイクル装置 1 0では、 各減圧部 1 4、
1 6、 1 8を、 マイクロバルブ X 1 を含むバルブモジユール乂〇によって構 成している。 マイクロバルブ X Iは、 各減圧部 1 4、 1 6、 1 8の絞り開度 を可変させるための弁部品である。 本実施形態では、 各減圧部 1 4、 1 6、
1 8それぞれが可変減圧部に該当し、 各蒸発器 1 5、 1 7、 1 9それぞれが 可変蒸発器に該当する。 また、 マイクロバルブ X Iは、 各減圧部 1 4、 1 6 、 1 8の絞り開度を可変させるための弁部品である。
[0044] 上述したように、 各減圧部 1 4、 1 6、 1 8は、 その基本構成が同様であ る。 このため、 本実施形態では、 第 1電池用減圧部 1 6の構成等について説 明し、 冷房用減圧部 1 4、 第 2電池用減圧部 1 8に関する説明を省略する。 〇 2020/175544 13 卩(:171? 2020 /007720
[0045] バルブモジュール乂〇は、 図 3および図 4に示すように、 第 2分岐部 2 2 と第 1電池用蒸発器 1 7とを接続する冷媒配管 2 6に設けられたブロック体 2 7に対して一体的に構成されている。 ブロック体 2 7は、 マイクロバルブ X 1の取付対象となる被取付対象物を構成している。
[0046] ブロック体 2 7は、 第 1電池用減圧部 1 6の一部を構成する。 ブロック体
2 7は、 冷媒配管 2 6のうち放熱器 1 2の冷媒出口部に接続される上流側部 位 2 6 1 と第 1電池用蒸発器 1 7の冷媒入口部 1 7 0に接続される下流側部 位 2 6 2と接続する金属製 (例えば、 アルミニウム) の継手である。
[0047] ブロック体 2 7の一側面には、 上流側部位 2 6 1が嵌め合わされる有底の 上流側嵌合孔 2 7 1が形成されている。 また、 ブロック体 2 7には、 上流側 嵌合孔 2 7 1が形成された一側面の反対側に、 下流側部位 2 6 2が嵌め合わ される有底の下流側嵌合孔 2 7 2が形成されている。 上流側嵌合孔 2 7 1お よび下流側嵌合孔 2 7 2は、 オリフィス 2 7 3によって連通している。 オリ フィス 2 7 3は、 各嵌合孔 2 7 1、 2 7 2それぞれの底部同士を貫通する貫 通孔で構成されている。 オリフィス 2 7 3は、 冷媒が流通する際に減圧作用 を発揮する固定絞りとして機能するように微細孔で構成されている。
[0048] また、 ブロック体 2 7の上面には、 後述するバルブモジュール乂〇の第 1 突出部 X 2 1および第 2突出部 X 2 2が嵌め合わされる第 1凹部 2 7 4およ び第 2凹部 2 7 5が形成されている。 第 1凹部 2 7 4の底部には、 第 1凹部 2 7 4と上流側嵌合孔 2 7 1 とを連通させる貫通孔 2 7 4 3が形成されてい る。 また、 第 2凹部 2 7 5の底部には、 第 2凹部 2 7 5と下流側嵌合孔 2 7 2とを連通させる貫通孔 2 7 5 3が形成されている。
[0049] [バルブモジュール乂〇の構成]
以下、 バルブモジュール X 0の構成について説明する。 図 4に示すように 、 バルブモジュール乂〇は、 マイクロバルブ X I、 バルブケーシング乂2、 封止部材 X 3、 2つの〇リング X 4、 X 5 , 2本の電気配線 X 6、 X 7を有 している。
[0050] マイクロバルブ X Iは、 板形状の弁部品であり、 主として半導体チップに 〇 2020/175544 14 卩(:171? 2020 /007720
よって構成されている。 マイクロバルブ X Iは、 半導体チップ以外の部品を 有していてもいなくてもよい。 したがって、 マイクロバルブ X 1 を小型に構 成できる。 マイクロバルブ X 1の厚さ方向の長さは例えば 2 01 01であり、 厚 さ方向に直交する長手方向の長さは例えば 1
Figure imgf000016_0001
であり、 長手方向にも厚 さ方向にも直交する短手方向の長さは例えば 5
Figure imgf000016_0002
であるが、 これに限定さ れない。 マイクロバルブ X 1への通電、 非通電が切り替わることで、 開閉が 切り替わる。 具体的には、 マイクロバルブ X Iは、 通電時に開弁し、 非通電 時に閉弁する常閉弁である。
[0051 ] 電気配線 X 6、 乂7は、 マイクロバルブ X 1の表裏にある 2つの板面のう ち、 バルブケーシング X 2とは反対側の面から伸びて、 封止部材 X 3、 バル ブケーシング X 2内を通過して、 バルブモジュール X 0の外部にある電源に 接続される。 これにより、 電気配線 X 6、 X 7を通して、 電源からマイクロ バルブ X 1 に電力が供給される。
[0052] バルブケーシング乂2は、 マイクロバルブ X 1 を収容する樹脂製のケーシ ングである。 バルブケーシング乂2は、 ポリフエニレンサルファイ ドを主成 分として樹脂成形によって形成されている。 バルブケーシング乂2は、 線膨 張係数が、 マイクロバルブ X 1の線膨張係数とブロック体 2 7の線膨張係数 の間の値となるように構成されている。 なお、 バルブケーシング X 2は、 マ イクロバルブ X 1 をブロック体 2 7に対して取り付けるための部品取付部を 構成している。
[0053] バルブケーシング X 2は、 一方側に底壁を有し、 他方側が開放された凹形 状の箱体である。 バルブケーシング X 2の底壁は、 マイクロバルブ X I とブ ロック体 2 7とが直接接しないように、 ブロック体 2 7とマイクロバルブ乂 1の間に介在する。 そして、 この底壁の一方側の面がブロック体 2 7に接触 して固定され、 他方側の面がマイクロバルブ X 1の 2つの板面のうち一方に 接触して固定される。 このようになっていることで、 マイクロバルブ X I と ブロック体 2 7の線膨張係数の違いをバルブケーシング X 2が吸収できる。 これは、 バルブケーシング X 2の線膨張係数が、 マイクロバルブ X Iの線膨 張係数とブロック体 27の線膨張係数の間の値となっているからである。
[0054] また、 バルブケーシング X 2の底壁は、 マイクロバルブ X 1 に対向する板 形状のベース部 X 20と、 マイクロバルブ X 1から離れる方向に当該べース 部 X 20から突出する柱形状の第 1突出部 X2 1、 第 2突出部 X 22を有す る。
[0055] 第 1突出部 X2 1、 第 2突出部 X 22は、 ブロック体 27に形成された第
1凹部 274および第 2凹部 275に嵌め込まれている。 第 1突出部 X 2 1 には、 マイクロバルブ X 1側端から第 1凹部 274の底部側端まで貫通する 第 1連通孔 XV 1が形成されている。 第 2突出部 X 22には、 マイクロバル ブ X 1側端から第 2凹部 275の底部側端まで貫通する第 2連通孔 XV 2が 形成されている。
[0056] 封止部材 X 3は、 バルブケーシング X 2の開放された上記他方側を封止す るエポキシ樹脂製の部材である。 封止部材 X 3は、 マイクロバルブ X 1の表 裏にある 2つの板面のうち、 バルブケーシング X 2の底壁側とは反対側の板 面を、 覆う。 また、 封止部材 X 3は、 電気配線 X 6、 X 7を覆うことで、 電 気配線 X 6、 X 7の防水および絶縁を実現する。 封止部材 X 3は樹脂ポッテ ィング等によって形成される。
[0057] 〇リング X4は、 第 1突出部 X2 1の外周に取り付けられ、 ブロック体 2
7と第 1突出部 X 2 1の間を封止することで、 第 1電池用減圧部 1 6の外部 への冷媒の漏出を抑制する。 〇リング X 5は、 第 2突出部 X 22の外周に取 り付けられ、 ブロック体 27と第 2突出部 X22の間を封止することで、 第 1電池用減圧部 1 6の外部への冷媒の漏出を抑制する。
[0058] [マイクロバルブ X 1の構成]
ここで、 マイクロバルブ X 1の構成について更に説明する。 マイクロバル ブ X 1は、 図 5、 図 6に示すように、 いずれも半導体である第 1外層 X 1 1 、 中間層 X 1 2、 第 2外層 X 1 3を備えた ME MSである。 MEMS 、 Mic ro Electro Mechanical Systemsの略称である。 第 1外層 X 1 1、 中間層 X 1 2、 第 2外層 X 1 3は、 それぞれが同じ外形を有する長方形の板形状の部材 〇 2020/175544 16 卩(:171? 2020 /007720
であり、 第 1外層 X I 1、 中間層 X I 2、 第 2外層 X 1 3の順に積層されて いる。 第 1外層 X 1 1、 中間層 X 1 2、 第 2外層 X 1 3のうち、 第 2外層 X 1 3が、 バルブケーシング X 2の底壁に最も近い側に配置される。 後述する 第 1外層 X 1 1、 中間層 X 1 2、 第 2外層 X 1 3の構造は、 化学的エッチン グ等の半導体製造プロセスによって形成される。
[0059] 第 1外層 X 1 1は、 表面に非導電性の酸化膜のある導電性の半導体部材で ある。 第 1外層 X I 1 には、 図 5に示すように、 表裏に貫通する 2つの貫通 孔乂 1 4、 X 1 5が形成されている。 この貫通孔乂 1 4、 X 1 5に、 それぞ れ、 電気配線 X 6、 X 7のマイクロバルブ X 1側端が揷入される。
[0060] 第 2外層 X I 3は、 表面に非導電性の酸化膜のある導電性の半導体部材で ある。 第 2外層 X I 3には、 図 5、 図 7、 図 8に示すように、 表裏に貫通す る第 1冷媒孔 X I 6、 第 2冷媒孔 X I 7が形成されている。 図 8に示すよう に、 第 1冷媒孔 X 1 6はバルブケーシング X 2の第 1連通孔乂 1 に連通し 、 第 2冷媒孔 X I 7はバルブケーシング X 2の第 2連通孔乂 2に連通する 。 第 1冷媒孔 X I 6、 第 2冷媒孔 X I 7の各々の水力直径は、 例えば 0. 1 111 以上かつ 3
Figure imgf000018_0001
以下であるが、 これに限定されない。 第 1冷媒孔 X 1 6
、 第 2冷媒孔 X I 7は、 それぞれ、 第 1流体孔、 第 2流体孔に対応する。
[0061] 中間層 X 1 2は、 導電性の半導体部材であり、 第 1外層 X 1 1 と第 2外層 X 1 3に挟まれている。 中間層 X I 2は、 第 1外層 X I 1の酸化膜と第 2外 層 X 1 3の酸化膜に接触するので、 第 1外層 X 1 1 と第 2外層 X 1 3とも電 気的に非導通である。 中間層 X I 2は、 図 7に示すように、 第 1固定部 X I 2 1、 第 2固定部 X I 22、 複数本の第 1 リブ X I 23、 複数本の第 2リブ X 1 24、 スパイン X I 25、 アーム X I 26、 梁 X I 27、 可動部 X 1 2 8を有している。
[0062] 第 1固定部 X 1 21は、 第 1外層 X 1 1、 第 2外層 X 1 3に対して固定さ れた部材である。 第 1固定部 X 1 21は、 第 2固定部 X 1 22、 第 1 リブ X 1 23、 第 2リブ X I 24、 スパイン X I 25、 アーム X 1 26、 梁 X 1 2 7、 可動部 X 1 28を同じ 1つの流体室 X 1 9内に囲むように形成されてい 〇 2020/175544 17 卩(:171? 2020 /007720
る。 流体室 X 1 9は、 第 1固定部 X 1 2 1、 第 1外層 X 1 1、 第 2外層 X 1 3によって囲まれた室である。 流体室 X 1 9は、 放熱器 1 2を通過した冷媒 の少なくとも一部が流通する。 第 1固定部 X 1 2 1、 第 1外層 X 1 1、 第 2 外層 X I 3は、 全体として基部に対応する。 なお、 電気配線 X 6、 乂7は複 数の第 1 リブ X 1 2 3および複数の第 2リブ X 1 2 4の温度を変化させて変 位させるための電気配線である。
[0063] 第 1固定部 X 1 2 1の第 1外層 X 1 1および第 2外層 X 1 3に対する固定 は、 冷媒がこの流体室 X I 9から第 1冷媒孔 X I 6、 第 2冷媒孔 X I 7以外 を通ってマイクロバルブ X 1から漏出することを抑制するような形態で、 行 われている。
[0064] 第 2固定部 X 1 2 2は、 第 1外層 X 1 1、 第 2外層 X 1 3に対して固定さ れる。 第 2固定部 X 1 2 2は、 第 1固定部 X 1 2 1 に取り囲まれると共に、 第 1固定部 X 1 2 1から離れて配置される。
[0065] 複数本の第 1 リブ乂 1 2 3、 複数本の第 2リブ乂 1 2 4、 スパイン X 1 2
5、 アーム X 1 2 6、 梁 X 1 2 7、 可動部 X 1 2 8は、 第 1外層 X 1 1、 第 2外層 X 1 3に対して固定されておらず、 第 1外層 X 1 1、 第 2外層 X 1 3 に対して変位可能である。
[0066] スパイン X I 2 5は、 中間層 X 1 2の矩形形状の短手方向に伸びる細長い 棒形状を有している。 スパイン X I 2 5の長手方向の一端は、 梁 X 1 2 7に 接続されている。
[0067] 複数本の第 1 リブ X I 2 3は、 スパイン X I 2 5の長手方向に直交する方 向におけるスパイン X I 2 5の一方側に配置される。 そして、 複数本の第 1 リブ X I 2 3は、 スパイン X I 2 5の長手方向に並んでいる。 各第 1 リブ X 1 2 3は、 細長い棒形状を有しており、 温度に応じて伸縮可能となっている
[0068] 各第 1 リブ X 1 2 3は、 その長手方向の一端で第 1固定部 X 1 2 1 に接続 され、 他端でスパイン X I 2 5に接続される。 そして、 各第 1 リブ X I 2 3 は、 第 1固定部 X 1 2 1側からスパイン X 1 2 5側に近付くほど、 スパイン 〇 2020/175544 18 卩(:171? 2020 /007720
X 1 25の長手方向の梁 X 1 27側に向けてオフセツ トされるよう、 スパイ ン X I 25に対して斜行している。 そして、 複数の第 1 リブ X I 23は、 互 いに対して平行に伸びている。
[0069] 複数本の第 2リブ X 1 24は、 スパイン X 1 25の長手方向に直交する方 向におけるスパイン X I 25の他方側に配置される。 そして、 複数本の第 2 リブ X I 24は、 スパイン X I 25の長手方向に並んでいる。 各第 2リブ X 1 24は、 細長い棒形状を有しており、 温度に応じて伸縮可能となっている
[0070] 各第 2リブ X 1 24は、 その長手方向の一端で第 2固定部 X 1 22に接続 され、 他端でスパイン X I 25に接続される。 そして、 各第 2リブ X I 24 は、 第 2固定部 X I 22側からスパイン X I 25側に近付くほど、 スパイン X 1 25の長手方向の梁 X 1 27側に向けてオフセツ トされるよう、 スパイ ン X I 25に対して斜行している。 そして、 複数の第 2リブ X I 24は、 互 いに対して平行に伸びている。 複数本の第 1 リブ乂 1 23、 複数本の第 2リ ブ X 1 24、 スパイン X I 25は、 全体として、 駆動部に対応する。
[0071] アーム X I 26は、 スパイン X 1 25と非直交かつ平行に伸びる細長い棒 形状を有している。 アーム X I 26の長手方向の一端は梁 X 1 27に接続さ れており、 他端は第 1固定部 X 1 2 1 に接続されている。
[0072] 梁 X 1 27は、 スパイン X I 25およびアーム X I 26に対して約 90° で交差する方向に伸びる細長い棒形状を有している。 梁 X 1 27の一端は、 可動部 X 1 28に接続されている。 アーム X I 26と梁 X I 27は、 全体と して、 増幅部に対応する。
[0073] アーム X 1 26と梁 X 1 27の接続位置 X 1、 スパイン X 1 25と梁 X
1 27の接続位置 X 92, 梁 X 1 27と可動部 X 1 28の接続位置 X 3は 、 梁 X 1 27の長手方向に沿って、 この順に並んでいる。 そして、 第 1固定 部 X 1 2 1 とアーム X 1 26との接続点をヒンジ X 0とすると、 中間層 X 1 2の板面に平行な面内におけるヒンジ X 0から接続位置 X 2までの直 線距離よりも、 ヒンジ X 0から接続位置 X 3までの直線距離の方が、 長 〇 2020/175544 19 卩(:171? 2020 /007720
い。
[0074] 可動部 X 1 2 8は、 流体室 X 1 9における冷媒の圧力を調整するものであ る。 可動部 X 1 2 8は、 その外形が、 梁 X 1 2 7の長手方向に対して概ね 9 0 ° の方向に伸びる矩形形状を有している。 この可動部 X I 2 8は、 流体室 X 1 9内において梁 X I 2 7と一体に動くことができる。 そして、 可動部 X 1 2 8は、 そのように動くことで、 ある位置にいるときには第 1冷媒孔 X 1 6と第 2冷媒孔 X I 7とを流体室 X I 9を介して連通させ、 また別の位置に いるときには第 1冷媒孔 X 1 6と第 2冷媒孔 X I 7とを流体室 X I 9内にお いて遮断する。 可動部 X 1 2 8は、 中間層 X I 2の表裏に貫通する貫通孔乂 1 2 0を囲む枠形状となっている。 したがって、 貫通孔 X 1 2 0も、 可動部 X 1 2 8と一体的に移動する。 貫通孔 X 1 2 0は、 流体室 X 1 9の一部であ る。
[0075] また、 第 1固定部 X 1 2 1のうち、 複数の第 1 リブ X 1 2 3と接続する部 分の近傍の第 1印加点 X 1 2 9には、 図 5に示した第 1外層 X 1 1の貫通孔 X 1 4を通った電気配線 X 6のマイクロバルブ X 1側端が接続される。 また 、 第 2固定部 X 1 2 2の第 2印加点 X 1 3 0には、 図 5に示した第 1外層 X 1 1の貫通孔 X 1 5を通った電気配線 X 7のマイクロバルブ X 1側端が接続 される。
[0076] [バルブモジュ _ル乂〇の作動]
ここで、 バルブモジュール X 0の作動について説明する。 マイクロバルブ X 1への通電時は、 電気配線 X 6、 X 7から第 1印加点 X I 2 9、 第 2印加 点 X 1 3 0の間に電圧が印加される。 すると、 複数の第 1 リブ乂 1 2 3、 複 数の第 2リブ X 1 2 4を電流が流れる。 この電流によって、 複数の第 1 リブ X I 2 3、 複数の第 2リブ X I 2 4が発熱してそれらの温度が上昇する。 そ の結果、 複数の第 1 リブ乂 1 2 3、 複数の第 2リブ X 1 2 4の各々が、 その 長手方向に膨張する。
[0077] このような、 温度上昇を伴う熱的な膨張の結果、 複数の第 1 リブ X I 2 3 、 複数の第 2リブ X I 2 4は、 スパイン X I 2 5を接続位置乂 2側に付勢 〇 2020/175544 20 卩(:171? 2020 /007720
する。 付勢されたスパイン X I 2 5は、 接続位置乂 2において、 梁 X 1 2 7を押す。 このように、 接続位置 X 2は付勢位置に対応する。
[0078] そして、 梁 X 1 2 7とアーム X 1 2 6から成る部材は、 ヒンジ乂 〇を支 点として、 接続位置 X 2を力点として、 一体に姿勢を変える。 その結果、 梁 X 1 2 7のアーム X 1 2 6とは反対側の端部に接続された可動部 X 1 2 8 も、 その長手方向の、 スパイン X I 2 5が梁 X I 2 7を押す側に、 移動する 。 その移動の結果、 可動部 X 1 2 8は、 図 9、 図 1 0に示すように、 移動方 向の先端が第 1固定部 X 1 2 1 に当接する位置に到達する。 以下、 可動部 X 1 2 8のこの位置を通電時位置という。
[0079] このように、 梁 X 1 2 7およびアーム X 1 2 6は、 ヒンジ乂 〇を支点と し、 接続位置乂 2を力点とし、 接続位置乂 3を作用点とする梃子として 機能する。 上述の通り、 中間層 X I 2の板面に平行な面内におけるヒンジ X 0から接続位置 X 2までの直線距離よりも、 ヒンジ X 0から接続位置 乂 3までの直線距離の方が、 長い。 したがって、 力点である接続位置乂 2の移動量よりも、 作用点である接続位置 X 3の移動量の方が大きくなる 。 したがって、 熱的な膨張による変位量が、 梃子によって増幅されて可動部 X 1 2 8に伝わる。
[0080] 図 9、 図 1 0に示すように、 可動部 X 1 2 8が通電時位置にある場合、 貫 通孔 X 1 2 0が中間層 X 1 2の板面に直交する方向に第 1冷媒孔 X 1 6、 第 2冷媒孔 X 1 7と重なる。 その場合、 第 1冷媒孔 X 1 6と第 2冷媒孔 X 1 7 とが流体室 X 1 9の一部である貫通孔 X 1 2 0を介して連通する。 この結果 、 第 1連通孔乂 1 と第 2連通孔乂 2との間で、 第 1冷媒孔 X 1 6、 貫通 孔 X 1 2 0、 第 2冷媒孔 X I 7を介した、 冷媒の流通が可能となる。 つまり 、 マイクロバルブ X 1が開弁する。 このように、 第 1冷媒孔 X I 6、 貫通孔 X I 2 0、 第 2冷媒孔 X I 7は、 マイクロバルブ X 1の開弁時にマイクロバ ルブ X 1内において冷媒が流通する冷媒流路である。
[0081 ] このときの、 マイクロバルブ X 1 における冷媒の流路は、 II夕ーン構造を 有している。 具体的には、 冷媒は、 マイクロバルブ X 1の一方側の面からマ 〇 2020/175544 21 卩(:171? 2020 /007720
イクロバルブ X 1内に流入し、 マイクロバルブ X 1内を通って、 マイクロバ ルブ X 1の同じ側の面からマイクロバルブ X 1外に流出する。 そして同様に バルブモジュール X 0における冷媒の流路も、 II夕 _ン構造を有している。 具体的には、 冷媒は、 バルブモジュール乂〇の一方側の面からバルブモジュ —ル乂〇内に流入し、 バルブモジュール X 0内を通って、 バルブモジュール 乂〇の同じ側の面からバルブモジュール乂〇外に流出する。 なお、 中間層 X 1 2の板面に直交する方向は、 第 1外層 X I 1、 中間層 X I 2、 第 2外層 X 1 3の積層方向である。
[0082] また、 マイクロバルブ X 1への非通電時は、 電気配線乂6、 乂7から第 1 印加点 X 1 2 9、 第 2印加点 X I 3 0への電圧印加が停止される。 すると、 複数の第 1 リブ X 1 2 3、 複数の第 2リブ X 1 2 4を電流が流れなくなり、 複数の第 1 リブ乂 1 2 3、 複数の第 2リブ X 1 2 4の温度が低下する。 その 結果、 複数の第 1 リブ X I 2 3、 複数の第 2リブ X I 2 4の各々が、 その長 手方向に収縮する。
[0083] このような、 温度低下を伴う熱的な収縮の結果、 複数の第 1 リブ X I 2 3 、 複数の第 2リブ X I 2 4は、 スパイン X I 2 5を接続位置乂 2とは反対 側に付勢する。 付勢されたスパイン X 1 2 5は、 接続位置 X 2において、 梁 X 1 2 7を引っ張る。 その結果、 梁 X 1 2 7とアーム X I 2 6から成る部 材は、 ヒンジ乂 〇を支点として、 接続位置乂 2を力点として、 一体に姿 勢を変える。 その結果、 梁 X 1 2 7のアーム X I 2 6とは反対側の端部に接 続された可動部 X I 2 8も、 その長手方向の、 スパイン X I 2 5が梁 X I 2 7を引っ張る側に、 移動する。 その移動の結果、 可動部 X I 2 8は、 図 7、 図 8に示すように、 第 1固定部 X 1 2 1 に当接しない位置に到達する。 以下 、 可動部 X 1 2 8のこの位置を非通電時位置という。
[0084] 図 7、 図 8に示すように、 可動部 X 1 2 8が非通電時位置にある場合、 貫 通孔 X 1 2 0は、 中間層 X 1 2の板面に直交する方向に第 1冷媒孔 X 1 6と 重なるが、 当該方向に第 2冷媒孔 X I 7とは重ならない。 第 2冷媒孔 X I 7 は、 中間層 X I 2の板面に直交する方向に可動部 X 1 2 8と重なる。 つまり 〇 2020/175544 22 卩(:171? 2020 /007720
、 第 2冷媒孔 X I 7は、 可動部 X 1 2 8によって塞がれる。 したがってこの 場合、 第 1冷媒孔 X 1 6と第 2冷媒孔 X 1 7とが流体室 X 1 9内において遮 断される。 この結果、 第 1連通孔乂 1 と第 2連通孔乂 2との間で、 第 1 冷媒孔 X I 6、 第 2冷媒孔 X I 7を介した冷媒の流通は阻害される。 つまり 、 マイクロバルブ X 1が閉弁する。
[0085] このように構成される第 1電池用減圧部 1 6は、 その流路面積が、 マイク ロバルブ X 1への非通電時にオリフィス 2 7 3の流路面積となり、 通電時に オリフィス 2 7 3の流路断面積にバルブモジュール乂〇の流路面積を加えた 大きさとなる。 すなわち、 第 1電池用減圧部 1 6は、 図 1 1 に示すように、 マイクロバルブ X 1への非通電時に絞り開度が小開度 3 1 となり、 通電時に 絞り開度が大開度 3 2となる。 このように、 第 1電池用減圧部 1 6は、 マイ クロバルブ X 1への通電、 非通電を切り替えることで、 第 1電池用減圧部 1 6の絞り開度の調整が可能になっている。 具体的には、 第 1電池用減圧部 1 6は、 マイクロバルブ X 1への通電を停止することで絞り開度を小さくする ことができる。 なお、 冷房用減圧部 1 4および第 2電池用減圧部 1 8は、 第 1電池用減圧部 1 6と同様に構成されている。 このため、 冷房用減圧部 1 4 および第 2電池用減圧部 1 8は、 それぞれに設けられたマイクロバルブ X 1 への通電、 非通電を切り替えることで、 冷房用減圧部 1 4および第 2電池用 減圧部 1 8の絞り開度の調整が可能になっている。
[0086] 本実施形態の制御装置 1 0 0は、 例えば、 車室内の冷房よりもバッテリ巳 丁の冷却を優先する必要がある場合、 第 1電池用蒸発器 1 7および第 2電池 用蒸発器 1 9の冷媒流量が大流量となるように、 各減圧部 1 4、 1 6 , 1 8 を制御する。 具体的には、 制御装置 1 〇〇は、 車室内の冷房よりもバッテリ 巳丁の冷却を優先する必要がある場合、 第 1電池用減圧部 1 6および第 2電 池用減圧部 1 8それぞれのマイクロバルブ X 1へ通電し、 冷房用減圧部 1 4 のマイクロバルブ X 1への通電を停止する。 これによれば、 冷凍サイクル装 置 1 0による電池冷却能力が高まるので、 車室内の冷房よりもバッテリ巳丁 の冷却を優先することができる。 〇 2020/175544 23 卩(:171? 2020 /007720
[0087] また、 バッテリ巳丁の冷却よりも車室内の冷房を優先する必要がある場合 、 制御装置 1 〇〇は、 冷房用蒸発器 1 5の冷媒流量が大流量となるように、 各減圧部 1 4、 1 6、 1 8を制御する。 具体的には、 制御装置 1 0 0は、 バ ッテリ巳丁の冷却よりも車室内の冷房を優先する必要がある場合、 冷房用減 圧部 1 4のマイクロバルブ X 1へ通電し、 第 1電池用減圧部 1 6および第 2 電池用減圧部 1 8それぞれのマイクロバルブ X 1への通電を停止する。 これ によれば、 冷凍サイクル装置 1 0による冷房能力が高まるので、 バッテリ巳 丁の冷却よりも車室内の冷房を優先することができる。
[0088] 以上説明した冷凍サイクル装置 1 0は、 互いに並列に接続される冷房用蒸 発器 1 5、 第 1電池用蒸発器 1 7、 第 2電池用蒸発器 1 9それぞれに対応し て、 冷房用減圧部 1 4、 第 1電池用減圧部 1 6、 第 2電池用減圧部 1 8が設 けられている。 これにより、 各蒸発器 1 5、 1 7、 1 9に対して所望の割合 で冷媒および冷凍機油を分配することができる。
[0089] 加えて、 各減圧部 1 4、 1 6、 1 8は、 マイクロバルブ X I を用いて絞り 開度を調整する構成になっているので、 電磁弁や電動弁をと用いる場合に比 ベて容易に小型化できる。 その理由の 1つは、 マイクロバルブ X 1が上述の 通り半導体チップにより形成されているということである。 また、 上述の通 り、 梃子を利用して熱的な膨張による変位量が増幅されることも、 そのよう な梃子を利用しない電磁弁や電動弁と比べた小型化に寄与する。
[0090] したがって、 本実施形態の冷凍サイクル装置 1 0によれば、 搭載性の悪化 を抑制しつつ、 並列に接続される各蒸発器 1 5、 1 7、 1 9に対して所望の 割合で冷媒および冷凍機油を分配することができる。
[0091 ] また、 梃子を利用しているので、 熱的な膨張による変位量を可動部 X 1 2
8の移動量より抑えることができる。 したがって、 可動部 X 1 2 8を駆動す るための消費電力も低減することができる。 また、 電磁弁の駆動時における 衝撃音を無くすことができるので、 騒音を低減することができる。 また、 複 数本の第 1 リブ乂 1 2 3、 複数本の第 2リブ X 1 2 4の変位は熱に起因して 発生するので、 騒音低減効果が高い。 〇 2020/175544 24 卩(:171? 2020 /007720
[0092] さらに、 各減圧部 1 4、 1 6、 1 8は、 絞り開度が固定されたオリフィス
2 7 3を含んでいる。 そして、 マイクロバルブ X Iは、 可動部 X I 2 8によ って第 1冷媒孔 X I 6および第 2冷媒孔 X I 7の連通および遮断を切り替え ることで各減圧部 1 4、 1 6、 1 8の絞り開度を調整する構成になっている
[0093] このように、 各減圧部 1 4、 1 6、 1 8が固定絞りを含む構成となってい れば、 マイクロバルブ X 1 における第 1冷媒孔 X 1 6および第 2冷媒孔 X 1 7の連通および遮断の切り替えによって各減圧部 1 4、 1 6、 1 8の絞り開 度を段階的に調整できる。 また、 各減圧部 1 4、 1 6、 1 8が固定絞りを含 んでいる場合、 各減圧部 1 4、 1 6、 1 8の絞り開度の調整が不要な際には マイクロバルブ X 1 を駆動させないことで、 マイクロバルブ X 1の駆動頻度 を低減して、 エネルギ消費を抑えることができる。
[0094] 上述のように、 バルブケーシング X 2は、 バルブケーシング X 2の線膨張 係数が、 マイクロバルブ X 1の線膨張係数とブロック体 2 7の線膨張係数の 間の値となる樹脂材料で構成されている。 これにより、 マイクロバルブ X I とブロック体 2 7の線膨張係数の違いをバルブケーシング X 2が吸収できる 。 すなわち、 ブロック体 2 7の温度変化による熱歪の応力がバルブケーシン グ乂2で吸収されるので、 マイクロバルブ X I を保護することができる。
[0095] また、 マイクロバルブ X 1 もバルブモジュール乂〇も II夕ーンの構造の冷 媒流路を有しているので、 ブロック体 2 7の掘り込みを少なくすることがで きる。 つまり、 バルブモジュール乂〇を配置するためにブロック体 2 7に形 成された凹みの深さを抑えることができる。 その理由は以下の通りである。
[0096] 例えば、 バルブモジュール乂〇が IIターンの構造の冷媒流路を有しておら ず、 バルブモジュール乂〇のブロック体 2 7側の面に冷媒入口があり、 バル ブモジュール乂〇の反対側の面に冷媒出口があったとする。 その場合、 バル ブモジュール乂〇の両面に、 冷媒流路を形成する必要がある。 したがって、 バルブモジュール乂〇の両面の冷媒流路までブロック体 2 7に収容しようと すると、 バルブモジュール乂〇を配置するためにブロック体 2 7に形成しな 〇 2020/175544 25 卩(:171? 2020 /007720
ければならない凹みが深くなってしまう。 また、 マイクロバルブ X I 自体が 小型であるので、 ブロック体 2 7の掘り込みを更に低減することができる。
[0097] また、 マイクロバルブ X 1の両面のうち、 第 1冷媒孔 X I 6、 第 2冷媒孔 X 1 7が形成される面とは反対側の面に電気配線 X 6、 X 7を配置した場合 、 電気配線 X 6、 X 7を大気雰囲気により近い側に置くことができる。 した がって、 電気配線 X 6、 X 7への冷媒雰囲気の影響を低減するためのハーメ チック等のシール構造が不要となる。 その結果、 各減圧部 1 4、 1 6 , 1 8 の小型化が実現できる。
[0098] また、 マイクロバルブ X 1が軽量であることから、 各減圧部 1 4、 1 6、
1 8が軽量化される。 マイクロバルブ X 1の消費電力が小さいので、 各減圧 部 1 4、 1 6、 1 8が省電力化される。
[0099] (第 2実施形態)
次に、 第 2実施形態について、 図 1 2を参照して説明する。 本実施形態で は、 圧力調整弁 2 0 が冷房用蒸発器 1 5の冷媒流れ下流側に配置されてい る点が第 1実施形態と相違している。 本実施形態では、 第 1実施形態と異な る部分について主に説明し、 第 1実施形態と同様の部分について説明を省略 することがある。
[0100] 図 1 2に示すように、 冷凍サイクル装置 1 0には、 冷房用蒸発器 1 5と第
2合流部 2 4との間に圧力調整弁 2〇 が配置されている。 この圧力調整弁 2 0 は、 冷房用蒸発器 1 5を通過する冷媒の圧力を所定の設定圧力値以上 に維持するものである。
[0101 ] その他の構成は第 1実施形態と同様である。 本実施形態の冷凍サイクル装 置 1 〇は、 第 1実施形態と共通の構成を備えており、 当該共通の構成から奏 される作用効果を第 1実施形態と同様に得ることができる。
[0102] 特に、 本実施形態の冷凍サイクル装置 1 0は、 冷房用蒸発器 1 5の冷媒流 れ下流側に圧力調整弁 2 0 が設けられている。 このため、 例えば、 バッテ リ巳丁の冷却と車室内の冷房を同時に行う際、 冷房用蒸発器 1 5を通過する 冷媒の圧力を維持しつつ、 各電池用蒸発器 1 7、 1 9を通過する冷媒の圧力 〇 2020/175544 26 卩(:171? 2020 /007720
を低下させることができる。
[0103] (第 3実施形態)
次に、 第 3実施形態について、 図 1 3、 図 1 4を参照して説明する。 本実 施形態では、 ブロック体 2 7八に対してオリフィス 2 7 3が設けられていな い点が第 1実施形態と相違している。 本実施形態では、 第 1実施形態と異な る部分について主に説明し、 第 1実施形態と同様の部分について説明を省略 することがある。
[0104] 図 1 3に示すように、 ブロック体 2 7八は、 上流側嵌合孔 2 7 1および下 流側嵌合孔 2 7 2との間にオリフィス 2 7 3が設けられていない。 すなわち 、 ブロック体 2 7 は、 上流側嵌合孔 2 7 1から下流側嵌合孔 2 7 2へと冷 媒が直接的に流れないように、 各嵌合孔 2 7 1 , 2 7 2の底面の間に仕切部 2 7 6が設定されている。
[0105] ここで、 マイクロバルブ X Iは、 通電時に、 電気配線乂6、 乂7から第 1 印加点 X 1 2 9、 第 2印加点 X I 3 0を介してマイクロバルブ X 1 に供給さ れる電力が大きいほど、 非通電時位置に対する可動部 X 1 2 8の移動量も大 きくなる。 これは、 マイクロバルブ X 1 に供給される電力が高いほど、 第 1 リブ X I 2 3、 第 2リブ X I 2 4の温度が高くなり、 膨張度合いが大きいか らである。 例えば、 電気配線乂6、 乂7から第 1印加点 X I 2 9、 第 2印加 点 X 1 3 0へ印加される電圧が \^/1\/1制御される場合、 デューティ比が大き いほど非通電時に対する可動部 X 1 2 8の移動量も大きくなる。
[0106] このため、 マイクロバルブ X Iは、 マイクロバルブ X 1 に供給される電力 を調整することで、 可動部 X 1 2 8を、 非通電時位置と最大通電時位置の間 のどの中間位置にでも、 停止させることができる。
[0107] 例えば、 最大通電時位置と非通電時位置からも等距離の位置 (すなわち、 中央位置) で可動部 X 1 2 8を停止させるには、 マイクロバルブ X 1 に供給 される電力が、 制御範囲内の最大値の半分であればいい。 例えば、
Figure imgf000028_0001
御のデューティ比が 5 0 %であればいい。
[0108] 可動部 X 1 2 8が中間位置に停止している場合、 第 1冷媒孔 X 1 6および 〇 2020/175544 27 卩(:171? 2020 /007720
第 2冷媒孔 X I 7は、 いずれも貫通孔 X 1 2 0に連通している。 しかし、 第 2冷媒孔 X I 7は、 貫通孔丫 1 2 0に対して全開状態ではなく、 1 0 0 %未 満かつ 0 %よりも大きい開度となっている。 可動部 X 1 2 8が中間位置にお いて最大通電位時位置に近づくほど、 貫通孔 X 1 2 0に対する第 2冷媒孔 X 1 7の開度が増大する。
[0109] これらを加味して、 本実施形態の冷凍サイクル装置 1 0では、 マイクロバ ルブ X I に印加される電圧を \^/1\/1制御によって変更することで、 各減圧部 1 4、 1 6、 1 8の絞り開度を変化させる。 冷凍サイクル装置 1 0は、 例え ば、 図 1 4に示すように、 \^/1\/1制御のデューティ比を大きくすることで各 減圧部 1 4、 1 6、 1 8の絞り開度を大きく し、 \^/1\/1制御のデューティ比 を小さくすることで各減圧部 1 4、 1 6、 1 8の絞り開度を小さくする。
[01 10] 例えば、 車室内の冷房よりもバッテリ巳丁の冷却を優先する必要がある場 合、 制御装置 1 〇〇は、 各電池用減圧部 1 6、 1 8それぞれのマイクロバル ブ X 1 に対する \^/1\/1制御のデューティ比を大きくする。 そして、 制御装置 1 0 0は、 冷房用減圧部 1 4のマイクロバルブ X I に対する \^/1\/1制御のデ ューティ比を小さくする。 これによれば、 冷凍サイクル装置 1 0による電池 冷却能力が高まるので、 車室内の冷房よりもバッテリ巳丁の冷却を優先する ことができる。
[01 1 1 ] また、 バッテリ巳丁の冷却よりも車室内の冷房を優先する必要がある場合 、 制御装置 1 〇〇は、 冷房用減圧部 1 4のマイクロバルブ X I に対する IV!制御のデューティ比を大きくする。 そして、 制御装置 1 0 0は、 各電池用 減圧部 1 6、 1 8それぞれのマイクロバルブ X 1 に対する \^/1\/1制御のデュ —ティ比を小さくする。 これによれば、 冷凍サイクル装置 1 0による冷房能 力が高まるので、 バッテリ巳丁の冷却よりも車室内の冷房を優先することが できる。
[01 12] その他の構成および作動は、 第 1実施形態と同様である。 本実施形態の各 減圧部 1 4、 1 6、 1 8は、 マイクロバルブ X I に供給する電力を調整する ことで、 各減圧部 1 4、 1 6、 1 8の絞り開度の調整が可能になっている。 〇 2020/175544 28 卩(:171? 2020 /007720
具体的には、 各減圧部 1 4、 1 6、 1 8は、 \^/1\/1制御のデューティ比を大 きくすることで冷媒流量を大流量に変更し、 IV!制御のデューティ比を小 さくすることで、 冷媒流量を小流量に変更することが可能になっている。
[01 13] このように、 マイクロバルブ X 1 を各減圧部 1 4、 1 6、 1 8の絞り開度 を変更可能な可変絞りとして構成すれば、 マイクロバルブ X 1 における流体 孔の開度を変更することで、 各減圧部 1 4、 1 6、 1 8の絞り開度を所望の 開度に調整することができる。 これによると、 ブロック体 2 7八に対して才 リフィス 2 7 3等の固定絞りが設けられていない構成であっても、 各蒸発器 1 5、 1 7、 1 9に対して所望の割合で冷媒を分配することができる。 各減 圧部 1 4、 1 6、 1 8がマイクロバルブ X I を含んで構成されることで得ら れる作用効果に関しては、 第 1実施形態と同様に得ることができる。
[01 14] (第 3実施形態の変形例)
上述の第 3実施形態では、 各減圧部 1 4、 1 6、 1 8のブロック体 2 7八 にオリフィス 2 7 3が設けられていない例を説明したが、 これに限定されな い。 各減圧部 1 4、 1 6、 1 8は、 ブロック体 2 7八に対してオリフィス 2 7 3が設けられていてもよい。
[01 15] (第 4実施形態)
次に、 第 4実施形態について、 図 1 5および図 1 6を参照して説明する。 本実施形態では、 第 1電池用減圧部 1 6が第 1電池用蒸発器 1 7に対して一 体的に構成されている点が第 3実施形態と相違している。 本実施形態では、 第 3実施形態と異なる部分について主に説明し、 第 3実施形態と同様の部分 について説明を省略することがある。
[01 16] 図 1 5に示すように、 第 1電池用減圧部 1 6は、 第 1電池用蒸発器 1 7の 冷媒入口部 1 7 0に対して一体的に構成されている。 具体的には、 第 1電池 用減圧部 1 6は、 第 1電池用蒸発器 1 7の冷媒入口部 1 7 0と冷媒配管 2 6 とを接続するためのコネクタとしての機能も果たしている。
[01 17] 図 1 6に示すように、 第 1電池用減圧部 1 6のブロック体 2 7〇は、 冷媒 配管 2 6と第 1電池用蒸発器 1 7の冷媒入口部 1 7 0とを接続する金属製 ( 〇 2020/175544 29 卩(:171? 2020 /007720
例えば、 アルミニウム) の継手である。
[01 18] ブロック体 2 7〇の側面には、 冷媒配管 2 6が嵌め合わされる有底の上流 側嵌合孔 2 7 1が形成されている。 また、 ブロック体 2 7(3には、 上流側嵌 合孔 2 7 1が形成された側面に連なる上面に、 第 1電池用蒸発器 1 7の冷媒 入口部 1 7 0が嵌め合わされる有底の下流側嵌合孔 2 7 2が形成されている 。 上流側嵌合孔 2 7 1および下流側嵌合孔 2 7 2は、 各嵌合孔 2 7 1 , 2 7 2の間に設定された仕切部 2 7 6によって仕切られている。
[01 19] ここで、 下流側嵌合孔 2 7 2は、 上流側嵌合孔 2 7 1の延在方向に対して 直交する方向に延びている。 具体的には、 下流側嵌合孔 2 7 2は、 冷媒入口 部 1 7 0に対して冷媒が直進して流れるように、 冷媒入口部 1 7 0の突出方 向に沿って延びるように形成されている。
[0120] その他の構成は、 第 4実施形態と同様である。 本実施形態の冷凍サイクル 装置 1 0は、 第 4実施形態と共通の構成要素を備えているので、 第 4実施形 態と同様の作用効果を得ることができる。
[0121 ] 特に、 本実施形態の冷凍サイクル装置 1 0は、 第 1電池用減圧部 1 6のブ ロック体 2 7〇と第1電池用蒸発器 1 7の冷媒入口部 1 7 0とが一体となる ように嵌合されている。 このように、 冷媒配管 2 6と第 1電池用蒸発器 1 7 の冷媒入口部 1 7 0との接続部に第 1電池用減圧部 1 6を構成すれば、 冷凍 サイクル装置 1 0の簡素化を図ることができる。
[0122] また、 冷媒配管 2 6には、 第 1電池用減圧部 1 6を通過する前の高温高圧 の冷媒が流れる。 このような構成では、 冷媒配管 2 6を冷媒が流れる際に、 冷媒配管 2 6周囲に放熱できるので、 第 1電池用蒸発器 1 7の吸熱能力を向 上させることが可能となる。 このような構成は、 第 1電池用蒸発器 1 7を利 用側の熱交換器とする場合に好適である。
[0123] (第 4実施形態の変形例)
上述の第 4実施形態では、 第 1電池用減圧部 1 6が第 1電池用蒸発器 1 7 に対して一体的に構成されているものを例示したがこれに限定されない。 冷 凍サイクル装置 1 〇は、 例えば、 冷房用減圧部 1 4が冷房用蒸発器 1 5に対 〇 2020/175544 30 卩(:171? 2020 /007720
して一体的に構成されていたり、 第 2電池用減圧部 1 8が第 2電池用蒸発器 1 9に対して一体的に構成されていたりしてもよい。
[0124] 上述の第 4実施形態では、 ブロック体 2 7〇において各嵌合孔 2 7 1、 2
7 2が互いに直交する方向に伸びるものを例示したが、 これに限定されない 。 各減圧部 1 4、 1 6、 1 8は、 例えば、 ブロック体 2 7(3に対して各嵌合 孔 2 7 1、 2 7 2が互いに同じ方向に伸びるように形成されていてもよい。 また、 ブロック体 2 7〇に対してオリフィス 2 7 3が形成されていてもよい
[0125] (第 5実施形態)
次に、 第 5実施形態について、 図 1 7〜図 2 6を参照して説明する。 本実 施形態では、 各減圧部 1 4、 1 6、 1 8の絞り開度が冷媒の圧力差を利用し て変更される構成になっている点が第 1実施形態と相違している。 本実施形 態では、 第 1実施形態と異なる部分について主に説明し、 第 1実施形態と同 様の部分について説明を省略することがある。
[0126] 各減圧部 1 4、 1 6、 1 8は、 絞り開度を調整する主弁体 2 8 5をバルブ モジュール丫 0によって駆動する構成になっている。 バルブモジュール丫 0 は、 主弁体 2 8 5を駆動する駆動部材を構成している。
[0127] 各減圧部 1 4、 1 6、 1 8は、 同様に構成されることから、 以下では、 第
1電池用減圧部 1 6の構成を説明し、 冷房用減圧部 1 4および第 2電池用減 圧部 1 8に関する説明を省略する。
[0128] 図 1 7および図 1 8に示すように、 バルブモジュール丫〇は、 第 2分岐部
2 2と第 1電池用蒸発器 1 7とを接続する冷媒配管 2 6に設けられたブロッ ク体 2 8に対して一体的に構成されている。 ブロック体 2 8は、 マイクロバ ルブ丫 1の取付対象となる被取付対象物を構成している。
[0129] ブロック体 2 8は、 第 1電池用減圧部 1 6の一部を構成する。 ブロック体
2 8は、 冷媒配管 2 6のうち第 2分岐部 2 2に接続される上流側部位 2 6 1 と第 1電池用蒸発器 1 7の冷媒入口部 1 7 0に接続される下流側部位 2 6 2 と接続する金属製 (例えば、 アルミニウム) の継手である。 〇 2020/175544 31 卩(:171? 2020 /007720
[0130] ブロック体 2 8の一側面には、 上流側部位 2 6 1が嵌め合わされる有底の 上流側嵌合孔 2 8 1が形成されている。 この上流側嵌合孔 2 8 1は、 放熱器 1 2からの冷媒が流入する入口流路を構成する。
[0131 ] また、 ブロック体 2 8には、 上流側嵌合孔 2 8 1が形成された一側面の反 対側に、 下流側部位 2 6 2が嵌め合わされる有底の下流側嵌合孔 2 8 2が形 成されている。 この下流側嵌合孔 2 8 2は、 冷媒を第 1電池用蒸発器 1 7に 向けて流出させる出口流路を構成する。
[0132] 上流側嵌合孔 2 8 1および下流側嵌合孔 2 8 2の間には、 主弁体 2 8 5が 収容される弁室 2 8 3が形成されている。 弁室 2 8 3は、 上流側嵌合孔 2 8 1および下流側嵌合孔 2 8 2の並び方向に直交する方向に延びている。 弁室 2 8 3は、 第 1貫通孔 2 8 1 3を介して上流側嵌合孔 2 8 1 に連通し、 第 2 貫通孔 2 8 2 3を介して下流側嵌合孔 2 8 2に連通している。 この第 2貫通 孔 2 8 2 3は、 主弁体 2 8 5によって絞り開度が調整される絞り流路 2 8 4 を形成する。
[0133] 弁室 2 8 3には、 絞り流路 2 8 4の絞り開度を調整する主弁体 2 8 5が摺 動可能に収容されている。 主弁体 2 8 5は、 弁室 2 8 3において、 弁室 2 8 3の延在方向に沿って摺動可能なように配置されている。 主弁体 2 8 5は、 絞り流路 2 8 4側に位置する先端部位が半球状に湾曲した曲面になっている
[0134] 弁室 2 8 3は、 主弁体 2 8 5によって、 冷媒が流れる絞り流路 2 8 4側の 空間と、 絞り流路 2 8 4の絞り開度を調整するための開度調整室 2 8 6に分 割されている。 開度調整室 2 8 6は、 弁室 2 8 3において、 主弁体 2 8 5を 挟んで絞り流路 2 8 4の反対側となる空間である。 開度調整室 2 8 6は、 後 述するマイクロバルブ丫 1 によって主弁体 2 8 5を開弁側または閉弁側に押 圧するための冷媒が導入される。
[0135] 開度調整室 2 8 6には、 スプリング 2 8 6 3が配置されている。 スプリン グ 2 8 6 3は、 主弁体 2 8 5の変位方向に延びる円筒コイルバネである。 ス プリング 2 8 6 3は、 主弁体 2 8 5に対して閉弁方向に付勢する荷重をかけ 〇 2020/175544 32 卩(:171? 2020 /007720
るための弾性部材である。
[0136] また、 ブロック体 2 8の下面には、 後述するバルブモジュール丫〇の第 1 突出部丫2 1、 第 2突出部丫 2 2、 第 3突出部丫 2 3が嵌め合わされる第 1 凹部 2 8 7、 第 2凹部 2 8 8、 第 3凹部 2 8 9が形成されている。 第 1凹部 2 8 7、 第 2凹部 2 8 8、 第 3凹部 2 8 9は、 ブロック体 2 8の下面を見た ときに、 第 2凹部 2 8 8、 第 1凹部 2 8 7、 第 3凹部 2 8 9の順に直線状に 並ぶように配置されている。 第 1凹部 2 8 7は、 弁室 2 8 3に連なっており 、 開度調整室 2 8 6と連通する。 第 2凹部 2 8 8の底部には、 第 2凹部 2 8 8と上流側嵌合孔 2 7 1 とを連通させる貫通孔 2 8 8 3が形成されている。 第 3凹部 2 8 9の底部には、 第 3凹部 2 8 9と下流側嵌合孔 2 8 2とを連通 させる貫通孔 2 8 9 3が形成されている。
[0137] このように構成される第 1電池用減圧部 1 6は、 絞り流路 2 8 4の流路面 積 (すなわち、 絞り開度) が主弁体 2 8 5の位置によって変化する。 そして 、 主弁体 2 8 5は、 主弁体 2 8 5に作用する力によって決定される。 具体的 には、 主弁体 2 8 5に作用する荷重の釣り合いは、 以下の数式 1で表現す ることができる。
[0138] ? 八 3 = [< 3 \ 1_ + 0 + ?〇1 \八 3 ( 1)
ここで、 上述の数式 1では、 放熱器 1 2を通過した冷媒圧力 (すなわち 、 高圧圧力) を IIで示し、 開度調整室 2 8 6の冷媒圧力 (すなわち、 制御 圧力) を 111で示し、 主弁体 2 8 5の受圧面積を八 3で示している。 また、 上述の数式 1では、 スプリング 2 8 6 3のパネ定数を < 3で示し、 主弁体 2 8 5の変位量を!-で示し、 主弁体 2 8 5に対して作用するスプリング 2 8 6 ^の初期荷重を 0で示している。
[0139] 第 1電池用減圧部 1 6は、 制御圧力 〇!が絞り流路 2 8 4の下流側の冷媒 圧力 (すなわち、 低圧圧力 丨) と同等の圧力となる場合、 高圧圧力 と 制御圧力 との圧力差が最大となり、 図 1 7に示すように、 主弁体 2 8 5 が絞り開度が最大となる位置に変位する。
[0140] この状態から制御圧力 〇!が低圧圧力 I よりも高くなると、 高圧圧力 〇 2020/175544 33 卩(:171? 2020 /007720
と制御圧力 との圧力差が小さくなることで、 主弁体 2 8 5が絞り開度 が小さくなる位置に変位する。 そして、 制御圧力 が高圧圧力 IIと同等 の圧力となると、 主弁体 2 8 5がスプリング 2 8 6 3によって閉弁方向に付 勢されることで、 図 1 8に示すように、 主弁体 2 8 5が絞り開度が最大とな る位置に変位する。
[0141 ] したがって、 第 1電池用減圧部 1 6は、 図 1 9に示すように、 制御圧力 が小さくなると、 絞り流路 2 8 4の流路面積である絞り開度が大きくなり 、 制御圧力 が大きくなると、 絞り開度が小さくなる構成になっている。
[0142] 本実施形態の第 1電池用減圧部 1 6は、 制御圧力 がバルブモジュール 丫〇に設けられたマイクロバルブ丫 1 によって調整される。 以下、 バルブモ ジュール丫 0の詳細について説明する。
[0143] [バルブモジュール丫 0の構成]
図 1 7および図 1 8に示すように、 バルブモジュール丫〇は、 マイクロバ ルブ丫 1、 バルブケーシング丫 2、 封止部材丫3、 3つの〇リング丫4、 丫 5 3 , 丫5 2本の電気配線丫 6、 丫 7、 変換プレート丫 8を有している
[0144] マイクロバルブ丫 1は、 板形状の弁部品であり、 主として半導体チップに よって構成されている。 マイクロバルブ丫 1は、 半導体チップ以外の部品を 有していてもいなくてもよい。 したがって、 マイクロバルブ丫 1 を小型に構 成できる。 マイクロバルブ丫 1は、 開度調整室 2 8 6における冷媒の圧力を 調整するための弁部品である。
[0145] マイクロバルブ丫 1の厚さ方向の長さは例えば 2
Figure imgf000035_0001
であり、 厚さ方向に 直交する長手方向の長さは例えば 1
Figure imgf000035_0002
であり、 長手方向にも厚さ方向に も直交する短手方向の長さは例えば 5
Figure imgf000035_0003
であるが、 これに限定されない。 マイクロバルブ丫 1への供給電力が変動することで、 マイクロバルブ丫 1の 流路構成が変化する。 マイクロバルブ丫 1は、 主弁体 2 8 5を駆動するパイ ロッ ト弁として機能する。
[0146] 電気配線丫6、 丫 7は、 マイクロバルブ丫 1の 2つの板面のうち、 バルブ 〇 2020/175544 34 卩(:171? 2020 /007720
ケーシング丫 2とは反対側の面から伸びて、 封止部材丫3、 バルブケーシン グ丫 2内を通過して、 バルブモジュール丫 0の外部にある電源に接続される 。 これにより、 電気配線丫 6、 丫 7を通して、 電源からマイクロバルブ丫 1 に電力が供給される。
[0147] 変換プレート丫8は、 マイクロバルブ丫 1 とバルブケーシング丫 2の間に 配置される板形状の部材である。 変換プレート丫8は、 ガラス基板である。 変換プレート丫 8の 2つの板面の一方側は、 マイクロバルブ丫 1 に対して接 着剤で固定され、 他方側はバルブケーシング丫 2に対して接着剤で固定され ている。 変換プレート丫 8には、 マイクロバルブ丫 1の後述する 3つの冷媒 孔とバルブケーシング丫2の 3つの連通孔とを繫げるための流路丫8 1、 丫 8 2、 丫 8 3が形成されている。 これら流路丫8 1、 丫8 2、 丫 8 3は、 一 列に並ぶ上記 3つの冷媒孔のピッチと一列に並ぶ上記 3つの連通孔のピッチ の違いを吸収するための部材である。 流路丫8 1、 丫8 2、 丫8 3は、 変換 プレート丫 8の 2つの板面の一方から他方に貫通している。
[0148] バルブケーシング丫2は、 マイクロバルブ丫 1および変換プレート丫8を 収容する樹脂製のケーシングである。 バルブケーシング丫 2は、 ポリフエニ レンサルファイ ドを主成分として樹脂成形によって形成されている。 バルブ ケーシング丫 2は、 線膨張係数が、 マイクロバルブ丫 1の線膨張係数とブロ ック体 2 8の線膨張係数の間の値となるように構成されている。 なお、 バル ブケーシング丫 2は、 マイクロバルブ丫 1 をブロック体 2 8に対して取り付 けるための部品取付部を構成している。 バルブケーシング丫 2は、 一方側に 底壁を有し、 他方側が開放された箱体である。 バルブケーシング丫 2の底壁 は、 マイクロバルブ丫 1および変換プレート丫 8がブロック体 2 8に直接接 しないように、 ブロック体 2 8とマイクロバルブ丫 1の間に介在する。 そし て、 この底壁の一方側の面がブロック体 2 8に接触して固定され、 他方側の 面が変換プレート丫 8に接触して固定される。
[0149] このようになっていることで、 マイクロバルブ丫 1 とブロック体 2 8の線 膨張係数の違いをバルブケーシング丫 2が吸収できる。 これは、 バルブケー 〇 2020/175544 35 卩(:171? 2020 /007720
シング丫 2の線膨張係数が、 マイクロバルブ丫 1の線膨張係数とブロック体 2 8の線膨張係数の間の値となっているからである。 なお、 変換プレート丫 8の線膨張係数は、 マイクロバルブ丫 1の線膨張係数とバルブケーシング丫 2の線膨張係数の間の値となっている。 ここで、 バルブケーシング丫 2は、 マイクロバルブ丫 1 をブロック体 2 8に対して取り付けるための部品取付部 を構成している。
[0150] また、 バルブケーシング丫 2の底壁は、 マイクロバルブ丫 1 に対向する板 形状のベース部丫 2 0と、 マイクロバルブ丫 1から離れる方向に当該べース 部丫 2 0から突出する柱形状の第 1突出部丫 2 1、 第 2突出部丫 2 2、 第 3 突出部丫 2 3を有する。
[0151 ] 第 1突出部丫2 1、 第 2突出部丫 2 2、 第 3突出部丫 2 3は、 ブロック体
2 8の下面に形成された第 1凹部 2 8 7、 第 2凹部 2 8 8、 第 3凹部 2 8 9 に嵌め込まれている。 第 1突出部丫 2 1 には、 マイクロバルブ丫 1側端から その反対側端まで貫通する第 1連通孔丫 1が形成されている。 第 2突出部 丫2 2には、 マイクロバルブ丫 1側端からその反対側端まで貫通する第 2連 通孔丫 2が形成されている。 第 3突出部丫 2 3には、 マイクロバルブ丫 1 側端からその反対側端まで貫通する第 3連通孔丫 V 3が形成されている。 第 1連通孔丫 1、 第 2連通孔丫 2、 第 3連通孔丫 3は一列に並んでおり 、 第 2連通孔丫 2と第 3連通孔丫 3の間に第 1連通孔丫 1が位置する
[0152] 第 1連通孔丫 V 1のマイクロバルブ丫 1側端は、 変換プレート丫 8に形成 された流路丫 8 1のバルブケーシング丫 2側端に連通している。 第 2連通孔 丫 2のマイクロバルブ丫 1側端は、 変換プレート丫 8に形成された流路丫 8 2のバルブケーシング丫 2側端に連通している。 第 3連通孔丫 V 3のマイ クロバルブ丫 1側端は、 変換プレート丫 8に形成された流路丫 8 3のバルブ ケーシング丫 2側端に連通している。
[0153] 封止部材丫 3は、 バルブケーシング丫 2の開放された上記他方側を封止す るエポキシ樹脂製の部材である。 封止部材丫 3は、 マイクロバルブ丫 1の表 〇 2020/175544 36 卩(:171? 2020 /007720
裏の 2つの板面のうち、 変換プレート丫8側とは反対側の板面の全体を覆う 。 また、 封止部材丫 3は、 変換プレート丫 8の 2つの板面のうち、 バルブケ —シング丫 2の底壁側とは反対側の板面の一部を覆う。 また、 封止部材丫3 は、 電気配線丫 6、 丫 7を覆うことで、 電気配線丫 6、 丫 7の防水および絶 縁を実現する。 封止部材丫 3は樹脂ポッティング等によって形成される。
[0154] 〇リング丫4は、 第 1突出部丫 2 1の外周に取り付けられ、 ブロック体 2
8と第 1突出部丫 2 1の間を封止することで、 各減圧部 1 4、 1 6、 1 8の 外部かつ冷媒回路の外部への冷媒の漏出を抑制する。 〇リング丫 5 3は、 第 2突出部丫 2 2の外周に取り付けられ、 ブロック体 2 8と第 2突出部丫 2 2 の間を封止することで、 各減圧部 1 4、 1 6、 1 8の外部かつ冷媒回路の外 部への冷媒の漏出を抑制する。 〇リング丫 5匕は、 第 3突出部丫 2 3の外周 に取り付けられ、 ブロック体 2 8と第 3突出部丫 2 3の間を封止することで 、 各減圧部 1 4、 1 6、 1 8の外部かつ冷媒回路の外部への冷媒の漏出を抑 制する。
[0155] [マイクロバルブ丫 1の構成]
ここで、 マイクロバルブ丫 1の構成について更に説明する。 マイクロバル ブ丫 1は、 図 2 0、 図 2 1 に示すように、 いずれも半導体である第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3を備えた IV!巳 IV! 3である。 第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3は、 それぞれが同じ外形を有する長方 形の板形状の部材であり、 第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3 の順に積層されている。 第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3の うち、 第 2外層丫 1 3が、 バルブケーシング丫 2の底壁に最も近い側に配置 される。 後述する第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3の構造は 、 化学的エッチング等の半導体製造プロセスによって形成される。
[0156] 第 1外層丫 1 1は、 表面に非導電性の酸化膜のある導電性の半導体部材で ある。 第 1外層丫 1 1 には、 図 2 0に示すように、 表裏に貫通する 2つの貫 通孔丫 1 4、 丫 1 5が形成されている。 この貫通孔丫 1 4、 丫 1 5に、 それ それ、 電気配線丫 6、 丫 7のマイクロバルブ丫 1側端が揷入される。 〇 2020/175544 37 卩(:171? 2020 /007720
[0157] 第 2外層丫 1 3は、 表面に非導電性の酸化膜のある導電性の半導体部材で ある。 第 2外層丫 1 3には、 図 2 0、 図 2 2、 図 2 3に示すように、 表裏に 貫通する第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8が形成さ れている。 第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8の各々 の水力直径は、 例えば〇. 1
Figure imgf000039_0001
以上かつ 3
Figure imgf000039_0002
以下であるが、 これに限定 されない。 第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8は、 そ れそれ、 第 1流体孔、 第 2流体孔、 第 3流体孔に対応する。
[0158] 図 2 3に示すように、 第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔 丫 1 8は、 それぞれ、 変換プレート丫 8の流路丫 8 1、 丫8 2、 丫8 3に連 通する。 第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷媒孔丫 1 8は、 一列 に並んでいる。 第 2冷媒孔丫 1 7と第 3冷媒孔丫 1 8の間に第 1冷媒孔丫 1 6が配置される。
[0159] 中間層丫 1 2は、 導電性の半導体部材であり、 第 1外層丫 1 1 と第 2外層 丫 1 3に挟まれている。 中間層丫 1 2は、 第 1外層丫 1 1の酸化膜と第 2外 層丫 1 3の酸化膜に接触するので、 第 1外層丫 1 1 と第 2外層丫 1 3とも電 気的に非導通である。 中間層丫 1 2は、 図 2 2に示すように、 第 1固定部丫 1 2 1、 第 2固定部丫 1 2 2、 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リ ブ丫 1 2 4、 スパイン丫 1 2 5、 アーム丫 1 2 6、 梁丫 1 2 7、 可動部丫 1 2 8を有している。
[0160] 第 1固定部丫 1 2 1は、 第 1外層丫 1 1、 第 2外層丫 1 3に対して固定さ れた部材である。 第 1固定部丫 1 2 1は、 第 2固定部丫 1 2 2、 第 1 リブ丫 1 2 3、 第 2リブ丫 1 2 4、 スパイン丫 1 2 5、 アーム丫 1 2 6、 梁丫 1 2 7、 可動部丫 1 2 8を同じ 1つの流体室丫 1 9内に囲むように形成されてい る。 第 1固定部丫 1 2 1、 第 1外層丫 1 1、 第 2外層丫 1 3によって囲まれ た室である。 流体室丫 1 9は、 流体室丫 1 9は、 開度調整室 2 8 6に導入す る冷媒が流通する。 第 1固定部丫 1 2 1、 第 1外層丫 1 1、 第 2外層丫 1 3 は、 全体として基部に対応する。 なお、 電気配線丫 6、 丫 7は複数の第 1 リ ブ丫 1 2 3および複数の第 2リブ丫 1 2 4の温度を変化させて変位させるた 〇 2020/175544 38 卩(:171? 2020 /007720
めの電気配線である。
[0161 ] 第 1固定部丫 1 2 1の第 1外層丫 1 1および第 2外層丫 1 3に対する固定 は、 冷媒が流体室丫 1 9から第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7、 第 3冷 媒孔丫 1 8以外を通ってマイクロバルブ丫 1から漏出することを抑制するよ うな形態で、 行われている。
[0162] 第 2固定部丫 1 2 2は、 第 1外層丫 1 1、 第 2外層丫 1 3に対して固定さ れる。 第 2固定部丫 1 2 2は、 第 1固定部丫 1 2 1 に取り囲まれると共に、 第 1固定部丫 1 2 1から離れて配置される。
[0163] 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4、 スパイン丫 1 2
5、 ァーム丫 1 2 6、 梁丫 1 2 7、 可動部丫 1 2 8は、 第 1外層丫 1 1、 第 2外層丫 1 3に対して固定されておらず、 第 1外層丫 1 1、 第 2外層丫 1 3 に対して変位可能である。
[0164] スパイン丫 1 2 5は、 中間層丫 1 2の矩形形状の短手方向に伸びる細長い 棒形状を有している。 スパイン丫 1 2 5の長手方向の一端は、 梁丫 1 2 7に 接続されている。
[0165] 複数本の第 1 リブ丫 1 2 3は、 スパイン丫 1 2 5の長手方向に直交する方 向におけるスパイン丫 1 2 5の一方側に配置される。 そして、 複数本の第 1 リブ丫 1 2 3は、 スパイン丫 1 2 5の長手方向に並んでいる。 各第 1 リブ丫 1 2 3は、 細長い棒形状を有しており、 温度に応じて伸縮可能となっている
[0166] 各第 1 リブ丫 1 2 3は、 その長手方向の一端で第 1固定部丫 1 2 1 に接続 され、 他端でスパイン丫 1 2 5に接続される。 そして、 各第 1 リブ丫 1 2 3 は、 第 1固定部丫 1 2 1側からスパイン丫 1 2 5側に近付くほど、 スパイン 丫 1 2 5の長手方向の梁丫 1 2 7側に向けてオフセツ トされるよう、 スパイ ン丫 1 2 5に対して斜行している。 そして、 複数の第 1 リブ丫 1 2 3は、 互 いに対して平行に伸びている。
[0167] 複数本の第 2リブ丫 1 2 4は、 スパイン丫 1 2 5の長手方向に直交する方 向におけるスパイン丫 1 2 5の他方側に配置される。 そして、 複数本の第 2 \¥0 2020/175544 39 卩(:17 2020 /007720
リブ丫 1 2 4は、 スパイン丫 1 2 5の長手方向に並んでいる。 各第 2リブ丫 1 2 4は、 細長い棒形状を有しており、 温度に応じて伸縮可能となっている
[0168] 各第 2リブ丫 1 2 4は、 その長手方向の一端で第 2固定部丫 1 2 2に接続 され、 他端でスパイン丫 1 2 5に接続される。 そして、 各第 2リブ丫 1 2 4 は、 第 2固定部丫 1 2 2側からスパイン丫 1 2 5側に近付くほど、 スパイン 丫 1 2 5の長手方向の梁丫 1 2 7側に向けてオフセツ トされるよう、 スパイ ン丫 1 2 5に対して斜行している。 そして、 複数の第 2リブ丫 1 2 4は、 互 いに対して平行に伸びている。
[0169] 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4、 スパイン丫 1 2
5は、 全体として、 駆動部に対応する。
[0170] アーム丫 1 2 6は、 スパイン丫 1 2 5と非直交かつ平行に伸びる細長い棒 形状を有している。 アーム丫 1 2 6の長手方向の一端は梁丫 1 2 7に接続さ れており、 他端は第 1固定部丫 1 2 1 に接続されている。
[0171 ] 梁丫 1 2 7は、 スパイン丫 1 2 5およびアーム丫 1 2 6に対して約 9 0 ° で交差する方向に伸びる細長い棒形状を有している。 梁丫 1 2 7の一端は、 可動部丫 1 2 8に接続されている。 アーム丫 1 2 6と梁丫 1 2 7は、 全体と して、 増幅部に対応する。
[0172] アーム丫 1 2 6と梁丫 1 2 7の接続位置丫 1、 スパイン丫 1 2 5と梁丫
1 2 7の接続位置丫 2、 梁丫 1 2 7と可動部丫 1 2 8の接続位置丫 3は 、 梁丫 1 2 7の長手方向に沿って、 この順に並んでいる。 そして、 第 1固定 部丫 1 2 1 とアーム丫 1 2 6との接続点をヒンジ丫 0とすると、 中間層丫 1 2の板面に平行な面内におけるヒンジ丫 0から接続位置丫 2までの直 線距離よりも、 ヒンジ丫 0から接続位置丫 3までの直線距離の方が、 長 い。 例えば、 前者の直線距離を後者の直線距離で除算した値は、 1 / 5以下 であってもよいし、 1 / 1 0以下であってもよい。
[0173] 可動部丫 1 2 8は、 流体室丫 1 9を流れる冷媒の圧力を調整するものであ る。 可動部丫 1 2 8は、 その外形が、 梁丫 1 2 7の長手方向に対して概ね 9 〇 2020/175544 40 卩(:171? 2020 /007720
0 ° の方向に伸びる矩形形状を有している。 この可動部丫 1 2 8は、 流体室 丫 1 9内において梁丫 1 2 7と一体に動くことができる。 そして、 可動部丫 1 2 8は、 中間層丫 1 2の表裏に貫通する貫通孔丫 1 2 0を囲む枠形状とな っている。 したがって、 貫通孔丫 1 2 0も、 可動部丫 1 2 8と一体的に移動 する。 貫通孔丫 1 2 0は、 流体室丫 1 9の一部である。
[0174] 可動部丫 1 2 8は、 上記のように動くことで、 第 2冷媒孔丫 1 7の貫通孔 丫 1 2 0に対する開度および、 第 3冷媒孔丫 1 8の貫通孔丫 1 2 0に対する 開度を変更する。 第 1冷媒孔丫 1 6は、 貫通孔丫 1 2 0に対して常に全開で 連通している。
[0175] また、 第 1固定部丫 1 2 1のうち、 複数の第 1 リブ丫 1 2 3と接続する部 分の近傍の第 1印加点丫 1 2 9には、 図 2 0に示した第 1外層丫 1 1の貫通 孔丫 1 4を通った電気配線丫 6のマイクロバルブ丫 1側端が接続される。 ま た、 第 2固定部丫 1 2 2の第 2印加点丫 1 3 0には、 図 2 0に示した第 1外 層丫 1 1の貫通孔丫 1 5を通った電気配線丫 7のマイクロバルブ丫 1側端が 接続される。
[0176] [バルブモジュール丫 0の作動]
ここで、 バルブモジュール丫 0の作動について説明する。 マイクロバルブ 丫 1への通電が開始されると、 電気配線丫 6、 丫 7から第 1印加点丫 1 2 9 、 第 2印加点丫 1 3 0の間に電圧が印加される。 すると、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4を電流が流れる。 この電流によって、 複数 の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4が発熱する。 その結果、 複数 の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4の各々が、 その長手方向に膨 張する。
[0177] このような熱的な膨張の結果、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ V 1 2 4は、 スパイン丫 1 2 5を接続位置丫 2側に付勢する。 付勢された スパイン丫 1 2 5は、 接続位置丫 2において、 梁丫 1 2 7を押す。 このよ うに、 接続位置丫? 2は付勢位置および調圧用付勢位置に対応する。
[0178] そして、 梁丫 1 2 7とアーム丫 1 2 6から成る部材は、 ヒンジ丫 〇を支 \¥0 2020/175544 41 卩(:17 2020 /007720
点として、 接続位置丫 2を力点として、 一体に姿勢を変える。 その結果、 梁丫 1 2 7のアーム丫 1 2 6とは反対側の端部に接続された可動部丫 1 2 8 も、 その長手方向の、 スパイン丫 1 2 5が梁丫 1 2 7を押す側に、 移動する
[0179] また、 マイクロバルブ丫 1への通電が停止されたときは、 電気配線丫6、 丫 7から第1印加点丫 1 2 9、 第 2印加点丫 1 3 0への電圧印加が停止され る。 すると、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4を電流が流 れなくなり、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4の温度が低 下する。 その結果、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ丫 1 2 4の各 々が、 その長手方向に収縮する。
[0180] このような熱的な収縮の結果、 複数の第 1 リブ丫 1 2 3、 複数の第 2リブ 丫 1 2 4は、 スパイン丫 1 2 5を接続位置丫 2とは反対側に付勢する。 付 勢されたスパイン丫 1 2 5は、 接続位置丫 2において、 梁丫 1 2 7を引っ 張る。 その結果、 梁丫 1 2 7とアーム丫 1 2 6から成る部材は、 ヒンジ丫 0を支点として、 接続位置丫 2を力点として、 一体に姿勢を変える。 その 結果、 梁丫 1 2 7のアーム丫 1 2 6とは反対側の端部に接続された可動部丫 1 2 8も、 その長手方向の、 スパイン丫 1 2 5が梁丫 1 2 7を引っ張る側に 、 移動する。 その移動の結果、 可動部丫 1 2 8は、 所定の非通電時位置で停 止する。
[0181 ] このようなマイクロバルブ丫 1への通電時、 電気配線丫 6、 丫 7から第 1 印加点丫 1 2 9、 第 2印加点丫 1 3 0を介してマイクロバルブ丫 1 に供給さ れる電力が大きいほど、 非通電時位置に対する可動部丫 1 2 8の移動量も大 きくなる。 これは、 マイクロバルブ丫 1 に供給される電力が高いほど、 第 1 リブ丫 1 2 3、 第 2リブ丫 1 2 4の温度が高くなり、 膨張度合いが大きいか らである。
[0182] 例えば電気配線丫 6、 丫 7から第 1印加点丫 1 2 9、 第 2印加点丫 1 3 0 へ印加される電圧が IV!制御される場合、 デューティ比が大きいほど非通 電時に対する可動部丫 1 2 8の移動量も大きくなる。 〇 2020/175544 42 卩(:171? 2020 /007720
[0183] 図 22、 図 23に示すように、 可動部丫 1 28が非通電時位置にある場合 、 貫通孔丫 1 20は、 中間層丫 1 2の板面に直交する方向に第 1冷媒孔丫 1 6、 第 3冷媒孔丫 1 8と重なるが、 当該方向に第 2冷媒孔丫 1 7とは重なら ない。 第 2冷媒孔丫 1 7は、 中間層丫 1 2の板面に直交する方向に可動部丫 1 28と重なる。 つまりこのとき、 貫通孔丫 1 20に対して第 1冷媒孔丫 1 6、 第 3冷媒孔丫 1 8は全開になり、 第 2冷媒孔丫 1 7は全閉になる。 した がってこの場合、 第 1冷媒孔丫 1 6が第 3冷媒孔丫 1 8に可動部丫 1 28を 介して連通し、 第 2冷媒孔丫 1 7は第 1冷媒孔丫 1 6とも第 3冷媒孔丫 1 8 とも遮断される。 この結果、 第 1連通孔丫 V 1 と第 3連通孔丫 V 3との間で 、 流路丫 81、 第 1冷媒孔丫 1 6、 貫通孔丫 1 20、 第 3冷媒孔丫 1 8、 流 路丫 83を介した、 冷媒の流通が可能となる。
[0184] また、 図 24、 図 25に示すように、 マイクロバルブ丫 1への通電によっ て可動部丫 1 28が非通電時位置から最も遠ざかった位置にある場合、 その ときの可動部丫 1 28の位置を最大通電時位置という。 可動部丫 1 28が最 大通電時位置にある場合は、 マイクロバルブ丫 1へ供給される電力が制御範 囲内の最大となる。 例えば、 可動部丫 1 28が最大通電時位置にある場合、 上述の
Figure imgf000044_0001
制御においてデューティ比が制御範囲内の最大値 (例えば 1 0 0%) となる。
[0185] 可動部丫 1 28が最大通電時位置にある場合、 貫通孔丫 1 20は、 中間層 丫 1 2の板面に直交する方向に第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7と重な るが、 当該方向に第 3冷媒孔丫 1 8とは重ならない。 第 3冷媒孔丫 1 8は、 中間層丫 1 2の板面に直交する方向に可動部丫 1 28と重なる。 つまりこの とき、 貫通孔丫 1 20に対して第 1冷媒孔丫 1 6、 第 2冷媒孔丫 1 7は全開 になり、 第 3冷媒孔丫 1 8は全閉になる。 したがってこの場合、 第 1冷媒孔 丫 1 6が第 2冷媒孔丫 1 7に可動部丫 1 28を介して連通し、 第 3冷媒孔丫 1 8は第 1冷媒孔丫 1 6とも第 2冷媒孔丫 1 7とも遮断される。 この結果、 第 1連通孔丫 1 と第 2連通孔丫 2との間で、 流路丫81、 第 1冷媒孔丫 1 6、 貫通孔丫 1 20、 第 2冷媒孔丫 1 7、 流路丫 83を介した、 冷媒の流 〇 2020/175544 43 卩(:171? 2020 /007720
通が可能となる。
[0186] また、 マイクロバルブ丫 1 に供給される電力を、 例えば \^/1\/1制御で調整 することで、 可動部丫 1 2 8を、 非通電時位置と最大通電時位置の間のどの 中間位置にでも、 停止させることができる。 例えば、 最大通電時位置と非通 電時位置からも等距離の位置 (すなわち、 中央位置) で可動部丫 1 2 8を停 止させるには、 マイクロバルブ丫 1 に供給される電力が、 制御範囲内の最大 値の半分であればいい。 例えば、 \^/1\/1制御のデューティ比が 5 0 %であれ ばいい。
[0187] 可動部丫 1 2 8が中間位置に停止している場合、 第 1冷媒孔丫 1 6、 第 2 冷媒孔丫 1 7、 第 3冷媒孔丫 1 8は、 いずれも貫通孔丫 1 2 0に連通してい る。 しかし、 第 2冷媒孔丫 1 7および第 3冷媒孔丫 1 8は、 貫通孔丫 1 2 0 に対して全開状態ではなく、 1 0 0 %未満かつ 0 %よりも大きい開度となっ ている。 可動部丫 1 2 8が中間位置において最大通電位時位置に近づくほど 、 貫通孔丫 1 2 0に対する第 3冷媒孔丫 1 8の開度が減少し、 第 2冷媒孔丫 1 7の開度が増大する。
[0188] マイクロバルブ丫 1は、 梁丫 1 2 7およびアーム丫 1 2 6が、 ヒンジ丫
0を支点とし、 接続位置丫 2を力点とし、 接続位置丫 3を作用点とする 梃子として機能する。 上述の通り、 中間層丫 1 2の板面に平行な面内におけ るヒンジ丫 0から接続位置丫 2までの直線距離よりも、 ヒンジ丫 0か ら接続位置丫 3までの直線距離の方が、 長い。 したがって、 力点である接 続位置丫? 2の移動量よりも、 作用点である接続位置丫? 3の移動量の方が 大きくなる。 したがって、 熱的な膨張による変位量が、 梃子によって増幅さ れて可動部丫 1 2 8に伝わる。
[0189] また、 マイクロバルブ丫 1 における冷媒の流路は、 II夕ーン構造を有して いる。 具体的には、 冷媒は、 マイクロバルブ丫 1の一方側の面からマイクロ バルブ丫 1内に流入し、 マイクロバルブ丫 1内を通って、 マイクロバルブ丫 1の同じ側の面からマイクロバルブ丫 1外に流出する。 そして同様にバルブ モジュール丫 0における冷媒の流路も、 IIターン構造を有している。 具体的 〇 2020/175544 44 卩(:171? 2020 /007720
には、 冷媒は、 バルブモジュール丫 0の一方側の面からバルブモジュール丫 0内に流入し、 バルブモジュール丫 0内を通って、 バルブモジュール丫〇の 同じ側の面からバルブモジュール丫 0外に流出する。 なお、 中間層丫 1 2の 板面に直交する方向は、 第 1外層丫 1 1、 中間層丫 1 2、 第 2外層丫 1 3の 積層方向である。
[0190] ここで、 バルブモジュール丫〇は、 第 1冷媒孔丫 1 6が、 第 1連通孔丫
1、 第 1凹部 2 8 7の貫通孔 2 8 7 3を介して開度調整室 2 8 6に連通して いる。 また、 第 2冷媒孔丫 1 7が、 第 2連通孔丫 2、 第 2凹部 2 8 8の貫 通孔 2 8 8 3を介して上流側嵌合孔 2 8 1の内側に連通している。 そして、 第 3冷媒孔丫 1 8が、 第 3連通孔丫 V 3、 第 3凹部 2 8 9の貫通孔 2 8 9 3 を介して下流側嵌合孔 2 8 2の内側に連通している。
[0191 ] このため、 例えば、 マイクロバルブ丫 1の可動部丫 1 2 8が非通電時位置 にある場合、 第 1冷媒孔丫 1 6と第 3冷媒孔丫 1 8とが連通し、 開度調整室 2 8 6が下流側嵌合孔 2 8 2と連通する。 これにより、 開度調整室 2 8 6の 圧力 (すなわち、 制御圧力 〇〇 が下流側嵌合孔 2 8 2と同等の低圧圧力 I に低下する。
[0192] この状態からマイクロバルブ丫 1への通電によって、 可動部丫 1 2 8が非 通電時位置から最大通電時位置に近づくと、 各冷媒孔丫 1 6、 丫 1 7、 丫 1 8が連通し、 開度調整室 2 8 6が上流側嵌合孔 2 8 1および下流側嵌合孔 2 8 2と連通する。 これにより、 開度調整室 2 8 6の圧力 (すなわち、 制御圧 力 〇〇 が低圧圧力 丨 よりも大きく高圧圧力 IIよりも小さい中間圧力と なる。
[0193] また、 マイクロバルブ丫 1への通電によって、 可動部丫 1 2 8が最大通電 時位置にある場合、 第 1冷媒孔丫 1 6と第 2冷媒孔丫 1 7が連通し、 開度調 整室 2 8 6が上流側嵌合孔 2 8 1 と連通する。 これにより、 開度調整室 2 8 6の圧力 (すなわち、 制御圧力 ) が上流側嵌合孔 2 8 1 と同等の高圧圧 力 IIとなる。
[0194] これらを加味して、 本実施形態の冷凍サイクル装置 1 0では、 マイクロバ 〇 2020/175544 45 卩(:171? 2020 /007720
ルブ丫 1 に印加される電圧を \^/1\/1制御によって変更することで、 制御圧力 を変化させる。 冷凍サイクル装置 1 0は、 例えば、 図 2 6に示すように 、 \^/1\/1制御のデューティ比を大きくすることで制御圧力 を大きく し、 \^/1\/1制御のデューティ比を小さくすることで制御圧力 を小さくする。
[0195] 以上説明した第 1電池用減圧部 1 6は、 主弁体 2 8 5の駆動部材がバルブ モジュール丫 0で構成されている。 このバルブモジュール丫 0は、 マイクロ バルブ丫 1 による開度調整室 2 8 6の圧力調整によって、 主弁体 2 8 5を開 弁側または閉弁側に変位させる構成になっているので、 電磁弁や電動弁より も小型に構成することができる。 その理由の 1つは、 マイクロバルブ丫 1が 上述の通り半導体チップにより形成されているということである。 また、 上 述の通り、 梃子を利用して熱的な膨張による変位量が増幅されることも、 そ のような梃子を利用しない電磁弁や電動弁と比べて小型に構成することが可 能となる。
[0196] 具体的には、 マイクロバルブ丫 1は、 可動部丫 1 2 8によって第 2冷媒孔 丫 1 7および第 3冷媒孔丫 1 8の開度を調整して開度調整室 2 8 6の圧力を 変化させる構成になっている。 これによれば、 マイクロバルブ丫 1 による開 度調整室 2 8 6の圧力調整によって、 主弁体 2 8 5を閉弁側および開弁側に 変位させることができる。
[0197] これによると、 第 1電池用減圧部 1 6の絞り開度の変更によって冷媒流量 を負荷条件等に応じた適量に調整できる。 すなわち、 本実施形態の冷凍サイ クル装置 1 0では、 第 1実施形態と同様に、 並列に接続される各蒸発器 1 5 、 1 7、 1 9に対して所望の割合で冷媒および冷凍機油を分配することがで きる。
[0198] また、 マイクロバルブ丫 1は、 梃子を利用しており、 熱的な膨張による変 位量を可動部丫 1 2 8の移動量より抑えることができるので、 可動部丫 1 2 8を駆動するための消費電力も低減することができる。 また、 電磁弁の駆動 時における衝撃音を無くすことができるので、 騒音を低減することができる 。 また、 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4の変位は熱 〇 2020/175544 46 卩(:171? 2020 /007720
に起因して発生するので、 騒音低減効果が高い。
[0199] また、 マイクロバルブ丫 1およびバルブモジュール丫〇は II夕ーンの構造 の冷媒流路を有しているので、 ブロック体 2 8の掘り込みを少なくすること ができる。 つまり、 バルブモジュール丫 0を配置するためにブロック体 2 8 に形成された凹みの深さを抑えることができる。 その理由は以下の通りであ る。
[0200] 例えば、 バルブモジュール丫0が1)ターンの構造の冷媒流路を有しておら ず、 バルブモジュール丫〇のブロック体 2 8側の面に冷媒入口があり、 バル ブモジュール丫 0の反対側の面に冷媒出口があったとする。 その場合、 バル ブモジュール丫〇の両面に、 冷媒流路を形成する必要がある。 したがって、 バルブモジュール丫 0の両面の冷媒流路までブロック体 2 8に収容しようと すると、 バルブモジュール丫 0を配置するためにブロック体 2 8に形成しな ければならない凹みが深くなってしまう。 また、 マイクロバルブ丫 1 自体が 小型であるので、 ブロック体 2 8の掘り込みを更に低減することができる。
[0201 ] また、 マイクロバルブ丫 1の両面のうち、 第 1冷媒孔丫 1 6、 第 2冷媒孔 丫 1 7が形成される面とは反対側の面に電気配線丫 6、 丫 7を配置した場合 、 電気配線丫 6、 丫 7を大気雰囲気により近い側に置くことができる。 した がって、 電気配線丫 6、 丫 7への冷媒雰囲気の影響を低減するためのハーメ チック等のシール構造が不要となる。 その結果、 各減圧部 1 4、 1 6 , 1 8 の小型化が実現できる。
[0202] また、 マイクロバルブ丫 1が軽量であることから、 各減圧部 1 4、 1 6、
1 8が軽量化される。 マイクロバルブ丫 1の消費電力が小さいので、 各減圧 部 1 4、 1 6、 1 8が省電力化される。
[0203] (第 6実施形態)
次に第 6実施形態について説明する。 本実施形態は、 第 1実施形態のマイ クロバルブ X Iが、 故障検知機能を有するよう変更されている。 具体的には 、 マイクロバルブ X Iは、 第 1、 第 2実施形態と同じ構成に加え、 図 2 7、 図 2 8に示すように、 マイクロバルブ X 1の故障を検知する故障検知部 X 5 〇 2020/175544 47 卩(:171? 2020 /007720
0を備えている。
[0204] 故障検知部 X 5 0は、 中間層 X 1 2のアーム X 1 2 6に形成されたプリッ ジ回路を含む。 ブリッジ回路は、 図 2 8のように接続された 4つのゲージ抵 抗を含んでいる。 つまり、 故障検知部乂5 0は、 ダイヤフラムに相当するア —ム X I 2 6の歪みに応じて抵抗が変化するブリッジ回路である。 つまり、 故障検知部 X 5 0は半導体ピエゾ抵抗式の歪みセンサである。 故障検知部 X 5 0は、 電気的絶縁膜を介して、 アーム X I 2 6と導通しないように、 アー ム X 1 2 6に接続されていてもよい。
[0205] このプリッジ回路の対角にある 2つの入力端子に配線 X 5 1、 X 5 2が接 続される。 そして、 配線乂5 1、 X 5 2から当該入力端子に、 定電流発生用 の電圧が印加される。 この配線乂5 1、 乂5 2は、 電気配線 X 6、 乂7を介 してマイクロバルブ X 1 に印加される電圧 (すなわち、 マイクロバルブ駆動 電圧) から分岐して上記 2つの入力端子まで伸びている。
[0206] また、 このブリッジ回路の別の対角にある 2つの出力端子に、 配線 X 5 3 、 X 5 4が接続される。 そして、 アーム X I 2 6の歪み量に応じたレベルの 電圧信号が配線乂5 3、 乂5 4から出力される。 この電圧信号は、 後述する 通り、 マイクロバルブ X 1が正常に作動しているか否かを判別するための情 報として使用される。 配線乂5 3、 X 5 4から出力される電圧信号は、 マイ クロバルブ X 1の外部にある外部制御装置 X 5 5に入力される。
[0207] この外部制御装置 X 5 5は、 例えば、 冷凍サイクル装置 1 0の制御装置 1
0 0であってもよい。 あるいは、 この外部制御装置 X 5 5は、 車両において 、 車速、 燃料残量、 電池残量等を表示するメータ巳(3 11であってもよい。
[0208] アーム X 1 2 6の歪み量に応じた電圧信号を外部制御装置 X 5 5が配線 X
5 3、 乂5 4を介して取得すると、 外部制御装置乂5 5は、 当該電圧信号に 応じて、 マイクロバルブ X 1の故障の有無を検知する。 検知対象の故障とし ては、 例えば、 アーム X 1 2 6が折れる故障、 可動部 X 1 2 8と第 1外層 X 1 1 または第 2外層 X 1 3との間に微小な異物が挟まって可動部 X 1 2 8が 動かなくなる故障、 等がある。 〇 2020/175544 48 卩(:171? 2020 /007720
[0209] 複数本の第 1 リブ X 1 2 3および複数本の第 2リブ X 1 2 4の伸縮に応じ て、 梁 X 1 2 7および可動部 X I 2 8が変位する際、 アーム X I 2 6の歪み 量が変化する。 したがって、 アーム X 1 2 6の歪み量に応じた電圧信号から 、 可動部 X 1 2 8の位置を推定できる。 一方、 マイクロバルブ X 1が正常で あれば、 電気配線乂6、 X 7からマイクロバルブ X 1への通電量と可動部 X 1 2 8の位置との間にも相関関係がある。 この通電量は、 マイクロバルブ X 1 を制御するための制御量である。
[0210] 外部制御装置 X 5 5は、 このことを利用して、 マイクロバルブ X Iの故障 の有無を検知する。 つまり、 外部制御装置 X 5 5は、 配線乂5 3、 乂5 4か らの電圧信号から、 あらかじめ定められた第 1マップに基づいて、 可動部 X 1 2 8の位置を算出する。 そして、 あらかじめ定められた第 2マップに基づ いて、 可動部 X 1 2 8の位置から、 正常時において当該位置を実現するため に必要な電気配線 X 6、 X 7からマイクロバルブ X 1への供給電力を算出す る。 これら第 1マップ、 第 2マップは、 外部制御装置 X 5 5の不揮発性メモ リに記録されている。 不揮発性メモリは、 非遷移的実体的記憶媒体である。 第 1マップにおける電圧信号のレベルと位置との対応関係は、 あらかじめ実 験等によって定められてもよい。 また、 第 2マップにおける位置と供給電力 との対応関係も、 あらかじめ実験等によって定められてもよい。
[021 1 ] そして外部制御装置 X 5 5は、 算出された電力と、 実際に電気配線乂6、 X 7からマイクロバルブ X 1へ供給されている電力とを比較する。 そして、 外部制御装置 X 5 5は、 前者の電力と後者の電力の差の絶対値が許容値を超 えていれば、 マイクロバルブ X 1が故障していると判定し、 許容値を超えて いなければ、 マイクロバルブ X 1が正常であると判定する。 そして、 外部制 御装置乂5 5は、 マイクロバルブ X 1が故障していると判定した場合に、 所 定の故障報知制御を行う。
[0212] 外部制御装置 X 5 5は、 この故障報知制御においては、 車内の人に報知を 行う報知装置 X 5 6を作動させる。 例えば、 外部制御装置 X 5 5は、 警告ラ ンプを点灯させてもよい。 また、 外部制御装置 X 5 5は、 画像表示装置に、 〇 2020/175544 49 卩(:171? 2020 /007720
マイクロバルブ X 1 に故障が発生したことを示す画像を表示させてもよい。 これによって、 車両の乗員は、 マイクロバルブ X 1の故障に気付くことがで きる。
[0213] また、 外部制御装置 X 5 5は、 この故障報知制御においては、 車両内の記 憶装置に、 マイクロバルブ X I に故障が発生したことを示す情報を記録して もよい。 この記憶装置は、 非遷移的実体的記憶媒体である。 これにより、 マ イクロバルブ X 1の故障を記録に残すことができる。
[0214] また、 外部制御装置乂5 5は、 マイクロバルブ X 1が故障していると判定 した場合は、 通電停止制御を行う。 通電停止制御では、 外部制御装置 X 5 5 は、 電気配線 X 6、 X 7からマイクロバルブ X 1への通電を停止させる。 こ のように、 マイクロバルブ X 1の故障時にマイクロバルブ X 1への通電を停 止することで、 マイクロバルブ X 1の故障時の安全性を高めることができる
[0215] 以上のように、 故障検知部乂5 0が、 マイクロバルブ X 1が正常に作動し ているか否かを判別するための電圧信号を出力することで、 外部制御装置 X 5 5は、 マイクロバルブ X 1の故障の有無を容易に判別することができる。
[0216] また、 この電圧信号は、 アーム X 1 2 6の歪み量に応じた信号である。 し たがって、 電気配線 X 6、 X 7からマイクロバルブ X 1への通電量とこの電 圧信号との関係に基づいて、 マイクロバルブ X 1の故障の有無を容易に判別 することができる。
[0217] なお、 本実施形態では、 ブリッジ回路を構成する抵抗の変化に基づいてマ イクロバルブ X 1が故障しているか否かが判定されている。 しかし、 他の方 法として、 静電容量の変化に基づいてマイクロバルブ X 1が故障しているか 否かが判定されてもよい。 この場合、 ブリッジ回路の代わりに容量成分を形 成する複数の電極がアーム X 1 2 6に形成される。 アーム X I 2 6の歪み量 と複数の電極間の静電容量の間は相関関係がある。 したがって、 外部制御装 置乂5 5は、 この複数の電極間の静電容量の変化に基づいて、 マイクロバル ブ X 1が故障しているか否かを判定できる。 〇 2020/175544 50 卩(:171? 2020 /007720
[0218] (第 7実施形態)
次に第 7実施形態について説明する。 本実施形態は、 第 5実施形態のマイ クロバルブ丫 1が、 故障検知機能を有するよう変更されている。 具体的には 、 マイクロバルブ丫 1は、 第 5実施形態と同じ構成に加え、 図 2 9、 図 3 0 に示すように、 故障検知部丫 5 0を備えている。
[0219] 故障検知部丫 5 0は、 中間層丫 1 2のアーム丫 1 2 6に形成されたプリッ ジ回路を含む。 プリッジ回路は、 図 3 0のように接続された 4つのゲージ抵 抗を含んでいる。 つまり、 故障検知部丫 5 0は、 ダイヤフラムに相当するア —ム丫 1 2 6の歪みに応じて抵抗が変化するプリッジ回路である。 つまり、 故障検知部丫 5 0は半導体ピエゾ抵抗式の歪みセンサである。 故障検知部丫 5 0は、 電気的絶縁膜を介して、 アーム丫 1 2 6と導通しないように、 アー ム丫 1 2 6に接続されていてもよい。
[0220] このプリッジ回路の対角にある 2つの入力端子に配線丫 5 1、 丫 5 2が接 続される。 そして、 配線丫5 1、 丫 5 2から当該入力端子に、 定電流発生用 の電圧が印加される。 この配線丫5 1、 丫5 2は、 電気配線丫 6、 丫 7を介 してマイクロバルブ丫 1 に印加される電圧 (すなわち、 マイクロバルブ駆動 電圧) から分岐して上記 2つの入力端子まで伸びている。
[0221 ] また、 このブリッジ回路の別の対角にある 2つの出力端子に、 配線丫5 3 、 丫 5 4が接続される。 そして、 アーム丫 1 2 6の歪み量に応じた電圧信号 が配線丫 5 3、 丫 5 4から出力される。 この電圧信号は、 後述する通り、 マ イクロバルブ丫 1が正常に作動しているか否かを判別するための情報として 使用される。 配線丫5 3、 丫 5 4から出力される電圧信号は、 マイクロバル ブ丫 1の外部にある外部制御装置丫 5 5に入力される。
[0222] この外部制御装置丫 5 5は、 例えば、 冷凍サイクル装置 1 0の制御装置 1
0 0であってもよい。 あるいは、 この外部制御装置丫 5 5は、 車両において 、 車速、 燃料残量、 電池残量等を表示するメータ巳(3 11であってもよい。
[0223] アーム丫 1 2 6の歪み量に応じた電圧信号を外部制御装置丫 5 5が配線丫
5 3、 丫5 4を介して取得すると、 外部制御装置丫5 5は、 当該電圧信号に 〇 2020/175544 51 卩(:171? 2020 /007720
応じて、 マイクロバルブ丫 1の故障の有無を検知する。 検知対象の故障とし ては、 例えば、 アーム丫 1 2 6が折れる故障、 可動部丫 1 2 8と第 1外層丫 1 1 または第 2外層丫 1 3との間に微小な異物が挟まって可動部丫 1 2 8が 動かなくなる故障、 等がある。
[0224] 複数本の第 1 リブ丫 1 2 3および複数本の第 2リブ丫 1 2 4の伸縮に応じ て、 梁丫 1 2 7および可動部丫 1 2 8が変位する際、 アーム丫 1 2 6の歪み 量が変化する。 したがって、 アーム丫 1 2 6の歪み量に応じた電圧信号から 、 可動部丫 1 2 8の位置を推定できる。 一方、 マイクロバルブ丫 1が正常で あれば、 電気配線丫6、 丫 7からマイクロバルブ丫 1への通電量と可動部丫 1 2 8の位置との間にも相関関係がある。 この通電量は、 マイクロバルブ丫 1 を制御するための制御量である。
[0225] 外部制御装置丫5 5は、 このことを利用して、 マイクロバルブ丫 1の故障 の有無を検知する。 つまり、 外部制御装置丫 5 5は、 配線丫5 3、 丫5 4か らの電圧信号から、 あらかじめ定められた第 1マップに基づいて、 可動部丫 1 2 8の位置を算出する。 そして、 あらかじめ定められた第 2マップに基づ いて、 可動部丫 1 2 8の位置から、 正常時において当該位置を実現するため に必要な電気配線丫 6、 丫 7からマイクロバルブ丫 1への供給電力を算出す る。 これら第 1マップ、 第 2マップは、 外部制御装置丫 5 5の不揮発性メモ リに記録されている。 不揮発性メモリは、 非遷移的実体的記憶媒体である。 第 1マップにおける電圧信号のレベルと位置との対応関係は、 あらかじめ実 験等によって定められてもよい。 また、 第 2マップにおける位置と供給電力 との対応関係も、 あらかじめ実験等によって定められてもよい。
[0226] そして外部制御装置丫 5 5は、 算出された電力と、 実際に電気配線丫6、 丫 7からマイクロバルブ丫 1へ供給されている電力とを比較する。 そして、 外部制御装置丫 5 5は、 前者の電力と後者の電力の差の絶対値が許容値を超 えていれば、 マイクロバルブ丫 1が故障していると判定し、 許容値を超えて いなければ、 マイクロバルブ丫 1が正常であると判定する。 そして、 外部制 御装置丫5 5は、 マイクロバルブ丫 1が故障していると判定した場合に、 所 〇 2020/175544 52 卩(:171? 2020 /007720
定の故障報知制御を行う。
[0227] 外部制御装置丫 5 5は、 この故障報知制御においては、 車内の人に報知を 行う報知装置丫 5 6を作動させる。 例えば、 外部制御装置丫 5 5は、 警告ラ ンプを点灯させてもよい。 また、 外部制御装置丫 5 5は、 画像表示装置に、 マイクロバルブ丫 1 に故障が発生したことを示す画像を表示させてもよい。 これによって、 車両の乗員は、 マイクロバルブ丫 1の故障に気付くことがで きる。
[0228] また、 外部制御装置丫 5 5は、 この故障報知制御においては、 車両内の記 憶装置に、 マイクロバルブ丫 1 に故障が発生したことを示す情報を記録して もよい。 この記憶装置は、 非遷移的実体的記憶媒体である。 これにより、 マ イクロバルブ丫 1の故障を記録に残すことができる。
[0229] また、 外部制御装置丫 5 5は、 マイクロバルブ丫 1が故障していると判定 した場合は、 通電停止制御を行う。 通電停止制御では、 外部制御装置丫 5 5 は、 電気配線丫 6、 丫 7からマイクロバルブ丫 1への通電を停止させる。 こ のように、 マイクロバルブ丫 1の故障時にマイクロバルブ丫 1への通電を停 止することで、 マイクロバルブ丫 1の故障時の安全性を高めることができる
[0230] 以上のように、 故障検知部丫 5 0が、 マイクロバルブ丫 1が正常に作動し ているか否かを判別するための電圧信号を出力することで、 外部制御装置丫 5 5は、 マイクロバルブ丫 1の故障の有無を容易に判別することができる。
[0231 ] また、 この電圧信号は、 アーム丫 1 2 6の歪み量に応じた信号である。 し たがって、 電気配線丫 6、 丫 7からマイクロバルブ丫 1への通電量とこの電 圧信号との関係に基づいて、 マイクロバルブ丫 1の故障の有無を容易に判別 することができる。
[0232] なお、 本実施形態では、 ブリッジ回路を構成する抵抗の変化に基づいてマ イクロバルブ丫 1が故障しているか否かが判定されている。 しかし、 他の方 法として、 静電容量の変化に基づいてマイクロバルブ丫 1が故障しているか 否かが判定されてもよい。 この場合、 ブリッジ回路の代わりに容量成分を形 〇 2020/175544 53 卩(:171? 2020 /007720
成する複数の電極がアーム丫 1 2 6に形成される。 アーム丫 1 2 6の歪み量 と複数の電極間の静電容量の間は相関関係がある。 したがって、 外部制御装 置丫 5 5は、 この複数の電極間の静電容量の変化に基づいて、 マイクロバル ブ丫 1が故障しているか否かを判定できる。
[0233] (他の実施形態)
以上、 本開示の代表的な実施形態について説明したが、 本開示は、 上述の 実施形態に限定されることなく、 例えば、 以下のように種々変形可能である
[0234] 上述の第 1実施形態等では、 マイクロバルブ X 1の開閉によって、 各減圧 部 1 4、 1 6、 1 8の絞り開度を二段階に調整可能なものを例示したが、 こ れに限定されない。 各減圧部 1 4、 1 6、 1 8は、 例えば、 複数のマイクロ バルブ X 1 を有し、 複数のマイクロバルブ X 1の開閉状態を切り替えによっ て、 絞り開度を複数段階に調整可能になっていてもよい。
[0235] 上述の第 1実施形態等のマイクロバルブ X 1は、 非通電時に絞り開度が最 小となる常閉弁ではなく、 非通電時に絞り開度が最大となる常開弁として構 成されていてもよい。 この場合、 各減圧部 1 4、 1 6、 1 8は、 マイクロバ ルブ X 1への非通電時に絞り開度が大開度 3 2となり、 通電時に絞り開度が 小開度 3 1 となる。
[0236] 上述の実施形態の如く、 各減圧部 1 4、 1 6、 1 8は、 マイクロバルブ X
1 とブロック体との間にバルブケーシング X 2を介在させることが望ましい が、 これに限らない。 各減圧部 1 4、 1 6、 1 8は、 例えば、 マイクロバル ブ X 1 とブロック体とがバルブケーシング X 2を介さずに互いに接するよう に構成されていてもよい。 また、 バルブケーシング X 2は樹脂に限らない。 さらに、 バルブケーシング X 2とブロック体との間に線膨張係数の違いを吸 収できる追加部材が介在されていてもよい。 これらのことは、 マイクロバル ブ丫 1 も同様である。
[0237] 上述の実施形態では、 複数本の第 1 リブ X 1 2 3、 複数本の第 2リブ X 1
2 4、 複数本の第 1 リブ丫 1 2 3、 複数本の第 2リブ丫 1 2 4が通電される 〇 2020/175544 54 卩(:171? 2020 /007720
ことで発熱し、 その発熱によって自らの温度が上昇することで膨張する。 し かし、 これら部材は、 温度が変化すると長さが変化する形状記憶材料から構 成されていてもよい。
[0238] 上述の実施形態では、 各減圧部 1 4、 1 6、 1 8がバルブモジュール丫〇 を備えるものを例示したが、 これに限定されない。 冷凍サイクル装置 1 0は 、 各減圧部 1 4、 1 6、 1 8のうち少なくとも 1つがバルブモジュール丫 0 を備える構成になっていてもよい。
[0239] 上述の実施形態では、 本開示の冷凍サイクル装置 1 0では、 車室内に供給 する空気およびバッテリ巳丁を冷却対象としているものを例示したが、 これ に限定されない。 冷凍サイクル装置 1 0は、 車室内に供給する空気およびバ ッテリ巳丁以外が冷却対象になっていてもよい。
[0240] 上述の実施形態において、 実施形態を構成する要素は、 特に必須であると 明示した場合および原理的に明らかに必須であると考えられる場合等を除き 、 必ずしも必須のものではないことは言うまでもない。
[0241 ] 上述の実施形態において、 実施形態の構成要素の個数、 数値、 量、 範囲等 の数値が言及されている場合、 特に必須であると明示した場合および原理的 に明らかに特定の数に限定される場合等を除き、 その特定の数に限定されな い。
[0242] 上述の実施形態において、 構成要素等の形状、 位置関係等に言及するとき は、 特に明示した場合および原理的に特定の形状、 位置関係等に限定される 場合等を除き、 その形状、 位置関係等に限定されない。 例えば、 マイクロバ ルブ X 1の形状やサイズは、 上記の実施形態で示したものに限られない。 マ イクロバルブ X Iは、 極微小流量制御可能で、 かつ、 流路内に存在する微少 ゴミを詰まらせないような水力直径の第 1冷媒孔 X 1 6、 第 2冷媒孔 X I 7 を有していればよい。 このことは、 マイクロバルブ丫 1 においても同様であ る。
[0243] 上述の実施形態において、 センサから車両の外部環境情報 (例えば車外の 湿度) を取得することが記載されている場合、 そのセンサを廃し、 車両の外 〇 2020/175544 55 卩(:171? 2020 /007720
部のサーバまたはクラウドからその外部環境情報を受信することも可能であ る。 あるいは、 そのセンサを廃し、 車両の外部のサーバまたはクラウドから その外部環境情報に関連する関連情報を取得し、 取得した関連情報からその 外部環境情報を推定することも可能である。
[0244] 本開示に記載の制御部及びその手法は、 コンピュータプログラムにより具 体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセ ッサ及びメモリを構成することによって提供された専用コンピュータにより 、 実現されてもよい。 あるいは、 本開示に記載の制御部及びその手法は、 一 つ以上の専用ハードウエア論理回路によってプロセッサを構成することによ って提供された専用コンビュータにより、 実現されてもよい。 もしくは、 本 開示に記載の制御部及びその手法は、 一つ乃至は複数の機能を実行するよう にプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回 路によって構成されたプロセッサとの組み合わせにより構成された一つ以上 の専用コンピュータにより、 実現されてもよい。 また、 コンピュータプログ ラムは、 コンビュータにより実行されるインストラクションとして、 コンビ ュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
[0245] (まとめ)
上述の実施形態の一部または全部で示された第 1の観点によれば、 冷凍サ イクル装置は、 複数の減圧部の少なくとも 1つが、 絞り開度を調整するため の弁部品を含む可変減圧部である。 弁部品は、 冷媒が流通する流体室が形成 される基部と、 温度変化により変位する駆動部と、 駆動部の温度変化による 変位を増幅する増幅部と、 増幅部によって増幅された変位が伝達されて動く ことで流体室の冷媒圧力を調整する可動部と、 を有する。 そして、 増幅部が 、 ヒンジを支点とし、 増幅部が駆動部に付勢される付勢位置を力点とし、 増 幅部と可動部との接続位置を作用点とする梃子として機能するように構成さ れている。
[0246] 第 2の観点によれば、 可変減圧部は、 開度が固定された固定絞りを含んで いる。 基部には、 流体室における冷媒の入口となる第 1流体孔、 流体室にお 〇 2020/175544 56 卩(:171? 2020 /007720
ける冷媒の出口となる第 2流体孔が形成されている。 弁部品は、 可動部によ って第 1流体孔および第 2流体孔の連通および遮断を切り替えることで可変 減圧部の絞り開度を調整する構成になっている。
[0247] このように、 可変減圧部が弁部品だけでなく固定絞りを含む構成とすれば 、 弁部品における第 1流体孔および第 2流体孔の連通および遮断の切り替え によって可変減圧部の絞り開度を段階的に調整することができる。 また、 可 変減圧部が固定絞りを含んでいる場合、 可変減圧部の絞り開度の調整が不要 な際には弁部品を駆動させないことで、 弁部品の駆動頻度を低減して、 可変 減圧部におけるエネルギ消費を抑えることができる。
[0248] 第 3の観点によれば、 基部には、 流体室における冷媒の入口となる第 1流 体孔、 流体室における冷媒の出口となる第 2流体孔が形成されている。 弁部 品は、 可動部によって第 1流体孔および第 2流体孔の連通および遮断を切り 替えるだけでなく、 可動部によって第 1流体孔および第 2流体孔のうち少な くとも一方の流体孔の開度を調整することで、 可変減圧部の絞り開度を調整 する構成になっている。 このように、 弁部品を減圧部の絞り開度を変更可能 な可変絞りとして構成すれば、 弁部品における流体孔の開度を変更すること で、 減圧部の絞り開度を所望の開度に調整することができる。
[0249] 第 4の観点によれば、 冷凍サイクル装置は、 複数の減圧部の少なくとも 1 つが、 絞り開度を調整可能な可変減圧部である。 この可変減圧部は、 入口流 路、 弁室、 絞り流路、 出口流路が形成されたブロック体と、 主弁体と、 主弁 体を駆動する駆動部材と、 を含んでいる。 ブロック体には、 開度調整室が形 成されている。 駆動部材は、 開度調整室の圧力を調整するための弁部品を含 んでいる。 弁部品は、 冷媒が流通する流体室が形成される基部と、 温度変化 により変位する駆動部と、 駆動部の温度変化による変位を増幅する増幅部と 、 増幅部によって増幅された変位が伝達されて動くことで開度調整室の冷媒 圧力を調整する可動部と、 を有する。 そして、 増幅部が、 ヒンジを支点とし 、 増幅部が駆動部に付勢される付勢位置を力点とし、 増幅部と可動部との接 続位置を作用点とする梃子として機能するように構成されている。 〇 2020/175544 57 卩(:171? 2020 /007720
[0250] 第 5の観点によれば、 基部には、 流体室と開度調整室とを連通させる第 1 流体孔、 流体室と入口流路とを連通させる第 2流体孔、 流体室と出口流路と を連通させる第 3流体孔が形成されている。 弁部品は、 可動部によって第 2 流体孔および第 3流体孔を開閉するだけでなく、 可動部によって第 2流体孔 および第 3流体孔のうち少なくとも一方の流体孔の開度を調整することで開 度調整室の圧力を変化させる構成になっている。
[0251 ] これによると、 開度調整室の圧力を微調整可能となり、 冷媒流量を負荷条 件等に応じた適量に調整できるので、 放熱器および蒸発器のうち利用側とな る熱交換器の能力を効率のよい状態で発揮させることが可能になる。
[0252] 第 6の観点によれば、 可変減圧部は、 弁部品の取付対象となる被取付対象 物に対して弁部品を取り付けるための部品取付部を含んでいる。 部品取付部 は、 弁部品と被取付対象物とが直接接しないように部品取付部と弁部品との 間に介在されている。 このように、 被取付対象物と弁部品との間に部品取付 部が介在させる構成とすれば、 部品取付部が緩衝材として機能することで、 弁部品を保護することができる。
[0253] 第 7の観点によれば、 部品取付部は、 部品取付部の線膨張係数が、 弁部品 の線膨張係数と被取付対象物の線膨張係数との間に値となるように構成され ている。 これによると、 被取付対象物の温度変化による熱歪が生じたとして も、 被取付対象物の温度変化による熱歪の応力が部品取付部で吸収されるの で、 弁部品を保護することができる。
[0254] 第 8の観点によれば、 被取付対象物は、 複数の蒸発器のうち、 可変減圧部 の冷媒流れ下流側に接続される可変蒸発器の冷媒入口部と冷媒配管とを接続 するブロック体である。 弁部品は、 部品取付部を介してブロック体に取り付 けられることで、 可変蒸発器と一体的に構成されている。
[0255] これによると、 冷媒配管には、 減圧部を通過する前の高温高圧の冷媒が流 れる。 このような構成では、 冷媒配管を冷媒が流れる際に、 冷媒配管周囲に 放熱できるので、 蒸発器の吸熱能力を向上させることが可能となる。 このよ うな構成は、 蒸発器を利用側の熱交換器とする場合に好適である。 〇 2020/175544 58 卩(:171? 2020 /007720
[0256] 第 9の観点によれば、 複数の蒸発器には、 室内に供給する空気を冷却対象 とする冷房用蒸発器、 充放電可能なバッテリを冷却対象とする電池用蒸発器 が含まれている。 電池用蒸発器の冷媒出口側には、 電池用蒸発器の冷媒出口 側の圧力を所定の圧力に維持する圧力調整弁が設けられている。 これによる と、 例えば、 バッテリの冷却と車室内の冷房を同時に行う際、 電池用蒸発器 を通過する冷媒の圧力を維持しつつ、 冷房用蒸発器を通過する冷媒の圧力を 低下させることができる。
[0257] 第 1 0の観点によれば、 複数の蒸発器には、 室内に供給する空気を冷却対 象とする冷房用蒸発器、 充放電可能なバッテリを冷却対象とする電池用蒸発 器が含まれている。 冷房用蒸発器の冷媒出口側には、 冷房用蒸発器の冷媒出 口側の圧力を所定の圧力に維持する圧力調整弁が設けられている。
[0258] これによると、 例えば、 バッテリの冷却と車室内の冷房を同時に行う際、 冷房用蒸発器を通過する冷媒の圧力を維持しつつ、 電池用蒸発器を通過する 冷媒の圧力を低下させることができる。
[0259] 第 1 1の観点によれば、 弁部品は、 当該弁部品が正常に作動しているか故 障しているかを判別するための信号を出力する故障検知部を備えている。 弁 部品がこのような信号を出力することで、 弁部品の故障の有無を容易に判別 できる。
[0260] 第 1 2の観点によれば、 弁部品が出力する信号は、 増幅部の歪み量に応じ た信号である。 このようになっていることで、 この信号と弁部品を制御する ための制御量との関係に基づいて、 弁装置の故障の有無を判別することがで きる。
[0261 ] 第 1 3の観点によれば、 駆動部は、 通電されることで発熱し、 故障検知部 は、 弁部品が故障している場合に弁部品に対する通電を停止する装置に、 信 号を出力する。 このように、 弁部品の故障時に通電を停止することで、 故障 時の安全性を高めることができる。
[0262] 第 1 4の観点によれば、 故障検知部は、 弁部品が故障している場合に、 人 に報知を行う報知装置を作動させる装置に、 信号を出力する。 これにより、 \¥0 2020/175544 59 卩(:17 2020 /007720
人は、 弁部品の故障を知ることができる。
[0263] 第 1 5の観点によれば、 弁部品は、 半導体チップによって構成されている 。 これによれば、 弁部品を小型に構成できる。

Claims

\¥0 2020/175544 60 卩(:17 2020 /007720 請求の範囲
[請求項 1 ] 冷凍サイクル装置であって、
冷媒を圧縮して吐出する圧縮機 (1 1) と、
前記圧縮機から吐出された冷媒を放熱させる放熱器 (1 2) と、 前記放熱器の冷媒流れ下流側において、 互いに並列となるように接 続される複数の減圧部 (1 4、 1 6、 1 8) と、
複数の前記減圧部それぞれの冷媒流れ下流側に接続され、 前記減圧 部で減圧された冷媒を蒸発させる複数の蒸発器 (1 5、 1 7、 1 9) と、 を備え、
複数の前記減圧部の少なくとも 1つは、 絞り開度を調整するための 弁部品 (X 1) を含む可変減圧部 (1 4、 1 6、 1 8) であり、 前記弁部品は、
前記放熱器を通過した冷媒の少なくとも一部が流通する流体室 (X 1 9) が形成される基部 (X I I、 X 1 2、 X 1 3) と、
自らの温度が変化すると変位する駆動部 (X I 2 3、 X I 2 4、 X 1 2 5) と、
前記駆動部の温度の変化による変位を増幅する増幅部 (X I 2 6、 X 1 2 7) と、
前記増幅部によって増幅された変位が伝達されて動くことで、 前記 流体室における冷媒の圧力を調整する可動部 (X I 2 8) と、 を有し 前記駆動部が温度の変化によって変位したときに、 前記駆動部が付 勢位置 (乂? 2) において前記増幅部を付勢することで、 前記増幅部 がヒンジ (乂 〇) を支点として変位するとともに、 前記増幅部と前 記可動部の接続位置 (乂? 3) で前記増幅部が前記可動部を付勢し、 前記ヒンジから前記付勢位置までの距離よりも、 前記ヒンジから前 記接続位置までの距離の方が長くなっている、 冷凍サイクル装置。
[請求項 2] 前記可変減圧部は、 開度が固定された固定絞り (2 7 3) を含んで 〇 2020/175544 61 卩(:171? 2020 /007720
おり、
前記基部には、 前記流体室における冷媒の入口となる第 1流体孔 ( X I 6) 、 前記流体室における冷媒の出口となる第 2流体孔 (X I 7 ) が形成されており、
前記弁部品は、 前記可動部によって前記第 1流体孔および前記第 2 流体孔の連通および遮断を切り替えることで前記可変減圧部の絞り開 度を調整する構成になっている、 請求項 1 に記載の冷凍サイクル装置
[請求項 3] 前記基部には、 前記流体室における冷媒の入口となる第 1流体孔 (
X I 6) 、 前記流体室における冷媒の出口となる第 2流体孔 (X I 7 ) が形成されており、
前記弁部品は、 前記可動部によって前記第 1流体孔および前記第 2 流体孔の連通および遮断を切り替えるだけでなく、 前記可動部によっ て前記第 1流体孔および前記第 2流体孔のうち少なくとも _方の流体 孔の開度を調整することで、 前記可変減圧部の絞り開度を調整する構 成になっている、 請求項 1 に記載の冷凍サイクル装置。
[請求項 4] 冷凍サイクル装置であって、
冷媒を圧縮して吐出する圧縮機 (1 1) と、
前記圧縮機から吐出された冷媒を放熱させる放熱器 (1 2) と、 前記放熱器の冷媒流れ下流側において、 互いに並列となるように接 続される複数の減圧部 (1 4、 1 6、 1 8) と、
複数の前記減圧部それぞれの冷媒流れ下流側に接続され、 前記減圧 部で減圧された冷媒を蒸発させる複数の蒸発器 (1 5、 1 7、 1 9) と、 を備え、
複数の前記減圧部の少なくとも 1つは、 絞り開度を調整可能な可変 減圧部 (1 4、 1 6、 1 8) であり、
前記可変減圧部は、
前記放熱器を通過した冷媒が流入する入口流路 (2 8 1) 、 前記入 〇 2020/175544 62 卩(:171? 2020 /007720
口流路に連通する弁室 (2 8 3) 、 前記弁室に流入した冷媒を減圧膨 張させる絞り流路 (2 8 4) 、 前記絞り流路を通過した冷媒を前記蒸 発器に向けて流出させる出口流路 (2 8 2) が形成されたブロック体 (2 8) と、
前記弁室に収容され、 前記絞り流路における絞り開度を調整する主 弁体 (2 8 5) と、
前記主弁体を駆動する駆動部材 (丫〇) と、 を含んでおり、 前記ブロック体には、 前記主弁体を開弁側または閉弁側に押圧する ための冷媒が導入される開度調整室 (2 8 6) が形成されており、 前記駆動部材は、 前記開度調整室の圧力を調整するための弁部品 ( 丫 1) を含んでおり、
前記弁部品は、
前記開度調整室に導入する冷媒が流通する流体室 (丫 1 9) が形成 される基部 (丫 1 1、 丫 1 2、 丫 1 3) と、
自らの温度が変化すると変位する駆動部 (丫 1 2 3、 丫 1 2 4、 丫 1 2 5) と、
前記駆動部の温度の変化による変位を増幅する増幅部 (丫 1 2 6、 丫 1 2 7) と、
前記増幅部によって増幅された変位が伝達されて動くことで、 前記 流体室を流れる冷媒の圧力を調整する可動部 (丫 1 2 8) と、 を有し 前記駆動部が温度の変化によって変位したときに、 前記駆動部が付 勢位置 (丫? 2) において前記増幅部を付勢することで、 前記増幅部 がヒンジ (丫 〇) を支点として変位するとともに、 前記増幅部と前 記可動部の接続位置 (丫? 3) で前記増幅部が前記可動部を付勢し、 前記ヒンジから前記付勢位置までの距離よりも、 前記ヒンジから前 記接続位置までの距離の方が長くなっている、 冷凍サイクル装置。
[請求項 5] 前記基部には、 前記流体室と前記開度調整室とを連通させる第 1流 〇 2020/175544 63 卩(:171? 2020 /007720
体孔 (丫 1 6) 、 前記流体室と前記入口流路とを連通させる第 2流体 孔 (丫 1 7) 、 前記流体室と前記出口流路とを連通させる第 3流体孔 (丫 1 7) が形成されており、
前記弁部品は、 前記可動部によって前記第 2流体孔および前記第 3 流体孔を開閉するだけでなく、 前記可動部によって前記第 2流体孔お よび前記第 3流体孔のうち少なくとも一方の流体孔の開度を調整する ことで前記開度調整室の圧力を変化させる構成になっている、 請求項 4に記載の冷凍サイクル装置。
[請求項 6] 前記可変減圧部は、 前記弁部品の取付対象となる被取付対象物 (2
7、 2 8) に対して前記弁部品を取り付けるための部品取付部 (乂2 、 丫2) を含んでおり、
前記部品取付部は、 前記弁部品と前記被取付対象物とが直接接しな いように前記部品取付部と前記弁部品との間に介在されている、 請求 項 1ないし 5のいずれか 1つに記載の冷凍サイクル装置。
[請求項 7] 前記部品取付部は、 前記部品取付部の線膨張係数が、 前記弁部品の 線膨張係数と前記被取付対象物の線膨張係数との間に値となるように 構成されている、 請求項 6に記載の冷凍サイクル装置。
[請求項 8] 複数の前記蒸発器のうち、 前記可変減圧部の冷媒流れ下流側に接続 されるものを可変蒸発器としたとき、
前記被取付対象物は、 前記可変蒸発器の冷媒入口部と冷媒配管 (2 6) とを接続する継手 (2 7〇) であり、
前記弁部品は、 前記部品取付部を介して前記継手に取り付けられる ことで、 前記可変蒸発器と一体的に構成される、 請求項 6または 7に 記載の冷凍サイクル装置。
[請求項 9] 複数の前記蒸発器には、 室内に供給する空気を冷却対象とする冷房 用蒸発器 (1 5) 、 充放電可能なバッテリ (巳丁) を冷却対象とする 電池用蒸発器 (1 7、 1 9) が含まれており、
前記電池用蒸発器の冷媒出口側には、 前記電池用蒸発器の冷媒出口 〇 2020/175544 64 卩(:171? 2020 /007720
側の圧力を所定の圧力に維持する圧力調整弁 (2 0) が設けられてい る、 請求項 1ないし 8のいずれか 1つに記載の冷凍サイクル装置。
[請求項 10] 複数の前記蒸発器には、 室内に供給する空気を冷却対象とする冷房 用蒸発器 (1 5) 、 充放電可能なバッテリ (巳丁) を冷却対象とする 電池用蒸発器 (1 7、 1 9) が含まれており、
前記冷房用蒸発器の冷媒出口側には、 前記冷房用蒸発器の冷媒出口 側の圧力を所定の圧力に維持する圧力調整弁 (2 0 ) が設けられて いる、 請求項 1ないし 8のいずれか 1つに記載の冷凍サイクル装置。
[請求項 1 1 ] 前記弁部品は、 当該弁部品が正常に作動しているか故障しているか を判別するための信号を出力する故障検知部 (乂5 0、 丫5 0) を備 えている、 請求項 1ないし 1 0のいずれか 1つに記載の冷凍サイクル 装置。
[請求項 12] 前記信号は、 前記増幅部の歪み量に応じた信号である、 請求項 1 1 に記載の冷凍サイクル装置。
[請求項 13] 前記駆動部は、 通電されることで発熱し、
前記故障検知部は、 前記弁部品が故障している場合に前記弁部品に 対する通電を停止する装置 (乂5 5、 丫5 5) に、 前記信号を出力す る、 請求項 1 1 または 1 2に記載の冷凍サイクル装置。
[請求項 14] 前記故障検知部は、 前記弁部品が故障している場合に、 人に報知を 行う報知装置 (乂5 6、 丫5 6) を作動させる装置 (乂5 5、 丫5 5 ) に、 前記信号を出力する、 請求項 1 1 または 1 2に記載の冷凍サイ クル装置。
[請求項 15] 前記弁部品は、 半導体チップによって構成されている、 請求項 1な いし 1 4のいずれか 1つに記載の冷凍サイクル装置。
PCT/JP2020/007720 2019-02-28 2020-02-26 冷凍サイクル装置 WO2020175544A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035225A JP2020139680A (ja) 2019-02-28 2019-02-28 冷凍サイクル装置
JP2019-035225 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175544A1 true WO2020175544A1 (ja) 2020-09-03

Family

ID=72239982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007720 WO2020175544A1 (ja) 2019-02-28 2020-02-26 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP2020139680A (ja)
WO (1) WO2020175544A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021195955A (ja) * 2020-06-09 2021-12-27 株式会社デンソー 弁装置
JP7302468B2 (ja) * 2019-12-24 2023-07-04 株式会社デンソー 弁装置、冷凍サイクル装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584194U (ja) * 1991-02-06 1993-11-12 アルプス電気株式会社 圧電素子
JP2004053060A (ja) * 2002-07-17 2004-02-19 Fuji Koki Corp 膨張弁
JP2008286302A (ja) * 2007-05-17 2008-11-27 Panasonic Corp ロータリージョイントおよび回転弁体の異常検出機構
JP2014169011A (ja) * 2013-03-04 2014-09-18 Honda Motor Co Ltd 締結樹脂構造体及びその製造方法
CN104344611A (zh) * 2013-08-08 2015-02-11 盾安环境技术有限公司 一种膨胀阀
US20150354875A1 (en) * 2013-06-25 2015-12-10 Zhejiang Dunan Hetian Metal Co., Ltd. On-Demand Micro Expansion Valve for a Refrigeration System
JP2018185104A (ja) * 2017-04-26 2018-11-22 株式会社デンソー 冷凍サイクル装置
JP2019026111A (ja) * 2017-07-31 2019-02-21 株式会社デンソー 空調装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584194U (ja) * 1991-02-06 1993-11-12 アルプス電気株式会社 圧電素子
JP2004053060A (ja) * 2002-07-17 2004-02-19 Fuji Koki Corp 膨張弁
JP2008286302A (ja) * 2007-05-17 2008-11-27 Panasonic Corp ロータリージョイントおよび回転弁体の異常検出機構
JP2014169011A (ja) * 2013-03-04 2014-09-18 Honda Motor Co Ltd 締結樹脂構造体及びその製造方法
US20150354875A1 (en) * 2013-06-25 2015-12-10 Zhejiang Dunan Hetian Metal Co., Ltd. On-Demand Micro Expansion Valve for a Refrigeration System
CN104344611A (zh) * 2013-08-08 2015-02-11 盾安环境技术有限公司 一种膨胀阀
JP2018185104A (ja) * 2017-04-26 2018-11-22 株式会社デンソー 冷凍サイクル装置
JP2019026111A (ja) * 2017-07-31 2019-02-21 株式会社デンソー 空調装置

Also Published As

Publication number Publication date
JP2020139680A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2020175544A1 (ja) 冷凍サイクル装置
WO2010119560A1 (ja) 弁ブロック及び弁ブロックユニット並びに弁ブロックユニットの検査方法
WO1999010191A1 (en) Automotive air conditioning device with thermoelectric elements and pwm control circuit
WO2011067905A1 (ja) 空気調和装置用の室外機
JP2014095487A (ja) 冷凍サイクル装置
WO2016075897A1 (ja) 冷凍サイクル装置
EP1669695A2 (en) Air conditioner
WO2015064439A1 (ja) 空気調和装置
JP5846094B2 (ja) 冷凍サイクル装置
WO2020175546A1 (ja) 冷凍サイクル装置、蒸発圧力調整弁
JP6863428B2 (ja) 冷媒サイクルおよび温度調節システム
WO2020175545A1 (ja) 弁装置
JP2014175156A (ja) バッテリユニット
JP6958582B2 (ja) エジェクタ式冷凍サイクル装置
WO2020175542A1 (ja) 冷凍サイクル装置
WO2020175543A1 (ja) 統合弁
WO2020175549A1 (ja) 弁装置
JP6988846B2 (ja) オイル戻し装置
JP2020143786A (ja) 弁装置
WO2020175550A1 (ja) 弁装置
JP7302468B2 (ja) 弁装置、冷凍サイクル装置
WO2021131498A1 (ja) 弁装置
JP6264633B2 (ja) 空気調和装置
JP2005075102A (ja) 車両用空気調和装置
JP2021195955A (ja) 弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763545

Country of ref document: EP

Kind code of ref document: A1