JP2020137139A - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP2020137139A
JP2020137139A JP2019022940A JP2019022940A JP2020137139A JP 2020137139 A JP2020137139 A JP 2020137139A JP 2019022940 A JP2019022940 A JP 2019022940A JP 2019022940 A JP2019022940 A JP 2019022940A JP 2020137139 A JP2020137139 A JP 2020137139A
Authority
JP
Japan
Prior art keywords
magnet
electric machine
magnetic
rotary electric
inner magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019022940A
Other languages
English (en)
Other versions
JP7107243B2 (ja
Inventor
卓 雁木
Suguru Gangi
卓 雁木
新也 佐野
Shinya Sano
新也 佐野
泰秀 柳生
Yasuhide Yagyu
泰秀 柳生
貴憲 門田
Takanori Kadota
貴憲 門田
啓次 近藤
Keiji Kondo
啓次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019022940A priority Critical patent/JP7107243B2/ja
Priority to US16/751,275 priority patent/US11431213B2/en
Priority to CN202010079340.3A priority patent/CN111555490B/zh
Priority to DE102020201580.5A priority patent/DE102020201580A1/de
Publication of JP2020137139A publication Critical patent/JP2020137139A/ja
Application granted granted Critical
Publication of JP7107243B2 publication Critical patent/JP7107243B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Abstract

【課題】出力トルクをより向上できる回転電機を提供する。【解決手段】ステータ12と、ロータ14と、を備えた回転電機10であって、前記ロータ14は、周方向に並ぶ複数の磁極24を有し、各磁極24は、第一磁石装填部26と、前記第一磁石装填部26よりも内周側に位置する第二磁石装填部28と、を有し、前記第二磁石装填部28は、磁極中心に対して対称配置された一対の内側磁石孔34と、各内側磁石孔34それぞれに1以上装填された内側磁石36と、を含み、各内側磁石孔34は、軸方向視で、1以上の屈曲点40を有した折れ線形状であり、前記内側磁石孔34の前記磁極周方向中心側の端部は、その厚み方向両側に膨らんでおり、前記内側磁石36よりも大きな厚みを有した磁気バリア38として機能する。【選択図】図3

Description

本明細書では、円筒形のステータと、ステータの内側に同心配置されるロータと、を備えた回転電機を開示する
ロータコアに永久磁石を埋め込んで磁極を構成する埋込磁石式の回転電機では、永久磁石によって生成されるマグネットトルクと、ロータコアの磁気異方性に基づいて生成されるリラクタンストルクと、の合成トルクが出力される。この出力トルクを増加させるために、従来から、永久磁石を、径方向に沿って二層配置する技術が提案されている。
例えば、特許文献1,2には、ロータの外表面近傍に外側フラックスバリア(外側磁石孔)を配置し、外側フラックスバリアの径方向内側に一対の内側フラックスバリア(内側磁石孔)を略V字状に配置し、それぞれのラックスバリアに永久磁石を配置した電動機が開示されている。また、この特許文献1,2において内側フラックスバリアは、その途中で屈曲している。この特許文献1,2のように、永久磁石を径方向に二層配置することで、出力トルクをより増加させることができる。
特開2011−229395号公報 特開2006−314152号公報
しかしながら、特許文献1,2の技術では、内側フラックスバリアの磁極中心側端部が、比較的、単純な形状となっており、一つの内側磁石からブリッジ部を通って当該一つの内側磁石に戻る漏れ磁束の磁路距離が短くなりがちであった。この場合、トルク生成に寄与しない漏れ磁束が大きくなりやすく、回転電機の出力トルクの低下を招きがちであった。
そこで、本明細書では、出力トルクをより向上できる回転電機を開示する。
本明細書で開示する回転電機は、略円筒形のステータと、前記ステータの内側に同心配置されるロータと、を備えた回転電機であって、前記ロータは、周方向に並ぶ複数の磁極を有し、各磁極は、第一磁石装填部と、前記第一磁石装填部よりも内周側に位置する第二磁石装填部と、を有し、前記第二磁石装填部は、磁極中心に対して対称配置された一対の内側磁石孔と、各内側磁石孔それぞれに1以上装填された内側磁石と、を含み、各内側磁石孔は、軸方向視で、1以上の屈曲点を有した折れ線形状であり、前記内側磁石孔の前記磁極周方向中心側の端部は、その厚み方向両側に膨らんでおり、前記内側磁石よりも大きな厚みを有した磁気バリアとして機能する、ことを特徴とする。
厚み方向両側に膨らんだ磁気バリアを設けることで、内側磁石からブリッジ部を経て内側磁石に戻る漏れ磁束の磁路距離が長くなるため、漏れ磁束が効果的に抑制される。結果として、出力トルクをより向上できる。
この場合、前記第一磁石装填部と、前記第二磁石装填部との間の磁路の幅は、その端部から前記磁極中心に近づくにつれて広くなっていてもよい。
かかる構成とすることで、主磁束とマグネット磁束とが並走しやすい磁極中心付近における磁路幅を広げることができ、磁気飽和を効果的に防止できる。そして、これにより、回転電機の出力トルクをより向上できる。
また、前記内側磁石孔は、前記屈曲点よりも磁極中心側にある中心側部分と、前記屈曲点よりも外側にある外側部分と、を有しており、前記中心側部分とd軸とが成す傾斜角度は、前記外側部分と前記d軸とが成す傾斜角度よりも、大きくてもよい。
かかる構成とすることで、磁極中心付近において、内側磁石と外側磁石との距離が過度に大きくなることが防止できる。そして、これにより、マグネット磁束の低下をより効果的に防止でき、回転電機の出力トルクをより向上できる。
また、前記内側磁石孔内の前記屈曲点の両側それぞれに前記内側磁石が装填されていてもよい。
かかる構成とすることで、磁石の総量、ひいては、マグネット磁束の総量を増やすことができ、マグネットトルク、ひいては、回転電機の出力トルクを向上できる。
この場合、前記内側磁石は、前記屈曲点から離間した位置に装填されていてもよい。
内側磁石を、逆磁界が集中しやすい屈曲点を避けて配置することで、マグネット磁束をより効率的に利用できる。
また、前記第一磁石装填部は、1以上の外側磁石孔と、各外側磁石孔それぞれに1以上装填された外側磁石と、を含み、前記外側磁石および前記内側磁石は、全て、同一形状であってもよい。
かかる構成とすることで、磁石種類数を低減でき、部品の製造コストや管理コストを低減できる。
本明細書で開示する回転電機によれば、漏れ磁束が効果的に抑制されるため、回転電機の出力トルクをより向上できる。
回転電機の概略的な縦断面図である。 ロータの横断面図である。 一つの磁極周辺の拡大図である。 主磁束の流れを示す模式図である。 マグネット磁束の流れを示す模式図である。 第二磁石孔が屈曲点を有さない場合を示す図である。 屈曲した内側磁石を用いた場合を示す図である。 外側磁石孔の両端および内側磁石孔の両端に磁気バリアを設けた場合を示す図である。
以下、図面を参照して回転電機10の構成について説明する。図1は、回転電機10の概略的な縦断面図である。また、図2は、ロータ14の横断面図であり、図3は、一つの磁極24周辺の拡大図である。なお、図2では、磁石孔の形状を見やすくするために、一つの磁極24において磁石の図示を省略している。また、以下の説明において、「軸方向」、「径方向」、「周方向」とは、ロータ軸方向、ロータ径方向、ロータ周方向の意味である。
この回転電機10は、ロータコア22の内部に永久磁石32,36が埋め込まれた永久磁石同期型回転電機である。かかる回転電機10は、例えば、走行動力源として電動車両に搭載されてもよい。回転電機10は、略円筒形のステータ12と、当該ステータ12の内側に同心配置されたロータ14と、ロータ14の中心に固着された回転軸16と、を備えている。ステータ12は、その内周に複数のティースが形成された略円筒形のステータコア18と、各ティースに巻回されたステータコイル20と、を有する。ロータ14は、このステータ12の内側に、ステータ12と同心に配される。ロータ14の外周面とステータ12の内周面との間には、ほぼ均一な距離のギャップGが存在している。
ロータ14は、略円筒形のロータコア22と、当該ロータコア22に埋め込まれた永久磁石32,36により構成される磁極24と、を有している。ロータコア22の中心には、回転軸16が固着されている。この回転軸16は、軸受け(図示せず)により支持されており、ロータ14とともに回転する。
ロータ14には、偶数個(図示例では8個)の磁極24が周方向に等間隔で並んで設けられている。この偶数個の磁極24の極性は、周方向に交互に反転している。一つの磁極24は、複数の磁石孔30,34(図示例では四つ)に装填された複数(図示例では六つ)の永久磁石32,36により構成される。これについて、図3を参照して説明する。
各磁極24は、第一磁石装填部26と、第一磁石装填部26よりも径方向内側に設けられた第二磁石装填部28と、を備えた二層構造となっている。第一磁石装填部26は、ロータ14の外周縁近傍に設けられており、磁極中心(すなわちd軸Ld)に対して対称配置された一対の外側磁石孔30と、各外側磁石孔30に装填された外側磁石32と、を有する。外側磁石孔30は、ロータコア22を軸方向に貫通する孔であり、軸方向視では、一方向に長尺な略長方形の外形を有している。各外側磁石孔30は、d軸Ldに対して所定の傾斜角度θ1(θ1<90°)だけ傾いて配置されており、これにより、二つの外側磁石孔30は、図3に示す通り、径方向外側に開いた略V字状を成す。二つの外側磁石孔30の間には、ロータコア22の一部分である外側センターブリッジ50が介在している。
外側磁石32は、一つの外側磁石孔30に一つずつ装填されている。各外側磁石32も、外側磁石孔30と同様に、軸方向視で略長方形の外形を有している。また、各外側磁石32は、その厚み方向(短軸方向)に磁化されている。この外側磁石32の幅方向(長軸方向)寸法は、外側磁石孔30の幅方向寸法よりも十分に小さくなっている。そのため、外側磁石32を外側磁石孔30に装填した際、外側磁石32の幅方向両側には、空隙が形成される。この空隙は、磁束の流れを阻害するフラックスバリア37として機能する。このフラックスバリア37の厚みは、外側磁石32の厚みとほぼ同じである。
第二磁石装填部28は、第一磁石装填部26の径方向内側に設けられており、一対の内側磁石孔34と、当該内側磁石孔34に装填される複数の内側磁石36と、を備えている。一対の内側磁石孔34は、径方向外側に向かって開いた略V字または略U字を成すように、d軸Ldに対して対称配置されている。各内側磁石孔34も、外側磁石孔30と同様に、ロータコア22を軸方向に貫通する孔である。ただし、内側磁石孔34は、軸方向視では、1以上の屈曲点40を有する折れ線形状の外形を有している。より具体的に説明すると、本例の内側磁石孔34は、屈曲点40から磁極24中心側に延びる中心側部分34cと、屈曲点40からロータ14外周縁に向かって延びる外側部分34oと、を有した略V字の外形を有している。
第一磁石装填部26と第二磁石装填部28との間は、後述する通り、磁束が流れる磁路となる。本例では、内側磁石孔34の形状を、この磁路の幅W1,W2,W3が、磁極中心(d軸Ld)に近づくにつれ大きくなるような形状としている。具体的には、d軸Ldに対する中心側部分34cの傾斜角度θ2、および、外側部分34oの傾斜角度θ3を、外側磁石孔30の傾斜角度θ1よりも大きくしている。また、本例では、さらに、傾斜角度θ2を、傾斜角度θ3よりも大きくしている。すなわち、θ1>θ2>θ3としている。かかる構成とする理由については、後述する。
内側磁石孔34には、二つの内側磁石36が装填されている。二つの内側磁石36は、屈曲点40を挟んで両側に配されている。すなわち、内側磁石孔34の中心側部分34cおよび外側部分34oそれぞれに一つずつ内側磁石36が装填されている。内側磁石36も、外側磁石32と同様に、軸方向視で略長方形の外形を有しており、その厚み方向(短軸方向)に磁化されている。本例では、内側磁石36および外側磁石32を、全て、同一形状の同一種類の磁石としている。かかる構成とすることで、磁石の種類数を低減でき、ロータ14の製造コストをより低減できる。
ここで、図3から明らかな通り、内側磁石36は、いずれも、屈曲点40を避けて装填されており、内側磁石36の幅方向端部は、屈曲点40から離間している。これは、内側磁石36にかかる逆磁界を避けるためであるが、これについても後に詳説する。
また、本例では、中心側部分34cの幅方向寸法および外側部分34oの幅方向寸法は、内側磁石36の幅方向寸法よりも十分に大きくなっている。そのため、内側磁石孔34の両端には、磁石が存在しない空隙が形成される。この空隙は、磁束の流れを阻害するフラックスバリア37として機能する。このうち、磁極中心側のフラックスバリアは、図3に示す通り、内側磁石孔34の厚み方向両側に膨らんでおり、内側磁石36より大きな厚みを有している。このように厚み方向両側に膨らんだフラックスバリアを、以下では、「磁気バリア38」と呼び、他のフラックスバリア37と区別する。かかる磁気バリア38を設けることで、トルク出力に寄与しない漏れ磁束49(図5参照)を抑制でき、回転電機10の出力トルクをより向上できる。
次に、本例のロータ14に流れる磁束について図4、図5を参照して説明する。図4は、主磁束46を示す概略図であり、図5はマグネット磁束48を示す概略図である。周知の通り、永久磁石同期型回転電機の出力トルクは、リラクタンストルクとマグネットトルクとの合成トルクとなる。リラクタンストルクは、ステータ12の回転磁界による極とロータ14の突極との吸引力によって生じるトルクである。このリラクタンストルクは、ロータコア22内において、d軸Ldを跨ぐように、略周方向に流れる主磁束46が多いほど増加する。また、マグネットトルクは、ステータ12の回転磁界の極とロータ14の磁極24との吸引および反発によって生じるトルクである。このマグネットトルクは、ロータコア22内において、各磁石32,36を経由しながら流れるマグネット磁束48が多いほど向上する。本例では、磁石装填部26,28を二層配置としているため、一層配置の場合に比べて、永久磁石32,36の総量、ひいては、マグネット磁束48の総量を増やすことができる。また、本例では、一つの内側磁石孔34に二つの外側磁石32を装填している。その結果、一つの内側磁石孔34に一つの内側磁石36のみを装填する場合に比べて、永久磁石32,36の総量、ひいては、マグネット磁束48を増やすことができる。そして、マグネット磁束48が増加することで、回転電機10の出力トルクも向上できる。
ここで、本例では、第一磁石装填部26と第二磁石装填部28との間の磁路の幅W1,W2,W3を、磁極24中心に近づくにつれ大きくしている(W1<W2<W3)。具体的には、d軸Ldに対する中心側部分34cおよび外側部分34oの傾斜角度θ2,θ3を、外側磁石孔30の傾斜角度θ1よりも小さくしている。かかる構成とすることで、主磁束46およびマグネット磁束48の局所的な密集を緩和でき、磁気飽和を防止できる。
すなわち、ティースからロータ14に流れ込んだ主磁束46の一部は、図4に示す通り、第一磁石装填部26および第二磁石装填部28の間に形成される磁路に沿って略周方向に流れる。一方、マグネット磁束48は、内側磁石36と外側磁石32とを結ぶような経路で流れる。このマグネット磁束48は、略径方向に流れるだけでなく、その一部は、略周方向にも流れる。例えば、d軸Ldより右側にある内側磁石36から出たマグネット磁束48は、同じく右側にある外側磁石32に向かうだけでなく、左側にある外側磁石32にも向かうように略周方向に進む。このように周方向に流れるマグネット磁束48は、磁極24中心に近づくにつれ増えていく。その結果、磁極24中心付近では、主磁束46およびマグネット磁束48の双方が、周方向に並走することになり、磁束密度が増加しやすい。磁束密度が過度に向上して飽和すると、リラクタンストルクおよびマグネットトルクが低下してしまい、回転電機10の出力トルクが低下する。本例では、こうした磁気飽和を避けるために、磁束が集中しやすい磁極中心に近づくにつれ、磁路の幅を増加させている。
ここで、磁極中心に近づくにつれて磁路幅W1,W2,W3を大きくしていくことだけを目的にするのであれば、内側磁石孔34は、屈曲させず、図6に示すようなストレート形状とすることも考えられる。しかし、内側磁石孔34をストレート形状とした場合、磁極中心付近における磁路幅W3が過度に大きくなり、有効マグネット磁束が低下する。すなわち、マグネットトルクを得るためには、一つの磁石32,36から出たマグネット磁束48は、他の磁石32,36に向かう必要がある。しかし、磁石間の距離が過度に大きいと、一つの磁石32,36から出た磁束は、他の磁石32,36に向かうことなく、当該一つの磁石32,36に戻る漏れ磁束49になりやすい。
本例では、こうした漏れ磁束49を低減し、有効マグネット磁束を増加させるために、内側磁石孔34を途中で屈曲させ、θ2>θ3としている。別の言い方をすれば、外側部分34oよりも中心側部分34cのほうが、外側磁石孔30に近い傾斜角度としている。かかる構成とすることで、磁極中心付近において、内側磁石36が、外側磁石32から過度に離れることが防止できる。そして、結果として、磁気飽和を避けつつ、内側磁石36と外側磁石32との距離を適度に保つことができ、マグネットトルクをより向上できる。
ところで、単純に磁石32,36の総量を増やすためであれば、磁石32,36の個数を増やすのではなく、一つの磁石32,36のサイズを大きくするのでもよい。例えば、図7に示すように、一つの外側磁石孔30に、大きめの内側磁石36を一つ装填することも考えられる。しかしながら、この場合、この内側磁石36は、外側磁石孔30の形状に合わせて1以上の屈曲点40を有した折れ線形状にしなければならない。かかる折れ線形状の磁石は、その製造が煩雑で、コストが増加しやすい一方で、屈曲点40に逆磁界が作用しやすく、マグネット磁束48の利用効率が悪いという問題があった。
すなわち、内側磁石36からは、その厚み方向に進むマグネット磁束48が出る。磁路に沿って流れる主磁束46の一部は、このマグネット磁束48と逆向きに進んで内側磁石36に到達することがある。かかる逆向きの主磁束46は、マグネット磁束48を打ち消す逆磁界となる。こうした逆磁界の主磁束46は、図7に示す通り、内側磁石孔34の屈曲点40に特に集中しやすい。そのため、当該屈曲点40に内側磁石36の一部が存在すると、せっかくのマグネット磁束48が逆磁界により打ち消されてしまい、マグネット磁束48の利用効率が低下する。ただし、十分なマグネット磁束48が得られ、コスト上の問題も解決できるのであれば、図7に示すような屈曲形状の磁石を、内側磁石36として用いてもよい。
上述したように、内側磁石36として、屈曲点40に跨るような大きな内側磁石36を用いた場合、こうした逆磁界の影響を強く受けることとなり、マグネット磁束48の利用効率が低下する。一方、本例では、上述した通り、ストレート形状の内側磁石36を屈曲点40の両側に配している。また、本例では、二つの内側磁石36を、屈曲点40を避けた位置に装填している。その結果、上述した逆磁界の影響を受けづらくなっており、内側磁石36から出るマグネット磁束48の利用効率を向上できる。
ところで、これまで説明した通り、本例では、内側磁石孔34の磁極中心側端部に、その厚み方向を両側に膨らんで、内側磁石36より大きな厚みを有した磁気バリア38を設けている。かかる磁気バリア38を設けることで、漏れ磁束49を低減でき、マグネットトルクをより向上できる。すなわち、図5に示すように、内側磁石36から出たマグネット磁束48は、内側センターブリッジ52を通って再び内側磁石36に戻る漏れ磁束49となることがある。かかる漏れ磁束49は、マグネットトルクに寄与しないため、漏れ磁束49が増加すると、その分マグネットトルクが低下する。
本例のように、内側磁石孔34の磁極中心側端部において、厚み方向両側に膨らんだ磁気バリア38を設けた場合、内側磁石36から内側センターブリッジ52を経由して内側磁石36に戻る漏れ磁束49の磁路距離が長くなるため、漏れ磁束49が発生しづらくなる。そして、漏れ磁束49が効果的に低減されることで、マグネットトルク、ひいては回転電機10の出力トルクがより向上する。
なお、本例では、厚み方向両側に膨らんだ磁気バリア38を、内側磁石孔34の磁極中心側端部にのみ設けている。かかる箇所にのみ設けるのは、磁気的および機械的な悪影響が少ないためである。すなわち、漏れ磁束49を低減するために、図8に示すように、厚み方向両側に膨らんだ磁気バリア38を、外側磁石孔30の両端や、内側磁石孔34の外側端部にも設けることも考えられる。しかし、外側磁石孔30および内側磁石孔34の外側端部は、ロータコア22の外周縁近傍に位置している。そのため、外側磁石孔30および内側磁石孔34の外側端部に大きな磁気バリア38(空隙)を設けた場合、ロータコア22の機械的強度が大幅に低下するおそれがある。また、主磁束46は、第一、第二磁石装填部26,28間の磁路60だけでなく、ロータコア22の外周縁と第一磁石装填部26との間の磁路62も通る。外側磁石孔30の端部や内側磁石孔34の外側端部に磁気バリア38を設けた場合、磁路60の入口付近や磁路62といった、磁路の中でも幅が細めの箇所に、磁気バリア38(空隙)が突出し、磁路60,62が局所的に絞られることになる。この場合、主磁束46が飽和しやすくなり、リラクタンストルクの低下をまねくおそれがある。
一方、本例のように、内側磁石孔34の磁極中心側端部に設けられた磁気バリア38は、磁路60の磁極中心付近に突出する。磁路60の磁極中心付近は、十分に大きな幅を有しているため、磁気バリア38(空隙)が突出しても、磁気的、機械的な悪影響は少ない。そのため、磁気バリア38は、内側磁石孔34の磁極中心側端部にのみ設けることが望ましい。なお、内側磁石孔34の磁極中心側端部にのみ磁気バリア38を設ける場合には、内側磁石孔34の外側端部付近での漏れ磁束を抑制するために、当該外側端部に設けられるフラックスバリア37の幅方向寸法L1(図4参照)は、磁気バリア38の幅方向寸法L2よりも大きくすることが望ましい。また、当然ながら、磁気的、機械的な悪影響を無視できるのであれば、図8に示すように、外側磁石孔30の両端や、内側磁石孔34の外側端部にも、厚み方向両側に膨らんだ磁気バリアを設けてもよい。
また、これまで説明した構成は、一例であり、少なくとも内側磁石孔34の磁極中心側端部に、その厚み方向を両側に膨らんだ磁気バリア38が設けられているのであれば、その他の構成は、適宜変更されてもよい。例えば、一つの磁石孔に装填される磁石の個数は、適宜、変更されてもよい。例えば、一つの外側磁石孔30に、二以上の外側磁石32が装填されてもよい。また、一つの内側磁石孔34に、一つの内側磁石36、あるいは、三つ以上の内側磁石36が装填されてもよい。また、内側磁石孔34は、1以上の屈曲点40を有するのであれば、異なる形状でもよい。例えば、内側磁石孔34は、二つの屈曲点40を有した形状でもよい。
10 回転電機、12 ステータ、14 ロータ、16 回転軸、18 ステータコア、20 ステータコイル、22 ロータコア、24 磁極、26 第一磁石装填部、28 第二磁石装填部、30 外側磁石孔、32 外側磁石、34 内側磁石孔、34c 中心側部分、34o 外側部分、36 内側磁石、37 フラックスバリア、38 磁気バリア、40 屈曲点、46 主磁束、48 マグネット磁束、49 漏れ磁束、50 外側センターブリッジ、52 内側センターブリッジ、60 磁路、62 磁路、G ギャップ。

Claims (6)

  1. 略円筒形のステータと、前記ステータの内側に同心配置されるロータと、を備えた回転電機であって、
    前記ロータは、周方向に並ぶ複数の磁極を有し、
    各磁極は、第一磁石装填部と、前記第一磁石装填部よりも内周側に位置する第二磁石装填部と、を有し、
    前記第二磁石装填部は、磁極中心に対して対称配置された一対の内側磁石孔と、各内側磁石孔それぞれに1以上装填された内側磁石と、を含み、
    各内側磁石孔は、軸方向視で、1以上の屈曲点を有した折れ線形状であり、
    前記内側磁石孔の前記磁極周方向中心側の端部は、その厚み方向両側に膨らんでおり、前記内側磁石よりも大きな厚みを有した磁気バリアとして機能する、
    ことを特徴とする回転電機。
  2. 請求項1に記載の回転電機であって、
    前記第一磁石装填部と、前記第二磁石装填部との間の磁路の幅は、その端部から前記磁極中心に近づくにつれて広くなっている、
    ことを特徴とする回転電機。
  3. 請求項2に記載の回転電機であって、
    前記内側磁石孔は、前記屈曲点よりも磁極中心側にある中心側部分と、前記屈曲点よりも外側にある外側部分と、を有しており、
    前記中心側部分とd軸とが成す傾斜角度は、前記外側部分と前記d軸とが成す傾斜角度よりも、大きい、ことを特徴とする回転電機。
  4. 請求項1から3のいずれか1項に記載の回転電機であって、
    前記内側磁石孔内の前記屈曲点の両側それぞれに前記内側磁石が装填されている、ことを特徴とする回転電機。
  5. 請求項4に記載の回転電機であって、
    前記内側磁石は、前記屈曲点から離間した位置に装填されている、ことを特徴とする回転電機。
  6. 請求項1から5のいずれか1項に記載の回転電機であって、
    前記第一磁石装填部は、1以上の外側磁石孔と、各外側磁石孔それぞれに1以上装填された外側磁石と、を含み、
    前記外側磁石および前記内側磁石は、全て、同一形状である、ことを特徴とする回転電機。
JP2019022940A 2019-02-12 2019-02-12 回転電機 Active JP7107243B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019022940A JP7107243B2 (ja) 2019-02-12 2019-02-12 回転電機
US16/751,275 US11431213B2 (en) 2019-02-12 2020-01-24 Rotary electric machine
CN202010079340.3A CN111555490B (zh) 2019-02-12 2020-02-04 旋转电机
DE102020201580.5A DE102020201580A1 (de) 2019-02-12 2020-02-10 Drehende elektrische maschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022940A JP7107243B2 (ja) 2019-02-12 2019-02-12 回転電機

Publications (2)

Publication Number Publication Date
JP2020137139A true JP2020137139A (ja) 2020-08-31
JP7107243B2 JP7107243B2 (ja) 2022-07-27

Family

ID=71739251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022940A Active JP7107243B2 (ja) 2019-02-12 2019-02-12 回転電機

Country Status (4)

Country Link
US (1) US11431213B2 (ja)
JP (1) JP7107243B2 (ja)
CN (1) CN111555490B (ja)
DE (1) DE102020201580A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090773B1 (ja) * 2021-04-01 2022-06-24 三菱電機株式会社 回転電機
WO2023026499A1 (ja) * 2021-08-27 2023-03-02 日立Astemo株式会社 回転電機の回転子、回転電機
JP7396311B2 (ja) 2021-02-09 2023-12-12 トヨタ自動車株式会社 回転電機用ロータ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376692B2 (en) * 2018-10-04 2022-07-05 Abb Schweiz Ag Articles of manufacture and methods for additive manufacturing of articles having desired magnetic anisotropy
JP7142072B2 (ja) * 2020-11-02 2022-09-26 本田技研工業株式会社 回転電機のロータ
FR3118347A1 (fr) 2020-12-17 2022-06-24 IFP Energies Nouvelles Rotor de machine électrique avec deux barrières de flux par pôle magnétique
TWI765536B (zh) * 2021-01-19 2022-05-21 國立成功大學 馬達及其轉子構造
FR3119497A1 (fr) 2021-02-04 2022-08-05 IFP Energies Nouvelles Rotor de machine électrique avec deux barrières de flux par pôle magnétique
US11791678B2 (en) 2021-02-25 2023-10-17 National Cheng Kung University Motor and rotor structure thereof
DE102021202917A1 (de) 2021-03-25 2022-09-29 Zf Friedrichshafen Ag Elektrische Maschine und Verfahren zum Herstellen einer elektrischen Maschine
FR3121294A1 (fr) 2021-03-29 2022-09-30 Nidec Psa Emotors Rotor de machine électrique tournante
EP4096064A1 (en) * 2021-05-28 2022-11-30 Toyota Jidosha Kabushiki Kaisha A rotor of an electric rotating machine and an electric rotating machine comprising such a rotor
FR3140717A1 (fr) 2023-10-11 2024-04-12 IFP Energies Nouvelles Rotor de machine électrique avec deux barrières de flux par pôle magnétique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161227A (ja) * 2011-02-03 2012-08-23 Toyota Motor Corp 回転電機用回転子
JP2014072995A (ja) * 2012-09-28 2014-04-21 Suzuki Motor Corp Ipm型電動回転機
KR20150078467A (ko) * 2013-12-30 2015-07-08 현대자동차주식회사 매입형 영구자석 모터의 회전자
JP2018082540A (ja) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 回転電機
WO2018190103A1 (ja) * 2017-04-13 2018-10-18 株式会社 東芝 回転電機の回転子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314152A (ja) 2005-05-06 2006-11-16 Nissan Motor Co Ltd 永久磁石型電動機
JP5659031B2 (ja) * 2011-02-02 2015-01-28 株式会社東芝 永久磁石式回転電機
JP5353962B2 (ja) 2011-07-05 2013-11-27 日産自動車株式会社 永久磁石型電動機
JP5765317B2 (ja) * 2012-11-02 2015-08-19 株式会社デンソー 回転電機のロータ
US20170338707A1 (en) * 2014-12-22 2017-11-23 Mitsubishi Electric Corporation Rotor for rotary electrical machine
JP6390506B2 (ja) * 2015-04-28 2018-09-19 株式会社デンソー 回転電機のロータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161227A (ja) * 2011-02-03 2012-08-23 Toyota Motor Corp 回転電機用回転子
JP2014072995A (ja) * 2012-09-28 2014-04-21 Suzuki Motor Corp Ipm型電動回転機
KR20150078467A (ko) * 2013-12-30 2015-07-08 현대자동차주식회사 매입형 영구자석 모터의 회전자
JP2018082540A (ja) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 回転電機
WO2018190103A1 (ja) * 2017-04-13 2018-10-18 株式会社 東芝 回転電機の回転子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396311B2 (ja) 2021-02-09 2023-12-12 トヨタ自動車株式会社 回転電機用ロータ
JP7090773B1 (ja) * 2021-04-01 2022-06-24 三菱電機株式会社 回転電機
US20220320924A1 (en) * 2021-04-01 2022-10-06 Mitsubishi Electric Corporation Rotary electric machine
US11855490B2 (en) * 2021-04-01 2023-12-26 Mitsubishi Electric Corporation Rotary electric machine
WO2023026499A1 (ja) * 2021-08-27 2023-03-02 日立Astemo株式会社 回転電機の回転子、回転電機

Also Published As

Publication number Publication date
CN111555490A (zh) 2020-08-18
DE102020201580A1 (de) 2020-08-13
JP7107243B2 (ja) 2022-07-27
US11431213B2 (en) 2022-08-30
US20200259377A1 (en) 2020-08-13
CN111555490B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
JP7107243B2 (ja) 回転電機
JP5038475B2 (ja) ロータ
JP5757281B2 (ja) 回転電機のロータ
RU2689311C1 (ru) Вращающаяся электрическая машина
US9893577B2 (en) Motor including permanent magnet rotor with flux barrier
US9923436B2 (en) Rotor for a rotary electric machine
JP6903144B2 (ja) 永久磁石式回転電機
US20090079287A1 (en) Rotor
JP2005176424A (ja) 回転電機の回転子
JP2006314152A (ja) 永久磁石型電動機
JP2008136298A (ja) 回転電機の回転子及び回転電機
JP5353962B2 (ja) 永久磁石型電動機
JP5073692B2 (ja) 回転電機
JP6630690B2 (ja) 回転電機のロータ
JP7185414B2 (ja) 回転子鉄心、回転子及び同期リラクタンス回転電機
JP2017093082A (ja) 回転電機
JP7166066B2 (ja) 回転電機
JP2017201849A (ja) 埋め込み永久磁石式同期電動機
JP7007651B2 (ja) 回転子およびそれを備えた回転電気機械
JP6944675B2 (ja) 回転子及び永久磁石式回転電機
JP2005045986A (ja) 永久磁石回転電機
JP6079132B2 (ja) 磁石埋込型ロータ
JP2009296841A (ja) 回転電機
JP7435482B2 (ja) 回転電機用ロータ
JP2006340507A (ja) 回転電機の固定子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7107243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151