WO2023026499A1 - 回転電機の回転子、回転電機 - Google Patents

回転電機の回転子、回転電機 Download PDF

Info

Publication number
WO2023026499A1
WO2023026499A1 PCT/JP2021/031616 JP2021031616W WO2023026499A1 WO 2023026499 A1 WO2023026499 A1 WO 2023026499A1 JP 2021031616 W JP2021031616 W JP 2021031616W WO 2023026499 A1 WO2023026499 A1 WO 2023026499A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnets
electric machine
rotor
magnetic
Prior art date
Application number
PCT/JP2021/031616
Other languages
English (en)
French (fr)
Inventor
祐二 小林
泰行 齋藤
実紅 高橋
広樹 成島
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180097750.3A priority Critical patent/CN117280569A/zh
Priority to JP2023543634A priority patent/JPWO2023026499A1/ja
Priority to PCT/JP2021/031616 priority patent/WO2023026499A1/ja
Priority to DE112021007306.0T priority patent/DE112021007306T5/de
Publication of WO2023026499A1 publication Critical patent/WO2023026499A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • patent document 1 discloses a lamination A rotor is disclosed that utilizes two layers of magnets in the stack, with an inner layer located near the rotor and composed of large magnets, and an outer layer located near the outer laminated stack surface and composed of small magnets.
  • FIG. 1 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with a rotating electric machine according to one embodiment of the present invention.
  • Rotational torque generated by engine 120 and rotating electric machines 200 and 202 is transmitted to front wheels 110 via transmission 130 and differential gear 160 .
  • Transmission 130 is controlled by transmission controller 134 and engine 120 is controlled by engine controller 124 .
  • Battery 180 is controlled by battery controller 184 .
  • Transmission control device 134 , engine control device 124 , battery control device 184 , power conversion device 600 and integrated control device 170 are connected by communication line 174 .
  • FIG. 2 is an electric circuit diagram of the power converter of FIG.
  • the power conversion device 600 is provided with a first inverter device for the rotating electrical machine 200 and a second inverter device for the rotating electrical machine 202 .
  • the first inverter device includes a power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 of the power module 610, and a current sensor 660 that detects the current of the rotary electric machine 200.
  • the drive circuit 652 is provided on the drive circuit board 650 .
  • the second inverter device includes a power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 in the power module 620, and a current sensor 662 that detects the current of the rotary electric machine 202. I have.
  • the drive circuit 656 is provided on the drive circuit board 654 .
  • a control circuit 648 provided on a control circuit board 646, a capacitor module 630, and a transmitting/receiving circuit 644 mounted on a connector board 642 are commonly used by the first inverter device and the second inverter device.
  • an IGBT (insulated gate bipolar transistor) 21 is used as a switching power semiconductor element.
  • the IGBT 21 has three electrodes, a collector electrode, an emitter electrode and a gate electrode.
  • a diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21 .
  • the diode 38 has two electrodes, a cathode electrode and an anode electrode. They are electrically connected to emitter electrodes, respectively.
  • Drive circuits 652 and 656 constitute a drive section for controlling corresponding inverter devices 610 and 620, and generate a drive signal for driving IGBT 21 based on a control signal output from control circuit 648. do.
  • Drive signals generated by respective drive circuits 652 and 656 are output to gates of respective power semiconductor elements of corresponding power modules 610 and 620, respectively.
  • the drive circuits 652 and 656 are each provided with six integrated circuits for generating drive signals to be supplied to the gates of the upper and lower arms of each phase, and the six integrated circuits constitute one block.
  • a transmitting/receiving circuit 644 mounted on the connector board 642 is for electrically connecting between the power conversion device 600 and an external control device, and communicates information with other devices via the communication line 174 in FIG. Send and receive.
  • the capacitor module 630 constitutes a smoothing circuit for suppressing fluctuations in the DC voltage caused by the switching operation of the IGBT 21 . connected in parallel.
  • FIG. 3 is a cross-sectional view of the rotating electric machine in FIG.
  • FIG. 4 is a cross-sectional view of the rotor core and stator core of FIG. 3 taken along the line AA.
  • the stator core shown in FIG. 4 is composed of, for example, 8 poles (4 pole pairs) and 48 slots, but the number of slots and the number of poles are not limited thereto. Also, the number of cores is not limited and the present invention can be applied.
  • a stator 230 is held inside the housing 212 , and the stator 230 includes a stator core 232 and stator windings 238 .
  • a rotor 280 is rotatably held on the inner peripheral side of the stator core 232 via a gap 222 .
  • the rotor 280 includes a rotor core 282 fixed to the shaft 218, permanent magnets 284, and a cover plate 226 of non-magnetic material.
  • Housing 212 has a pair of end brackets 214 provided with bearings 216, and shaft 218 is rotatably held by these bearings 216.
  • the rotor core 282 has a plurality of magnet holes 3, which are air gaps, into which a plurality of magnets 2 are inserted.
  • the shaft 218 is provided with a resolver 224 that detects the pole position and rotational speed of the rotor 280 .
  • the output from this resolver 224 is taken into the control circuit 648 shown in FIG.
  • Control circuit 648 outputs a control signal to drive circuit 652 based on the captured output.
  • Drive circuit 652 outputs a drive signal based on the control signal to power module 610 .
  • Power module 610 performs a switching operation based on a control signal to convert DC power supplied from battery 180 into three-phase AC power. This three-phase AC power is supplied to the stator winding 238 shown in FIG. 3, and a rotating magnetic field is generated in the stator 230.
  • the frequency of the three-phase alternating current is controlled based on the output value of the resolver 224, and the phase of the three-phase alternating current with respect to the rotor 280 is similarly controlled based on the output value of the resolver 224.
  • FIG. 5 is a partially enlarged view of the rotor of the rotating electric machine according to one embodiment of the present invention.
  • the magnets 2 inserted into the plurality of gaps of the rotor core 282 are a pair of first magnets 2a inserted into a pair of magnet holes 3 formed in a V shape radially outward, and the first magnets 2a. and a pair of second magnets 2b respectively inserted into a pair of magnet holes 3 formed in a V-shape radially inwardly of the magnet hole.
  • the d-axis 4, d-axis 4, A q-axis 5 is defined respectively.
  • the magnet hole 3 is a combination of two V shapes (double V shape) as described above is that the effective portion of the gap magnetic flux density in the air gap 222 is increased and the ineffective portion is increased compared to the single V shape. This is because there is a benefit in terms of output torque. Therefore, by adopting the double V shape for the magnet arrangement of the rotor 280 as in the rotary electric machine 200 of the present embodiment, it is possible to obtain the advantage of being able to reduce the amount of magnets and the physical size as compared with the conventional single V shape. .
  • the formation positions of the magnets 2 and the magnet holes 3 must be considered.
  • the distance 4a from the d-axis 4 to the end of the first magnetic gap 3a is the distance from the d-axis 4 to the second magnet 2b. It is formed longer than the distance 4b to the end on the outermost diameter side.
  • FIG. 6 shows the result (torque state) of verifying the effect of 3c ⁇ 3d.
  • 4a>4b and 2c>2d Four patterns are prepared for effect verification, and a graph 6a of 3c ⁇ 3d, a graph 6b of 3c ⁇ 3d, a graph 6c of 3c ⁇ 3d, and a graph 6d of 3c>3d are illustrated, respectively. From this, it can be seen that if 3c ⁇ 3d, 3c ⁇ 3d, the torque ripple is smaller than 3c ⁇ 3d or 3c > 3d. It was found that the torque ripple can be suppressed by
  • FIG. 9 is a diagram showing the simulation results of the magnetic flux in the rotor and stator for verifying the effect of angle 2c>angle 2d.
  • FIG. 9(a) shows the condition of angle 2c ⁇ angle 2d
  • FIG. 9(b) shows the condition of angle 2c ⁇ angle 2d
  • FIG. 9(c) shows the condition of angle 2c>angle 2d. Illustrated.
  • FIG. 9(a) there is a wide magnetic path on the inner diameter side of the rotor, and if the rotor core portion does not reach this range, the torque will decrease. If the range of the magnetic path on the inner diameter side of is suppressed, a high torque can be achieved with a small number of rotor cores.
  • FIG. 10 is a first modified example of the present invention.
  • FIG. 11(a) is a second modified example of the present invention
  • FIG. 11(b) is a third modified example.
  • an additional gap (third magnetic gap 3f) is provided between the first magnetic gap 3a and the second magnetic gap 3b.
  • a bridge portion 3g is provided between the first magnetic gap 3a and the third magnetic gap 3f and between the second magnetic gap 3b and the third magnetic gap 3f. By doing so, the path of the magnetic flux in the bridge portion 3g becomes narrower, and the torque ripple reduction effect is realized.
  • the shape of the third magnetic air gap 3f may be any shape as long as it has the bridge portion 3g.
  • FIG. 12A is the fourth modification of the present invention
  • FIG. 12B is the fifth modification
  • FIG. 12C is the sixth modification.
  • the first magnet 2a is not V-shaped, the magnet hole 3 into which the first magnet 2a is inserted is continuous, and the angle 2c (see FIG. 5) is set to 180°. It can be the first magnet 2a. This can have the same effect as the arrangement of the double V-shaped magnets 2 .
  • FIGS. 14(a) and 14(b) are the ninth and tenth modified examples of the present invention, respectively.
  • the first magnet 2a and the second magnet 2b are divided in the vertical direction (axial direction) with respect to the long sides of the examples used in FIGS. 5 and 12(a), respectively. is.
  • the heat generation of the magnets can be suppressed, the demagnetization resistance can be increased, and the torque ripple reduction effect can be the same as that of the other embodiments.
  • the cross section of each magnet division is, for example, a cross section in a direction perpendicular to the axial direction (parallel to the paper surface), the heat generated by the magnet can be suppressed, and if the fixation of the magnet can be secured, any Such a division method may be used.
  • the magnet characteristics such as the residual magnetic flux density and the coercive force of the first magnet 2a, the second magnet 2b and the third magnet 2e may be the same, and the reverse magnetic field from the stator may be applied to each of them. are different, the materials may be changed to have the required coercive force. By doing so, it is possible to reduce the magnet cost and manufacture a more inexpensive rotary electric machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

回転電機の回転子およびこれを用いた回転電機は、V形状に配置される一対の第1磁石と、一対の第2磁石と、を備え、磁石孔には、前記第1磁石を間にしてd軸と対向する第1磁気的空隙と、前記第2磁石を間にして前記d軸と対向する第2磁気的空隙と、が形成され、前記d軸から前記第1磁気的空隙の端部までの距離は、前記d軸から前記第2磁石のうち最も外径側の端部までの距離よりも長く形成され、最も外径側の前記第1磁気的空隙と前記第2磁気的空隙との間の距離は、複数の磁極において隣接する前記第2磁気的空隙の間の距離よりも短く、前記一対の第1磁石によって形成される前記V形状の内角の大きさは、前記一対の第2磁石によって形成される内角よりも大きい。

Description

回転電機の回転子、回転電機
 本発明は、回転電機の回転子およびこれを用いた回転電機に関する。
 本発明の背景技術として、自動車などに搭載される永久磁石モータにおけるコギングトルクおよびトルクリプルを低減し、潜在的なNVH(Noise, Vibration and Harshness)問題を低減するため、下記の特許文献1では、積層スタック内の2層の磁石を利用し、内層がロータの近くに配置され、大きい磁石から構成され、外層が外側積層スタック表面の近くに配置され、小さい磁石から構成されているロータが開示されている。
特開2020-68654号公報
 特許文献1の構成を踏まえて、顧客要請に応えるために、出力性能を維持しつつNV性能もさらに改善する必要があるため、本発明では、高出力化と低トルクリプル化とを両立させた回転電機の回転子を提供することが目的である。
 回転電機の回転子は、磁石と、前記磁石が挿入されている磁石孔と、を備える回転電機の回転子であって、前記磁石は、V形状に配置される一対の第1磁石と、前記第1磁石よりも径方向内側にV形状に配置される一対の第2磁石と、を含み、前記磁石孔には、前記第1磁石を間にしてd軸と対向する第1磁気的空隙と、前記第2磁石を間にして前記d軸と対向する第2磁気的空隙と、が形成され、前記d軸に対して垂直方向に見たときに、前記d軸から前記第1磁気的空隙の端部までの距離は、前記d軸から前記第2磁石のうち最も外径側の端部までの距離よりも長く形成され、最も外径側において、前記第1磁気的空隙と前記第2磁気的空隙との間の距離は、複数の磁極において隣接する前記第2磁気的空隙の間の距離よりも短く、前記一対の第1磁石によって形成される前記V形状の内角の大きさは、前記一対の第2磁石によって形成される前記V形状の内角の大きさよりも大きい。
 本発明によれば、高出力化と低トルクリプル化とを両立させた回転電機の回転子を提供できる。
本発明の一実施形態を備える車両のブロック図。 図1の電力変換装置の電気回路図。 図1の回転電機の断面図。 図3の回転子コアと固定子コアのA-A断面図。 本発明の一実施形態に係る、回転電機の回転子の部分拡大図。 本発明の一実施形態に係る、発明効果の説明図。 本発明の一実施形態に係る、発明効果の説明図。 本発明の一実施形態に係る、発明効果の説明図。 本発明の一実施形態に係る、発明効果の説明図。 本発明の第1変形例。 本発明の第2,第3変形例。 本発明の第4変形例。 本発明の第5変形例。 本発明の第6変形例。 本発明の第7,第8変形例。 本発明の第9,第10変形例。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
(本発明の一実施形態と全体構成)
 図1は、本発明の一実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。
 車両100には、エンジン120と第1の回転電機200と第2の回転電機202とバッテリ180とが搭載されている。バッテリ180は、回転電機200,202による駆動力が必要な場合に、電力変換装置600を介して回転電機200,202に直流電力を供給し、回生走行時には、逆に回転電機200,202から直流電力を受ける。バッテリ180と回転電機200,202との間の直流電力の授受は、電力変換装置600を介して行われる。
 エンジン120および回転電機200,202による回転トルクは、変速機130とデファレンシャルギア160を介して前輪110に伝達される。変速機130は変速機制御装置134により制御され、エンジン120はエンジン制御装置124により制御される。バッテリ180は、バッテリ制御装置184により制御される。変速機制御装置134、エンジン制御装置124、バッテリ制御装置184、電力変換装置600および統合制御装置170は、通信回線174によって接続されている。
 統合制御装置170は、変速機制御装置134,エンジン制御装置124,電力変換装置600およびバッテリ制御装置184よりも上位の制御装置であり、変速機制御装置134,エンジン制御装置124,電力変換装置600およびバッテリ制御装置184の各状態を表す情報を、通信回線174を介してそれぞれ受け取る。統合制御装置170は、取得したそれらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は、通信回線174を介してそれぞれの制御装置へ送信される。
 高電圧のバッテリ180はリチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する。また、図示していないが、車両100には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、制御回路に直流電力を供給する。
 バッテリ制御装置184は、バッテリ180の充放電状況やバッテリ180を構成する各単位セル電池の状態を、通信回線174を介して統合制御装置170に出力する。統合制御装置170は、バッテリ制御装置184からの情報に基づいてバッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。
 また、統合制御装置170は、主に、エンジン120および回転電機200,202の出力トルクの管理、エンジン120の出力トルクと回転電機200,202の出力トルクとの総合トルクやトルク分配比の演算処理を行い、その演算処理結果に基づく制御指令を、変速機制御装置134,エンジン制御装置124および電力変換装置600へ送信する。電力変換装置600は、統合制御装置170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機200,202を制御する。
 電力変換装置600には、回転電機200,202を運転するためのインバータを構成するパワー半導体が設けられている。電力変換装置600は、統合制御装置170からの指令に基づきパワー半導体のスイッチング動作を制御する。このパワー半導体のスイッチング動作により、回転電機200,202は電動機としてあるいは発電機として運転される。
 回転電機200,202を電動機として運転する場合は、高電圧のバッテリ180からの直流電力が電力変換装置600のインバータの直流端子に供給される。電力変換装置600は、パワー半導体のスイッチング動作を制御して供給された直流電力を3相交流電力に変換し、回転電機200,202に供給する。一方、回転電機200,202を発電機として運転する場合には、回転電機200,202の回転子が外部から加えられる回転トルクで回転駆動され、回転電機200,202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置600で直流電力に変換され、その直流電力が高電圧のバッテリ180に供給されることにより、バッテリ180が充電される。
 図2は、図1の電力変換装置の電気回路図である。
 電力変換装置600には、回転電機200のための第1のインバータ装置と、回転電機202のための第2のインバータ装置とが設けられている。第1のインバータ装置は、パワーモジュール610と、パワーモジュール610の各パワー半導体21のスイッチング動作を制御する第1の駆動回路652と、回転電機200の電流を検知する電流センサ660とを備えている。駆動回路652は駆動回路基板650に設けられている。一方、第2のインバータ装置は、パワーモジュール620と、パワーモジュール620における各パワー半導体21のスイッチング動作を制御する第2の駆動回路656と、回転電機202の電流を検知する電流センサ662と、を備えている。駆動回路656は駆動回路基板654に設けられている。
 制御回路基板646に設けられた制御回路648、コンデンサモジュール630およびコネクタ基板642に実装された送受信回路644は、第1のインバータ装置と第2のインバータ装置とで共通に使用される。
 パワーモジュール610,620は、それぞれ対応する駆動回路652,656から出力された駆動信号によって動作する。パワーモジュール610,620は、それぞれバッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する回転電機200,202の電機子巻線である固定子巻線に供給する。また、パワーモジュール610,620は、回転電機200,202の固定子巻線に誘起された交流電力を直流に変換し、高電圧バッテリ180に供給する。
 パワーモジュール610,620は図2に記載のごとく3相ブリッジ回路を備えており、3相に対応した直列回路が、それぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体21と下アームを構成するパワー半導体21とを備え、それらのパワー半導体21は直列に接続されている。パワーモジュール610とパワーモジュール620とは、図2に示すごとく回路構成がほぼ同じであり、ここではパワーモジュール610で代表して説明する。
 本実施形態では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極,エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。
 なお、スイッチング用パワー半導体素子として、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極,ソース電極及びゲート電極の3つの電極を備えている。MOSFETの場合には、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、図2のダイオード38を設ける必要がない。
 各相のアームは、IGBT21のエミッタ電極とIGBT21のコレクタ電極とが電気的に直列に接続されて構成されている。なお、本実施形態では、各相の各上下アームのIGBTを1つしか図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下では、説明を簡単にするため、1個のパワー半導体として説明する。
 図2に示す例では、各相の各上下アームはそれぞれ3個のIGBTによって構成されている。各相の各上アームのIGBT21のコレクタ電極はバッテリ180の正極側に、各相の各下アームのIGBT21のソース電極はバッテリ180の負極側にそれぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのエミッタ電極と下アーム側のIGBTのコレクタ電極との接続部分)は、対応する回転電機200,202の対応する相の電機子巻線(固定子巻線)に電気的に接続されている。
 駆動回路652,656は、対応するインバータ装置610,620を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、IGBT21を駆動させるための駆動信号を発生する。それぞれの駆動回路652,656で発生した駆動信号は、対応するパワーモジュール610,620の各パワー半導体素子のゲートにそれぞれ出力される。駆動回路652,656には、各相の各上下アームのゲートに供給する駆動信号を発生する集積回路がそれぞれ6個設けられており、6個の集積回路を1ブロックとして構成されている。
 制御回路648は各インバータ装置610,620の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値)、電流センサ660,662のセンサ出力、回転電機200,202に搭載された回転センサのセンサ出力が入力される。制御回路648はそれらの入力信号に基づいて制御値を演算し、駆動回路652,656にスイッチングタイミングを制御するための制御信号を出力する。
 コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、図1の通信回線174を介して他の装置と情報の送受信を行う。コンデンサモジュール630は、IGBT21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するもので、第1のパワーモジュール610や第2のパワーモジュール620における直流側の端子に電気的に並列に接続されている。
 図3は、図1の回転電機の断面図である。図4は、図3の回転子コアと固定子コアのA-A断面図である。なお、回転電機200と回転電機202とはほぼ同じ構造を有しており、以下では回転電機200の構造を代表例として説明する。ただし、以下に示す構造は回転電機200,202の双方に採用されている必要はなく、一方だけに採用されていても良い。また、図4に示す固定子コアは、例えば8極(4極対)、48スロットで構成されているがこれに限らず他のスロット数、極数でもよい。また、コア数についても限定はなく本発明を適用できる。
 ハウジング212の内部には固定子230が保持されており、固定子230は固定子コア232と固定子巻線238とを備えている。固定子コア232の内周側には、回転子280が空隙222を介して回転可能に保持されている。回転子280は、シャフト218に固定された回転子コア282と、永久磁石284と、非磁性体のあて板226とを備えている。ハウジング212は軸受216が設けられた一対のエンドブラケット214を有しており、シャフト218はこれらの軸受216により回転自在に保持されている。回転子コア282には複数の空隙である磁石孔3があり、その一部に複数の磁石2が挿入されている。
 シャフト218には、回転子280の極の位置や回転速度を検出するレゾルバ224が設けられている。このレゾルバ224からの出力は、図2に示した制御回路648に取り込まれる。制御回路648は、取り込まれた出力に基づいて制御信号を駆動回路652に出力する。駆動回路652は、その制御信号に基づく駆動信号をパワーモジュール610に出力する。パワーモジュール610は、制御信号に基づきスイッチング動作を行い、バッテリ180から供給される直流電力を3相交流電力に変換する。この3相交流電力は図3に示した固定子巻線238に供給され、回転磁界が固定子230に発生する。3相交流電流の周波数はレゾルバ224の出力値に基づいて制御され、3相交流電流の回転子280に対する位相も同じくレゾルバ224の出力値に基づいて制御される。
 図5は、本発明の一実施形態に係る、回転電機の回転子の部分拡大図である。
 回転子コア282の複数の空隙に挿入されている磁石2は、径方向外側にV形状に形成される一対の磁石孔3にそれぞれ挿入されている一対の第1磁石2aと、第1磁石2aよりも径方向内側にV形状に形成される一対の磁石孔3にそれぞれ挿入されている一対の第2磁石2bと、を含む。このような磁石配置において、同一極内にある一対の第1磁石2a、2bの中心線4と、隣り合う2つの極にそれぞれ属する第1磁石2a、2bの中心線5により、d軸4、q軸5がそれぞれ定義される。
 磁石孔3が上記のような2つのV形状の組み合わせ(ダブルV形状)になっている理由は、シングルV形状の場合と比べて、空隙222におけるギャップ磁束密度の有効分が増えて無効分が減り、出力トルクの面で恩恵があるためである。したがって、本実施形態の回転電機200のように、回転子280の磁石配置にダブルV形状を採用することで、従来のシングルV形状のものよりも磁石量や体格を低減できるというメリットが得られる。しかしながら、ダブルV形状ではシングルV形状よりも1極当たりの磁石数が増加する分、トルクリプルが増加して、回転子280の回転に脈動が生じてNV性能が悪化する課題を抱えることになるため、磁石2や磁石孔3の形成位置を考慮する必要がある。
 本発明では、第1磁石2aが挿入されている磁石孔3において、第1磁石2aを間にしてd軸4と対向する位置に空間が存在することで、第1磁気的空隙3aが形成されている。また同様に、第2磁石2bが挿入されている磁石孔3において、第2磁石2bを間にしてd軸4と対向する位置に空間が存在することで、第2磁気的空隙3bが形成されている。
 また、d軸4に対して垂直方向(図の左右方向)に見たときに、d軸4から第1磁気的空隙3aの端部までの距離4aは、d軸4から第2磁石2bのうち最も外径側の端部までの距離4bよりも長く形成されている。
 また、最も外径側において、第1磁気的空隙3aと第2磁気的空隙3bとの間の距離3cは、隣接する2つの極における第2磁気的空隙3b同士の間の距離3dよりも短い。また、第1磁石2aによって形成されるV字の内側の角度の大きさ2cは、第2磁石2bのV字の内側の角度の大きさ2dよりも大きい。
 このようにすることで、第1磁気的空隙3aと第2磁気的空隙3bの間(距離3c)等の磁束漏れを抑制し、ギャップ磁束密度を正弦波化することで、磁束の変動が滑らかになるため、低トルクリプルを実現できる。
 なお、磁石2を支えるための位置規制突起12は、磁石孔3に設けていない場合でも本発明は実現できる。また、このような位置規制突起12は、磁石孔3において径方向内側もしくは径方向外側のどちらかまたは両方に形成されていてもよい。また、回転子コアの外周に複数形成される空隙223は、q軸5上に形成されており、d軸4側に空隙を設けないことで、全体でトルクリプルの低減効果を生み出している。
 図6~図9は、本発明の一実施形態に係る、発明効果の説明図である。
 図6は、3c<3dの効果を検証した結果(トルクの状態)を表している。なお、以下の検証では、4a>4b,2c>2dとする。効果検証には4パターンを用意しており、それぞれ3c<<3dのグラフ6a、3c<3dのグラフ6b、3c≒3dのグラフ6c、3c>3dのグラフ6dが図示されている。これにより、3c<3d,3c<<3dであれば、3c≒3dまたは3c>3dよりもトルクリプルが小さくなったことがわかり、3dに比べて3cが小さくなればなるほど、ギャップ磁束密度が正弦波化してトルクリプルが抑制できることがわかった。
 図7では、4a<4bとしたまま、3cと3dの関係を変えていき、4a<4bのまま3c<3dとしたグラフ7a、4a<4bのまま3c≒3dとしたグラフ7b、4a<4bのまま3c>3dとしたグラフ7cの3パターンが図示されている。この結果、図7に示すように、グラフ7aに比べてグラフ7cはトルクリプルが大きくなっているため、3c<3dの関係性がトルクリプルの低減に重要であることがわかる。
 図8での効果検証では、4a>4b,3c<3dのまま角度2c<角度2dとした棒グラフ8a、4a>4b,3c<3dのまま角度2c=角度2dとした棒グラフ8b、4a>4b,3c<3dのまま2c>2dとした棒グラフ8cの3パターンが図示されている。これにより、角度2c<角度2dとならなければ、トルクが著しく低下するような影響はないことがわかる。
 図9は、角度2c>角度2dの効果検証のために回転子と固定子における磁束のシミュレーション結果を示した図である。図9(a)は角度2c<角度2d、図9(b)は角度2c≒角度2d、図9(c)は角度2c>角度2dの状態を表しているが、それぞれに磁束9の様子が図示されている。比較すると、図9(a)では回転子の内径側に広い磁路があり、この範囲まで回転子コア部分が無いとトルクが低下してしまうが、図9(c)のように、回転子の内径側の磁路の範囲が抑えられている状態であれば、少ない回転子コアで高トルク化できる。
 図10は、本発明の第1変形例である。
 第1の変形例では、第2磁気的空隙3bは、第1磁気的空隙3aに最も近い部分(端部)をさらに第1磁気的空隙3aに近づけて、凸形状3eを形成した。このようにすることで第1磁気的空隙3aと第2磁気的空隙3bとの間の距離3cをさらに小さくすることができるため、磁束の通り道が狭くなり、さらにトルクリプル低減効果を実現できる。また、q軸5上には位置決め孔11を形成しており、回転子コア282の軽量化に貢献している。
 図11(a)は本発明の第2変形例、図11(b)は第3変形例である。
 第2、第3の変形例では、第1磁気的空隙3aと第2磁気的空隙3bとの間に、さらに空隙を設ける(第3磁気的空隙3f)。第1磁気的空隙3aと第3磁気的空隙3fとの間、かつ第2磁気的空隙3bと第3磁気的空隙3fとの間には、ブリッジ部3gがそれぞれ設けられている。このようにすることで、ブリッジ部3g部分の磁束の通り道が狭くなり、さらにトルクリプル低減効果を実現する。なお、第3磁気的空隙3fの形状はブリッジ部3gがあれば、どのような形状であってもよい。
 図12Aは本発明の第4変形例、図12Bは第5変形例、図12Cは第6変形例である。
 第4変形例では、第1磁石2aをV形状にせず、第1磁石2aが挿入される磁石孔3を一続きにして、角度2c(図5参照)を180°にすることで、1つの第1磁石2aにできる。これはダブルV形状の磁石2の配置と同様の効果を奏することができる。
 また、第5変形例では、第2磁石2bが挿入されている磁石孔3同士の間の位置に、第3磁石2eが設けられている。第3磁石2eが挿入されている磁石孔は、左右両端部に第4磁気的空隙3iが設けられている。また、第4磁気的空隙3iと、第2磁石2bまたは第3磁石2dと、の間には、第2磁気的空隙(内周側)3hがそれぞれ設けられている。これにより、磁石2による回転子コア282の磁力を強化しつつ、トルクリプルの低減を実現できる。なお、第2磁気的空隙(内周側)3hと第4磁気的空隙3iは、それぞれ回転強度が問題無い範囲であればどのような形状であってもよい。
 また、第6変形例では、第5変形例の角度2cを180°より小さくV字形状とした例を示しているが、第5変形例と同様にトルクリプルの低減を実現できる。また、これらの磁石配置と図11における第3磁気的空隙3fの配置とを組み合わせても、同様の効果を奏することができる。
 図13(a),13(b)はそれぞれ本発明の第7,第8変形例である。
 第7,第8変形例は、図5の第2磁石2bまたは第3磁石2dが挿入されている磁石孔3同士の間の位置に、第3磁石2eを設けずに第4磁気的空隙3iだけ設けており、かつ第4磁気的空隙3iに近い第2磁石2bと第3磁石2dの端部に、第3磁気的空隙3eが設けられた形状である。このように、回転強度に応じて磁気的空隙を複数にわけて応力分散をしても、トルクリプル抑制効果は他の変形例と同様の効果を奏することができる。
 図14(a),14(b)は、それぞれ本発明の第9,第10変形例である。
 第9,第10変形例は、それぞれ図5,図12(a)で用いた例において、第1磁石2a,第2磁石2bをそれぞれ長辺に対して垂直方向(軸方向)に分割した形状である。こうすることで、それぞれ磁石の発熱をおさえ、減磁耐力を上げることができ、トルクリプル低減効果は他の実施例と同様の効果を奏することができる。なお、それぞれの磁石分割の断面は、例えば、軸方向に対して垂直な方向の断面(紙面平行方向)であっても磁石発熱は抑えることができ、磁石の固定性が確保できるのであればどのような分割方法であってもよい。
 以上本発明に係る実施例は、第1磁石2a,第2磁石2b,第3磁石2eの残留磁束密度や保磁力といった磁石特性は同一にしても良いし、それぞれ固定子からの逆磁界の受け方が違うことから、それぞれ必要な保磁力に変更した材質に変更してもよい。こうすることで、磁石コストを抑え、より安価な回転電機を製造できる。
 また、磁石の固定方法について、接着剤を充填してもよいし、モールド材注入による固定でもよいし、磁石と回転子コア間に、熱をかけて発砲するシートを挿入しても良いし、回転子コアの磁石付近を変形させて固定する等、どのような固定方法をとっても良く、どの例でも低トルクリプル効果を奏することができる。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)回転電機200の回転子280は、磁石2と、磁石2が挿入されている磁石孔3と、を備え、磁石2は、V形状に配置される一対の第1磁石2aと、第1磁石2aよりも径方向内側にV形状に配置される一対の第2磁石2bと、を含み、磁石孔3には、第1磁石2aを間にしてd軸4と対向する第1磁気的空隙3aと、第2磁石2bを間にしてd軸4と対向する第2磁気的空隙3bと、が形成され、d軸4に対して垂直方向に見たときに、d軸4から第1磁気的空隙3aの端部までの距離は、d軸4から第2磁石2bのうち最も外径側の端部までの距離よりも長く形成され、最も外径側において、第1磁気的空隙と第2磁気的空隙3bとの間の距離は、複数の磁極において隣接する第2磁気的空隙3bの間の距離よりも短く、一対の第1磁石2aによって形成されるV形状の内角の大きさ2cは、一対の第2磁石2bによって形成されるV形状の内角の大きさ2dよりも大きい。このようにしたことで、高出力化と低トルクリプル化とを両立させた回転電機の回転子を提供できる。
(2)回転子コア282において、第1磁石2aが挿入されている磁石孔3はd軸4を間に挟んで一続きで形成されており、一対の第1磁石2aは一続きで形成されている。このようにしたことで、装填する磁石2の数を減らし、形状を簡易化できる。
(3)回転子コア282において、第1磁気的空隙3aと第2磁気的空隙3bとの間には、空隙が形成されている。このようにしたことで、さらにトルクリプル低減効果を実現する。
(4)回転子コア282において、一対の第2磁石2bがそれぞれ挿入されている磁石孔3同士の間の位置に、第3磁石2eが設けられている。回転子コア282の磁力を強化しつつ、さらにトルクリプルの低減を実現できる。
(5)回転電機は本発明の実施形態を備えた回転電機の回転子を備える。このようにしたことで、高出力化と低トルクリプル化とを両立させた回転電機を提供できる。
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
2 回転子の磁石
 2a 第1磁石
 2b 第2磁石
 2c 第1磁石のV字の内側の角度の大きさ
 2d 第2磁石のV字の内側の角度の大きさ
 2e 第3磁石
3 磁石孔
 3a 第1磁気的空隙
 3b 第2磁気的空隙
 3c 第1磁気的空隙と第2磁気的空隙との間の距離
 3d 隣接する第2磁気的空隙同士との間の距離
 3e 第2磁気的空隙の凸形状
 3f 第3磁気的空隙
 3g 第3磁気的空隙のブリッジ部
 3h 第2磁気的空隙(内周側)
 3i 第4磁気的空隙
4 d軸
 4a 第1磁気的空隙のd軸から最も離れている点までの距離
 4b 第2磁石の径方向外側に対向する角部までの距離
5 q軸
100 車両
200 回転電機
280 回転子
282 回転子コア
600 電力変換装置

Claims (5)

  1.  磁石と、前記磁石が挿入されている磁石孔と、を備える回転電機の回転子であって、
     前記磁石は、V形状に配置される一対の第1磁石と、前記第1磁石よりも径方向内側にV形状に配置される一対の第2磁石と、を含み、
     前記磁石孔には、前記第1磁石を間にしてd軸と対向する第1磁気的空隙と、前記第2磁石を間にして前記d軸と対向する第2磁気的空隙と、が形成され、
     前記d軸に対して垂直方向に見たときに、前記d軸から前記第1磁気的空隙の端部までの距離は、前記d軸から前記第2磁石のうち最も外径側の端部までの距離よりも長く形成され、
     最も外径側において、前記第1磁気的空隙と前記第2磁気的空隙との間の距離は、複数の磁極において隣接する前記第2磁気的空隙の間の距離よりも短く、
     前記一対の第1磁石によって形成される前記V形状の内角の大きさは、前記一対の第2磁石によって形成される前記V形状の内角の大きさよりも大きい
     回転電機の回転子。
  2.  請求項1に記載の回転電機の回転子であって、
     前記第1磁石が挿入されている前記磁石孔は、前記d軸を間に挟んで一続きで形成されており、
     前記一対の第1磁石は、一続きで形成されている
     回転電機の回転子。
  3.  請求項1または請求項2に記載の回転電機の回転子であって、
     前記第1磁気的空隙と前記第2磁気的空隙との間には、空隙が形成されている
     回転電機の回転子。
  4.  請求項1または請求項2に記載の回転電機の回転子であって、
     前記一対の第2磁石がそれぞれ挿入されている前記磁石孔同士の間の位置に、第3磁石が設けられている
     回転電機の回転子。
  5.  請求項1から4のいずれかに記載の回転電機の回転子を備えた
     回転電機。
PCT/JP2021/031616 2021-08-27 2021-08-27 回転電機の回転子、回転電機 WO2023026499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180097750.3A CN117280569A (zh) 2021-08-27 2021-08-27 旋转电机的转子以及旋转电机
JP2023543634A JPWO2023026499A1 (ja) 2021-08-27 2021-08-27
PCT/JP2021/031616 WO2023026499A1 (ja) 2021-08-27 2021-08-27 回転電機の回転子、回転電機
DE112021007306.0T DE112021007306T5 (de) 2021-08-27 2021-08-27 Rotor für rotierende elektrische maschine und rotierende elektrische maschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031616 WO2023026499A1 (ja) 2021-08-27 2021-08-27 回転電機の回転子、回転電機

Publications (1)

Publication Number Publication Date
WO2023026499A1 true WO2023026499A1 (ja) 2023-03-02

Family

ID=85322605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031616 WO2023026499A1 (ja) 2021-08-27 2021-08-27 回転電機の回転子、回転電機

Country Status (4)

Country Link
JP (1) JPWO2023026499A1 (ja)
CN (1) CN117280569A (ja)
DE (1) DE112021007306T5 (ja)
WO (1) WO2023026499A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148597A (ja) * 2017-03-01 2018-09-20 ダイキン工業株式会社 回転電気機械
WO2020027338A1 (ja) * 2018-08-03 2020-02-06 株式会社 東芝 回転電機の回転子
JP2020137139A (ja) * 2019-02-12 2020-08-31 トヨタ自動車株式会社 回転電機
WO2021106395A1 (ja) * 2019-11-26 2021-06-03 株式会社安川電機 回転電機、回転子及び電磁鋼板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200127508A1 (en) 2018-10-23 2020-04-23 Atieva, Inc. Low Cogging Torque, High Torque Density Traction Motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148597A (ja) * 2017-03-01 2018-09-20 ダイキン工業株式会社 回転電気機械
WO2020027338A1 (ja) * 2018-08-03 2020-02-06 株式会社 東芝 回転電機の回転子
JP2020137139A (ja) * 2019-02-12 2020-08-31 トヨタ自動車株式会社 回転電機
WO2021106395A1 (ja) * 2019-11-26 2021-06-03 株式会社安川電機 回転電機、回転子及び電磁鋼板

Also Published As

Publication number Publication date
JPWO2023026499A1 (ja) 2023-03-02
CN117280569A (zh) 2023-12-22
DE112021007306T5 (de) 2024-01-25

Similar Documents

Publication Publication Date Title
US10340756B2 (en) Rotating electric machine and vehicle equipped with rotating electric machine
US10547222B2 (en) Electric machine with Q-offset grooved interior-magnet rotor and vehicle
JP5730736B2 (ja) 永久磁石式回転電機および永久磁石式回転電機を備えた車両
JP6263551B2 (ja) 回転電機、およびその回転電機を備えた電動車両
US8847454B2 (en) Rotating electric machine and automobile
JP7113003B2 (ja) 回転電機の回転子及びこれを備えた回転電機
US10511198B2 (en) Rotary electrical machine, and rotor for rotary electrical machine
JP2020174529A (ja) 回転電機の回転子、回転電機、及び車両
WO2023026499A1 (ja) 回転電機の回転子、回転電機
JP6626768B2 (ja) 回転電機の固定子、及びこれを備えた回転電機
CN111264018B (zh) 旋转电机的转子以及使用该转子的旋转电机
WO2023238312A1 (ja) 回転電機の回転子、回転電機及びこの回転電機を備えた電動車両
JP2016158401A (ja) 回転電機の回転子、及びこれを備えた回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180097750.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007306

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18564164

Country of ref document: US